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Abstract 

With tightening budgets and increasingly critical reviews of public expenditure, there is a need for a careful 
analysis of the performance of public bodies in terms of an efficient execution of their tasks. These questions show up 
everywhere in the public domain, for instance, in the provision of medical facilities, the operation of postal services, or 
the supply of public transport. A standard tool to judge the efficiency of such agencies is Data Envelopment Analysis 
(DEA). In the past years, much progress has been made to extend this approach in various directions. Examples are the 
Distance Friction Minimization (DFM) model and the Context-Dependent (CD) model. 

The DFM model is based on a generalized distance friction function and serves to improve the performance 
of a Decision Making Unit (DMU) by identifying the most appropriate movement towards the efficiency frontier 
surface. Standard DEA models use a uniform proportional input reduction (or a uniform proportional output increase) 
in the improvement projections, but the DFM approach aims to enhance efficiency strategies by introducing a weighted 
projection function. This approach may address both input reduction and output increase as a strategy of a DMU. A 
suitable form of multidimensional projection functions is given by a Multiple Objective Quadratic Programming 
(MOQP) model using a Euclidean distance. Likewise, the CD model yields efficient frontiers in different levels, while 
it is based on a level-by-level improvement projection. 

The present paper will first offer a new integrated DEA tool – emerging from a blend of the DFM and CD 
model using the Charnes-Cooper-Rhodes (CCR) method – in order to design a stepwise efficiency-improving 
projection model for a conventional DEA. The above-mentioned stepwise-projection model is illustrated on the basis of 
an application to the efficiency analysis of public transport operations in Japan. 
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1. Introduction 
 

With tightening budgets and increasingly critical reviews of public expenditure, there is a need for a careful 
analysis of the performance of public bodies in terms of an efficient execution of their tasks. These questions show up 
everywhere in the public domain, for instance, in the provision of medical facilities, the operation of postal services, or 
the supply of public transport.  

A standard tool to judge the efficiency of such agencies is Data Envelopment Analysis (DEA). DEA has gained 
much importance in economic performance studies. Seiford (2005) mentions some 2800 published articles on DEA. 
This large number of studies shows that comparative efficiency analysis has become an important topic in both the 
private and public sector. DEA was developed to analyze the relative efficiency of agents or decision makers, in general, 
Decision Making Unit (DMU), by constructing a piecewise linear production frontier, and projecting the performance 
of each DMU onto the frontier. A DMU that is located on the frontier is efficient, while a DMU that is not on the 
frontier is inefficient. An inefficient DMU can become efficient by reducing its inputs or increasing its outputs. In the 
standard DEA approach, this is achieved by a uniform reduction in all inputs (or a uniform increase in all outputs). But 
in principle, there are an infinite number of improvements to reach the efficient frontier, and hence there are many 
solutions for a DMU to enhance efficiency. The existence of an infinite number of solutions to reach the efficient 
frontier has led to a stream of literature on the integration of DEA and Multiple Objective Linear Programming 
(MOLP), which was initiated by Golany (1988). 

Suzuki and Nijkamp (2007a, 2010a, and 2010b) proposed a Distance Friction Minimization (DFM) model that is 
based on a generalized distance friction function and serves to improve the performance of a DMU by identifying the 
most appropriate movement towards the efficiency frontier surface. This approach may address both an input reduction 
and an output increase as a strategy of a DMU. A suitable form of multidimensional projection functions is given by a 
Multiple Objective Quadratic Programming (MOQP) model using a Euclidean distance. A general 
efficiency-improving projection model including a DFM model is able to calculate either an optimal input reduction 
value or an output increase value to reach an efficient score of 1.0, even though in reality this may be hard to achieve. 

It is noteworthy that Seiford and Zhu (2003) developed a gradual improvement model for an inefficient DMU. 
This ‘Context-Dependent (CD)’ DEA has an important merit, as it aims to reach a stepwise improvement through 
successive levels towards the efficiency frontier. The CD model will be used as an ingredient in the DFM model. 

This paper will first design a new integrated DEA tool emerging from a blend of the DFM and CD model, namely 
a Stepwise DFM model, in order to design a stepwise efficiency-improving projection model for a conventional DEA. 
The above-mentioned stepwise-projection model is illustrated on the basis of an application to the efficiency analysis 
of public transport operations in Japan. 

 
2. Efficiency Improvement Projection in DEA: the Standard Approach 

 

The standard Charnes et al. (1978) model (abbreviated hereafter as the CCR-input model) for a given DMUj 

),,1( Jj =  to be evaluated in any trial o (where o ranges over 1, 2 …, J) may be represented as the following 

fractional programming (FPo) problem: 
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∑
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∑
∑
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  0≥mv , 0≥su , 

  where θ  represents an objective variable function (efficiency score); xmj is the volume of input m (m=1,…, M) for 

DMU j  (j=1,…,J); ysj is the output s (s=1,…,S) of DMU j; and vm and us are the weights given to input m and output s, 

respectively. Model (2.1) is often called an input-oriented CCR model, while its reciprocal (i.e. an interchange of the 

numerator and denominator in objective function (2.1), with a specification as a minimization problem under an 

appropriate adjustment of the constraints) is usually known as an output-oriented CCR model. Model (2.1) is obviously 

a fractional programming model, which may be solved stepwise by first assigning an arbitrary value to the denominator 

in (2.1), and then maximizing the numerator. 

  The improvement projection ( )ˆ ˆ,o ox y  can now be defined in (2.2) and (2.3) as: 

         ˆo ox x sθ ∗ −∗= − ;          (2.2) 

                ˆo oy y s+∗= + .          (2.3) 

 

These equations indicate that the efficiency of (xo, yo) for DMUo can be improved if the input values are reduced 

radially by the ratio ∗θ , and the input excesses ∗−s  are eliminated (see Figure 1). The original DEA models presented 

in the literature have thus far only focused on a uniform input reduction or a uniform output increase in the 

efficiency-improvement projections, as shown in Figure 1 ( ∗θ =OC’/OC).  

 

 
Figure 1 Illustration of original DEA projection in input space 

 

3. The Distance Friction Minimization (DFM) Approach 
 

As mentioned, the efficiency improvement solution in the original CCR-input model requires that the input values 

are reduced radially by a uniform ratio ∗θ  ( ∗θ =OD’/OD in Figure 2).  

Input 1 (x1) 
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Figure 2 Illustration of the DFM approach (Input- vi

*xi space) 

 
Figure 3 Illustration of the DFM approach (Output - ur

*yr space) 

 

The (v*, u*) values obtained as an optimal solution for formula (2.1) result in a set of optimal weights for DMUo.  

As mentioned earlier, (v*, u*) is the set of most favourable weights for DMUo , in the sense of maximizing the ratio 

scale. vm
* is the optimal weight for the input item m, and its magnitude expresses how much in relative terms the item is 

contributing to efficiency. Similarly, us
* does the same for the output item s. These values show not only which items 

contribute to the performance of DMUo, but also to what extent they do so. In other words, it is possible to express the 

distance frictions (or alternatively, the potential increases) in improvement projections. 

In this study, we use the optimal weights us
* and vm

* from (2.1), and then describe next efficiency improvement 
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projection model. A visual presentation of this new approach is given in Figures 2 and 3. 

In this approach a generalized distance friction is deployed to assist a DMU in improving its efficiency by a 

movement towards the efficiency frontier surface. The direction of efficiency improvement depends of course on the 

input/output data characteristics of the DMU. It is now appropriate to define the projection functions for the 

minimization of distance friction by using a Euclidean distance in weighted spaces. As mentioned, a suitable form of 

multidimensional projection functions that serves to improve efficiency is given by a MOQP model which aims to 

minimize the aggregated input reduction frictions, as well as the aggregated output increase frictions. Thus, the DFM 

approach can generate a new contribution to efficiency enhancement problems in decision analysis, by deploying a 

weighted Euclidean projection function, and at the same time it may address both input reduction and output increase. 

The details of this approach have been outlined elsewhere (see Suzuki et al. 1997a, b, c). Here we will only describe the 

various steps concisely. 

First, specify the distance friction function Frx and Fry by means of (3.1) and (3.2), which are defined by the Euclidean 

distance shown in Figures 2 and 3. Next, solve the following MOQP by using x
mod (a reduction of distance for xio) and 

y
sod  (an increase of distance for yso) as minimands in an L2 metric: 

         min ( )∑ ∗∗ −=
m

x
mommom

x dvxvFr 2
        (3.1) 

 min ( )∑ ∗∗ −=
s

y
sossos

y duyuFr 2
      (3.2) 

      s.t.      ( ) ∗

∗
∗

+
=−∑ θ

θ
1
2

m

x
momom dxv         (3.3) 

( ) ∗

∗
∗

+
=+∑ θ

θ
1
2

s

y
sosos dyu          (3.4) 

0≥− x
momo dx          (3.5) 

0≥x
mod           (3.6) 

0≥y
sod ,          (3.7) 

 where mox is the amount of input item m for any arbitrary inefficient DMUo,  and soy  is the amount of output 

item s for any arbitrary inefficient DMUo. Constraint functions (3.3) and (3.4) refer to the target values of input 

reduction and output increase. It is now possible to determine each optimal distance ∗x
mod  and ∗y

sod  by using the 

MOQP model (3.1)-(3.7). 
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The friction minimization solution for an inefficient DMUo can now be expressed by means of formulas (3.8) and 

(3.9): 

∗∗ −= x
momomo dxx          (3.8) 

∗∗ += y
sososo dyy  .        (3.9) 

  By means of the DFM model, it is possible to present a new efficiency-improvement solution based on the standard 

CCR projection. This means an increase in new options for efficiency-improvement solutions in DEA. The main 

advantage of the DFM model is that it yields an outcome on the efficient frontier that is as close as possible to the 

DMU’s input and output profile (see Figure 4).  

 

 
Figure 4 Degree of improvement of a DFM-projection and a CCR-projection in weighted input space 

 

4. Context-Dependent DEA 
 

 The Context-Dependent (CD hereafter) model can obtain efficient frontiers in different levels, and can yield a 

level-by-level improvement projection. The CD model is formulated below. 

Let { }JjDMUJ j
l ,,1, ==  be the set of all J DMUs. We interactively define lll EJJ −=+1 where 

( ){ } 1, =∈= ∗ klJDMUE l
k

l θ and ( )kl,∗θ is the optimal value by using formula (2.2). 

When l = 1, it becomes the original CCR model and the DMUs in set E1 define the first-level efficient frontier. When 

l = 2, it gives the second-level efficient frontier after the exclusion of the first-level efficient DMUs. And so on. In this 

manner, we identify several levels of efficient frontiers. We call El the lth-level efficient frontier. The following 

algorithm accomplishes the identification of these efficient frontiers.  
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Step 1: Set l = 1. Evaluate the entire set of DMUs, J1,. We obtain then the first-level efficient DMUs for set E1 (the 

first-level efficient frontier).  

Step 2: Exclude the efficient DMUs from future DEA runs. lll EJJ −=+1  (If φ=+1lJ , then stop.) 

Step 3: Evaluate the new subset of “inefficient” DMUs. We obtain then a new set of efficient DMUs 1+lE (the new 

efficient frontier). 

Step 4: Let l = l + 1. Go to step 2. 

Stopping rule: φ=+1lJ , the algorithm is terminated. 

A visual presentation of the CD model is given in Figure 5. 

 
Figure 5 Illustration of the CD model 

 
5. Stepwise-DFM Model in DEA 
  

This section is devoted to an integration of CD and DFM models. We propose a Stepwise DFM model that is 

integrated with a DFM and CD model. 

Any efficiency-improving projection model which includes the standard CCR projection supplemented with the 

DFM-projection is always directed towards achieving “full efficiency”. This strict condition may not always be easy to 

achieve in reality. Therefore, in this section we will develop a new efficiency improving projection model, which aims 

to integrate with CD model and DFM approach, the “Stepwise Distance Friction Minimization” (Stepwise DFM 

hereafter) model. It can yield a stepwise efficiency improving projection that depends on l -level efficient frontiers 

(l-level DFM projection), as shown in Figure 6. 

For example, a second-level DFM projection for DMU10 (D10) aims to position DMU10 on a second-level efficient 

frontier. And a first-level DFM projection is just equal to a DFM projection (3.1)-(3.7). We notice here that the 

second-level DFM projection is easier to achieve than a first-level DFM projection. A stepwise-DFM model can yield a 

more practical and realistic efficiency improving projection than a CCR Projection or a DFM Projection. 

The advantage of the Stepwise DFM model is also that it yields an outcome on a l-level efficient frontier that is as 

close as possible to the DMU’s input and output profile (see Figure 6).  
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Figure 6 Illustration of the CD model 

 

6. Application of a Stepwise DFM Model to Public Transport Efficiency Management  
6.1 Database and analysis framework 

In our empirical work, we use input and output data for a set of 9 urban transportation authorities and 16 major 

private railway companies in Japan. The DMUs used in our analysis are listed in Table 1. 

Table 1 A listing of DMUs 
No major private railway companies No urban transportation authorities 

1 Tobu 1 Sapporo 
2 Seibu 2 Sendai 
3 Keisei 3 Tokyo 
4 Keio 4 Yokohama 
5 Odakyu 5 Nagoya 
6 Tokyu 6 Kyoto 
7 Keikyu 7 Osaka 
8 Sotetsu 8 Kobe 
9 Meitetsu 9 Fukuoka 

10 Kintetsu   
11 Nankai   
12 Keihan   
13 Hankyu   
14 Hanshin   
15 Nishitetsu   
16 Tokyometro   
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Input2 
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(Second-level DFM Projection) 

CD Projection  

CCR Projection  

Stepwise DFM Projection 
(First-level DFM Projection) 
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In this study we use the following inputs and outputs: 

• Input:  

(I) Operating cost (in 2007); 

(I) Railway business property (in 2007); 

• Output: 

 (O) Operating revenues (in 2007); 

 

All data were obtained from the “Railway annual statement 2007”. In our application, we first applied the standard 

CCR model, while next the results were used to determine the CCR and DFM projections. Additionally, we applied the 

CD model, and then the results were used to determine the CD and Stepwise DFM projections. Finally, these various 

results were mutually compared. The steps followed in our analysis are presented in Figure 7. 

 
Figure 7 Analysis framework of the Stepwise DFM model 

 

6.2 Efficiency evaluation based on the CCR model 
The efficiency evaluation results for the 25 public transport corporations based on the CCR model is given in Figure 

8. From Figure 8, it can be seen that Keio and Tokyometro are efficiently-operating corporations. On the other hand, 

Kyoto has a low efficiency (i.e., an efficiency score around 50 per cent). Furthermore, Kobe and Fukuoka also has a 
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CD projections 

 
Direct 
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low efficiency. 

It is noteworthy that the average efficiency level of urban transportation authorities is relatively low compared to 

major private railway companies. It is considered that apparently transportation authorities have still much room for 

further efficiently-enhancing strategies. 
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Figure 8 Efficiency score based on the CCR model 

 

6.3 Direct efficiency improvement projection based on the CCR and DFM models 

The direct efficiency improvement projection results based on the CCR and DFM model for inefficient public 

transport corporations are presented in Table 2.  

In Table 2, it appears that the empirical ratios of change in the DFM projection are smaller than those in the CCR 

projection, as was expected. In Table 2, this particularly applies to Seibu, Tokyu, Keikyu, Hanshin and Nishitetsu, 

which are apparently non-slack type (i.e. s-** and s+** are zero) corporations. The DFM projection involves both input 

reduction and output increase, and, clearly, the DFM projection does not involve a uniform ratio, because this model 

looks for the optimal input reduction (i.e., the shortest distance to the frontier, or distance friction minimization). For 

instance, the CCR projection shows that Seibu should reduce the Operating cost and the Railway business property by 

10.34 per cent in order to become efficient. On the other hand, the DFM results show that a reduction in Railway 

business property of 9.96 per cent and an increase in the Operating revenues of 5.45 per cent are required to become 

efficient. Apart from the practicality of such a solution, the models show clearly that a different – and perhaps more 

efficient – solution is available than the standard CCR projection to reach the efficiency frontier. 

Table 2 Direct efficiency-improvement projection results of the CCR and DFM model 

urban transportation authorities major private railway companies 
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DMU Score(θ*) DMU Score(θ*)
Difference % Difference % Difference % Difference %

d mo
x* +s -** d mo

x* +s -**

d so
y* +s +** d so

y* +s +**

Tobu 0.844 Hanshin 0.971
(I)cost 137242584 -21367976 -15.57% -11585923 -8.44% (I)cost 20880360 -614986 -2.95% 0 0.00%
(I)property 712422107 -236943047 -33.26% -196803438 -27.62% (I)property 71623305 -2109509 -2.95% -2075902 -2.90%
(O)revenue 160818200 0 0.00% 13576160 8.44% (O)revenue 25540600 0 0.00% 381743 1.49%
Seibu 0.897 Nishitetsu 0.964
(I)cost 84550368 -8743438 -10.34% 0 0.00% (I)cost 18416583 -662304 -3.60% 0 0.00%
(I)property 329209999 -34043933 -10.34% -32801294 -9.96% (I)property 66379457 -2387163 -3.60% -2301763 -3.47%
(O)revenue 102197169 0 0.00% 5572273 5.45% (O)revenue 22961699 0 0.00% 420439 1.83%
Keisei 0.871 Sapporo 0.842
(I)cost 45143268 -5805106 -12.86% -3102001 -6.87% (I)cost 31887493 -5052884 -15.85% -2743836 -8.60%
(I)property 203714344 -42294404 -20.76% -31202500 -15.32% (I)property 406895116 -296782167 -72.94% -287307235 -70.61%
(O)revenue 54596020 0 0.00% 3751543 6.87% (O)revenue 37242789 0 0.00% 3204645 8.60%
Odakyu 0.891 Sendai 0.857
(I)cost 95105070 -10371194 -10.90% -5484647 -5.77% (I)cost 9547699 -1364705 -14.29% -734872 -7.70%
(I)property 503547659 -155851263 -30.95% -135799840 -26.97% (I)property 123357198 -89779157 -72.78% -87194706 -70.68%
(O)revenue 117599098 0 0.00% 6781863 5.77% (O)revenue 11356883 0 0.00% 874122 7.70%
Tokyu 0.935 Tokyo 0.807
(I)cost 116330884 -7529603 -6.47% 0 0.00% (I)cost 112204498 -21667753 -19.31% -11991735 -10.69%
(I)property 448779376 -29047580 -6.47% -27543332 -6.14% (I)property 1692909251 -1321401400 -78.06% -1281696898 -75.71%
(O)revenue 145938161 0 0.00% 4880939 3.34% (O)revenue 125652692 0 0.00% 13428996 10.69%
Keikyu 0.925 Yokohama 0.776
(I)cost 64879034 -4856935 -7.49% 0 0.00% (I)cost 28808045 -6447669 -22.38% -3630066 -12.60%
(I)property 240695337 -18018789 -7.49% -17487164 -7.27% (I)property 735299032 -643545619 -87.52% -631983887 -85.95%
(O)revenue 78827586 0 0.00% 3065308 3.89% (O)revenue 31033162 0 0.00% 3910450 12.60%
Sotetsu 0.944 Nagoya 0.807
(I)cost 26015702 -1446977 -5.56% -744184 -2.86% (I)cost 61326002 -11809506 -19.26% -6533864 -10.65%
(I)property 111527822 -10712689 -9.61% -7828852 -7.02% (I)property 780732042 -577546396 -73.97% -555898363 -71.20%
(O)revenue 34098049 0 0.00% 975381 2.86% (O)revenue 68722164 0 0.00% 7321874 10.65%
Meitetsu 0.821 Kyoto 0.522
(I)cost 76843610 -13765418 -17.91% -7559826 -9.84% (I)cost 29271536 -13998476 -47.82% -9198802 -31.43%
(I)property 409977161 -151142549 -36.87% -125678563 -30.66% (I)property 494381778 -431710412 -87.32% -412015460 -83.34%
(O)revenue 87543953 0 0.00% 8612519 9.84% (O)revenue 21196930 0 0.00% 6661296 31.43%
Kintetsu 0.922 Osaka 0.936
(I)cost 131011669 -10160605 -7.76% -5285251 -4.03% (I)cost 117496019 -7557800 -6.43% -3904476 -3.32%
(I)property 771942168 -276042754 -35.76% -256037261 -33.17% (I)property 1248374651 -797254929 -63.86% -782263903 -62.66%
(O)revenue 167724844 0 0.00% 6766328 4.03% (O)revenue 152579299 0 0.00% 5070318 3.32%
Nankai 0.913 Kobe 0.689
(I)cost 46384894 -4028874 -8.69% -2105893 -4.54% (I)cost 18685348 -5803544 -31.06% -3435255 -18.38%
(I)property 294000567 -120197168 -40.88% -112306423 -38.20% (I)property 309292607 -256433500 -82.91% -246715483 -79.77%
(O)revenue 58784397 0 0.00% 2668836 4.54% (O)revenue 17878193 0 0.00% 3286862 18.38%
Keihan 0.853 Fukuoka 0.745
(I)cost 46034077 -6752320 -14.67% -3643366 -7.91% (I)cost 22083430 -5629935 -25.49% -3226212 -14.61%
(I)property 199915154 -38726667 -19.37% -25969407 -12.99% (I)property 491943185 -424428028 -86.28% -414564606 -84.27%
(O)revenue 54517737 0 0.00% 4314805 7.91% (O)revenue 22835214 0 0.00% 3336041 14.61%
Hankyu 0.958
(I)cost 75171681 -3166136 -4.21% -1617123 -2.15%
(I)property 399741850 -104274797 -26.09% -97918591 -24.50%
(O)revenue 99933906 0 0.00% 2149818 2.15%

CCC Projection DFM Projection
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6.4 Stepwise efficiency improvement projection based on the CD and Stepwise DFM models 

The efficiency improvement projection results for the nearest upper level efficient frontier based on the CD and 

Stepwise-DFM model for inefficient public transport corporation are presented in Table 3. 

In Table 3, it appears that the ratios of change in the Stepwise DFM projection are smaller than those in the CD 

projection, as was expected. In Table 3, this particularly applies to Tobu, Seibu, Keisei, Odakyu, Tokyu, Keikyu, 

Meitetsu, Nankai, Heihan, Hanshin, Nishitetsu, Sapporo, Nagoya, and Kyoto, which are non-slack type (i.e. s-** and 

s+** are zero) corporations. Apart from the practicality of such a solution, the models show clearly that a different – and 

perhaps more efficient – solution is available than the CD projection to reach the efficiency frontier. 
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Table 3 Efficiency-improvement projection results for nearest upper level efficient frontier 

DMU Score(θ*) DMU Score(θ*)

Difference % Difference % Difference % Difference %
d mo

x*+s -** d mo
x*+s -**

d so
y*+s +** d so

y*+s +**

Sotetsu 0.944 Tobu 0.950
(I)cost 26015702 -1446977 -5.56% -744184 -2.86% (I)cost 137242584 -6805930 -4.96% -4086177 -2.98%
(I)property 111527822 -10712689 -9.61% -7828852 -7.02% (I)property 712422107 -35329378 -4.96% 0 0.00%
(O)revenue 34098049 0 0.00% 975381 2.86% (O)revenue 160818200 0 0.00% 4088914 2.54%
Hankyu 0.958 Sendai 0.962
(I)cost 75171681 -3166136 -4.21% -1617123 -2.15% (I)cost 9547699 -363129 -3.80% -185084 -1.94%
(I)property 399741850 -104274797 -26.09% -97918591 -24.50% (I)property 123357198 -74728153 -60.58% -73785469 -59.81%
(O)revenue 99933906 0 0.00% 2149818 2.15% (O)revenue 11356883 0 0.00% 220156 1.94%
Hanshin 0.971 Meitetsu 0.972
(I)cost 20880360 -614986 -2.95% 0 0.00% (I)cost 76843610 -2154485 -2.80% -1104073 -1.44%
(I)property 71623305 -2109509 -2.95% -2075902 -2.90% (I)property 409977161 -11494638 -2.80% 0 0.00%
(O)revenue 25540600 0 0.00% 381743 1.49% (O)revenue 87543953 0 0.00% 1244695 1.42%
Nishitetsu 0.964 Sapporo 0.982
(I)cost 18416583 -662304 -3.60% 0 0.00% (I)cost 31887493 -567949 -1.78% -293748 -0.92%
(I)property 66379457 -2387163 -3.60% -2301763 -3.47% (I)property 406895116 -7247223 -1.78% 0 0.00%
(O)revenue 22961699 0 0.00% 420439 1.83% (O)revenue 37242789 0 0.00% 334647 0.90%
Tokyu 0.987 Nagoya 0.960
(I)cost 116330884 -1465276 -1.26% -1029922 -0.89% (I)cost 61326002 -2479943 -4.04% -1321222 -2.15%
(I)property 448779376 -5652717 -1.26% 0 0.00% (I)property 780732042 -31571779 -4.04% 0 0.00%
(O)revenue 145938161 0 0.00% 924926 0.63% (O)revenue 68722164 0 0.00% 1418192 2.06%
Keikyu 0.967 Tokyo 0.999
(I)cost 64879034 -2151905 -3.32% -1511718 -2.33% (I)cost 112204498 -75066 -0.07% -37545 -0.03%
(I)property 240695337 -7983371 -3.32% 0 0.00% (I)property 1692909251 -265406432 -15.68% -264928768 -15.65%
(O)revenue 78827586 0 0.00% 1329320 1.69% (O)revenue 125652692 0 0.00% 42045 0.03%
Kintetsu 0.963 Yokohama 0.962
(I)cost 131011669 -4846697 -3.70% -2469018 -1.88% (I)cost 28808045 -1096260 -3.81% -558762 -1.94%
(I)property 771942168 -101032343 -13.09% -88388517 -11.45% (I)property 735299032 -317191579 -43.14% -309081955 -42.03%
(O)revenue 167724844 0 0.00% 3160907 1.88% (O)revenue 31033162 0 0.00% 601920 1.94%
Osaka 0.977 Kobe 0.854
(I)cost 117496019 -2723737 -2.32% -1377839 -1.17% (I)cost 18685348 -2720599 -14.56% -1467105 -7.85%
(I)property 1248374651 -638047949 -51.11% -630890840 -50.54% (I)property 309292607 -68421060 -22.12% -49508705 -16.01%
(O)revenue 152579299 0 0.00% 1789250 1.17% (O)revenue 17878193 0 0.00% 1403730 7.85%
Seibu 0.963 Fukuoka 0.923
(I)cost 84550368 -3115939 -3.69% -1652015 -1.95% (I)cost 22083430 -1692194 -7.66% -879805 -3.98%
(I)property 329209999 -12132392 -3.69% 0 0.00% (I)property 491943185 -184286067 -37.46% -172028986 -34.97%
(O)revenue 102197169 0 0.00% 1918490 1.88% (O)revenue 22835214 0 0.00% 909757 3.98%
Nankai 0.989 Kyoto 0.753
(I)cost 46384894 -529772 -1.14% -271618 -0.59% (I)cost 29271536 -7222361 -24.67% -5399466 -18.45%
(I)property 294000567 -3357848 -1.14% 0 0.00% (I)property 494381778 -121982117 -24.67% 0 0.00%
(O)revenue 58784397 0 0.00% 337623 0.57% (O)revenue 21196930 0 0.00% 2983043 14.07%
Keisei 0.988
(I)cost 45143268 -522332 -1.16% -288164 -0.64%
(I)property 203714344 -2357087 -1.16% 0 0.00%
(O)revenue 54596020 0 0.00% 317691 0.58%
Odakyu 0.995
(I)cost 95105070 -442591 -0.47% -247053 -0.26%
(I)property 503547659 -2343361 -0.47% 0 0.00%
(O)revenue 117599098 0 0.00% 274274 0.23%
Keihan 0.971
(I)cost 46034077 -1328346 -2.89% -736796 -1.60%
(I)property 199915154 -5768692 -2.89% 0 0.00%
(O)revenue 54517737 0 0.00% 798088 1.46%

E9

CD
Projection

Stepwise-DFM
Projection

 I/O Data

E8

E10

E11

E2

E3

E4

E5

E6

E7

CD
Projection

Stepwise-DFM
Projection

Data I/O

 
The Stepwise-DFM model is able to present a more realistic efficiency-improvement plan, which we compared with 

the results of Tables 2 and 3. For instance, the DFM results in Table 2 show that Fukuoka should reduce the Operating 

cost by 14.61 per cent and the Railway business property by 84.27 per cent, an increase in the Operating revenues of 

14.61 per cent in order to become efficient. On the other hand, the Stepwise DFM results in Table 3 show that a 

reduction in Operating cost of 3.98 per cent and Railway business property of 34.97 per cent, and an increase in the 

Operating revenues of 3.98 per cent are required to become efficient. The Stepwise DFM model provides the policy 
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decision-maker with practical and transparent solutions that are available in the DFM projection to reach the nearest 

upper level efficiency frontier. 

Finally, the stepwise efficiency improvement projection results for all level efficient frontiers of Kyoto (last efficiency 

level DMU; E11) based on the CD and Stepwise-DFM model are presented in Table 4, while a comparative result of 

the stepwise DFM model for Kyoto is presented in Figure 9. 
 

Table 4 Stepwise-efficiency improvement projection results for all level efficient frontier of Kyoto City 

DMU Score(θ*)
CD

Projection
CD-DFM

Projection
DMU Score(θ*)

CD
Projection

CD-DFM
Projection

% % % %

E1 0.522 E6 0.609
(I)cost 29271536 -47.82% -31.43% (I)cost 29271536 -39.12% -24.32%
(I)property 494381778 -87.32% -83.34% (I)property 494381778 -53.43% -42.10%
(O)revenue 21196930 0.00% 31.43% (O)revenue 21196930 0.00% 24.32%

E2 0.545 E7 0.620
(I)cost 29271536 -45.53% -29.47% (I)cost 29271536 -38.00% -23.46%
(I)property 494381778 -82.85% -77.79% (I)property 494381778 -53.16% -42.17%
(O)revenue 21196930 0.00% 29.47% (O)revenue 21196930 0.00% 23.46%

E3 0.558 E8 0.646
(I)cost 29271536 -44.24% -28.40% (I)cost 29271536 -35.38% -21.49%
(I)property 494381778 -64.92% -54.96% (I)property 494381778 -51.29% -40.82%
(O)revenue 21196930 0.00% 28.40% (O)revenue 21196930 0.00% 21.49%

E4 0.571 E9 0.647
(I)cost 29271536 -42.86% -27.27% (I)cost 29271536 -35.34% -21.46%
(I)property 494381778 -78.56% -72.71% (I)property 494381778 -42.23% -29.84%
(O)revenue 21196930 0.00% 27.27% (O)revenue 21196930 0.00% 21.46%

E5 0.586 E10 0.753
(I)cost 29271536 -41.44% -26.13% (I)cost 29271536 -24.67% -18.45%
(I)property 494381778 -81.64% -76.84% (I)property 494381778 -24.67% 0.00%
(O)revenue 21196930 0.00% 26.13% (O)revenue 21196930 0.00% 14.07%

Data I/O I/O Data
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Figure 9 Efficiency improvement projection results based on the Stepwise-DFM model (Kyoto) 
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The findings from Figure 9 illustrate, for instance, that, if the Kyoto city wishes to implement an efficiency 

improvement plan with a E10 level, only a reduction in the operating cost of 18.45 per cent and an increase in operating 

revenue of 14.07 per cent are required, while then the efficiency level improves to the E10 level efficient frontier. 

These results offer a meaningful contribution to decision support and planning for the efficiency improvement of 

public transport operations. In conclusion, this Stepwise DFM model may become a policy vehicle that may have 

great added value for decision making and planning of both public and private actors.  
 

7. Conclusion 
 

In this paper we have presented a new methodology, the Stepwise DFM model, which is integrated with a DFM and 

CD model. This new methodology does not require a uniform reduction of all inputs, as in the standard model. Instead, 

the new method minimizes the distance friction for each input and output separately. As a result, the reductions in inputs 

and increases in outputs do necessarily reach an efficiency frontier that is smaller than in the standard model. This offers 

more flexibility for the operational management of an organization. In addition, the stepwise projection allows DMUs 

to include various levels of ambition regarding the ultimate performance in their strategic judgment. In conclusion, our 

Stepwise DFM model is able to present a more realistic efficiency-improvement plan, and may thus provide a 

meaningful contribution to decision making and planning for efficiency improvement of relevant agents. 
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