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Abstract

Changing time series properties of US inflation and economic activity, mea-
sured as marginal costs, are modeled within a set of extended Phillips Curve
(PC) models. It is shown that mechanical removal or modeling of simple low
frequency movements in the data may yield poor predictive results which de-
pend on the model specification used. Basic PC models are extended to include
structural time series models that describe typical time varying patterns in levels
and volatilities. Forward as well as backward looking expectation mechanisms
for inflation are incorporated and their relative importance evaluated. Survey
data on expected inflation are introduced to strengthen the information in the
likelihood. Use is made of simulation based Bayesian techniques for the empirical
analysis. No credible evidence is found on endogeneity and long run stability be-
tween inflation and marginal costs. Backward-looking inflation appears stronger
that forward-looking one. Levels and volatilities of inflation are estimated more
precisely using rich PC models. Estimated inflation expectations track nicely
the observed long run inflation from the survey data. The extended PC struc-
tures compare favorably with existing basic Bayesian Vector Autoregressive and
Stochastic Volatility models in terms of fit and prediction. Tails of the complete
predictive distributions indicate an increase in the probability of disinflation in
recent years.
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1 Introduction

Modeling the relation between inflation and fluctuations in economic activity has been

one of the building blocks of macroeconomic policy analysis. Often, the analysis of

this relation, denoted as Phillips Curve (PC) models, is conducted using the short-run

variations in inflation and economic activity1. The conventional method for extracting

this short run variation in the observed series is to demean and detrend the data prior to

analysis, see Gaĺı and Gertler (1999); Nason and Smith (2008). However, mechanical

removal of the low frequency movements in the data may lead to misspecification in

the models, as suggested in Ferroni (2011); Canova (2012) for DSGE models. The

existence of complex low frequency movements, such as potential structural breaks and

level shifts in the observed series in particular in the inflation series, is well documented

in the literature (McConnell and Perez-Quiros, 2000; Stock and Watson, 2008). For

instance distinct periods with different patterns can be observed for the non-filtered

inflation series. The period between the beginning of 1970s and beginning of 1980s is

often labelled as a high inflationary period compared to the latter periods. A similar

statement holds for economic activity as the real marginal cost series, often used as a

proxy for the economic activity, see Gaĺı and Gertler (1999), follows a negative trend

which is amplified further in the recent decade. The importance of the joint analysis

of such high and low frequency movements in macroeconomic data has recently been

documented, see (Ferroni, 2011; Delle Monache and Harvey, 2011; Canova, 2012).

In this paper we aim to contribute to this literature in four ways. We illustrate

and discuss possible effects that simple prior filtering of the low frequencies in the data

may have on posterior and predictive inference using a basic PC model. The issue is

that the observed inflation and marginal cost data have more complex low frequency

structures than just a basic mean and/or a basic linear or HP trend. We show that this

1For notational convenience we use the abbreviation ‘PC’ instead of the common abbreviation of
the New Keynesian Phillips Curve models.
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misspecification affects posterior inference of the structural PC parameters and gives

poor forecasting results depending on the model specification. In the Appendix A and

Appendix H, we present extensive evidence using a set of simulated and real data and

a range of PC model structures. Obviously, in well specified models and in series with

simple means and linear trends the misspecification effects are not severe. However,

from this outset the use of mechanical filters without properly examining the frequency

features of the data is not advisable.

We extend the basic PC model by specifying structural time series models which al-

low for stochastic trends, structural breaks and stochastic volatility in the inflation and

log marginal cost series and integrate these with the basic model. The more complex

model structure enables the identification of the relation between macroeconomic vari-

ables inherent in the PC models, together with possible long and short run dynamics

in each series.

Next, we enrich the extended PC models to include both forward and backward

looking expectation mechanisms. There is a debate in the literature on the relative

weights of these two components in explaining and forecasting inflation patterns in the

U.S.. Our combined model structure can provide valuable inferential information on

that point.

As a final contribution we make use of survey data on inflation expectations from

University of Michigan Research Center, which provide quarterly one year ahead in-

flation expectations. It is well known that the class of PC models including complex

time series features and rich expectation mechanisms is not easy to estimate given the

usually weak data information. The proposed richer expectational mechanisms, mak-

ing use of the survey data, strengthen the likelihood information and are expected to

make inference more efficient and forecasting more accurate.

Several alternatives to structural time series models for efficiently combining the

PC model with explicit low frequency movements in the data are available. One
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alternative is to focus only on the high frequencies rewriting the likelihood in fre-

quency domain and maximizing the likelihood only over a portion of fluctuations,

see e.g. Christiano and Vigfusson (2003). Another alternative is to utilize multiple

prior filters, to capture the possibly incorrectly specified low frequency components

(Canova and Ferroni, 2011). Here we aim to focus on explicitly modeling the low

frequency movements to improve the predictive performances of the structural form

models while we keep the theoretical model at a simple tractable level.

We apply the proposed set of models to quarterly U.S. data over the period 1960-I

until 2012-I. For all models considered, posterior and predictive results are obtained

using a simulation based Bayesian approach. Our results indicate that PC structures

with three additional components (structural time series features, expectational mech-

anisms and inflation survey data) capture time variation in the low and high frequency

movements of both inflation and marginal cost data. For the inflation series, the model

identifies two distinct periods with different inflation levels. In terms of the marginal

cost series, the trend specification accommodates the smoothly changing trend observed

in the series, specifically after 2000. We also find improved forecasting performance of

the extended PC model with three extra components included when this one is com-

pared with basic PC models with demeaned and/or detrended data, with a standard

stochastic volatility model proposed by Stock and Watson (2007) and, further, with

an extended Bayesian vector autoregressive model which accounts for changing lev-

els, trends and volatility in the data. The model comparison is based on predictive

likelihood and out-of-sample Mean Squared Forecast Error (MSFE) comparisons. The

Bayesian approach we adopt has several appealing features particularly for the models

considered. In terms of inflation predictions, several measures of interest, such as dis-

inflation probabilities obtained from the lower tail of the complete predictive densities,

are obtained as a by-product of simulation based Bayesian inference. Furthermore,

for the models with general trend and level structures, the non-existence of a stable
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long-run relationship between inflation and marginal cost series, can be easily assessed

using the posterior draws of the trends and levels.

The structure of this paper is as follows: Section 2 presents the three extensions

to the standard Phillips curve model structure. Section 3 summarizes the likelihood,

prior and the posterior sampling algorithm. Section 4 provides the application of the

proposed models and the standard PC model on U.S. inflation and marginal cost data.

Section 5 concludes.

2 Extended Philips Curve models

We start with a standard PC model based on a priori filtered data. Next, we extend this

model with a structural time series model in order to deal with low and high frequencies

that are present in U.S. inflation and the low frequency property in the U.S. log marginal

cost series. Thirdly, we extend the latter PC model by introducing a Hybrid PC model

(HPC) with both backward and forward looking inflation expectations where the long-

run expectations are anchored around observed values of inflation expectations obtained

from survey data.

The standard PC can be derived by the approximation of the equilibrium conditions

of the firms under staggered price setting using the Calvo formulation, (Calvo, 1983).

The basic PC model derived from the firm’s price setting is given as

π̃t = λz̃t + γfEt(π̃t+1) + ϵ1,t,

z̃t = ϕ1z̃t−1 + ϕ2z̃t−2 + ϵ2,t,
(1)

where (ϵ1,t, ϵ2,t)
′ ∼ NID (0,Σ) and standard stationary restrictions hold for (ϕ1, ϕ2).

Given the AR(2) dynamics for the steady state deviation of the marginal cost, the

model can be solved for the inflation expectations by iterating the model forward. This

implies that the entire stream of future inflation expectations is taken into account.

The PC model takes the form of an instrumental variable model with two instruments
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and nonlinear parameters in the inflation equation2

π̃t = λ
1−(ϕ1+ϕ2γf )γf

z̃t +
ϕ2γfλ

1−(ϕ1+ϕ2γf )γf
z̃t−1 + ϵ1,t

z̃t = ϕ1z̃t−1 + ϕ2z̃t−2 + ϵ2,t.
(2)

One way to estimate the structural parameters is to estimate the unrestricted re-

duced form model, and solve for the structural parameters, see the Appendix B and

Kleibergen and Mavroeidis (2011) for details. However, this transformation, involving

a complex Jacobian determinant, may seriously obscure the inference on the structural

parameters. Hence we opt for estimating structural parameters directly.

Extended PC models: low frequency components, non-filtered data

We depart from the standard PC model by avoiding the a priori data filtering and

emphasize that data filtering is an integral part of data modeling from an econometric

point of view. Specifically, we make use of models with time varying levels as well as

volatility for capturing both the low and high frequency changes in the U.S. inflation

and marginal cost series. Furthermore, modeling data filters together with other model

parameters concerns the uncertainty related to steady state specifications. Modeling

the data filters explicitly incorporates this uncertainty into the model while the use of

filtered data does not. In the latter case, levels and trends are assumed to be known

prior to analysis. Finally, prior data filtering also has important effects on the predictive

performance of the models as we will show in section 4.

From an economic point of view, Ascari (2004) among others, analyzes the impli-

cations of a (constant) trend inflation on the PC structure. Adding a trend inflation

to standard PC assumptions, Ascari and Ropele (2007) show that the resulting PC

coefficients depend on the trend inflation, thus the interpretation of the coefficients

differs from the standard model. Schorfheide (2005) develops a DSGE model along

the lines of Woodford (2003) and focuses on agents’ learning of the discrete changes in

2The model in (2) can be written as a triangular simultaneous equations model:
(
1 −α1
0 1

)
( πt
zt ) =( 1 −α1 −α2 0

0 1 −ϕ1 −ϕ2

)
( cπ,t, cz,t, cz,t−1, cz,t−2 )

′
+
( 0 α2

0 ϕ1

) ( πt−1
zt−1

)
+
(
0 0
0 ϕ2

) ( πt−2
zt−2

)
+
( ϵ1,t
ϵ2,t

)
, and the following

parameter restrictions hold: α1 = λ/ (1− (ϕ1 + ϕ2γf )γf ) and α2 = ϕ2γfα1.
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inflation target of the central bank under trend inflation. Cogley and Sbordone (2008)

take one-step further and derive the PC model with time-varying trend inflation mod-

eled as a driftless random walk. In these settings, the coefficients of the PC remain

constant since a fraction of the firms adjust their price by the steady state inflation

rate. Moreover, Nason and Smith (2008) provides empirical evidence in favor of stable

structural parameters. In our extended PC models with non-filtered data we follow

this assumption and keep the structural parameters constant focusing on low and high

frequency movements in steady state levels.

The proposed joint modeling of data filters and other model parameters are also mo-

tivated by the stylized facts regarding the non-filtered U.S. inflation and log marginal

cost data, shown in Figure 1 over the period between 1960-I and 2012-II3. The left

panel displays two stylized facts. First, there exist distinct periods with differing pat-

terns for the inflation series. The period between the beginning of the 1970s and the

beginning of the 1980s can be labelled as a high inflationary period compared to the

remaining periods. Existing evidence shows that the decline in level and volatility

is due to credible monetary policy that stabilized inflationary expectations since the

early eighties, see McConnell and Perez-Quiros (2000) and Stock and Watson (2007).

We observe a temporary increase in the level of inflation during 1970s, while this in-

crease in inflation switches back to the earlier levels after the second break in the first

quarter of 1983.One way to model this changing behavior of the series is to allow for

regime changes in parameters to capture the change in the structure of the series, see

Sims and Zha (2006); Cogley and Sbordone (2008), among others. We consider two

cases for the inflation process. In the first case, we assume continuous level shifts and

we can model the changing inflation level using a random walk process as

cπ,t+1 = cπ,t + η1,t+1, η1,t ∼ NID(0, σ2
η1
). (3)

3Inflation is computed as the continuously compounded growth rate of the implicit GDP defla-
tor and for the real marginal cost series we use labor share in non-farm business sector obtained
from http://research.stlouisfed.org/fred2/, see Gaĺı and Gertler (1999) for details. The right panel in
Figure 1 displays real marginal cost series, in natural logarithms and multiplied by 100.
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Figure 1: Inflation, inflation expectations and log real marginal cost (×100) series over
first quarter of 1960 and the first quarter 2012
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Alternatively, we consider an inflation level subject to occasional and discrete shifts,

allowing for permanent level shifts. Such level shifts are modeled as follows

cπ,t+1 = cπ,t + κtη1,t+1, η1,t ∼ NID(0, σ2
η1
) (4)

where κt is a binary variable taking the value of 1 with probability pκ if there is level

shift and the value 0 with probability 1− pκ if the level does not change. This model

structure allows for level shifts depending on pκ while preserving a parsimonious model

structure with only a single additional parameter. Occasional and large level shifts

correspond to low values of pκ together with high values of ση1 . When pκ is 1, the

model becomes a local level model in (3). We use both specifications (3) and (4) in the

empirical analysis. The attractive feature of this specification is that the implications

on the resulting model is identical to the pure random walk case as the expectation of

the future inflation levels is same as the current level, while it still allows for regime

changes that are permanent until the next regime change.

The real marginal cost series, shown in the right panel of Figure 1, does not exhibit

discrete changes as the inflation series. This data instead has a continuously changing

pattern around a negative trend, which can be attributed to technology shocks. Since

this trend is more prominent in the second half of the sample period, we allow for a
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changing trend using a local linear trend specification

cz,t+1 = µz,t + cz,t + η2,t+1, η2,t ∼ NID(0, σ2
η2
)

µz,t+1 = µz,t + η3,t+1, η3,t ∼ NID(0, σ2
η3
).

(5)

This specification is flexible enough to encompass many types of filters used for

detrending, see Delle Monache and Harvey (2011), see also Canova (2012) for a similar

specification in the more general context of DSGE models. When σ2
η3

= 0, the level

of the real marginal cost follows a random walk with a drift, µz. Additionally, when

σ2
η2

= 0, a deterministic trend is obtained. Note that, setting only σ2
η2

= 0 but allowing

σ2
η3

to be positive results in an integrated random walk process which can approximate

nonlinear trends including the Hodrick-Prescott (HP) trend.

Together with the level specifications of the inflation and real marginal cost series

the PC model in (2) using (4) and (5) takes the following form

πt − cπ,t = λ
1−(ϕ1+ϕ2γf )γf

(zt − cz,t) +
ϕ2γfλ

1−(ϕ1+ϕ2γf )γf
(zt−1 − cz,t−1) + ϵ1,t,

zt − cz,t = ϕ1 (zt−1 − cz,t−1) + ϕ2 (zt−2 − cz,t−2) + ϵ2,t,

cπ,t+1 = cπ,t + κtη1,t+1,

cz,t+1 = µz,t + cz,t + η2,t+1,

µz,t+1 = µz,t + η3,t+1,

(6)

where (ϵ1,t, ϵ2,t)
′ ∼ NID

(
0,
(

σ2
ϵ1

ρσϵ1σϵ2

ρσϵ1σϵ2 σ2
ϵ2

))
, (η1,t, η2,t, η3,t)

′ ∼ NID

(
0,

(
σ2
η1

0 0

0 σ2
η2

0

0 0 σ2
η3

))
and the residuals (ϵ1,t, ϵ2,t)

′ and (η1,t, η2,t, η3,t)
′ are independent for all t.

Adding stochastic volatility as high frequency component

A further refinement in the PC model can be achieved allowing for time variation in

residual variances. This extension is particularly appealing for the inflation series, as

the variance of this series changes over time substantially, see e.g. Stock and Watson

(2007) for a reduced form model with a stochastic volatility component. To extend

the PC model with a stochastic volatility process in the inflation shocks, we add the
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following state equation to the system

ht+1 = ht + η4,t+1, η4,t+1 ∼ NID(0, σ2
η4
), (7)

where we specify a time-varying volatility, σϵ1,t = exp(ht/2), in the first equation in

(6). We follow the practice in Stock and Watson (2007) by fixing the value of σ2
η4

prior

to analysis to facilitate inference. We set ση4 = 0.5, which seems to work well for the

U.S. inflation series.

An important estimation challenge in this extended model is the close relation

between the changing inflation levels or level shifts and inflation fluctuations in the

extended models. Changing data patterns can be captured by either of these model

components, which makes it hard to identify these components unless one makes re-

strictions as we performed in our analysis. For this reason, we fix the value of σ2
η4

prior

to analysis to facilitate inference and to impose smoothness in the volatility process. It

is straightforward to extend the model so that parameter σ2
η4

is estimated together with

the rest of the parameters. The estimation, however, is not trivial since the stochastic

volatility component can capture all inflation behavior unless strong priors are imposed

on this parameter.

Hybrid PC: forward and backward expectations using survey data

The PC model structure only allows for forward looking inflation expectations while

the ‘Hybrid’ PC (HPC) model combines both backward and forward looking dynamics

by including the first lag of inflation deviation in the model along with forward look-

ing dynamics (Gaĺı and Gertler, 1999). The HPC can be derived using an additional

assumption on the firm’s behaviour, where a fraction ω of the firms, that are unable to

reset their prices, adjust their price by the lagged inflation rate rather than the steady

state rate. The HPC model takes the form of

π̃t = λH z̃t + γH
f Et(π̃t+1) + γH

b π̃t−1 + ϵ1,t,

z̃t = ϕ1z̃t−1 + ϕ2z̃t−2 + ϵ2,t,
(8)
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where parameters of the HPC model, indicated by a superscript H are functions of the

price stickiness parameter, a discount factor and the fraction of firms with backward

looking pricing behavior. Iterating the first equation forward, the HPC implies the

triangular simultaneous equations model which is nonlinear in parameters

π̃t = λH

(1−γH
b γH

f )(1−(ϕ1+ϕ2γH
f )γH

f )
z̃t +

ϕ2γH
f λH

(1−γH
b γH

f )(1−(ϕ1+ϕ2γH
f )γH

f )
z̃t−1

+
γH
b γH

f

(1−γH
b γH

f )

∑∞
k=1 γ

H,k
f Et(π̃t+k) +

γH
b

(1−γH
b γH

f )
π̃t−1 +

1
(1−γH

b γH
f )
ϵ1,t

z̃t = ϕ1z̃t−1 + ϕ2z̃t−2 + ϵ2,t.

(9)

Unlike the PC solution, this system involves an infinite sum of expectations and a

closed form solution only exists under certain assumptions such as rational expecta-

tions. Here, we do not follow this practice but model the inflation expectations using

survey data instead. Specifically, let St = Et(πt+1) be the next period inflation expec-

tation. We specify an adaptive rule in the sense that inflation expectations partially

adjust to the survey expectations in each period:

St = µt + β(St−1 − µt−1) + η5,t, (10)

where |β| < 1. Given this restriction on the range of β, one can solve (10) for St

and obtain St = µt +
∑∞

j=1 β
jη5,t−j. This specification allows for the interpretation

that expected inflation is equal to the survey values with a measurement error that

is specified as an infinite moving average with declining weights. We make use of the

inflation expectations data which strengthen the information content of the data.

We emphasize that alternative ways of specifying expectation mechanisms in the

proposed set of extended PC models is possible and a topic of great interest. Further,

their possible connections to survey based expectations are of equal interest. One

possibility is to restrict µ to be the constant long run expectation which serves as an

anchor. In that case one has a random walk model when β = 1. The observed series

of survey data on inflation expectations and the posterior evidence on β reported in
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section 4 do not constitute credible evidence for this case. A more detailed comparison

of alternative expectation mechanisms is, however, a topic beyond the scope of the

present paper and left for future research.

Note that the model-implied expectation is for GDP inflation while the overlaid

data is CPI inflation expectations. For this reason we subtract the average difference

between CPI and GDP inflation from the survey data4. Finally, we note that the

survey data provide four-steps-ahead (one-year) expectations. Assuming constant ex-

pectations over the year, we divide the survey data by 4 in order to get a comparable

quarterly expectation data.

Specifying inflation expectations as in (10), the HPC model becomes

πt − cπ,t = λH

(1−γH
b γH

f )(1−(ϕ1+ϕ2γH
f )γH

f )
(zt − cz,t) +

ϕ2γH
f λH

(1−γH
b γH

f )(1−(ϕ1+ϕ2γH
f )γH

f )
(zt−1 − cz,t−1) ,

+
γH
b γH

f

(1−γH
b γH

f )

γH
f

1−γH
f β

(St − cπ,t) +
γH
b

(1−γH
b γH

f )
(πt−1 − cπ,t−1) +

1
(1−γH

b γH
f )
ϵ1,t,

zt − cz,t = ϕ1 (zt−1 − cz,t−1) + ϕ2 (zt−2 − cz,t−2) + ϵ2,t.

(11)

Similar to the PC model, we consider three case of the HPC model with different

specifications for inflation: (i) continuous level changes; (ii) discrete occasional level

changes; and (iii) discrete occasional level changes and stochastic volatility.

3 Bayesian inference

In this section we summarize the prior specifications and the posterior sampling algo-

rithms for the extended PC and HPC models.

Prior specification for parameters and prior predictive likelihood

The extended PC and HPC models contain several additional parameters compared

to the standard PC model. We classify the model parameters in five groups, and

assign independent priors for each group. The first parameter group includes the

4We thank an anonymous referee for pointing this out. Our approach of recalculating the inflation
expectations is similar to Del Negro and Schorfheide (2012)
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common parameters in the PC and HPC models, θN = {λ, γf , ϕ1, ϕ2,Σ}, in (1). For

the structural parameters {λ, γf , ϕ1, ϕ2} we define flat priors on restricted regions,

which also ensure that the autoregressive parameters, ϕ1 and ϕ2, are in the stationary

region5. The (observation) variance priors are of inverse-Wishart type

p(λ, γf , ϕ1, ϕ2|Σ) ∝ 1 for |λ| < 1, |γf | < 1, |ϕ1|+ ϕ2 < 1, |ϕ2| < 1,

Σ ∼ IW (1, 20× Σ̃),
(12)

where IW (ν,Ψ) is the inverse Wishart density with scale Ψ and ν degrees of freedom.

Note that the prior specifications of the observation and state covariance matrices

are important in this class of models and for the case of macroeconomic data. Since the

sample size is typically small, differentiating the short-run variation in series (the obser-

vation variances) from the variation in the long-run behavior (the state variation) can

be cumbersome (Canova, 2012). For this reason, we impose a data based prior struc-

ture on the observation covariance matrices. We first estimate the implied unrestricted

reduced form VAR model using demeaned inflation series and (linear) detrended real

marginal cost series, and base the observation variance prior on this covariance ma-

trix estimate, Σ̃. This specification imposes smoothness for the estimated levels and

trends, and ensures that the state errors do not capture all variation in the observed

variables. Second, prior distributions for the extra model parameters stemming from

the hybrid models, θH = {γH
b , β} are defined as uniform priors on restricted regions

|γH
b | < 1, |β| < 1. Third, we define independent inverse-Gamma prior densities for the

variances of latent state variables: (3), (4) and (5)

ση1 ∼ IG(20, 20× 10−2), ση2 ∼ IG(20, 20× 10−3),

ση3 ∼ IG(1, 1× 10−5), ση5 ∼ IG(40, 40 ∗ 10−1),
(13)

where IG(α, αξ) denotes the inverse-gamma distribution with shape α > 0 and scale

5We experimented with wider truncated uniform densities for the λ and γf parameters. The prior
truncation does not seem to have a substantial affect on the posterior results.
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αξ > 0. Parameter α can be interpreted as the number of prior dummy observations

while ξ is the a priori variance of a dummy observation.

Similar to the standard counterparts, the extended PC and HPC models may also

suffer from flat likelihood functions. We therefore set only slightly informative priors

for the state parameters, such that not all variation in inflation and marginal cost

series are captured by the time-varying trends and levels. For example, the number

of prior dummy observations for ση1 and ση2 is very small compared to the number

of observations in the data, limiting the prior’s information content. We use slightly

informative priors on ση5 , to ensure that the implied inflation expectations of the models

do not diverge substantially from the survey expectations.

The fourth prior distribution we consider is applicable to the PC and HPC models

with level shifts. For these models, we consider a fixed level shift probability of 0.04.

This choice leads to an a priori expected number of shifts of 8 for 200 observations in the

sample. Alternatively, we could also estimate this parameter together with other model

parameters. However, often the limited level shift observations plague the inference of

this parameter. Hence, we set this value, obtained trough an extensive search over

intuitive values of this parameter, prior to analysis.

Finally, for the stochastic volatility models, we specify an inverse-gamma prior for

the marginal cost variances. For the correlation coefficient, ρ, we take an uninformative

prior p(ρ) ∝ (1− ρ2)−3/2, see Çakmaklı et al. (2011).

In the proposed models, it is important to assess the effects of the specified prior

distributions on the predictive likelihoods of the proposed models. Due to the nonlinear

structure of the proposed models, assessing the amount of prior information on the

predictive results is not trivial. We present a prior-predictive analysis as in Geweke

(2010). For each of the extended PC and HPC models, we consider 1000 parameter

values drawn from their joint prior distributions and compute the predictive likelihoods

for the data points for the period from the period between 1973-II and 2012-I. Hence
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a comparison of the resulting prior predictions will indicate which model is preferred

by the priors. We provide these results in section 4.

Posterior existence and the sampling algorithm

We summarize the Bayesian inference for the proposed models. An important point

regarding the posterior of the structural parameters is the existence of a posterior

distribution and its moments, which depends on the number of instruments and the

prior. Given two instruments (lagged values of marginal costs), the existence of the

posterior distribution is ensured through priors defined on a bounded region although,

see Zellner et al. (2012) for a detailed analysis of a linear IV model. Furthermore, due

to the small number of instruments, there is a large posterior uncertainty in the PC

models, irrespective of the instrument strength.

The MCMC algorithm to sample from the full conditional posterior distributions is

based on Gibbs sampling with a Metropolis-Hastings step and data augmentation which

combines the methodologies of Geman and Geman (1984); Tanner and Wong (1987);

Gerlach et al. (2000); Çakmaklı et al. (2011). Details of the algorithm are provided in

Appendices C and D.

4 Posterior and Predictive Evidence

In this section we present posterior and predictive evidence on several features of the

extended PC models using U.S. data on inflation and marginal costs. We compare the

results with those obtained from alternative reduced form models like Bayesian Vector

Auto Regressive (BVAR) models and the stochastic volatility model from Stock and Watson

(2007). Specifically, we estimate PC models with a linear trend and HP filter, labeled

as PC-LT and PC-HP, respectively. In six PC models we make use of structural time

series models to specify low and high frequencies. The first three of these models use

the PC framework, allowing for continuous changes in the level of inflation (PC-TV),

in addition for discrete occasional level shifts (PC-TV-LS), and in further addition
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allowing for stochastic volatility for inflation (PC-TV-LS-SV). The final three models

use the hybrid form of the HPC framework with forward and backward looking expec-

tations and using survey data. The corresponding extensions are denoted as HPC-TV,

HPC-TV-LS and HPC-TV-LS-SV. A summary of the eight models used in this paper

is given in Table 1. For a robustness check we ran experiments with several other

model specifications and filter methods in order to obtain a smooth transition from a

basic PC model with a mechanical filter to an extended PC model with low and high

frequencies in levels and volatilities and with rich expectations and survey data. These

results, together with a detailed discussion are reported in the Appendix H.

Table 1: Standard and extended Phillips curve models

aaaaaaaaaaaaaaaaaaa

low/high
frequencies

model structure

Phillips curve Hybrid Phillips curve

linear trend PC-LT HPC-LT*

Hodrick-Prescott filter PC-HP HPC-HP*

time varying levels PC-TV HPC-TV

(2)-(3)-(5) (3)-(5)-(11)-(10)

switching and time varying levels PC-TV-LS HPC-TV-LS

(2)-(4)-(5) (4)-(5)-(11)-(10)

switching, time varying levels PC-TV-LS-SV HPC-TV-LS-SV

and stochastic volatility (2)-(4)-(5)-(7) (4)-(5)-(7)-(11)-(10)

Note: Results for the models indicated by (*) are provided in Appendix H.

Posterior evidence

We display the estimation results in Table 2 and focus on four features. First,

the slope of the PC (λ(H)) is estimated around 0.07 and 0.09 which is slightly higher

than the conventional estimates of the Phillips curve slope, that indicate an almost flat

curve (see e.g. Gaĺı and Gertler (1999); Gaĺı et al. (2005); Nason and Smith (2008)).

When we model the levels of the series explicitly, λ(H) drops to values around 0.05 for

both PC and HPC models. A possible explanation for this difference is the departure
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from the zero steady state inflation assumed in the traditional PC models. As shown

in Ascari (2004); Ascari and Ropele (2007) among others, when the firms that cannot

re-optimize their prices keep their prices fixed, trend inflation can affect the slope of

the PC. In this case, this slope is a decreasing function of the trend inflation. Still, in

both PC and HPC models, the estimated slopes are substantially different from zero as

point 0 is outside the 95% Highest Posterior Density Interval (HPDI) for most cases.

Table 2: Posterior results of alternative Phillips curve models

Model λ(H) γ
(H)
f γH

b β ρ ϕ1 ϕ2

PC-LT 0.068 (0.028) 0.356 (0.242) − − -0.007 (0.018) 0.840 (0.046) 0.076 (0.048)
PC-HP 0.095 (0.050) 0.426 (0.274) − − -0.045 (0.037) 0.659 (0.045) -0.009 (0.045)

PC-TV 0.059 (0.027) 0.387 (0.250) − − -0.085 (0.057) 0.816 (0.052) 0.064 (0.051)
PC-TV-LS 0.054 (0.023) 0.362 (0.242) − − -0.055 (0.050) 0.824 (0.052) 0.069 (0.052)
PC-TV-LS-SV 0.064 (0.021) 0.320 (0.227) − − -0.018 (0.067) 0.871 (0.050) 0.098 (0.051)

HPC-TV 0.048 (0.025) 0.015 (0.025) 0.384 (0.137) 0.494 (0.276) 0.014 (0.059) 0.811 (0.052) 0.066 (0.050)
HPC-TV-LS 0.035 (0.019) 0.008 (0.009) 0.485 (0.106) 0.520 (0.179) 0.016 (0.012) 0.791 (0.089) 0.187 (0.078)
HPC-TV-LS-SV 0.059 (0.020) 0.040 (0.096) 0.217 (0.115) 0.435 (0.237) -0.012 (0.005) 0.828 (0.031) 0.147 (0.043)

Note: The table presents posterior means and standard deviations (in parentheses) of parameters for
the competing New Keynesian Phillips Curve (PC) type models estimated for quarterly inflation and
real marginal cost over over the period from the first quarter of 1960 and the first quarter of 2012. λ
(λH) and γf (γH

f ) are the slope of the Phillips curve and the coefficient of inflation expectations in PC

(HPC) model in (2) ((11)). γH
b is the coefficient of the backward looking component in the HPC model

in (11). H denotes the parameters of the hybrid models while these parameters without H superscript
correspond to the PC model counterparts. β is the autoregressive parameter for the deviation inflation
expectations from the long-run trend, as defined in (10). ρ is the correlation coefficient of the residuals
ϵ1 and ϵ2. ϕ1 and ϕ2 are the autoregressive parameters for the real marginal cost specification in (2).
Posterior results are based on 40000 simulations of which the first 20000 are discarded for burn-in.
Model abbreviations are as in Table 1.

Second, with respect to inflation expectations, it is shown in Table 2 that the coef-

ficient of the short-run inflation expectations, γ
(H)
f is much lower than the conventional

estimates, which is above 0.9 in most of the cases. A potential reason for this find-

ing is the methodology used for inference. Conventional analysis replaces inflation

expectations by the real leading value of the inflation relying on the rational expecta-

tions hypothesis, see e.g. Gaĺı and Gertler (1999); Sims (2002). However, we opt for

explicitly solving for expectations resulting in a highly nonlinear system of simulta-

neous equations. We also notice a relatively higher posterior standard deviation for

this parameter, hence another potential cause of this finding is the relatively low in-
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formation content in the data about this parameter. This is in accordance with the

discussion in the section 3 on the shape of the likelihood in these macro-models. Still

more conventional values of this parameter are inside the 95% HPDI.

A striking result from Table 2 is related to the relative importance of the forward

and backward looking components of the HPC, measured by parameters γH
f and γH

b .

On the one hand, the evidence in Gaĺı et al. (2005) suggests a dominant forward looking

effect. Cogley and Sbordone (2008) document that the forward looking component of

the HPC model dominates once the trend variation in inflation is taken into account.

Similarly, Benati (2008) shows that, under stable monetary regimes with clearly defined

nominal anchors, inflation appears to be (nearly) forward looking. On the other hand,

many studies including Fuhrer and Moore (1995); Rudd and Whelan (2005) document

a dominant backward looking effects in PC models. Our results favor the latter view

since the effect of the backward looking component of inflation estimated by the HPC

models in the bottom panel of Table 2 are substantially higher than those of the

forward looking components. More specifically, Table 2 shows that the HPC and PC

model results differ in terms of the forward looking components’ coefficient γ
(H)
f . From

an economic point of view, these results maybe driven by the model assumptions on

firm behavior that differs from those of Cogley and Sbordone (2008) and Benati (2008).

As argued before from an econometric point of view, the difference can stem from the

weak data information, see Nason and Smith (2008) for further empirical results and

a discussion on this topic.

Third, the contemporaneous correlation between the observation disturbances de-

termines the degree of endogeneity of the log real marginal cost in the PC. The estimates

of this correlation parameter ρ are displayed in the fifth column of Table 2. Posterior

means of ρ from all PC models are negative and close to 0, with high standard devia-

tions. Consequently, 0 is inside the 95% HPDI. For the HPC models, posterior means

of ρ are mostly positive with an even smaller magnitude. Therefore, the endogeneity
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problem does not seem to be severe and single equation inference may yield credible re-

sults for inflation and marginal costs. Still, we refrain from doing so since one neglects

several cross-equations restrictions in that case.

A further consideration is the β parameter, which shows the persistence in mea-

surement errors in survey inflation expectations. Posterior means of the β are given

in the fifth column of Table 2. All HPC models indicate a mediocre persistence, as

the posterior means are around 0.4, which implies that measurement errors in inflation

expectations are systematic, albeit to a limited extend.

Estimated Levels, Volatilities, Breaks and Inflation Expectations

We present estimated levels, trends, inflation volatilities and break probabilities for

the proposed HPC models in Figures 2, 3 and 4, respectively. Estimates for the PC

counterparts are similar, and are provided in Appendix C.

Figure 2: Level, trend and slope estimates from the HPC-TV-LS-SV model
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Note: The top-left panel exhibits estimated inflation levels. The top-right and bottom panels show
estimated real marginal cost levels and the slopes of the levels, respectively. Grey shaded areas
correspond to the 95% HPDI. Model abbreviations are as in Table 1. Results are based on 40000
simulations of which the first 20000 are discarded for burn-in.
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Figure 3: Estimated inflation volatility from the (H)PC-TV-LS-SV models
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Note: The dashed and solid lines show the posterior mean of the time varying inflation volatility and
the observed inflation level. The shaded areas are the 90% HPDI of inflation volatility estimated by
the equivalent models without the stochastic volatility components. Results are based on 40000

simulations of which the first 20000 are discarded for burn-in.

Figure 4: Estimated level shift probabilities for the PC and HPC models
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Note: The solid and long-dashed lines are the posterior means of the estimated level shift probabilities
from the (H)PC-TV-LS model and the (H)PC-TV-LS models, respectively. The dashed line is the
observed inflation level. Results are based on 40000 simulations of which the first 20000 are discarded
for burn-in.

20



The top-left panel of Figure 2 shows estimated levels for the HPC-TV-LS-SV model.

We first stress that models that only allow for discrete and occasional level shifts lead

to smoother inflation levels compared to the model that allows for continuous level

changes, especially in the second half of the sample period. Detailed results on this

issue are provided in Appendix F. Furthermore, the model indicates frequent level shifts

with a stable inflationary pattern between these level shifts. In DSGE models, mean

inflation is generally connected to the inflation target in the central bank’s policy rule.

Hence movements in trend inflation reflect to a large extend changes in the monetary

policy target (see also Schorfheide (2005); Cogley and Sbordone (2008)). Adding the

stochastic volatility component to the model with level shifts cause more frequent

discrete changes in the inflation level, possibly reflecting the uncertainty in monetary

policy target captured by the changing volatility. Estimated marginal cost levels for

the HPC-TV-LS-SV are given in the top-right panel of Figure 2. Marginal cost series

follows a slightly nonlinear trend during the sample period.

Figure 3 presents estimated volatility levels for the (H)PC model with level shifts

and the stochastic volatility component. The stochastic volatility pattern coincides

nicely with data features of the Great Moderation, which refers to the decline of the

volatility of many U.S. macroeconomic series, see McConnell and Perez-Quiros (2000)

among others. The period before the beginning of 1980s is characterized by high

inflation levels accompanied by a high volatility, whereas inflation becomes more stable

in the second half of the sample period. The decline in inflation volatility after 1980s

is linked to credible monetary policy that stabilized inflationary expectations at a low

level via commitment to a nominal anchor since the early eighties, see Ahmed et al.

(2004); Stock and Watson (2007). The effect of this is also seen in the inflation levels

presented in Figure 2. This period of low volatility is replaced by a highly volatile

period after 2005 and during the recent financial crisis. A slight difference between

PC and HPC models is related to the volatility peaks around 1975. It seems that the
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high volatility is distributed more evenly in the HPC model with stochastic volatility,

whereas for the PC counterpart, high volatility is concentrated around 1975. Finally,

the peak points of estimated volatilities coincide with rapid and substantial changes in

inflation.

Estimated break probabilities for the PC and HPC models with and without the

stochastic volatility component are given in Figure 4. On the one hand, estimated level

shift probabilities from the PC-TV-LS model identify four major shifts in the inflation

level around 1966, 1973, 1982 and 2005, which comprise the beginning and the end of

the high inflationary periods. On the other hand, estimated shift probabilities in the

PC-TV-LS-SV model demonstrate the complementarity of level shifts with the chang-

ing volatility. The probabilities follow a similar pattern with the PC-TV-LS model,

however, the periods subject to level shifts are much longer. During the highly volatile

periods of 1970s, the model produces quite clear signals of changing inflation levels, as

high volatility levels cause rapid changes in inflation. Accordingly, low volatility peri-

ods are characterized by mild changes in inflation, leading to a stable inflation level.

Still, for the low volatility periods, mild but significant changes in the inflation level

are attributed to level shifts leading to higher level shift probabilities and more clear

signals of level shifts.

Both models indicate subsequent level shifts from the beginning of the sample pe-

riod until 1975, which corresponds to the period during which inflation increased from

around 0.20% to around 3%. Unlike the PC model, HPC based models indicate con-

tinuous inflation changes during this period. This picture is reversed for the remaining

sample period, as the level shift probabilities for both HPC models are considerably

smaller. The model with only level shift signals a clear level change in the inflation

at the beginning of 1980s, where inflation is subject to a rapid decrease. However, for

the period of Great Moderation, the model implies a stable inflationary pattern with

moderate signals of level shifts around 1990 and around 2005. As for the PC model
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with level shifts and stochastic volatility, the periods of level changes indicated by high

break probabilities are longer and more clear compared to the counterpart without

stochastic volatility. Again, this shows the complementarity of the stochastic volatility

component to the level shifts.

Finally, we report implied inflation expectations, computed as the posterior mean of

St, for the HPC-TV-LS-SV model in Figure 12. The shaded areas around the posterior

mean represents the 95% HPDI for the estimated long-term inflation expectations,

that track nicely the observed long-term inflation expectations. A noticeable difference

between unobserved inflation expectations and the survey data is that the former are

smoother than the latter, particularly around 1975 and 1980. In line with the volatility

findings, these deviations become considerably smaller during the second half of the

sample period. This indicates that inflation expectations are anchored nicely around

the observed expectations, with values of parameter β around 0.45 indicating rapid

convergence. We note that similar results hold for the remaining HPC models, and

these results are included in Appendix F.

Figure 5: Implied inflation expectations by HPC-TV-LS-SV model
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Note: The dashed line is the posterior mean of inflation expectations and the solid line is the survey
data. Grey shaded areas are the 95% HPDI for estimated expectations. Results are based on 40000

simulations of which the first 20000 are discarded for burn-in.

Predictive Performance

Predictive performances of the models are reported using MSFEs, predictive likeli-
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hoods and predictive densities which enable us to report the disinflation probabilities.

The first metric we consider is the predictive likelihoods of all models in order to

compare the density forecasts of the models. The one-step ahead predictive likelihood

of the observation at t0 + 1, yt0+1, conditional on the previous observations y1:t0 , is

given by

f(yt0+1|y1:t0) =
∫

p(yt0+1|Xt0+1, θ)p(Xt0+1, θ|y1:t0)dXt0+1dθ, (14)

which can be computed by first generating {Xt0+1}Mm=1 for M posterior draws, using

the corresponding state equations of the models. Next, the predictive likelihood of

the observation at t0 + 1 can be approximated by 1
M

∑M
m=1 p(yt0+1|Xm

t0+1, θ
m
1:t0

), where

p(yt0+1|Xm
t0+1, θ

m
1:t0

) is a multivariate normal density and M is a sufficiently large num-

ber.

A feature of the predictive likelihoods is that these can be used to compute the

marginal likelihood as p(yt0+1:T ) =
∏T

t=t0
f(yt+1|y1:t), which provides a tool to analyze

the contribution of each observation at time period t to the (log) marginal likelihoods,

see Geweke and Amisano (2010). For the models without a priori demeaning and

detrending, standard marginal likelihood calculations obtained by integrating out all

model parameters using MCMC hold. For the models without a priori demeaning

and detrending, standard marginal likelihood calculations obtained by integrating out

all model parameters using MCMC hold. For the models with a priori demeaning

and detrending, marginal likelihoods can be calculated in two ways. First, all model

parameters can be integrated out. The parameter set then includes the mean and

trend extracted from data at first place, and uncertainty in these parameters are also

taken into account. Second, a priori mean and trend can be taken as ‘constants’,

and the marginal likelihood calculation can be based on integrating out the remaining

model parameters. The marginal likelihood in this case is the marginal likelihood of

the demeaned and detrended data. The first approach includes the extra parameter

uncertainty from a priori parameters, therefore the predictive power is likely to be lower

24



than the one based on the second approach. Furthermore, most of the existing studies

with demeaned and detrended data do not take into account the parameter uncertainty

arising from this a priori step. We therefore choose the second approach to calculate

the marginal likelihoods, which provides a strong alternative to the models we propose

in terms of predictive power and is a fair replication of the literature.

Accurate point predictions of inflation is of key importance for economic agents

such as investors and central banks. Therefore, we also consider MSFE, computed

as the mean of the sum of squares of the prediction errors. For inflation forecasts

we use mean of the predictive distribution of inflation, consistent with a quadratic

loss function. We consider MSFE for one and four period ahead forecasts in order to

examine the forecasting ability of the models also for longer horizons.

As a third performance criteria, we report the disinflation risk indicated by each

model. Typically, increased uncertainty about future inflation is penalized by the

predictive likelihood comparisons. This uncertainty, however, may simply indicate the

increasing inflationary risk. We include this criterion in order to gain insights on the

inflationary risk implied by each model. Disinflation probabilities are computed as the

tail probability of the predictive distributions such that the one step ahead predicted

inflation values are below zero.

Apart from the models we considered so far, we also consider alternative reduced

form models that are proven to have superior predictive abilities. The first model we

include is the unobserved component model proposed by Stock and Watson (2007),

henceforth denoted as SW2007. This model captures the unobserved trend in inflation

where both the inflation and the trend volatility follow a stochastic process. We refer to

Stock and Watson (2007) for the details of this model. The second model we consider

is an unrestricted Bayesian VAR (BVAR-SV) model with two lags and with stochastic

volatility for inflation. BVAR models are one of the workhorse models used for fore-

casting macroeconomic series. For the sake of brevity, we do not provide the details
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of this model, and refer to Del Negro and Schorfheide (2012). As for the structural

models, we use the identical structural time series methods for modeling the level and

the trends of the inflation and marginal cost series in the BVAR-SV. Both SW2007

and BVAR-SV models are strong competitors for the extended PC and HPC models

we propose. In all considered models, the prior distributions in section 3, calculated

using the full sample data, are used.

Marginal likelihoods and MSFE of the alternative models are presented in Table 6.

The likelihood contribution of each observation and the corresponding cumulative pre-

dictive likelihoods are displayed in Figure 6. We present the (log) marginal likelihood

of the competing models in the first column of Table 6. These values together with

Figure 6 indicate three groups of models in terms of their predictive performances.

The first group of models include BVAR-SV and the conventional PC models with de-

meaned and detrended data (PC-LT and PC-HP). The second group consists of the PC

models with time variation in inflation levels (PC-TV, PC-TV-LS) and the SW2007

model. The models in the second group have much superior performance in terms of

the marginal likelihood values. A second increase in the marginal likelihood values can

be observed when we consider the models in the third group, namely the HPC models

(HPC-TV, HPC-TV-LS, HPC-TV-LS-SV) and the PC model together with discrete

level shifts and stochastic volatility for inflation (PC-TV-LS-SV).

A similar clustering of models is observed when we compare the models’ perfor-

mances using the one period ahead MSFE, with the exception of the BVAR-SV model.

Unlike the model fit performance, measured by the marginal likelihood values, BVAR-

SV model performs considerably better in terms of point prediction.

Three main conclusions can be drawn from these findings. First, the conventional

PC models with demeaned and detrended data (PC-LT and PC-HP) perform worse

than the competing models both in terms of MSFE and in terms of the marginal

likelihood metric. However, the difference between HPC and PC models in terms of
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Table 3: Predictive performance of Phillips curve models

Model (Log) Marg. MSFE MSFE
Likelihood 1 period ahead 4 period ahead

SW2007 -78.033 0.168 0.250
BVAR-SV -220.710 0.091 0.195

PC-LT -139.327 0.353 0.358
PC-HP -157.195 0.458 0.367

PC-TV -46.162 0.142 0.263
PC-TV-LS -61.972 0.138 0.247
PC-TV-LS-SV -33.476 0.126 0.213

HPC-TV -36.683 0.109 0.220
HPC-TV-LS -33.913 0.084 0.195
HPC-TV-LS-SV -18.960 0.102 0.178

Note: The table reports the predictive performances of all competing models for the prediction sample
over the second quarter of 1973 and the first quarter of 2012. ‘(Log) Marg. Likelihood’ stands for the
natural logarithm of the marginal likelihoods. ‘MSFE’ stands for the Mean Squared Forecast Error.
Marginal likelihood values in the first column are calculated as the sum of the predictive likelihood
values in the prediction sample. Results are based on 10000 simulations of which the first 5000 are
discarded for burn-in. ‘SW2007’ stands for the model proposed by Stock and Watson (2007), and
‘BVAR-SV’ stands for the Bayesian VAR model with time varying levels and trends and a stochastic
volatility component for the inflation equation. Remaining abbreviations are as in Table 1.

Figure 6: Predictive likelihoods from competing models
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Note: The figure displays the evolution of the (log) predictive likelihoods for the computing models
between the third quarter of 1973 and the first quarter of 2012. Model abbreviations are as in Table 1.
Results are based on 5000 simulations of which the first 10000 are discarded for burn-in.
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point forecasts is less pronounced compared to the increase in precision when switching

from models using demeaned and detrended data to the models that use the raw

data. This indicates the importance of estimating levels and trends together with

the structural model parameters.

Second, the difference between the PC model with level shifts and stochastic volatil-

ity with the remaining PC models is considerably large. The performance of this model

is comparable to the HPC models which perform superior both in terms of point fore-

casts and the model fit. On the one hand, models with level shifts and stochastic

volatility deliver the most accurate point predictions considering MSFE and marginal

likelihood values. These results pinpoint the importance of incorporating the high and

low frequency movements in the structural models. On the other hand, this model per-

formance can be increased further by incorporating the survey data and the backward

looking component in the HPC models.

Third, structural models perform at least as well as the strong reduced form candi-

dates, the SW2007 and BVAR-SV models. These findings are crucial since structural

models deliver both structural macroeconomic information and predictive performance,

whereas the reduced form models are solely designed for improving the predictive per-

formance. Incorporating high and low frequency movements in structural models in-

crease their predictive power substantially while still exploiting the macroeconomic

information indicated by economic theory. These findings also hold for four period

ahead forecasts, as shown in the last column of Table 6.

We next consider the evolution of the model performance over the forecast sample

in detail, shown in Figure 6. An important finding from the figure is the increasing

performance of the HPC models and the models with stochastic volatility components

after mid 1980s. This period is characterized by a decrease in inflation volatility during

the Great Moderation. The stochastic volatility component seems to capture this

decrease in volatility accurately. Moreover, the effect of the level shifts can be observed
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when we compare the PC-TV-LS-SV model with the SW2007 model. Much of the

difference in the performance of these models can be attributed to the changes in

inflation levels. This shows that the inflation process exhibits rare regime changes and

within each regime inflation follows a stable path.

The last metric we use for model comparison considers the implied disinflationary

risk. The left panel in Figure 13 shows the entire distribution of the inflation predictions

for the HPC-LS-SV model where the levels and trends are estimated together with the

structural parameters. The mean predicted inflation is represented by the solid line,

and the width of the predictive distribution is indicated by the white area under the

inflation density. As expected, inflation predictions are concentrated around high (low)

values during the high (low) inflationary periods. The uncertainty around the inflation

predictions are also high for these periods, together with the periods when inflation is

subject to a transition to low values around 1980s. When the observed inflation values

are close to the zero bound, the predictive densities indicate disinflationary risk.

Figure 7: Predicted inflation densities from HPC-LS-SV model and disinflation probabil-
ities implied by different Phillips curve models
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Note: The left figure presents one period ahead predictive distribution of inflation from the HPC-LS-
SV model, for the period between the third quarter of 1973 and the first quarter of 2012. The right
figure presents disinflation probabilities computed using the one period ahead predictive distributions
of inflation for the period between the third quarter of 1973 and the first quarter of 2012. Model
abbreviation is based on Table 1. Results are based on 5000 simulations of which the first 10000 are
discarded for burn-in.

The right panel in Figure 13 displays this disinflationary risk, which is of key im-

portance especially for policy making. The figure shows that PC models with a priori
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demeaned and detrended data do not signal any pronounced disinflation risk except for

the low disinflation probabilities during mid 1970s and mid 1980s. However, extended

PC and HPC models exploiting the high and low frequency movements produce clear

signals of disinflation risk and disinflationary pressure during the recent recession.

Note that actual disinflation only occurs around 2009 in this sample period and

the models signal disinflationary risk slightly later than this period. This result can be

explained by the agents’ learning process. As indicated in Schorfheide (2005), if agents

learn about the monetary policy changes later than the inflation level changes, the

perceived target inflation in general equilibrium happens only gradually. In Schorfheide

(2005), this is incorporated as Bayesian learning of the agents which is in line with the

econometric assumption underlying our models. As the modelled state-space updating

incorporates Bayesian learning, the changes in the inflation level occurs gradually and

the inflationary risk signals are delayed. Our models are still able to capture this

disinflationary pressure quite successfully.

Prior predictive likelihoods of proposed models

Due to the complex model structures in the proposed models, it is important to

address the effects of the specified prior distributions on the predictive performances.

We therefore perform the prior predictive analysis outlined in section 3 for the extended

PC models. Table 4 presents the average and cumulative prior predictive likelihoods

for the forecast sample, where we show that the adopted prior distributions clearly

favor the less parameterized model, PC-TV. Moreover, the priors clearly do not favor

the models with the stochastic volatility components. More importantly, the ‘best

performing model’ according to the predictive results, HPC-TV-LS-SV, is the least

favorable one according to the adopted prior distributions. We therefore conclude that

data information is dominant, and the superior predictive performance of the HPC-

TV-LS-SV model is not driven by the prior distribution.

Robustness analysis
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Table 4: Prior-predictive results for the proposed models
Model Average (Log) Pred. Cumulative (Log) Pred.

Likelihood Likelihood
PC-TV -1.160 -180.883
PC-TV-LS -1.361 -210.909
PC-TV-LS-SV -1.449 -224.661
HPC-TV -1.277 -199.219
HPC-TV-LS -1.267 -197.677
HPC-TV-LS-SV -2.043 -318.771

Note: The table reports the prior-predictive performances of all competing models for the prediction
sample over the second quarter of 1973 and the first quarter of 2012. ‘(Log) Pred. Likelihood’ stands
for the natural logarithm of the predictive likelihoods. Results are based on 1000 simulations from
the joint priors of model parameters. Model abbreviations are as in Table 1.

The proposed models extend the standard models in several ways and the predictive

performance comparison in section 4 stems from these extensions jointly. However, it

is important to address which extensions in the proposed model provide the largest

predictive gains. For this reason, we estimate several alternative models, using which

distinct gains from each contribution in the models can be identified. For space limita-

tions, detailed results are provided in Appendix H and here we briefly summarize the

main findings.

First, predictive gains solely from including the survey expectations in the models

are substantial. Second, incorporating the low and high frequency data movements in

the model is crucial. These extensions increase the predictive performances drastically

in all models we consider. Finally, once survey data and time variation are included in

the model, additive gains from the backward looking component in the hybrid models

are negligible in terms of the prediction results. Moreover, the iterative solution of

the inflation expectations regulates the posterior distributions of the parameters. We

therefore conclude that the superiority of the most extensive model, HPC-TV-LS-SV,

is not based on one of these extensions but is rather based on the combination of them.

We conclude this section with a remark on the possible existence of a long run stable

relation between inflation and marginal costs. The models we considered so far rely

on the implicit assumption of the absence of a long-run cointegrating relationship. We
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assess whether this assumption is plausible for the U.S. data considering the PC-TV

model, and find credible evidence that such a cointegrating relationship is unlikely.

Details are provided in Appendix I.

5 Conclusion

Phillips curve models constitute an integral part of macroeconomic models used for

forecasting and policy analysis. These models are often estimated after demeaning

and/or detrending the data. In this paper it is shown that mechanical removal of the

low frequency movements in the data may lead to poor forecasts. Potential structural

breaks and level shifts as well as changing volatility in the observed series require more

complex models, which can handle these time variation together with the standard

PC parameters. We have proposed a set of models where levels and trends of the

series together with the volatility process are integrated with a structural PC model.

Furthermore, we consider richer expectational mechanisms for the inflation series in

enlarged Hybrid-PC models, where the inflation expectations are anchored around the

inflation expectations obtained from survey data.

The proposed models capture time variation in the low frequency moments of both

inflation and marginal cost data. For the inflation series we identify three distinct

periods with high and low inflation. The high inflationary period corresponds to 1970s,

following a low inflationary period of 1960s. The last period starting with 1980s is

characterized by low inflation levels corresponding to an annual inflation level around

2%. When this model is blended with the stochastic volatility component, the level

shifts can be identified even more precisely.

The use of macroeconomic information in the structural models together with the

remaining high and low frequency movements in the data improves the predictive abil-

ity also compared to celebrated reduced form models, including the Bayesian VAR

and the stochastic volatility model (Stock and Watson, 2007). Furthermore, modeling
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inflation expectations using survey data and adding stochastic volatility to the PC

model structure improves in sample fit and out of sample predictive performance sub-

stantially. We also analyze the disinflation probabilities indicated by each competing

model. The complete predictive densities, most notably from the enlarged models,

indicate an increase in the probability of disinflation in the U.S. in recent years.

Modeling forward and backward looking components of inflation has important

effects on empirical results. Endogeneity and persistence do not appear to be very

important empirical issues in PC model structures. Finally, we analyze the existence

of a long-run relation between the low frequency movements of both series. No evidence

is found on such a long run stable cointegrating relation for the U.S. series.

Given that incorporating low and high frequency movements explicitly in macroe-

conomic models provides additional insights for both policy analysis and more accurate

predictions, we plan to enlarge the proposed model to a more general DSGE framework

in future work. Another interesting possibility of future research is to combine different

PC models using their predictive performances, which seems to be time varying.
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Appendix

A Effect of misspecified level shifts on posterior es-

timates of inflation persistence

The linear Backward Looking Phillips Curve (BLPC) captures the relation between

real marginal cost z̃t and inflation π̃t. We illustrate in this section that model misspec-

ification resulting from ignoring level shifts in inflation data leads to overestimation of

persistence in the inflation equation within a linear BLPC.

The linear BLPC model can be written as

π̃t = λz̃t + γbπ̃t−1 + ϵ1,t,

z̃t = ϕ1z̃t−1 + ϕ2z̃t−2 + ϵ2,t,
(15)

with (ϵ1,t, ϵ2,t)
′ ∼ NID(0,Σ). This model is a triangular simultaneous equations model

and can also be interpreted as an instrumental variable model with two instruments. We

specify an AR(2) model for the marginal cost in order to mimic for the cyclical behav-

ior of the observed series, see Basistha and Nelson (2007); Kleibergen and Mavroeidis

(2011) for a similar specification. The AR(2) parameters are restricted to the sta-

tionary region |ϕ1| + ϕ2 < 1, |ϕ2| < 1, and the lagged adjustment parameter in the

inflation equation is restricted as 0 ≤ γb < 1. The structural parameter λ is restricted

as 0 ≤ λ < 1 which is in line with previous evidence on the slope of the BLPC.

Since BLPC in (15) specifies the relation between the short-run stationary fluctua-

tions in real marginal cost and inflation, π̃t and z̃t can be interpreted as the transitory

components of inflation and marginal cost, in deviation from their long-run compo-

nents. In fact, the observed non-filtered data can be decomposed into permanent and
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transitory components in a straightforward way as

πt = π̃t + cπ,t,

zt = z̃t + cz,t,
(16)

where πt and zt are the inflation and marginal cost data, respectively, and cπ,t and cz,t

are the permanent components of the series.

In our simulation experiment, we model the steady state inflation as a constant level

subject to regime shifts that mimic the high inflationary period during the 1970s. For

modelling the permanent component of the real marginal cost series, we use a linear

negative trend in order to mimic the declining real marginal cost levels in the U.S. over

the sample starting from the 1960s. This specification can be formulated as follows

cπ,t = cπ,t−1 + κtηt−1, cz,t = cz,t−1 + µz,t−1,

µz,t = µz,t−1, ηt ∼ NID(0, ω2),
(17)

where κt is a binary variable indicating a level shift in the level series, cπ,t and cz,t

indicate the level value of inflation and real marginal cost, respectively, in period t

and µz,t is the slope of the trend in the real marginal cost series. By excluding the

stochastic component for the slope and the trend of the real marginal cost in (17), we

specify a deterministic trend for this series.

We simulate three sets of data from the model in (15)–(17). For the first set, the

inflation series show no level shifts, i.e. κt = 0, ∀t. For the other two sets of data,

we impose different level shifts with moderate (ω2 = 2.5) and large (ω2 = 5) changes

in the level values, respectively. For each specification we simulate 100 datasets with

T = 200 observations, where two level shifts occur in periods t = 50 and t = 150.

The observation error variance is set to ( 1 0.01
0.01 0.01 ), which leads to a correlation of 0.1

between the disturbances, and parameter λ is set to 0.1. Note that parameters ϕ1 = 0.1

and ϕ2 = 0.5 are chosen such that the transitory component of the series is stationary.
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In order to capture the effect of model misspecification on posterior inference, when

computing the transitory component, we ignore level shifts in the simulated inflation

series and simply demean the series. For the marginal cost series, we remove the

linear trend prior to the analysis and only focus on the effect of misspecification in the

inflation series. This implies that for the simulated data with no level shifts, the model

is correctly specified and the posterior results should be close to the true values. For

each simulated data set we estimate the model in (15) using flat priors on restricted

parameter regions:

p(ϕ1, ϕ2, γb, λ) ∝

1, if |ϕ1|+ ϕ2 < 1, |ϕ2| < 1, 0 ≤ γb < 1, 0 ≤ λ < 1

0, otherwise
. (18)

Given that model (15) is equivalent to an instrumental variables model with 2

instruments, it can be shown that the likelihood function for such a model combined

with the flat prior on a large space yields a posterior distribution that exists but it has

no first or higher moments. Due to the bounded region condition on the parameters,

where the structural parameter λ is restricted to the unit interval, all moments exist.

For details, we refer to Zellner, Ando, Baştürk, Hoogerheide and Van Dijk (2012). We

mention this existence result since it provides an econometric explanation why it is

often difficult to estimate a structural model for macro-economic data such as (15).

Indeed, the rather flat posterior surface plagues the inference, in particular, when ϕ2

is close to zero. Posterior moments are in our case computed by means of standard

Metropolis-Hastings method on ϕ1 and ϕ2 and λ and γb. Other Monte Carlo methods

like Gibbs sampling are also feasible in this case.

Figure 8 presents the overestimation results from 100 different simulations for each

setting we consider. We report the average overestimation in posterior γb estimates

and 95% highest posterior density intervals (HPDI) intervals for this overestimation.

The persistence parameter γb is overestimated in all cases except for the correctly
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Figure 8: Overestimation illustration for the backward looking PC model
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Note: The figure presents overestimation probability of parameter γb for
simulated data from the BLPC model with different structural breaks
structures. We report average quantiles of overestimation based on 100
simulation replications for each parameter setting.

specified model. The degree of overestimation becomes larger with a larger shift in the

level of inflation. Note that the average 95% HPDI of overestimation becomes tighter

for data with extreme changes in levels. Hence the effect of model misspecification on

the persistence estimates is more pronounced if the regime shifts are extreme.

In summary, our simulation experiments using BLPC show that when the shifts in

the inflation level are not modelled, inference on model persistence parameters may be

severely biased due to the model misspecification. This will also hold for predictive

estimates.

We note that we focused on misspecification effects on persistence measures when

level shifts in the series are ignored. Similar experiments can be set up for the BLPC

with weak identification (or weak instruments) by setting ϕ2 ≈ 0. The effect of mis-

specification on posterior and predictive estimates in the case of weak identification is

a topic outside the scope of the present paper. We refer to Kleibergen and Mavroeidis

(2011) for details on Bayesian estimation in case of weak identification.
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B Structural and reduced form inference of the PC

model

This section presents the unrestricted reduced form inference (URF) of the PC model,

and the inference of the corresponding structural form (SF) model parameters. We

show that the posterior draws from the structural form parameters can be obtained

using the reduced form representation of (1):

π̃t = α1z̃t−1 + α2z̃t−2 + ϵ1,t,

z̃t = ϕ1z̃t−1 + ϕ2z̃t−2 + ϵ2,t,
(19)

where (ϵ1,t, ϵ2,t)
′ ∼ NID (0,Σ), and the restricted reduced form (RRF) representation

is obtained by introducing the following restrictions on parameters in (1):

α1 =
λ(ϕ1+γfϕ2)

1−γf (ϕ1+γfϕ2)
, α2 =

λϕ2

1−γf (ϕ1+γfϕ2)
. (20)

Finally, the model in (1) is related to an Instrumental Variables (IV) model with

exact identification. Bayesian estimation of the unrestricted reduced form model in

(19) is straightforward under flat or conjugate priors. Given the posterior draws of

reduced form parameters, posterior draws of structural form parameters in (1) can be

obtained using the transformation in (20). This nonlinear transformation, however,

causes difficulties in setting the priors in an adequate way. The determinant of the

Jacobian of this nonlinear transformation is | J |= λϕ2
2

(1−γ(ϕ1+γϕ2))
2 , where the Jacobian

is non-zero and finite if γ(ϕ1 + γϕ2) ̸= 1, ϕ2 ̸= 0 and λ ̸= 0.6

Figure 9 illustrates the nonlinear transformation for the SF and RRF representa-

tions, for a grid of parameter values from SF representations, and plot the corresponding

RRF parameter values, and vice versa. The top panel in Figure 9 shows the transfor-

6We only consider the transformation from {λ, γ, ϕ1, ϕ2} to {α1, α2, ϕ1, ϕ2}, i.e. variance parameters
in the transformed model are left as free parameters.
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mations from SF to RRF. Reduced form parameters α1 and α2 tend to infinity when

persistence in inflation and marginal cost series are high, i.e. when the structural form

parameters λ and ϕ1 + ϕ2 tend to 1. The bottom panel in Figure 9 shows the RRF

to SF transformations. The corresponding SF parameters lead to an irregular shape,

for example, when the instrument zt−2 has no explanatory power with ϕ2 = 0 or when

α2 = 0.

Figure 9: Nonlinear parameter transformations

−1.0
−0.5

0.0
0.5

1.0

−0.5

0.0

0.50

2

4

6

8

φ2

γ

α2

−1.0
−0.5

0.0
0.5

1.0

−0.5

0.0

0.5
0

2

4

6

8

φ2

γ

α1

α1 = 0.5, ϕ1 = 0.1

−0.5
0.0

0.5
−0.5

0.0

0.5

−100

0

100

φ2

α2

λ

−0.5
0.0

0.5
−0.5

0.0

0.5−40

−20

0

20

φ2

α2

γ

λ = 0.5, ϕ1 = 0.1
Note: The top panel presents the implied unrestricted reduced form parameters in (19) given structural
form parameters in (1). The top panel presents implied structural form parameters in (1) given
unrestricted reduced form parameters in (19). Parameter transformations are obtained using the
RRF restrictions in (20).
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C Bayesian inference of the extended PC model

This section presents the MCMC scheme for the posterior inference of the PC model.

Specifically, we use a Gibbs sampler together with data augmentation (see Geman and Geman,

1984; Tanner and Wong, 1987).

The PC model in (6) can be cast into the state-space form as follows

Yt = HXt +BUt + ϵt, ϵt ∼ N(0, Qt)

Xt = FXt−1 +Rtηt, ηt ∼ N(0, I)
(21)

where

Yt =

πt

zt

 , Xt =

(
cπ,t, cz,t, µz,t, cz,t−1, cz,t−2

)′

, Ut =


zt

zt−1

zt−2

 , ϵt =

ϵ1,t

ϵ2,t

 ,

H =

1 −α1 0 −α2 0

0 1 0 −ϕ1 −ϕ2

 , B =

α1 α2 0

0 ϕ1 ϕ2

 , Qt =

 σ2
ϵ1,t

ρσϵ1,tσϵ2

ρσϵ1,tσϵ2 σ2
ϵ2

 ,

F =



1 0 0 0 0

0 1 1 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0


, Rt =



κtση1 0 0

0 ση2 0

0 0 ση3

0 0 0

0 0 0


, ηt =


η1,t

η2,t

η3,t

 ,

where α1 =
λ

1−(ϕ1+ϕ2γf )γf
and α2 =

λγϕ2

1−(ϕ1+ϕ2γ)γ
.

Once the state-space form of the model is set as in (21) standard inference tech-

niques in state-space models can be carried out. Let Y1:T = (Y1, Y2, . . . , YT )
′, X1:T =

(X1, X2, . . . , XT )
′, U1:T = (U1, U2, . . . , UT )

′, σ2
ϵ1,1:T

= (σ2
ϵ1,1

, σ2
ϵ1,2

, . . . , σ2
ϵ1,T

)′ and θ =

(ϕ1, ϕ2, γf , λ)
′. For the most general PC model with level shifts and stochastic volatil-
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ity, the simulation scheme is as follows

1. Initialize the parameters by drawing κt using the prior for κ and unobserved states

Xt, ht for t = 1, 2, . . . , T from standard normal distribution and conditional on

κt for t = 0, 1, . . . , T . Initialize m = 1.

2. Sample θ(m) from p(θ|Y1:T , X1:T , U1:T , R1:T , Q1:T ).

3. Sample X
(m)
t from p(Xt|θ(m), Y1:T , h1:T , U1:T , R1:T , Q1:T ) for t = 1, 2, . . . , T .

4. Sample h
(m)
t from p(ht|X(m)

1:T , θ(m), Y1:T , X1:T , U1:T , R1:T , ρ
m−1, σ

2,(m−1)
ϵ2 , σ

2,(m−1)
η4 ) for

t = 1, 2, . . . , T .

5. Sample κ
(m)
t from p(κ(m)|θ(m), Y1:T , h1:T , U1:T , R1:T , Q1:T ) for t = 1, 2, . . . , T .

6. Sample σ
2,(m)
ηi from p(σ

2,(m)
ηi |X(m)

1:T , h
(m)
1:T , κ

(m)
1:T ) for i = 1, 2, 3, 4.

7. Sample ρ(m) from from p(ρ(m)|X(m)
1:T , h

(m)
1:T , Y1:T , X1:T , U1:T , θ

(m), σ
2,(m−1)
ϵ2 ).

8. Sample σ
2,(m)
ϵ2 from from p(σ

2,(m)
ϵ2 |ρ(m), X

(m)
1:T , h

(m)
1:T , Y1:T , X1:T , U1:T , θ

(m)).

9. Set m = m+ 1, repeat (2)-(9) until m = M .

Steps (3)-(5) are common to many models in the Bayesian state-space framework,

see for example Kim and Nelson (1999); Gerlach et al. (2000); Çakmaklı (2012). Note

that parameter pκ is set a priori using heuristics.

Sampling of θ

Conditional on the states cπ,t, cz,t and ht for t = 1, 2, . . . , T , redefining the variables

such that π̃t = πt− cπ,t, z̃t = zt− cz,t and εt = ϵt/ exp(ht/2), the measurement equation

in (21) can be rewritten as

π̃t = λ
1−(ϕ1+ϕ2γf )γf

z̃t +
ϕ2γfλ

1−(ϕ1+ϕ2γf )γf
z̃t−1 + εt

z̃t = ϕ1z̃t−1 + ϕ2z̃t−2 + ϵ2,t.
(22)
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Posterior distributions of the structural parameters under flat priors are non-standard

since zt term also is on the right hand side of (22) and the model is highly non-linear in

parameters. We therefore use two Metropolis Hastings steps to sample these structural

parameters (Metropolis et al., 1953; Hastings, 1970). For sampling ϕ1, ϕ2 conditional

on λ, γf and other model parameters, the candidate density is a multivariate student-t

density on the stationary region with a mode and scale with the posterior mode and

scale using only the second equation in (22) and 1 degrees of freedom. For sampling

λ, γf conditional on ϕ1, ϕ2 and other model parameters, the candidate is a uniform

density.

Sampling of states, Xt

Conditional on the remaining model parameters, drawing X0:T can be implemented

using standard Bayesian inference. This constitutes running the Kalman filter first and

running a simulation smoother using the filtered values for drawing smoothed states

as in Carter and Kohn (1994) and Frühwirth-Schnatter (1994). We start the recursion

for t = 1, . . . , T

Xt|t−1 = FXt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +R′

tRt

ηt|t−1 = yt −HXt|t−1 −BUt

ζt|t−1 = HPt|t−1H
′ +Qt

Kt = Pt|t−1H
′ζ ′t|t−1

Xt|t = Xt|t−1 +Ktηt|t−1

Pt|t = Pt|t−1 −KtH
′ζ ′t|t−1,

(23)

and store Xt|t and Pt|t. The last filtered state XT |T and its covariance matrix PT |T

correspond to the smoothed estimates of the mean and the covariance matrix of the

states for period T . Having stored all the filtered values, simulation smoother involves

42



the following backward recursions for t = T − 1, . . . , 1

η∗t+1|t = Xt+1 − FXt|t

ζ∗t+1|t = FPt|tF
′ +R′

t+1Rt+1

Xt|t,Xt+1 = Xt|t + Pt|tF
′ζ∗−1
t+1|tη

∗
t+1|t

Pt|t,Pt+1 = Pt|t − Pt|tF
′ζ∗−1
t+1|tFPt|t.

(24)

Intuitively, the simulation smoother updates the states using the same principle as in

the Kalman filter, where at each step filtered values are updated using the smoothed

values obtained from backward recursion. For updating the initial states, using the

state equation X0|t,X1 = F−1(X1) and P0|t,P1 = F−1(P1+R′
1R1)F

′−1 can be written for

the first observation. Given the mean Xt|t,Xt+1 and the covariance matrix Pt|t,Pt+1 , the

states can be sampled from Xt ∼ N(Xt|t,Xt+1 , Pt|t,Pt+1) for t = 0, ..., T .

Sampling of inflation volatilities, ht

Conditional on the remaining model parameters, we can draw h0:T using standard

Bayesian inference as in the case of Xt. One important difference, however, stems from

the logarithmic transformation of the variance in the stochastic volatility model. As

the transformation concerns the error structure, the square of which follows a χ2 dis-

tribution, the system is not Gaussian but follows a log-χ2 distribution. Noticing the

properties of log-χ2 distribution, Kim et al. (1998) and Omori et al. (2007) approxi-

mate this distribution using a mixture of Gaussian distributions. Hence, conditional

on these mixture components the system remains Gaussian allowing for standard in-

ference outlined above. For details, see Omori et al. (2007).

Sampling of structural break parameters, κt

Sampling of structural break parameters, κt relies on the conditional posterior of the

binary outcomes, i.e. the posterior value in case of a structural break in period t and the

posterior value of the case of no structural breaks. However, evaluating this posterior

requires one sweep of filtering, which is of order O(T ). As this evaluation should be im-
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plemented for each period t the resulting procedure would be of order O(T 2). When the

number of sample size is large this would result in an infeasible scheme. Gerlach et al.

(2000) propose an efficient algorithm for sampling structural break parameters, κt,

conditional on the observed data, which is still of order O(T ). We implement this

algorithm for estimation of the structural breaks and refer to Gerlach et al. (2000);

Giordani and Kohn (2008) for details.

Sampling of state error variances, σ2
η

Using standard results from a linear regression model with a conjugate prior for

the variances in (21), it follows that the conditional posterior distribution of σ2
ηi
, with

i = 1, 2, 3, 4 is an inverted Gamma distribution with scale parameter Φηi +
∑T

t=1 η
2
i,t

and with T + νηi degrees of freedom for i = 2, 3, 4 where Φηi and νηi are the scale and

degrees of freedom parameters of the prior density. For i = 1 the parameters of the

inverted Gamma distribution becomes Φη1 +
∑T

t=1 κtη
2
1,t and

∑T
t=1 κt + νη1 .

Sampling of marginal cost variance and correlation coefficient

To sample the variance of marginal cost and correlation coefficient, we decompose

the multivariate normal distribution of ϵt into the conditional distribution of ϵ2,t given

ϵ1,t and the marginal distribution of ϵ1,t, as in Çakmaklı et al. (2011). This results in

T∏
t=1

f(ϵt) =
T∏
t=1

1

σϵ1,t

ϕ

(
ϵ1,t
σϵ1,t

)
1

σϵ2,t

√
(1− ρ2)

ϕ

(
ϵ2,t − ρϵ1,t
σϵ2,t(1− ρ2)

)
, (25)

Hence, together with prior for the variance in (21), variance of the marginal cost series

can be sampled using (25) by setting up a Metropolis-Hasting step using an inverted

Gamma candidate density with scale parameter
∑T

t=1 ϵ
2
2,t and with T degrees of free-

dom. To sample ρ from its conditional posterior distribution we can again use (25).

Conditional on the remaining parameters the posterior becomes

(1− ρ2)−
3
2

T∏
t=1

(
1√

(1− ρ2)
ϕ

(
ϵ2,t − ρϵ1,t
σϵ2,t(1− ρ2)

))
. (26)
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We can easily implement the griddy Gibbs sampler approach of Ritter and Tanner

(1992). Given that ρ ∈ (−1, 1) we can setup a grid in this interval based on the

precision we desire about the value of ρ.

D Bayesian inference of the extended HPC model

Posterior inference of the HPC models with time varying parameters follow similar to

Appendix C, using the Gibbs sampler with data augmentation. The HPC models with

time varying parameters (HPC-TV), with level shifts in inflation (HPC-TV-LS), and

with level shifts and stochastic volatility in inflation (HPC-TV-LS-SV) and the inflation

expectation specification presented in the paper can be cast into the state-space form

in (21) using the following definitions

Yt =

πt

zt

 , Xt =

(
cπ,t cz,t µz,t, cz,t−1 cz,t−2 St cπ,t−1

)′

, ϵt =

ϵ1,t

ϵ2,t

 ,

Ut =

(
zt zt−1 zt−2 µt πt−1

)′

, Bt =

α1 α2 0 −α3 α4

0 ϕ1 ϕ2 0 0

 ,

Ht =

1− α3 −α1 0 −α2 0 α3 −α4

0 1 0 −ϕ1 −ϕ2 0 0

 , Qt =

 σ2
ϵ1,t

ρσϵ1,tσϵ2

ρσϵ1,tσϵ2 σ2
ϵ2

 ,
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Ft =



1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 β 0

1 0 0 0 0 0 0



, Rt =



κtση1 0 0 0

0 ση2 0 0

0 0 ση3 0

0 0 0 0

0 0 0 ση5

0 0 0 0

0 0 0 0



, ηt =



η1,t

η2,t

η3,t

η5,t


,

where parameters α1, α2, α3, α4 are defined as functions of the structural form param-

eters

α1 =
λH(

1− (ϕ1 + ϕ2γH
f )γH

f

) (
1− γH

b γH
f

) , α2 =
λHγH

f ϕ2(
1− (ϕ1 + ϕ2γH

f )γH
f

) (
1− γH

b γH
f

) ,
α3 =

γH
b γH

f(
1− γH

b γH
f

) γH
f(

1− γH
f β
) , α4 =

γH
b(

1− γH
b γH

f

) .
Given this setup, posterior inference can be carried out using the steps outlined in

Appendix C.

E Posterior results for the PC models with non-

filtered time series

This section presents additional estimation results for the PC models with non-filtered

time series. We summarize the estimated levels, volatilities, breaks and inflation expec-

tations obtained from the PC-TV, PC-TV-LS and PC-TV-LS-SV models. Figure 10

shows the estimated levels from the three PC models. Estimated inflation levels, com-

puted as the posterior mean of the smoothed states, are given in the first row of

Figure 10. Shaded areas around the posterior means represent the 95% HPDI for the

estimated levels. For all three models, estimated inflation levels nicely track the ob-
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served inflation. Effects of the level specification are reflected in the estimates in various

ways. First, when we model inflation level changes as discrete level shifts rather than

continuous changes, we observe a relatively smoother pattern in estimated inflation

levels. This effect can be seen by comparing the second and first graphs in the first

row of Figure 10. While estimated inflation level in the first graph follows the observed

inflation patterns closely, estimated inflation level in the second (and third to a less

extent) graph mostly indicates three distinct periods. These periods are the high in-

flation periods capturing 1970s with a constant inflation level around 1.7% (quarterly

inflation) following a low inflation period in 1960s, and the period after the beginning

of 1980s with a stable inflation level around 0.5%, see Cecchetti et al. (2007) for similar

findings. Second, adding the stochastic volatility together with level shifts results in

discrete level shifts in inflation which are more frequent than the model with only level

shifts.

The second panel in Figure 10 presents the estimated levels for the real marginal

cost series for all models. A common feature of all these estimates is the smoothness

of the estimated levels. In all models, marginal cost series follows a slightly nonlinear

trend during the sample period. The estimated slopes of these trends for all models are

given in the bottom panel of Figure 10, together with the 95% HPDIs. Nonlinearity of

the negative trend is reflected in the negative values for the slope of the trend, with an

increasing magnitude at the end of the sample. This change in the slope of the trend

is accompanied by the increasing uncertainty about the slope. The difference between

the models in terms of the estimated marginal cost structures is negligible.
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Figure 10: Level, trend and slope estimates from the PC models
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Note: The top panel exhibits estimated inflation levels. The middle and the bottom panels show
estimated real marginal cost levels and the slopes of the levels, respectively. Grey shaded areas
correspond to the 95% HPDI. PC-LT (PC-HP) refers to the PC model where the real marginal cost
series is detrended using linear trend (Hodrick-Prescott) filter. PC-TV refers to the PC model with
time varying levels and trends. PC-TV-LS refers to the PC model with time varying levels and trends.
PC-TV-LS-SV refers to the PC model with time varying levels, trends and volatility. HPC-TV refers
to the Hybrid PC model with time varying levels, trends and inflation expectations. HPC-TV-LS
refers to the HPC model with time varying levels, trends and inflation expectations. HPC-TV-LS-SV
refers to the HPC model with time varying levels, trends, inflation expectations and volatility. Results
are based on 40000 simulations of which the first 20000 are discarded for burn-in.

F Posterior results for the HPC models with non-

filtered time series

This section presents additional estimation results for the HPC models with non-filtered

time series. We summarize the estimated levels, volatilities, breaks and inflation ex-

pectations obtained from the HPC-TV, HPC-TV-LS and HPC-TV-LS-SV models.

Figure 11 presents the estimated inflation levels, together with estimated levels and

trends of the marginal cost series.
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Figure 11: Level, trend and slope estimates from the HPC models
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Note: The top panel exhibits estimated inflation levels. The middle and the bottom panels show
estimated real marginal cost levels and the slopes of the levels, respectively. Grey shaded areas
correspond to the 95% HPDI. Results are based on 40000 simulations of which the first 20000 are
discarded for burn-in.

G Predicted inflation densities from all proposed

models

This section presents the entire distribution of the inflation predictions for all PC and

HPC models. The solid lines represent the posterior mean of predicted inflation, and

the white areas under the inflation densities show the inflation levels with non-zero

posterior probability. For all models we propose, inflation predictions are concentrated

around high (low) values during the high (low) inflationary periods. The uncertainty

around the inflation predictions are also high for these periods, together with the

periods when inflation is subject to a transition to low values around 1980s. When the
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Figure 12: Implied inflation expectations by HPC models
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Note: The thick solid lines are the posterior means of inflation expectations from the HPC models.
The thin solid lines are the observations of inflation expectations from survey data. Grey shaded areas
are the 95% HPDI for estimated inflation expectations. Results are based on 40000 simulations of
which the first 20000 are discarded for burn-in.
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observed inflation values are close to the zero bound, the predictive densities indicate

disinflationary risk, computed as the fraction of the predictive distribution below zero.

H Posterior and predictive results from alternative

models for robustness checks

The proposed PC and HPC models extend the standard models in several ways. First,

both model structures introduce time variation in the long and short run dynamics of

inflation and marginal cost series. Second, the introduction and the iterative solution of

the expectational mechanisms and the survey data in the extended HPC models enables

the use of more data information. Furthermore, extended and standard HPC models

use the additional information from a backward looking component for the inflation

series compared to the HPC counterparts. According to the predictive results, the most

comprehensive model, HPC-TV-LS-SV is also the best performing model. However,

a deeper analysis is needed in order to see the added predictive gain from all these

extensions. In this section we consider several alternative models and their predictive

performances to separately address the predictive gains from each of these extensions

in the model structure. Table 5 presents all PC and HPC model structures we compare

to differentiate these effects.
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Figure 13: Predicted inflation densities from PC and HPC models
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Note: The figure presents one period ahead predictive distributions of inflation from the PC and
HPC models, for the period between the third quarter of 1973 and the first quarter of 2012. Model
abbreviations are as in Figure 10 . Results are based on 40000 simulations of which the first 20000
are discarded for burn-in. 52



Table 5: Standard and extended PC models

aaaaaaaaaaaaaaa

low/high
frequencies

model
structure iterated expectations solution direct expectations data

Phillips Curve
Hybrid Phillips

Curve
Phillips Curve

Hybrid Phillips

Curve

linear trend PC-LT n/a ⋆ PCS-LT HPCS-LT

Hodrick-Prescott filter PC-HP n/a ⋆ PCS-HP HPCS-HP

time varying levels PC-TV HPC-TV PCS-TV HPCS-TV

time varying levels and switching PC-TV-LS HPC-TV-LS PCS-TV-LS HPCS-TV-LS

time varying levels and stochastic

volatility

PC-TV-SV HPC-TV-SV PCS-TV-SV HPCS-TV-SV

time varying levels, switching and

stochastic volatility

PC-TV-LS-SV HPC-TV-LS-SV PCS-TV-LS-SV HPCS-TV-LS-SV

Note: The first two columns present the standard and extended (H)PC models presented in the main paper, for which

expectational mechanisms are solved explicitly. The last two columns present alternative model structures for (H)PC

models. For these models, we do not iterate inflation expectations in the models, but instead replace them with survey

data directly. PC(S)-LT (PC-HP(S)) refers to the PC model where the real marginal cost series is detrended using linear

trend (Hodrick-Prescott) filter. PC(S)-TV refers to the PC model with time varying levels and trends. PC(S)-TV-LS

refers to the PC model with time varying levels and trends. PC(S)-TV-LS-SV refers to the PC model with time varying

levels and volatility. PC(S)-TV-LS-SV refers to the PC model with time varying levels, trends and volatility. HPC(S)-

TV refers to the Hybrid PC model with time varying levels, trends and inflation expectations. HPC(S)-TV-LS refers

to the HPC model with time varying levels, trends and inflation expectations. HPC(S)-TV-LS-SV refers to the HPC

model with time varying levels and volatility. HPC(S)-TV-LS-SV refers to the HPC model with time varying levels,

trends, inflation expectations and volatility.

⋆ Iterative solution of these models without using the survey data does not exist.

The first set of alternative models we consider are the standard PC and HPC models

combined with data from survey expectations, without introducing explicit time varia-

tion in the low frequency structure of data but instead demeaning the inflation series,

and detrending the marginal cost series prior to analysis. These models are given in the

first two rows of the right panel of Table 5 and are abbreviated by PCS-LT, PCS-HP,

HPCS-LT and HPCS-HP, according to linear detrending or HP detrending prior to

analysis. The improved predictive performances of PCS-LT and PCS-HP models com-

pared to the standard PC counterparts show predictive gains from incorporating sur-

vey expectations in the models. Furthermore, comparing the predictive performances

of the HPCS-LT and HPCS-HP models with the time-varying hybrid models, such as

the HPC-TV or HPC-TV-LS models show the gains from incorporating time variation
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alone, since all these models use survey data and the backward looking component for

inflation.

The second set of alternative models we consider, on the right panel of Table 5, are

PC models with time-varying levels, where we incorporate the survey expectations in

the model directly rather than solving the model iteratively. These models correspond

to (1) where the expectation term is replaced by survey expectations. We denote these

models by PCS-TV, PCS-TV-LS and PCS-TV-LS-SV, for the time-varying levels, time-

varying levels with regimes shifts in inflation and time-varying levels with regime shifts

and stochastic volatility component, respectively. Comparing the predictive results of

these models to the HPC counterparts provide the predictive gains solely from the

HPC extension, i.e. they separate the gains from incorporating the backward looking

inflation component in the model from the other model extensions.

The third set of alternative models we consider are the HPC models using the

survey expectations directly, without solving for the expectational mechanisms. We

denote these models by HPCS-TV, HPCS-TV-LS and HPCS-TV-LS-SV, for the time-

varying levels, time-varying levels with regimes shifts in inflation and time-varying

levels with regime shifts and stochastic volatility component, respectively. Comparing

the predictive performance of these models with the proposed HPC models clarifies

the predictive gains from solving for the inflation expectations iteratively in the hybrid

models.

The final set of alternative models aim to separate the predictive gains from the

stochastic volatility component in the time-varying level models without level shifts.

The comparison of the predictive results of these models, (H)PC-TV-SV with the

models with level switching (H)PC-TV-LS-SV highlights predictive gains solely from

introducing level shifts.

One period ahead MSFE and log marginal likelihoods of these models, together

with the standard (H)PC models and the models proposed in the paper, are given
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in Table 6. The prediction results are based on the forecast sample, which covers

the period between the second quarter of 1973 quarter and the first quarter of 2012.

Comparing the first block and the first two rows of the second block Table 6, we see that

the gains from using survey data inflation is substantial even in the standard PC models.

In terms of predictive gains, the biggest improvement in predictive likelihoods and the

MSFE are achieved with this contribution in the models. However, the predictive

performances of these improved models are still far from the more involved models.

Hence the gains from the proposed models do not only stem from the inclusion of the

survey data information alone.

We also report the predictive gains resulting solely from introducing time-variation

in the inflation and marginal cost series, by comparing the results of the HPCS-LT and

HPCS-HP models with the HPC-TV or HPC-TV-LS models in the table. The more

involved models with time variation clearly perform better according to the predictive

results. Especially the difference in marginal likelihoods of these models enables us to

conclude that incorporating time variation in the data is also important.

As a third possibility for predictive gains, we focus on the models with backward

looking components. One way to separate the added value from this component is

to consider the second block of Table 6. The prediction results from the PC and

HPC models in this block are very similar, with slight improvements in the hybrid

models, where the backward looking component is incorporated. Another way to see

the effect of the backward looking component is to compare the PCS-TV, PCS-TV-

LS and PCS-TV-LS-SV models with HPCS-TV, HPCS-TV-LS and HPCS-TV-LS-SV

models, respectively. In all these comparison, the models without the backward looking

component performs slightly better (worse) in terms of MSFE (marginal likelihood),

hence the backward looking component does not seem to improve predictive results in

general and the improvements in the hybrid models mainly stem from incorporating

the survey expectations.
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From the considered alternative models, time-varying level models with a stochastic

volatility component using survey data directly (PCS-TV-LS-SV and HPCS-TV-LS-

SV) clearly perform best. In terms of the predictive likelihoods, these models are also

comparable to the ‘best performing’ model we propose.

A final source of possible predictive gains in the proposed models is the iterative

solution of inflation expectations. This comparison is based on the comparison of

the models in the third (fourth) block and the fifth (sixth) block of Table 6, where

only the third (fourth) block uses the iterative solution. According to the MSFE,

predictive results deteriorate slightly when we solve the system. We find this result

rather counterintuitive since the iterative solution is based on the complete model

structure. As we show briefly, despite this slight increase in the predictive performances,

models without the iterative solutions suffer from identification issues.

We next focus on changes in parameter estimates for the alternative models pro-

posed in this appendix. Table 7 presents the parameter estimates for all alternative

models. Despite the predictive gains from these alternative models, parameter esti-

mates are rather different from those obtained from the proposed models. Specifically

for the hybrid models considered, uncertainty in posterior distributions increase sub-

stantially if the iterative model solution is not used. Furthermore, posterior densities

of some parameters are quite irregular in most of these models which use expectations

data directly. Figure 14 shows this irregularity for the HPCS-TV model, parameters

λ(H), γ
(H)
b and γ

(H)
f . The bimodality problem in posterior densities is most apperant in

the PC slope, λ
(H)
b . Furthermore, the backward looking component γ

(H)
b is spread over

a wide region with multiple modes. Similar results hold for the remaining alternative

models which make use of the survey expectations data directly. We therefore conclude

that replacing the expectational term in the (H)PC models with survey expectations

deteriorate posterior inference compared to the iterative solution of these expectational

terms.
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Figure 14: Posterior density of λ(H), γ
(H)
b and γ

(H)
f from the HPCS-TV model
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Note: The figure presents posterior densities of parameters from the HPCS-TV model. Model abbre-
viations are based on Table 5. Results are based on 40000 simulations of which the first 20000 are
discarded for burn-in.
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Table 6: Predictive performance of additional PC models

Model (Log) Marg. MSFE
Likelihood 1 period ahead

PC-LT -139.327 0.353

PC-HP -157.195 0.458

PCS-LT -79.141 0.105

PCS-HP -85.397 0.130

HPCS-LT -81.047 0.105

HPCS-HP -85.200 0.119

PC-TV -46.162 0.142

PC-TV-LS -61.972 0.138

PC-TV-SV -22.761 0.134
PC-TV-LS-SV -33.476 0.126

HPC-TV -36.683 0.109

HPC-TV-LS -33.913 0.084

HPC-TV-SV -20.738 0.097
HPC-TV-LS-SV -18.960 0.102

PCS-TV -34.407 0.129

PCS-TV-LS -32.004 0.099

PCS-TV-LS-SV -15.390 0.092

HPCS-TV -40.465 0.176

HPCS-TV-LS -38.082 0.297

HPCS-TV-LS-SV -12.977 0.139

BVAR (constant) -166.226 0.085

BVAR-SV -220.710 0.091

SW2007 -78.033 0.168

Note: The table reports the predictive performances of alternative models for the period between the
second quarter of 1973 and the first quarter of 2012. ‘(Log) Marg. Likelihood’ stands for the natural
logarithm of the marginal likelihoods. ‘MSFE’ stands for the Mean Squared Forecast Error. Marginal
likelihood values in the first column are calculated as the sum of the predictive likelihood values in
the prediction sample. Results are based on 10000 simulations of which the first 5000 are discarded
for burn-in. Model abbreviations are based on Table 5. BVAR (constant) denotes the BVAR model
with 2 lags and with constant parameters. ‘BVAR-SV’ denotes the ‘BVAR’ model with 2 lags, time
varying levels for both series and stochastic volatility for inflation. ‘SW2007 stands for the model
proposed by Stock and Watson (2007).
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I Analysis of cointegration in inflation and marginal

cost levels

The models in the paper considered rely on the implicit assumption of the absence of

a long-run cointegrating relationship between the inflation and marginal cost series.

We assess whether this assumption is plausible for the U.S. data. For this reason, we

consider the PC-TV model that provides the unobserved levels of both series at each

posterior draw. For each of these obtained posterior draws, we perform a simple two-

step analysis to check the existence of the cointegrating relationship, which can be seen

as a Bayesian extension of the method of Engle and Granger (1987).

We perform a two step analysis, where in the first step we obtain the residuals from

the regression of the estimated level of inflation on a constant and the estimated level

of marginal cost, for each posterior draw. This implies that we take the estimation

uncertainty in the analysis into account. Next, we obtain the posterior distribution of

the autoregressive parameter, ρ, for each set of residuals from the following regression

using flat priors on the identified region ρ ∈ [−1, 1]

∆ϵ̂t = ρϵ̂t−1 + ηt, ηt ∼ NID(0, σ2), (27)

where ϵ̂t denotes the residuals from the first stage, and ρ = 0 implies that there is

no cointegrating relationship between the series. An HPDI including the value of 0

indicates that a cointegrating relation between inflation and marginal cost is unlikely.

We compute the mean and the quantiles of these individual densities using 5000

posterior draws, and report the average values of the mean and the quantiles of ρ

based on 3000 simulations. These results are presented in Figure 15. Posterior means

of parameter ρ are around 0 for all posterior draws of inflation and marginal cost levels,

and the 80% an 90% percent quantiles of the distribution are around 0 as well. Hence

this simulation experiment does not indicate a cointegrating relationship between the
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inflation and marginal cost levels. This pattern is also found for other TV-PC models

we considered for the U.S. data, but these results are not reported for the sake of

brevity. We conclude that the underlying assumption of ‘no cointegrating relationship’

is found to be feasible for the PC models we consider.

Figure 15: Cointegration analysis for the marginal cost and inflation series
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Note: The figure presents the posterior means and quantiles of the ρ parameter from 5×103 posterior
draws from the PC-TV models, where for each draw, the the reported values are calculated using 3000
simulations. ρ = 0 implies that there is no cointegrating relationship between the series.
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