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Abstract

Notwithstanding a resurgence in research on out-of-sample forecasts of the price of oil in
recent years, there is one important approach to forecasting the real price of oil which has not
been studied systematically to date. This approach is based on the premise that demand for
crude oil derives from the demand for refined products such as gasoline or heating oil. Oil indus-
try analysts such as Philip Verleger and financial analysts widely believe that there is predictive
power in the product spread, defined as the difference between suitably weighted refined product
market prices and the price of crude oil. Our objective is to evaluate this proposition. We derive
from first principles a number of alternative forecasting model specifications involving product
spreads and compare these models to the no-change forecast of the real price of oil. We show
that not all product spread models are useful for out-of-sample forecasting, but some models
are, even at horizons between one and two years. The most accurate model is a time-varying pa-
rameter model of gasoline and heating oil spot spreads that allows the marginal product market
to change over time. We document MSPE reductions as high as 20% and directional accuracy
as high as 63% at the two-year horizon, making product spread models a good complement to
forecasting models based on economic fundamentals, which work best at short horizons.
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1 Introduction

Oil price forecasts affect the economic outlook of oil-importing as well as oil-exporting countries.
Accurate oil price forecasts are required, for example, to guide natural resource development and
investments in infrastructure. They also play an important role in preparing budget and investment
plans. Users of oil price forecasts include international organizations, central banks, governments
at the state and federal level as well as a range of industries including utilities and automobile
manufacturers.

In recent years there has been a resurgence in research on the question of how to forecast the
price of commodities in general and the price of oil in particular, at least at horizons up to a year or
two. One strand of this literature has examined in depth the predictive power of oil futures prices
(see, e.g., Chernenko, Schwarz, and Wright 2004; Knetsch 2007; Alquist and Kilian 2010; Reeve
and Vigfusson 2011; Chinn and Coibion 2013; Alquist, Kilian and Vigfusson 2013). Another strand
of the literature has focused on the predictive content of changes in oil inventories, oil production,
macroeconomic fundamentals, and exchange rates (see, e.g., Chen, Rogoff, and Rossi 2010; Baumeis-
ter and Kilian 2012a,b; 2013a; Alquist, Kilian and Vigfusson 2013). A third strand has looked at the
forecasting ability of professional and survey forecasts (see, e.g., Sanders, Manfredo, and Boris 2008;
Alquist, Kilian and Vigfusson 2013). The emerging consensus from this literature is that economic
fundamentals help forecast the real price of oil, at least during times of large and persistent move-
ments in economic fundamentals, but only at short horizons. In contrast, the forecasting ability of
oil futures prices, judgmental forecasts, and survey expectations tends to be low.

It may seem that these studies would cover the universe of widely used predictors for the price of
oil. There is, however, another important approach to forecasting the real price of oil which has not
been studied systematically to date. This alternative approach is based on the premise that demand
for crude oil derives from the demand for refined products such as gasoline or heating oil.! The
idea of derived demand has a long tradition in academic research on oil markets (see, e.g., Verleger
1982; Lowinger and Ram 1984). For example, Verleger (1982) advocates that spot market prices for
petroleum products are the primary determinants of crude oil prices, allowing one to express the
price of crude oil as a weighted average of refined product prices. A common view is that refiners
view themselves as price takers in product markets and cut their volume of production when they
cannot find crude oil at a price commensurate with product prices. In time, this reduction in the
demand for crude oil will lower the price of crude oil and the corresponding reduction in the supply

of products will boost product prices (see Verleger 2011). This reasoning suggests that the difference

IThe nature of this final demand is left unspecified. Changes in final demand may reflect business cycle fluctuations
or shifts in consumer preferences, for example. For further discussion also see Kilian (2010).



between refined product market prices and the purchase price of crude oil should have predictive
power for the price of crude oil. We refer to this hypothesis as the Verleger hypothesis, given its
antecedents in Verleger’s work, but note that this view is widespread among oil industry analysts.
For example, energy consultant Kent Moors interprets crack spreads as market oil price expectations
and forecasts higher oil prices based on increasing gasoline spreads and heating oil spreads (see Moors
2011). Similarly, Goldman Sachs in April 2013 cut its oil price forecast citing significant downward
pressure on product spreads, which it interpreted as an indication of reduced demand for products
(see Strumpf 2013).

The same reasoning also plays an important role in financial markets. It is common to trade
futures contracts and options based on crack spreads (see, e.g., Haigh and Holt 2002; Chicago
Mercantile Exchange 2012). The crack spread refers to the approximate ratio in which refined
products such as gasoline or heating oil are produced from crude oil. There is not one single crack
spread that applies to all refineries, but the most commonly used ratio is 3:2:1, which refers to
refiners’ ability to produce two barrels of gasoline and one barrel of heating oil from three barrels
of crude oil. Because the spread between crude prices and refined product prices is the main driver
of refinery profit margins, futures contracts and options have been established to allow refining
companies to hedge their price risk related to the crack spread. Traders express the crack spread in

terms of futures prices of a given maturity h as

2 , 1 o .
gasoline heating oil crude oil
gFt+h,t + gFt+h,t - 1Ft+h,t ’

where all date ¢ futures prices have been expressed in dollars per barrel (see Figure 1). An obvious
question of interest is whether the information contained in prod()uct price spreads (also known as
product margins) may be used to improve on the no-change forecast of the price of crude oil, as is
widely believed in the industry. For example, Evans (2009) cites the oil market analyst Philip K.
Verleger as forecasting a decline in the price of oil based on a weakening 3:2:1 crack spread on the
NYMEX.

Although there is a large literature relying on error correction models of the relationship between
oil prices and product prices, few studies to date have examined the problem of forecasting the price
of oil out of sample and none of those studies evaluates the out-of-sample forecast accuracy of
product spread models against the no-change forecast, making it difficult to interpret these results.?

Moreover, existing studies limit their attention to forecast horizons of one month only and rely on

2For example, the one-week ahead analysis of the predictive power of the 3:2:1 crack spread during 2000-08 in
Murat and Tokat (2009) is not conducted out of sample, as their discussion of the results might suggest, but is based
on full-sample regression estimates.



forecast evaluation periods that are too short to be informative. A case in point is the analysis in
Lanza, Manera, and Giovannini (2005).

The objective of our paper is to investigate systematically and in real time the forecasting power
of product spreads for the real price of oil. Our evaluation period extends from early 1992 until
September 2012. We derive a number of alternative model specifications based on the notion that
the price of oil can be expressed as a weighted average of product prices. We follow most industry
analysts in focusing on the prices for gasoline and heating oil. The four basic forecasting approaches
considered include: (1) the crack spread model, (2) models of individual product spreads, (3) the
weighted product spread model expressed relative to the current spot price of oil, and (4) equal-
weighted combinations of individual product spread models. Our analysis also distinguishes between
spot and futures prices and explores various parameter restrictions, resulting in the most compre-
hensive analysis of these models to date. The maximum forecast horizon considered is 24 months
in line with the needs of applied forecasters at central banks and at the U.S. Energy Information
Administration (EIA). We compare the out-of-sample accuracy of each of the forecasting models to
the no-change forecast of the real price of oil. This random walk benchmark is widely used in the
literature. Indeed, some observers have questioned whether it is possible to forecast the price of oil
with any degree of accuracy at all.?

We find that not all product spread models are useful for out-of-sample forecasting, but some
models are, even at horizons between one and two years. For example, even models based on the
gasoline spread only may yield MSPE reductions as large as 15% and directional accuracy as high
as 63% at the two-year horizon. In many cases, the gains in forecast accuracy are statistically
significant based on conventional statistical tests. These results are noteworthy in that to date
no other forecasting method has been able to beat the no-change forecast of the real price of oil
at horizons between one and two years (see, e.g., Baumeister and Kilian 2012a, 2013a). The best
single-spread forecasting model overall is a model based on the gasoline spot spread alone. Heating
oil spreads are far less accurate predictors than gasoline spreads. Weighted product spread models
are never more accurate than gasoline spread models. Perhaps surprisingly, there is no evidence of
forecasting models based on the commonly cited 3:2:1 crack spread having out-of-sample forecasting
ability. We show how the forecast accuracy of the gasoline spread model may be improved further
by restricting some model parameters.

In addition to these models, we also explore forecast combinations based on weights that adapt

over time to each predictor’s recent forecast performance. The latter approach allows us to address

3For example, Peter Davies, chief economist of British Petroleum, has taken the position that “we cannot forecast
oil prices with any degree of accuracy over any period whether short or long” (see Davies 2007).



concerns, expressed in Verleger (2011), that the marginal market that determines the price of crude
oil in models of derived demand tends to evolve over time. For example, whereas the marginal
product market for many years was the gasoline market, more recently the market for diesel and
heating oil has evolved into the marginal market. For the same reason we also investigate the use-
fulness of time-varying parameter (TVP) forecasting models for linear combinations of the gasoline
and heating oil spreads. While there is no indication that forecast combinations are more accurate
than the gasoline spread model alone, a suitably restricted TVP model yields further improvements
in out-of-sample forecast accuracy. This TVP model is more accurate than the random walk model
at all forecast horizons we consider. We document MSPE reductions as high as 20% and directional
accuracy as high as 66%, making this specification the most useful forecasting approach overall.
The remainder of the paper is organized as follows. Section 2 discusses the data and describes
the forecasting environment. In section 3, we derive the main forecasting models. Section 4 contains
the out-of-sample results for alternative oil price measures. In section 5, we relax the assumptions
underlying conventional product spread models by allowing for smooth structural change. We also
consider extensions to European oil and product prices as well as global forecasting models. We

conclude in section 6.

2 The Forecasting Environment

Our objective is to compare the real-time out-of-sample forecast accuracy of selected product spread
models for the average monthly real price of crude oil. This approach is consistent with the objective
of government agencies reporting oil price forecasts. The baseline analysis focuses on the monthly
average of the West Texas Intermediate (WTT) spot price since July 1986 as reported in the FRED
database of the Federal Reserve Bank of St. Louis. This price refers to the U.S. dollar price of a
barrel of a type of crude oil known as West Texas Intermediate for immediate delivery in Cushing,
Oklahoma. WTTI prices are commonly used as reference prices in writing contracts for the delivery
of crude oil and are available in real time.

We also report an alternative set of results for the monthly U.S. refiners’ acquisition cost for
crude oil imports, which refers to the average U.S. dollar price per barrel paid by U.S. refineries
for crude oil imported from abroad. The U.S. refiners’ acquisition cost for crude oil imports is a
better proxy for the global price of crude oil than the WTT price. It is reported in the Monthly
Energy Review of the U.S. ETA. Unlike the WTI price it is available only with a delay and subject
to revisions. Real-time data for the refiners’ acquisition cost since July 1986 were obtained from

the real-time database of Baumeister and Kilian (2012a), suitably updated to include vintages from



January 1991 until March 2013. Both crude oil price series were deflated using the real-time U.S.
consumer price index for all urban consumers from the same database.

The crude oil price predictors considered below rely on spot and futures prices for gasoline,
heating oil and WTI crude oil. All predictors are available without delay and are not subject to
revisions. The price of WTT crude oil futures is from Bloomberg. Averages of daily futures prices
at maturities of 1 to 6 months are available starting in July 1986.

The futures contract for conventional regular unleaded gasoline for delivery in New York Harbor
ceased trading after the January 2007 contract. Starting in October 2005, it was replaced by a
gasoline futures contract for reformulated blendstock for oxygenate blending (RBOB) for delivery
in New York Harbor. We follow Chinn and Coibion (2013) in using the futures price for regular
gasoline from July 1986 until December 2005 and the futures price of RBOB gasoline from January
2006 onwards. Daily gasoline futures prices are available at maturities of 1, 3, and 6 months from
Bloomberg. We construct monthly averages, starting in July 1986 for 1- and 3-month contracts
and starting in November 1986 for 6-month contracts, by averaging the daily futures prices. The
corresponding spot price for delivery of regular gasoline in New York Harbor is obtained from the
ETA. This series is available for the entire period of July 1986 until March 2013. There is no RBOB
spot price series for delivery in New York, making it impossible to construct a gasoline spot price
the same way as for the futures contracts.

Futures contracts for No. 2 Heating Oil are also for delivery in New York Harbor. We constructed
averages of the daily futures price data provided by Bloomberg. For maturities of 1 through 9
months the sample starts in July 1986; for the 12-month maturity it starts in August 1989. The
corresponding spot price since July 1986 is constructed as the average of the daily heating oil spot
price provided by the EIA.

Whereas crude oil prices are reported in U.S. dollars per barrel, gasoline and heating oil prices
are reported in cents per gallon. All product prices are transformed to dollars per barrel, which
involves multiplying each product price by 42 gallons/barrel and dividing by 100 cents/dollar.

Yet another common benchmark for oil prices is the price of Brent crude oil, which refers to
a grade of North Sea oil traded on the Intercontinental Exchange (ICE) in London. Some of our
extensions in section 5 rely on data for the spot price of Brent crude oil provided by Argus Media.
These data start in January 1990 and are backcast using Brent spot prices from the Intercontinental
Exchange (ICE) and the growth rate of the WTI price. The best proxy for the European product
market is the Rotterdam market. Daily product prices for the Rotterdam market are also provided
by Argus Media, starting in January 1990. The heating oil spot price series is backcast using the rate
of change in the price of New York Harbor No. 2 Heating Oil. The corresponding Rotterdam gasoline



spot price series only starts in 2005, which is too short for our purposes. Similarly, there are no
suitable time series for Rotterdam product futures prices. All prices are converted to dollars/barrel,
as appropriate. The raw data are expressed in dollars/metric ton. One metric ton corresponds to
7.5 barrels of crude oil. Monthly data are constructed by taking averages of the daily data.

The forecast evaluation period runs from January 1992 to September 2012. To the extent that
forecasting models are estimated, the model estimates are updated recursively, as is standard in
the oil price forecasting literature (see, e.g., Baumeister and Kilian 2012a, 2013a). We forecast the
ex-post revised real price of oil in levels rather than in logs. Real oil prices from the March 2013
vintage of real-time data are used to proxy for the ex-post revised data, against which all forecasts
are evaluated.

We evaluate the forecasts in question in terms of their mean-squared prediction error (MSPE)
relative to the no-change forecast of the price of oil and based on their directional accuracy. Under the
null hypothesis of no directional accuracy, the success ratio of the model at predicting the direction
of change in the price of oil should be no better than tossing a fair coin with success probability 0.5.
Tests of the null of no directional accuracy are conducted using the test of Pesaran and Timmermann
(2009). Where appropriate, we assess the statistical significance of the MSPE reductions based on
the test of Diebold and Mariano (1995) for nonnested models without estimation uncertainty and

based on the test of Clark and West (2007) for nested models with estimation uncertainty.*

3 Forecasting Models

In this section, the forecasting models to be evaluated in sections 4 and 5 are derived. Some of these

models are already used in practice or have been discussed in the literature, while others are new.

3.1 The Benchmark Model

The benchmark model for the forecast accuracy comparisons in this paper is a random walk model
without drift. This model implies that the best forecast of the future price of crude oil is the current
price of crude oil. It also implies that the direction of change in the price of oil is unforecastable
such that the probability of the price of crude oil increasing equals that of the price of crude oil

decreasing. In other words, the model implies the no-change forecast

4The latter test (like similar tests in the literature) is biased toward rejecting the null of equal MSPEs, but that
bias is likely to be small in our setting, given the small number of parameters to be estimated (see, e.g., Inoue and
Kilian 2004). It also ignores the real-time nature of the inflation data used in our forecasting exercise (see Clark and
McCracken 2009).
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Rt+h|t = Rt )
where R denotes the current monthly real price of crude oil. This benchmark is standard in the
literature on forecasting oil prices and more generally in the literature on forecasting asset prices.
The question of interest in this paper is whether alternative forecasting models based on the spread

of refined product prices over the price of crude oil may outperform this benchmark.

3.2 Verleger’s Decomposition

The idea of using petroleum product prices to explain the price of crude oil dates back to Verleger
(1982) who noted that the value V of a barrel of crude oil at time ¢ can be expressed as a weighted

average of the nominal market prices, P, of the principal products of a refiner:

V; = szptla (1)
=1

where the weights w; reflect technological constraints. The nominal dollar price of a barrel of
crude oil a refiner is willing to pay in a competitive market, or the spot price of crude oil, P2 |

corresponds to this value adjusted for transportation costs, s¢, and the refining costs, ¢;:

P,:Oil:Vt*St*Ct, (2)

These costs are typically treated as a constant in empirical work. From this relationship, we may

infer that, up to a constant,

n

oil __ § %

Pt = wiPt 5
=1

and hence

n
Pt(ilh = Z wiPtZ—i-hv (3)
i=1

%

where P/, is the spot price of product ¢ at ¢ + h.

Verleger (2011) discusses how to use the static model embodied in equation (3) to predict the
price of oil. It is important to stress that Verleger’s objective is not to forecast the price of oil, as the
term prediction may seem to suggest, but rather to explain the evolution of the price of oil in terms

of that of the contemporaneous product prices. In contrast, our objective in this paper is to derive



from Verleger’s decomposition suitable forecasting models that can be implemented in real time to
generate out-of-sample forecasts. As we show below, there are several alternative specifications that

can be derived from equation (3).

3.3 Using Product Futures Spreads

Given date ¢ information, the conditional expectation of (3) is:

EPtoilh\t = ZwiEPf+h\t (4)
i=1

In the absence of a risk premium, arbitrage ensures that the expectation of the spot market price

for product ¢ equals the current futures price of product i:

EPt’L+h‘t: t’:»h,t’ ’L.::l,...,n. (5)

Combining equations (4) and (5) yields:

Eptoﬁh\t = Z wiFti+h,t (6)
i=1

where FZ ¢ 18 the futures price of product 7 in period ¢ with maturity A periods. Dividing both

sides of equation (6) by P?% and taking logs on both sides, we obtain:

Poil n
h i 01
log (]E ;J) = log <§ wz-Ft+h7t> — log PY™. (7)
t i=1

Using the approximation log(1 4+ z) = z, equation (7) can be expressed as:

n
E (pi’ﬁmt —pi’”) = log (Z wiFZ—&-h,t) —pi" ©)
=1

where lower case letters denote the natural log of prices. Equation (8) suggests the regression

model

Ap?ﬂh“ =a+0 + Etth, 9)

n
log (z wF) e

i=1

where a and [ are estimated recursively by the method of least squares. This motivates the



forecasting model:

oil il . N
Piipe =F"expja+p

log (Z wiFZ—s—hx) _pgil] } (10)

i=1

which implies that we can forecast the real price of crude oil as:

oil il R ~
Rt+h|t = Rt exXp § & + 5

log (Z wz'Ff+h,t> p?”] - E(ﬂ?)} (11)

i=1

where 7% denotes the inflation rate from ¢ to ¢t + h. In practice, we approximate E(7]) by
the recursively estimated average inflation rate since 1986.7. As shown in Baumeister and Kilian
(2012a), this approximation is good enough in practice given that the variation in the nominal price

of crude oil far exceeds that in the inflation rate. Next we consider several special cases of equation

(11).

3.3.1 The Single Futures Spread Model
We first propose the single futures spread model for product ¢ where ¢ € {gasoline, heating oil}. It
immediately follows from equation (11) that

—— 0il

Rivne = Rf“ exp {54 + B [fti-&-h,t - pf“} - E(ﬂ'?)} (12)

where f} +hn.¢ 1s the log of the futures price of product ¢ at time ¢ with maturity & periods.

3.3.2 The Crack Spread Futures Model

It is important to recognize that refined products are produced from a barrel of crude oil in ap-

proximately fixed proportions. In characterizing the refining process, it is common to ignore less

important refined products such as jet fuel and to focus on gasoline and heating oil only.> Refining

crude oil typically involves producing two barrels of gasoline and one barrel of heating oil from

three barrels of crude oil, resulting in a so-called crack spread of 3:2:1.5 Participants in mercantile

exchanges rely on the crack spread expressed in terms of the date ¢ futures prices with maturity h:
2

1 )
cs gas heat oil
Fidhe = gFt-&-h,t + gFt+h,t — Leyht (13)

5The reason is that the market traditionally has been concerned with forecasting the price of light sweet crude oil
which produces little residual fuel.
6Other common crack spread ratios are 5:3:2 and 2:1:1, depending on the type of refining process.




where all prices are expressed in dollars per barrel, Fﬂf Z7t denotes the date t futures price of gasoline
of maturity h and Ft}f,‘fft denotes the date ¢ futures price of heating oil of maturity h. Note that this
spread differs from the spread defined in equation (11). Whereas in one case we normalize relative
to the current spot price, in the other case we normalize relative to the current futures price.

A common view in financial markets is that the crack spread is the expected change in the
spot price of crude oil (see, e.g., Evans 2009). This view has been articulated by Verleger (2011), for
example. Verleger appeals to a behavioral model, in which refiners view themselves as price takers in
product markets and cut their volume of production when they cannot find crude oil at an expected
price commensurate with expected product prices. As Verleger explains, in time, this reduction in
the demand for crude oil will lower the spot price of crude oil and the corresponding reduction in
the supply of product will boost product prices. This reasoning suggests that the difference between
refined product market futures prices and the purchase price of crude oil for delivery in the near
future should have predictive power for the spot price of crude oil and motivates the forecasting
model:

_——oil

] N e 2 as 1 ea o1
Rt-‘rh\t = R?ll exp {O{ + B |:10g (gth_,'_h’t + g t}f‘rhft - Ft l>:| - E(ﬂ-?)} . (14)

3.3.3 The Weighted Product Futures Spread Model

Despite its popularity, the crack spread forecasting model cannot be derived directly from (3). An
alternative specification that can be formally derived is obtained by applying the same weights used

in constructing the crack spread to the forecasting model (11), resulting in

oil 3 ~ o 2 1 ea 01
Rt-‘rh\t = Rgll exp {Oé + B |:10g (gth_ﬁ;t + gFtZ-hft) — Pt l:| — E(ﬂ'?)} . (15)

3.3.4 Equal-weighted Combination of Single Product Futures Spread Models

Finally, a more flexible approach to combining information from single product spreads is to assign

equal weight to the gasoline and heating oil futures spread forecasts:

_—— oil 1 2 _—— oil,k
Rytne = ) ZRH—hlt : (16)
k=1

The motivation for this approach is that, even if one forecasting model by itself is more accurate
than the other, the less accurate model may still have additional predictive information not contained
in the more accurate model, allowing one to improve on the forecast accuracy of the more accurate

model by taking a weighted average of the two forecasts.

10



3.4 Using Product Spot Spreads

An alternative approach to deriving a product spread model is to postulate cointegration between
product spot prices and the spot price of crude oil such that log (Z?Zl wng) — poit ~ I(0). Tt is
well known that gasoline prices and crude oil prices, for example, move together in the long run
(see, e.g., Lanza et al. 2005; Kilian 2010). This cointegration relationship may be motivated, for
example, based on a model in which refiners are price takers in the crude oil market, as suggested by
Brown and Virmani (2007). As in typical long-horizon regressions used in empirical finance, under
the maintained hypothesis of cointegration, current deviations of suitably weighted spot prices of
refined products from the spot price of crude oil would be expected to have predictive power for
changes in the spot price of crude oil (see, e.g., Mark 1995; Kilian 1999):

Apglyy =a+B + Ettn-

log (Z wipti> —p"

i=1

The same cointegration relationship may also be motivated based on a model in which refiners

are price takers in the product market, as suggested by Verleger (2011). Recall equation (3)

n
oil  __ ) %
Ept+h\t = E lePt+h\t
i=1

and replace the expected product prices by no-change forecasts. After taking logs and subtracting
p¢" from both sides, we obtain:

Apfipe =a+p + Etns (17)

n
()

=1

allowing us to forecast the real price of oil as:

log (Z wiPti) = pi’“} - E(w?)} (18)

— 0il il R ~
Rt+h|t = Rt exXp § & + B
i=1

As in section 3.3, there are several special cases.

3.4.1 The Single Spot Spread Model

When n = 1, the single product spot spread model is
Renp = R exp [a + B (- p2) — E(ﬂ?)] : (19)
where i € {gasoline, heating oil}.

11



3.4.2 The Weighted Product Spot Spread Model

Similarly, we can derive from (19) the weighted product spot spread model:

oil

3 ~ p 2 as 1 ea 01,
Ripnpe =Ry exp {a +8 [1og <§Pﬁ + gpth t) — P l] - E(w?)} . (20)

3.4.3 Equal-weighted Combination of Single Product Spot Spread Models

As in the case of futures spreads, we also explore equal-weighted combinations of the forecasts based

on gasoline and heating oil spot spreads:
_—— oil 1 2 _——— oil,k
Rt—&-h\t = 5 1; Rt+h|t . (21)

4 Baseline Results

The models considered for the forecasting comparison include a total of 100 forecasting models based
on various product futures price spreads and product spot price spreads, the predictive ability of
which we examine below. Figure 2 shows selected product spot spreads and 3-month product futures

spreads.

4.1 Real WTI

We start our analysis with the results for the real WTI price. Tables 1la and 1b present the results
for futures product spreads and Tables 2a and 2b show the corresponding results for the product
spot spreads. In all cases, the product spreads are constructed by relating the product price to the

corresponding WTT price of crude oil.

4.1.1 Futures Spreads

The first five columns of Table 1la show the results for product futures spread models based on
a and B There are no statistically significant gains in directional accuracy for any model, but
there is some evidence of MSPE reductions. For example, the gasoline spread model is about as
accurate as the no-change forecast at horizon 1, but more accurate at horizons 3 and 6. At the
latter horizon, the reduction in the MSPE by 10% is statistically significant at the 10% level. On
the other hand, the heating oil spread model has higher MSPEs than the no-change forecast at all
horizons by as much as 11%. The equal-weighted forecast combination of the gasoline and heating

oil spread forecasts is somewhat less accurate than the gasoline spread forecast, but the reduction in
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the MSPE at horizon 3 is more precisely estimated and statistically significant at the 5% level. The
weighted product spread is even less accurate than the equal-weighted forecast combination, but
also statistically significant at the 5% level at horizon 3. In contrast, there are no gains in forecast
accuracy when using the widely cited futures crack spread. We conclude that the best forecasting
model is the gasoline spread model.

The next five columns of Table 1a explore whether restricting the intercept of the spread models
to zero increases the forecast accuracy. This intercept reflects transportation costs and refining
costs, as discussed earlier. To the extent that these costs are small, one would expect an exclusion
restriction on the intercept to trade off forecast variance for forecast bias, potentially resulting in
a lower MSPE. Table la confirms this conjecture. Not only does the gasoline futures spread yield
reductions in the MSPE at all horizons, once o = 0 is imposed, but the model also has improved
directional accuracy. The relative accuracy of alternative models compared with the gasoline futures
spread is not affected. An additional reason for imposing this restriction is that the unrestricted
estimate of « often is negative, which is inconsistent with the underlying economic model.

The first five columns of Table 1b show that imposing a restriction of § = 1, while leaving
« unrestricted, does not in general improve forecast accuracy. In fact, it substantially lowers the
MSPE of the gasoline futures spread at short horizons, even granting some improvement at horizons
3 and 6. The relative performance across the four methods is again unaffected. The extremely poor
performance of the futures crack spread model is explained by the fact that the unconstrained [
estimate is closer to zero than to 1.

Finally, the last five columns of Table 1b show results obtained after restricting both oo = 0 and
B = 1, which results in very high MSPEs in exchange for improved directional accuracy. Once again,
the gasoline spread model is the most accurate model.

We conclude that the gasoline futures spread model with & = 0 imposed is the preferred fore-
casting model and much more accurate than models that combine information about gasoline and
heating oil futures prices, including the futures crack spread. It can be shown that much the same
results would be obtained for the crack spread model if we forecast the nominal oil price instead of
the real price, for example, or if we dropped the log specification in favor of a levels specification.
This result is likely to be surprising to practitioners who routinely rely on the crack spread. We

discuss possible reasons for this pattern in section 6.

4.1.2 Spot Spreads

An obvious limitation of the results in Tables la and 1b is that we cannot forecast beyond six

months, except when using the heating oil spread which has no predictive power for the real price
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of oil at any horizon. This observation motivates a closer examination of the product spot spread
models. The first four columns of Table 2a show that none of the unrestricted product spot spread
models decisively outperforms the no-change forecast.

This result changes once we impose @ = 0 in the next four columns of Table 2a. In that case,
the gasoline spot spread model yields frequently statistically significant reductions in the MSPE
at every horizon. The reductions in the MSPE are not quite as large at short horizons as for the
gasoline futures spread, but persist and indeed increase at horizons between one and two years. The
reductions in the MSPE of as much as 6% may seem small, but have to be viewed in conjunction
with the MSPE ratios of forecasting models based on economic fundamentals, which at the same
horizons are systematically larger than 1.” Moreover, the reductions are statistically significant at
horizons 6, 9, 12, 15, 18, and 24. Indeed, this is the only class of models to our knowledge capable
of generating systematic reductions in the MSPE of the real price of oil at horizons between one
and two years. As before, the gasoline spread model is much more accurate than the other models,
with the weighted product spread being the second-most accurate model. None of these models has
much directional accuracy.

Imposing 8 = 1, while leaving « unrestricted, as shown in the first four columns of Table 2b,
undermines the forecast accuracy of all models. There are still some statistically significant MSPE
reductions between the 12-month and 24-month horizon for the gasoline spot spread model, with
reductions as large as 10% in one case, but, overall, the specification with a = 0 is preferred.

Imposing both @ = 0 and 8 = 1, as shown in the last four columns of Table 2b, greatly worsens
the MSPE at short horizons, but results in persistent (if rarely statistically significant) MSPE
reductions compared with the no-change forecast at horizons 12 through 24. It also results in much
improved directional accuracy at all horizons, which for the gasoline spot spread models is even
statistically significant at horizons 15 and 21. The highest success ratios are 67%. The other models
are considerably less accurate.

A natural conjecture is that a forecast combination of this model with a model restricting only
« would increase forecast accuracy overall. We were able to show that this is not the case. In fact,
the gasoline spot spread model with o = 0 is the most accurate specification overall and superior to

specifications incorporating heating oil prices.

7 Although these results are not shown, we note that the MSPE reductions of the gasoline spot spread model do not
extend to even longer horizons. As expected, in the longer run, the no-change forecast remains the best forecasting
model.
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4.2 Real U.S. Refiners’ Acquisition Cost for Crude Oil Imports

We now turn to the problem of forecasting the real U.S. refiners’ acquisition cost for crude oil imports.
This alternative oil price series is of independent interest for forecasters interested in the real price
of oil in global markets. The only difference compared with the earlier analysis is the variable to be
predicted. The spread regressions from which « and § are estimated remain unchanged.

Table 3 shows results for selected models. We focus on the gasoline spread models, which
are consistently most accurate mirroring the pattern found for the real WTI price forecasts. In
general, the reductions in the MSPE are larger for the refiners’ acquisition cost than for the WTI
price, however. For example, the unrestricted gasoline futures spread model generates statistically
significant reductions in the MSPE at horizons 1, 3, and 6 as high as 11%. For the corresponding
gasoline spot spread model, there are MSPE reductions at all horizons reaching 7% in some cases.
The reductions are statistically significant at horizons 6, 9, 12, 15, 18, and 24. As to the ranking of
different models and the scope for forecast combinations, the same comments apply as for the real

WTI price. We conclude that our results for the real WTTI price apply more broadly.

4.3 Sensitivity Analysis: Evaluation Period

The most striking result in our analysis so far is the ability of the gasoline spot spread model with
a = 0 in Table 3 to outperform the no-change forecast of the real price of oil at horizons between
one and two years. An important question is whether the recursive MSPE reductions shown in
Table 3 are driven by one or two unusual episodes in the data or whether they are more systematic.
The left panel of Figure 3 addresses this question by plotting the recursive MSPE ratio at horizon
24 for the evaluation period since 1997. We disregard the earlier MSPE ratios which are based
on too short a recursive evaluation period to be considered reliable. For illustrative purposes we
focus on the real U.S. refiners’ acquisition cost for crude oil imports. The last entry on the right
corresponds to the entry for horizon 24 in the sixth column of Table 3. The plot shows that the
performance of the gasoline spread model is systematic and not driven by one or two unusual events
in the data. There is a clear pattern. Initially, the no-change forecast was more accurate than the
gasoline spread model, albeit to a declining degree over time. Since 2004 the gasoline spread model
has been systematically more accurate than the no-change forecast in every month. This pattern is
suggestive of the estimates of 8 becoming increasingly more precise, as the length of the recursive
estimation window increases, allowing more accurate forecasts.

Indeed, the right panel of Figure 3 shows that a similar pattern applies to the heating oil spot
spread model with o = 0 in that the recursive MSPE ratio of this model, while initially slightly below
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1, quickly stabilizes in the range slightly above 1 and remains there for the rest of the evaluation
period. The consistently inferior accuracy of the heating oil spot spread model is not surprising
in light of Verleger’s (2011) observation that the price of crude oil is determined in the marginal
product market, which, according to Verleger, has been the gasoline market throughout much of
our evaluation period. We conclude that, again, the results do not appear to be driven by unusual

events in the data. Qualitatively similar results hold for other long horizons.

4.4 Sensitivity Analysis: WTI vs. Brent

All forecasting models so far relied on the WTI price of crude oil in constructing the spread variables.
Historically, the WTTI price and the Brent price of crude oil have tended to move together and the
WTI price was widely regarded as a benchmark for the price of crude oil. As Figure 4 shows, that
relationship broke down after 2010, when physical and legal constraints on U.S. oil exports resulted
in a simultaneous glut of crude oil in Cushing, Oklahoma, and shortage of crude oil in Europe. To
the extent that the Brent price of crude oil in recent years has been considered a better benchmark
for global oil prices than the WTT price, even U.S. traders have switched toward benchmarking a
weighted average of WTI and Brent prices. This fact suggests that we may be mismeasuring the
product spread in 2011 and in 2012, causing us to understate the predictive ability of product spread
models.

We deal with this concern in this section by constructing a synthetic oil price series which equals
the WTI price until April 2010, but consists of the average of WTT price and Brent price thereafter.
This rule of thumb roughly approximates the weights attached by many practitioners. Using this
refined measure of the spot price of oil, we found very similar forecast accuracy results. While this
modification indeed tends to increase the MSPE reductions, the differences are in the third decimal
place of the MSPE ratio. This result is consistent with time series plots of the recursive MSPE
ratios of the models considered in Table 2, which provide no indication of the forecast accuracy of

the WTI-based product spread models deteriorating in 2011 and 2012 (figures not shown).®

5 Beyond the Crack Spread Model

The simplicity of product spread forecasting models is appealing, yet there are reasons to be wary.

One concern is that the global price of crude oil is likely to be determined by the refined product

8Yet another possibility would have been to rely on the composite U.S. refiners’ acquisition cost for oil (available
from the EIA), which captures at least part of the transportation cost, in constructing the product spread. Unlike
WTTI or Brent prices, the refiners’ acquisition cost is not available in real time, however, making it a potentially less
reliable predictor. For that reason we did not consider this alternative specification.
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that is in highest demand. As discussed in Verleger (2011), traditionally, gasoline had been this
marginal product and the marginal market in the world for gasoline had been the United States.
As of late this product has been diesel fuel (which is almost interchangeable with heating oil), with
Europe becoming the marginal market. To the extent that products are produced in roughly fixed
proportions, this means that one refined product in one part of the world may have disproportionate
predictive power for the price of oil. This predictive relationship is further complicated by the fact
that different refiners use different grades of crude oil inputs, which in turn are associated with
different proportions of refined product outputs, making it more difficult to predict which market
will tighten and which will suffer from a glut in response to rising demand for, say, diesel fuel.
Although trade in products over time may alleviate the resulting market imbalances, there is
reason to believe that the predictive relationships that industry analysts appeal to are not stable, even
in the absence of oil supply shocks, changes in environmental regulations, local capacity constraints
in refining and unexpected refinery outages, or other market turmoil, and certainly in their presence.
In this section, we deal with two forecasting approaches that allow the weight assigned to gasoline

spreads and heating oil spreads to evolve smoothly over time.

5.1 Inverse MSPE Weights

A simple approach to allowing for such time variation is to weight forecasts from the gasoline and
heating oil spread models in proportion to the inverse MSPE of each forecasting model. The smaller

the MSPE is at period ¢, the larger the weight in constructing the combination forecast:

_ 2 .

Rt+h|tml = ka,th+h|tml7k7 Vgt = Qmikt_l (22)
=1

where my, ; is the recursive MSPE of model £ in period ¢. The advantage of inverse MSPE weights

is that they allow the forecast combination to adjust according to the recent performance of each

forecasting model (see, e.g., Diebold and Pauly 1987; Stock and Watson 2004).

Table 4 shows selected results. For expository purposes, we focus on the results for the real U.S.
refiners’ acquisition cost for crude oil imports. Qualitatively similar, if generally weaker, results are
obtained for the real WTI price. Unlike for the results in Table 3, no method exists that would allow
us to evaluate the statistical significance of MSPE reductions in Table 4. The reason is that the
models to be compared evolve over time, invalidating conventional tests of equal predictive accuracy
for recursive regressions. Table 4 demonstrates that none of the four specifications considered yields

recursive MSPE ratios as low as the gasoline spread model in Rable 3 with o = 0 imposed.
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5.2 TVP Models

An alternative approach is to allow for time variation in the parameters of the product spread model.

In an effort to allow for the weights on each spread to evolve freely, we recursively estimate

gas heat oil

Ap?ilh\t = ay + By [pf _p?il] + B [p1°" — 0] + tin,

where £¢45 ~ NID(0,0?%), the time-varying coefficients 0; = [a; By, o] evolve according to a
random walk as 0; = 0,1 + &, and &, is independent Gaussian white noise with variance (). This
state-space model is estimated using a Gibbs sampling algorithm. The conditional posterior of 8; is
normal, and its mean and variance can be derived via standard Kalman filter recursions (see Kim
and Nelson 1999). Conditional on an estimate of ;, the conditional posterior distribution of o
is inverse Gamma and that of @ is inverse Wishart. This allows us to construct the TVP model
forecast

mmz = Rfil exp {dt + Blt [Pfas - P?il] + BQt [piwat - ptOil] - E(W?)} (23)
by Monte Carlo integration as the mean of the forecasts simulated based on 1,000 Gibbs iterations
conditional on the most recent data. Our forecasts take into account that the parameters continue
to drift over the forecast horizon according to their law of motion. The first 30 observations of the
initial estimation period are used as a training sample to calibrate the priors and to initialize the
Kalman filter.

The first column of Table 5 shows that, when all parameters are freely estimated, the forecast
accuracy of this TVP model is satisfactory only at horizons up to 15 months. Restricting « to 0,
however, as shown in the second column of Table 5, greatly increases the model’s forecast accuracy at
longer horizons. The MSPE ratios are below 1 at all forecast horizons and frequently lower than for
the fixed parameter gasoline spread model with o = 0. In addition, the model tends to have large,
if mostly statistically insignificant, directional accuracy. We conclude that overall the TVP spread
model is the most accurate forecasting model for the real U.S. refiners’ acquisition cost for crude oil
imports. Very similar results also hold for the real WTI price, but are not shown to conserve space.
We also note that allowing for stochastic volatility in the error term in addition does not improve
the forecast accuracy of the TVP model.

An interesting question is how well the TVP model would have done based on the information
conveyed by the gasoline spread alone. The third column and fourth column of Table 5 show that

this simpler TVP model also works well. At some horizons it is slightly more accurate than the
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combined spreads. Nevertheless, at longer horizons the model in the second column is somewhat

more accurate. Again, qualitatively similar results hold when forecasting the real WTI price.

5.3 Extensions to European Markets

So far we have focused on the problem of forecasting the real U.S. refiners’ acquisition cost of
crude oil imports and the real U.S. WTI. A natural question is how well these methods work when
forecasting the real spot price of Brent crude oil. Extending our approach to Brent crude oil is not
straightforward because of data limitations. The best proxy for the product spread in European
markets comes from the Rotterdam market, as reported by Argus Media. Given the lack of longer
time series for the Rotterdam gasoline spot price, we can only consider a forecasting model based
on the spot spread of the Rotterdam heating oil price over the Brent price of crude oil. This model
performs quite poorly compared with the no-change forecast, not unlike the corresponding results
for the U.S. data reported in Table 2, with or without allowing for time variation in the parameters.

Although it is not feasible to apply most product spread models that we have discussed to the
Brent market, there is a promising alternative, which involves forecasting the real U.S. refiners’
acquisition cost of crude oil imports as discussed earlier and then rescaling these price forecasts
by assuming that the current spread of the Brent price over the refiners’ acquisition cost remains
unchanged in the future. A similar approach has already been used successfully in Baumeister and
Kilian (2013a) in the context of a different class of forecasting models. We leave this extension to

future research.

5.4 Towards a Global TVP Model

The empirical success of the U.S. gasoline product spread compared with the U.S. heating oil spread
in our analysis is intriguing. One possible explanation of this result is that the United States has
been the marginal market for gasoline for most of our sample. It is the marginal market in which
global product prices are determined, according to Verleger (2011), which may help explain the
greater predictive power of the U.S. gasoline spread. In contrast, Europe in recent years has been
commonly viewed as the marginal market for diesel and heating oil. Diesel and heating oil may be
treated as indistinguishable for our purposes. An interesting extension of our analysis therefore is
a forecast combination of European and U.S. product spread models that takes account of shifting
locations of the marginal market for each product. Specifically, we consider the global TVP model

0il _ U.S., gas WTI Rotterdam,heat Brent
Apt+h\t =+ By [pt — Dy ] + Bt {pt — Dy + Et+h,
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where the oil price variable on the left-hand side may refer to the WTI price, the Brent price, or the

U.S. refiners’ acquisition cost for crude oil imports, respectively. The implied forecast is:

—— 01l

01 A s U.S., gas s Rotterdam,hea ren
R’ = R exp {aq + By, [p % 9% = plV 7| + By, [p1" L pfrent| —E(ml)} . (24)

This specification treats the U.S. as the marginal market for gasoline and Europe as the marginal
market for heating oil and diesel and allows their relative weights to evolve over time, consistent
with the views expressed in Verleger (2011). It should be noted that this specification is also of
interest because it provides an alternative solution to the problem of forecasting the real price of
Brent crude oil even in the absence of suitable data on European gasoline price spreads.

Our results, which are not shown to conserve space, indicate that regardless of the dependent
variable, the out-of-sample forecast accuracy of this specification is erratic even allowing for time-
varying weights. There is little support for a global model of product spreads. When forecasting the
WTT price or the U.S. refiners’ acquisition cost of crude oil imports, systematically more accurate
forecasts are obtained using the methods discussed earlier. For the real price of Brent crude oil,
the global TVP model does not generate large or systematic reductions in the MSPE, but there are

systematic, if statistically insignificant, gains in directional accuracy.

6 Conclusion

In recent years, there has been increasing interest in the relationship between oil prices and prices
of refined products (see, e.g., Kilian 2010; Biiyiiksahin and Fattouh 2013). This paper explored
the predictive content of product spreads for the WTI spot price of crude oil. Our forecasting
approach mirrored methods favored by industry analysts in that we relied on spot and futures prices
of gasoline and heating oil in constructing the product spreads. Although industry analysts and the
financial press tend to focus on product spreads in the futures market, the limited availability of
product futures price data at longer maturities makes it impossible to evaluate the forecast accuracy
of futures spread models except at short horizons. To the extent that we can compare models based
on futures price spreads and spot price spreads at horizons up to six months, models based on futures
prices tend to be slightly more accurate, but overall the accuracy is similar. As we demonstrated,
the advantage of models based on spot price product spreads is that they allow the construction
of forecasts of the real price of oil at the longer horizons of interest to policymakers and industry

analysts.
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While there is no empirical support for the notion that the widely cited futures crack spread beats
the no-change forecast, we documented that product spreads in general contain useful predictive
information about the future price of crude oil, even at forecast horizons between one and two
years. This result is remarkable in that oil prices along with stock prices and exchange rates are
among the most difficult variables to forecast. Indeed, we are not aware of any other forecasting
approach that yields statistically significant improvements on the random walk model for the real
price of oil at these horizons (see, e.g., Alquist, Kilian and Vigfusson 2013; Baumeister and Kilian
2012a; 2013a). This result is of particular interest in that forecasting models for the real price of
oil based on economic fundamentals tend to be most accurate at horizons of one and three months,
but increasingly less accurate at longer horizons. This fact suggests that forecast combinations of
models based on economic fundamentals and models based on product spreads would be a promising
direction for future research. This is a question pursued in more detail in related ongoing work by
Baumeister and Kilian (2013b).

Our analysis revealed several robust patterns. First, models based on the gasoline spread in
particular tend to be more accurate than models based on the heating oil spread, models based on
weighted product spreads, models based on the crack spread, and equal-weighted forecast combina-
tions of gasoline spread and heating oil spread models. This is true for both futures spreads and
spot spreads.

Second, imposing parameter restrictions may greatly improve the forecast accuracy of spread
models, regardless of the specification. For the preferred model based on the gasoline spread a
specification that sets the intercept to zero tends to generate the largest and most statistically
significant MSPE reductions relative to the no-change forecast. In contrast, high directional accuracy
at all horizons up to two years is achieved by setting the intercept to 0 and the slope to 1 in
the gasoline spread regression. These gains in directional accuracy are not statistically significant,
however, and come at the expense of very high MSPEs at short horizons. Moreover, the MSPE
reductions for this model at longer horizons, while large, are less statistically significant. It may
seem that there could be gains from combining these two specifications, but we found that forecast
combinations of the fully restricted model with the model restricting only the intercept were less
accurate than the model restricting the intercept only.

Third, for the real WTTI price, the model that forecasts the real price of oil based on the gasoline
spot spread with the intercept set to zero yielded statistically significant reductions in the MSPE
at horizons 6, 9, 12, 15, 18, and 24. Moreover, this model is equally accurate when applied to the
U.S. refiners’ acquisition cost for crude oil imports, which is a better proxy for global oil prices than

the WTT price, especially in recent years. Either way, there is no indication of the forecast accuracy
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worsening, as the gap between the WTI price and the Brent price of crude oil widened in recent
years.

Fourth, we emphasized that, from an economic point of view, there is no reason to expect any
one product spread to be a good predictor throughout the sample. There are strong reasons to
expect the forecasting ability of different product spreads to evolve over time in response to shifts
in final demand and other determinants ignored by Verleger’s model (see, e.g., Verleger 2011). We
therefore also investigated forecasting methods that allow for smooth structural change in the weights
assigned to gasoline and heating oil spot spreads. We showed that inverse MSPE weighted forecast
combinations of suitably restricted gasoline and heating oil spread models are less accurate than the
most accurate constant parameter forecasting model based on the gasoline spread alone. A suitably
restricted TVP model, however, has lower MSPE than the most accurate gasoline spread model at
most horizons and has lower MSPE than the random walk model at all horizons up to two years. It
also has high, if mostly statistically insignificant directional accuracy. We concluded that this TVP
model is the most accurate product spread forecasting approach overall for forecasting the real U.S.
refiners’ acquisition cost of oil imports or the real WTT price. We also noted that similar forecasting
approaches cannot be applied to the problem of forecasting the real price of Brent crude oil, given
the lack of suitable data.

Finally, Verleger’s (2011) analysis also stressed that shifting demand patterns worldwide may
affect the world price of oil. In particular, he conjectured that over time the predictive power of
European product spreads for heating oil and diesel for the global price of oil has increased. We
found no empirical support for this conjecture. In fact, global TVP forecasting models based on U.S.
and European product spreads that allow for shifting demand patterns worldwide were generally less
accurate in forecasting the real WTI price and the real U.S. refiners’ acquisition cost than models

based on U.S. product spreads.

References

[1] Alquist, R., and L. Kilian (2010), “What Do We Learn from the Price of Crude Oil Futures?”
Journal of Applied Econometrics, 25, 539-573.

[2] Alquist, R., Kilian, L., and R.J. Vigfusson (2013), “Forecasting the Price of Oil,” forthcoming
in: G. Elliott and A. Timmermann (eds.), Handbook of Economic Forecasting, 2, Amsterdam:

North-Holland.

22



3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Baumeister, C., and L. Kilian (2012a), “Real-Time Forecasts of the Real Price of Oil,” Journal
of Business and FEconomic Statistics, 30, 326-336.

Baumeister, C., and L. Kilian (2012b), “Real-Time Analysis of Oil Price Risks using Forecast

Scenarios,” mimeo, University of Michigan.

Baumeister, C., and L. Kilian (2013a), “What Central Bankers Need to Know about Forecasting

Oil Prices,” forthcoming: International Economic Review.

Baumeister, C., and L. Kilian (2013b), “Forecasting the Real Price of Oil in a Changing World:

A Forecast Combination Approach,” mimeo, University of Michigan.

Brown, S.P.A., and R. Virmani (2007), “What’s Driving Gasoline Prices?,” Economic Letter.
Federal Reserve Bank of Dallas, 2, 1-8.

Biiyiiksahin, B., and B. Fattouh (2013), “Crude-Product Pricing Relationship: Refining Bot-

tleneck,” mimeo, Oxford University.

Chen, Y-C., Rogoff, K.S., and B. Rossi (2010), “Can Exchange Rates Forecast Commodity
Prices?” Quarterly Journal of Economics, 125, 1145-1194.

Chernenko, S.V., Schwarz, K.B.,and J.H. Wright (2004), “The Information Content of Forward
and Futures Prices,” International Finance Discussion Paper No. 808, Board of Governors of

the Federal Reserve System.

Chicago Mercantile Exchange (2012), “Introduction to Crack Spreads,” in: Crack Spread Hand-

book, The CME Group, cmegroup.com/energy.

Chinn, M., and O. Coibion (2013), “The Predictive Content of Commodity Futures,” forthcom-

ing: Journal of Futures Markets.

Clark, T.E., and M.W. McCracken (2009), “Tests of Equal Predictive Ability with Real-Time
Data,” Journal of Business and Economic Statistics, 27, 441-454.

Clark, T.E., and K.D. West (2007), “Approximately Normal Tests for Equal Predictive Accu-
racy in Nested Models,” Journal of Econometrics, 138, 291-311.

Davies, P. (2007), “What’s the Value of an Energy Economist?” Speech presented at the Inter-

national Association for Energy Economics, Wellington, New Zealand.

Diebold, F.X., and R. Mariano (1995), “Comparing Predictive Accuracy,” Journal of Business
and Economic Statistics, 13, 253-263.

23



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Diebold, F.X., and P. Pauly (1987), “Structural Change and the Combination of Forecasts,”
Journal of Forecasting, 6, 21-40.

Evans, B. (2009), “Oil market ‘teetering on the edge’, warns Verleger”,
http://blogs.platts.com/2009/09/28/ oil _market teet/), September 28.

Haigh, M.S., and M. Holt (2002), “Crack Spread Hedging: Accounting for Time-Varying Volatil-
ity Spillovers in the Energy Futures Markets,” Journal of Applied Econometrics, 17, 269-289.

Inoue, A., and L. Kilian (2004), “In-Sample or Out-of-Sample Tests of Predictability: Which
One Should We Use?” Econometric Reviews, 23, 371-402.

Kilian, L. (1999), “Exchange Rates and Monetary Fundamentals: What Do We Learn from

Long-Horizon Regressions?” Journal of Applied Econometrics, 14, 491-510.

Kilian, L. (2010), “Explaining Fluctuations in U.S. Gasoline Prices: A Joint Model of the Global
Crude Oil Market and the U.S. Retail Gasoline Market,” Energy Journal, 31, 87-104.

Kim, C.J., and C.R. Nelson (1999), State Space Models with Regime Switching: Classical and
Gibbs Sampling Approaches with Applications. Cambridge, MA: MIT Press.

Knetsch, T.A. (2007), “Forecasting the Price of Oil via Convenience Yield Predictions,” Journal
of Forecasting, 26, 527-549.

Lanza, A., Manera, M., and M. Giovannini (2005), “Modeling and Forecasting Cointegrated
Relationships Among Heavy Oil and Product Prices,” Energy Economics, 27, 831-848.

Lowinger, T., and R. Ram (1984), “Product Value as a Determinant of OPEC’s Official Crude
Oil Prices: Additional Evidence,” Review of Economics and Statistics, 66, 691-695.

Mark, N.C. (1995), “Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictabil-

ity,” American Economic Review, 85, 201-218.

Moors, K. (2011), “Crack Spreads, Oil Futures and $5 Gasoline,” The Oil and FEnergy In-
vestor, January 7, http://oilandenergyinvestor.com/2011/01/crack-spreads-oil-futures-and-5-

gasoline/.

Murat, A., and E. Tokat (2009), “Forecasting Oil Price Movements with Crack Spread Futures,”

Energy Economics, 31, 85-90.

Pesaran, M.H., and A. Timmermann (2009), “Testing Dependence Among Serially Correlated
Multicategory Variables,” Journal of the American Statistical Association, 104, 325-337.

24



[31] Reeve, T.A., and R.J. Vigfusson (2011), “Evaluating the Forecasting Performance of Commod-
ity Futures Prices,” International Finance Discussion Paper No. 1025, Board of Governors of

the Federal Reserve System.

[32] Sanders, D.R., Manfredo, M.R., and K. Boris (2008), “Evaluating Information in Multiple
Horizon Forecasts: The DOE’s Energy Price Forecasts,” Energy Economics, 31, 189-196.

[33] Stock, J.H., and M.W. Watson (2004), “Combination Forecasts of Output Growth in a Seven-
Country Data Set,” Journal of Forecasting, 23, 405-430.

[34] Strumpf, D. (2013), “Goldman Cuts the Near-Term Brent Crude Forecast to $100 a Barrel,”
Wall Street Journal, April 23.

[35] Verleger, P.K. (1982), “The Determinants of Official OPEC Crude Oil Prices,” Review of Eco-
nomics and Statistics, 64, 177-183.

[36] Verleger, P.K. (2011), “The Margin, Currency, and the Price of Oil,” Business Economics, 46,
71-82.

25



Table 1a: Forecast Accuracy of Futures Spread Models for the Real WTI Price

a,p a=0,p
Horizon 1) ) @) (4) (5) (1) () @) (4) (5)
Gasoline  Heating Equal- Weighted Futures  Gasoline Heating Equal- Weighted  Futures
futures oil weighted futures crack futures oil weighted futures crack
spread futures  combination  product spread spread  futures combination  product spread
spread of (1) and (2)  spread spread of (1)and (2)  spread
MSPE Ratios Relative to No-Change Forecast
1 1.009 1.013 1.004 1.018 1.028 0.994 1.010 1.001 0.999 1.014
3 0.976 1.056 0.987 1.030 1.076 0.978"  1.043 1.008 1.001 1.046
6 0.8997  1.106 0.977 0.983°  1.146 0.948"  1.086 1.009 0.992 1.078
9 - 1.093 - - - - 1.076 - - -
12 - 1.090 - - - - 1.041 - - -
Success Ratios
1 0.474 0.502 0.470 0.454 0.518 0.574 0.542 0.566 0.574 0.550
3 0.543 0.498 0.530 0.539 0.478 0.591" 0.530 0.579 0.575 0.510
6 0.508 0.496 0.492 0.484 0.455 0.566 0.521 0.537 0.541 0.545
9 - 0.523 - - - - 0.510 - - -
12 - 0.521 - - - - 0.454 - - -

NOTES: Boldface indicates improvements on the no-change forecast. Statistically significant reductions in the MSPE according to the
Clark-West test and statistically significant improvements in directional accuracy according to the Pesaran-Timmermann test are
marked using ~ (5% significance level) and ™ (10% significance level).



Table 1b: Forecast Accuracy of Futures Spread Models for the Real WTI Price,

a=0, =1
Horizon (1) (2) (2) (3) 4) (5)
Gasoline  Heating Heating Equal- Weighted  Futures
futures oil oil weighted futures crack
spread futures  combination futures  combination  product spread
spread  of (1) and (2) spread of (1)and (2)  spread
MSPE Ratios Relative to No-Change Forecast
1 2.158 1.954 7.451 6.811 6.837 3.411¢*
3 0.951 1.318 2.412 2.001 1.908 5.503¢”
6 0.8187  1.258 1.652 1.322 1.228  1.787¢°
9 - 1.194 1.386 - - -
12 - 1.085 1.151 - - -
Success Ratios
1 0.470 0.498 0.566 0.570 0.570 0.570
3 0.543 0.490 0.583" 0.575 0.575 0.575
6 0.521 0.475 0.557 0.566 0.570 0.574
9 - 0.510 0.589 - - -
12 - 0.525 0.559 - - -

NOTES: Boldface indicates improvements on the no-change forecast. Statistically significant reductions in the MSPE according to the
Clark-West test and Diebold-Mariano test, respectively, and statistically significant improvements in directional accuracy according to
the Pesaran-Timmermann test are marked using ~ (5% significance level) and ~ (10% significance level).



Table 2a: Forecast Accuracy of Spot Spread Models for the Real WTI Price

a, B a=0,5
oy ) @) (4) 1) ) ©) (4)
Horizon Gasoline spot Heating oil Equal- Weighted Gasoline Heating Equal- Weighted
spread spot spread weighted spot product spot oil spot weighted spot product
combination of spread spread spread combination spread
(1) and (2) of (1) and (2)
MSPE Ratios Relative to No-Change Forecast
1 1.015 1.010 1.009 1.017 0.999 1.008 1.003 1.002
3 1.032 1.028 1.018 1.040 0.998 1.023 1.008 1.007
6 1.015 1.043 1.024 1.032 0.978" 1.037 1.006 0.998
9 1.067 1.056 1.060 1.067 0.965 1.052 1.006 0.989
12 1.016 1.051 1.028 1.057 0.940 1.040 0.987 0.970"
15 0.993 1.035 1.004 1.053 0.936" 1.031 0.980 0.966
18 1.026 1.006 1.011 1.062 0.969™ 1.041 1.001 0.990
21 1.025 0.995 1.006 1.048 0.987 1.058 1.017 1.004
24 0.979 1.006 0.981 1.018 0.940° 1.054 0.990 0.968"
Success Ratios
1 0.462 0.546 0.506 0.454 0.554 0.534 0.566 0.562
3 0.445 0.518 0.494 0.453 0.575 0.482 0.555 0.563
6 0.443 0.557 0.512 0.455 0.541 0.459 0.508 0.541
9 0.461 0.585 0.573 0.494 0.419 0.419 0.465 0.469
12 0.445 0.576 0.525 0.483 0.504 0.370 0.416 0.437
15 0.477 0.592" 0.506 0.443 0.494 0.434 0.396 0.438
18 0.474 0.603" 0.530 0.535 0.440 0.397 0.440 0.435
21 0.485 0.555 0.520 0.507 0.437 0.349 0.384 0.415
24 0.451 0.531 0.465 0.504 0.491 0.367 0.416 0.474

NOTES: Boldface indicates improvements on the no-change forecast. Statistically significant reductions in the MSPE according to the
Clark-West test and statistically significant improvements in directional accuracy according to the Pesaran-Timmermann test are
marked using (5% significance level) and ~ (10% significance level).



Table 2b: Forecast Accuracy of Spot Spread Models for the Real WTI Price

&, f=1 a=0, =1
1) ) ©) (4) (1) ) ©) (4)
Horizon  Gasoline spot Heating oil Equal- Weighted spot  Gasoline  Heating oil Equal- Weighted

spread spot spread weighted product spread  spot spread  spot spread weighted spot

combination combination product

of (1) and (2) of (1) and (2) spread

MSPE Ratios Relative to No-Change Forecast

1 2.158 1.945 1.639 1.730 5.959 7.249 6.141 5.978
3 1.120 1.219 1.082 1.076 1814 2.196 1911 1.857
6 0.937 1.139 0.999 0.969 1.179 1.490 1.294 1.247
9 0.901 1.138 0.989 0.951 1.017 1.325 1.140 1.092
12 0.870" 1.115 0.966 0.927" 0.917 1.214 1.040 0.993
15 0.900™ 1.099 0.975 0.944 0.899 1.140 0.996 0.958
18 0.987 1.111 1.024 1.006 0.943 1.105 1.004 0.976
21 1.019 1.122 1.045 1.031 0.938 1.078 0.985 0.964

24 0.963" 1.104 1.009 0.988 0.859" 1.035 0.925 0.898™

Success Ratios

1 0.442 0.490 0.462 0.446 0.570 0.566 0.570 0.570
3 0.462 0.490 0.458 0.453 0.575 0.571 0.575 0.575
6 0.424 0.508 0.459 0.430 0.574 0.566 0.574 0.574
9 0.427 0.502 0.473 0.440 0.588 0.585 0.593 0.593
12 0.458 0.471 0.483 0.450 0.605 0.588 0.597 0.597
15 0.443 0.438 0.472 0.468 0.621" 0.579 0.609 0.609
18 0.435 0.453 0.453 0.457 0.625 0.578 0.621 0.621
21 0.389 0.415 0.424 0.428 0.668" 0.585 0.651 0.651
24 0.434 0.403 0.438 0.451 0.633 0.540 0.615 0.624

NOTES: Boldface indicates improvements on the no-change forecast. Statistically significant reductions in the MSPE according to the
Clark-West test and the Diebold-Mariano test, respectively, and statistically significant improvements in directional accuracy
according to the Pesaran-Timmermann test are marked using (5% significance level) and ~ (10% significance level).



Table 3: Forecast Accuracy of Gasoline Spot and Futures Spread Models for the Real U.S. Refiners’ Acquisition Cost for Oil Imports

1) 2) 3) 4) 1) (2 3) 4)
&, B a=0,8 a, f=1 a=0, p=1 a, B a=0,5 a, f=1 a=0, =1
Horizon Gasoline Gasoline Gasoline Gasoline Gasoline  Gasoline Gasoline Gasoline
futures futures futures futures spot spot spot spot
spread spread spread spread spread spread spread spread
MSPE Ratios Relative to No-Change Forecast
1 0.942" 0.979" 1.435 5.408 0.974" 0.989 1.548 4.648
3 0.919" 0.966" 0.875 1.623 1.005 0.990 1.057 1.710
6 0.891" 0.945 0.816" 1.048 1.012 0.978" 0.947 1.176
9 - - - - 1.056 0.963" 0.915 1.001
12 - - - - 1.011 0.934" 0.882" 0.891
15 : - - - 0.993 0.931" 0.915" 0.876
18 - - - . 1.013 0.9717 1.005 0.929
21 - - - - 0.998 0.986 1.022 0.920
24 - - - - 0.956" 0.934" 0.958" 0.849"
Success Ratios

1 0.482 0.590 0.486 0.590 0.478 0.562 0.450 0.586
3 0.534 0.599" 0.534 0.591 0.429 0.583 0.437 0.583
6 0.521 0.570 0.533 0.582 0.455 0.545 0.430 0.578
9 - - - - 0.486 0.436 0.419 0.606
12 - - - - 0.454 0.521 0.458 0.622
15 - - - - 0.468 0.516 0.434 0.647
18 - - - - 0.470 0.470 0.414 0.655
21 - - - - 0.502 0.454 0.397 0.668
24 - - - - 0.443 0.500 0.425 0.642

NOTES: Boldface indicates improvements on the no-change forecast. Statistically significant reductions in the MSPE according to the
Clark-West test and the Diebold-Mariano test, respectively, and statistically significant improvements in directional accuracy
according to the Pesaran-Timmermann test are marked using = (5% significance level) and =~ (10% significance level).



Table 4: Forecast Accuracy of Recursive MSPE*-Weighted Model Combinations for the
Real U.S. Refiners’ Acquisition Cost for Oil Imports

Horizon &, =01 a, f=1 a=0, g=1
Spot spread Spot spread Spot spread Spot spread
MSPE Ratios Relative to No-Change Forecast
1 0.992 0.994 1.318 4.968
3 1.006 1.005 1.038 1.828
6 1.020 1.003 1.005 1.295
9 1.048 1.003 0.998 1.125
12 1.017 0.977 0.960 0.998
15 0.997 0.970 0.965 0.950
18 0.989 0.996 1.018 0.965
21 0.964 1.009 1.030 0.953
24 0.943 0.977 0.985 0.901
Success Ratios
1 0.502 0.574 0.442 0.586
3 0.490 0.563 0.441 0.583
6 0.512 0.512 0.459 0.578
9 0.593" 0.473 0.465 0.602
12 0.534 0.450 0.466 0.613
15 0.519 0.426 0.464 0.643
18 0.535 0.440 0.435 0.651
21 0.537 0.406 0.445 0.659
24 0.460 0.434 0.443 0.620

NOTES: All models combine information from the gasoline spread and heating oil spread. Boldface indicates improvements on the
no-change forecast. There are no tests with which to assess the statistical significance of the MSPE reductions in the context of this
table. Statistically significant improvements in directional accuracy according to the Pesaran-Timmermann test are marked using ~
(5% significance level) and = (10% significance level).



Table 5: Forecast Accuracy of TVP Product Spread Models for the Real U.S. Refiners” Acquisition Cost for Oil Imports

Horizon Gasoline and Heating Oil Spreads Gasoline Spread Only
&t'ﬂlt'ﬂZt a, =0, ﬂlt’ﬂZt &t’ﬂt a, :Olﬂt
Spot spread Spot spread Spot spread Spot spread
MSPE Ratios Relative to No-Change Forecast
1 0.984 0.997 0.973 0.985
3 0.990 1.000 0.986 1.003
6 0.957 0.972 0.958 1.001
9 0.909 0.892 0.900 0.954
12 0.894 0.865 0.845 0.914
15 0.945 0.878 0.855 0.896
18 1.013 0.905 0.953 0.922
21 1.110 0.911 0.930 0.894
24 0.979 0.800 0.865 0.803
Success Ratios
1 0.502 0.586 0.566 0.574
3 0.518 0.579 0.559 0.583
6 0.500 0.541 0.525 0.578
9 0.490 0.560 0.506 0.606
12 0.479 0.613 0.521 0.605
15 0.443 0.647 0.532 0.647
18 0.496 0.660" 0.552 0.655 "
21 0.524 0.659 0.646 0.655
24 0.500 0.633 0.580 0.633

NOTES: The TVP models are estimated using Kalman filter recursions. Boldface indicates improvements on the no-change forecast.
There are no tests with which to assess the statistical significance of the MSPE reductions in the context of this table. Statistically
significant improvements in directional accuracy according to the Pesaran-Timmermann test are marked using ~ (5% significance
level) and ™ (10% significance level).
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Figure 1: 3-Month 3:2:1 Futures Crack Spread: 1992.1-2013.3
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NOTES: The data construction and data sources are described in the text.



Figure 2: Selected Product Spreads: 1992.1-2013.3
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NOTES: The data construction and data sources are described in the text. All futures spreads refer to 3-month maturities.



Figure 3: Real-Time Recursive MSPE Ratio of Spot Spread Models Relative to No-Change Forecast of
Real U.S. Refiners’ Acquisition Cost of Oil at the 24-Month Horizon
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NOTES: All models shown have been estimated with « =0 imposed. The plot shows the evolution of the MSPE ratio over the evaluation
period since 1997. This increases the reliability of the MSPE estimates and allows the MSPE ratio to stabilize.
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Figure 4: Spread of WTI Spot Price over Brent Spot Price
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