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Abstract

This paper proposes a new set of transformed polynomial functions that

provide a flexible setting for nonlinear autoregressive modeling of the condi-

tional mean while at the same time ensuring the strict stationarity, ergodicity,

fading memory and existence of moments of the implied stochastic sequence.

The great flexibility of the transformed polynomial functions makes them in-

teresting for both parametric and semi-nonparametric autoregressive modeling.

This flexibility is established by showing that transformed polynomial sieves

are sup-norm-dense on the space of continuous functions and offer appropriate

convergence speeds on Hölder function spaces.
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gestions, and to the Dutch Science Foundation (NWO) for financial support. Corresponding address:
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1 Introduction

Econometricians are often interested in the estimation of autoregressive models for

the conditional expectation of a time-series as means of forecasting or analyzing its

dynamic behavior. In the last few decades several nonlinear autoregressive models

have been proposed for the study of univariate Markov stochastic sequences {xt}t∈Z

generated by,

xt = f0(xt−1) + εt , t ∈ Z , (1)

where {εt}t∈Z is a white noise sequence with variance Var(εt) = σ2. Several examples

of such models can be found e.g. in Granger and Teräsvirta (1993) and Teräsvirta

et al. (2010). For instance, a conditional expectation given by,

f0(xt−1) = E(xt|xt−1) = θ1 + θ2 exp(−θ3x
2
t−1)xt−1

gives rise to the exponential autoregressive model introduced in Ozaki (1980). Unfor-

tunately, economic theory rarely provides guidance about the form of f0. Hence, in

practice, econometricians are often interested in finding a good approximation to the

unknown conditional expectation f0 in the hope that the approximate process has

similar stochastic properties.

Linear approximations to the conditional expectation are convenient to work with

due to their simplicity and the fact that the dynamic properties of linear stochastic

sequences are well understood. In certain settings however, the assumption of linearity

might be inappropriate and the researcher is forced to search for alternative nonlinear

specifications; see again Granger and Teräsvirta (1993) or Teräsvirta et al. (2010) for

several examples.
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The current paper introduces a new class of transformed polynomials that can be

used to approximate the unknown conditional mean f0 and renders an approximate

process of the form,

xt = θ0 + θ1(xt−1 − x0) +
k∑
i=2

θi(xt−1 − x0)i exp
(
β(xt−1 − x0)2

)
+ εt , t ∈ Z , (2)

where β is a strictly negative parameter. This class includes the linear autoregressive

model as a special case. Yet, it allows also for very general nonlinear autoregressive

dynamics. In effect, from a semi-nonparametric perspective, this class is shown to be

capable of approximating arbitrarily well any continuous f0, and to do so at certain

convergence rates when f0 lies in smooth Hölder spaces. Most importantly, this

paper establishes also the conditions under which the approximate autoregressive

process is strictly stationary, ergodic, has fading memory and bounded moments.

The consistency, convergence rate and asymptotic normality of several extremum

estimators is easily obtained as a result.

In what follows, Section 2 introduces the transformed polynomials. Section 3

studies their approximation properties. Section 4 studies the stochastic properties of

transformed polynomial autoregressions and Section 5 addresses briefly the asymp-

totic and small sample behavior of a least squares estimator of the conditional mean.

2 Transformed Polynomials

Let Pk(X ) denote the space of k-order polynomial functions defined on a compact

subset of the real line X = [a, b] ⊂ R. Then, for every pk ∈ Pk(X ), and every point

x0 ∈ X , there exists θ := (θ0, θ1, ..., θk) ∈ Rk+1 such that the function pk admits the
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algebraic representation,

pk(x; θ) =
k∑
i=0

θi(x− x0)i ∀x ∈ X , k ∈ N,

where the normalization by some x0 ∈ X is unnecessary yet convenient in later

sections. In what follows, we denote by P̃k(X ) the space of k-order T -transformed

polynomial functions defined on X . Elements of P̃k(X ) are given by,

p̃k,β(x; θ) = θ0 + θ1(x− x0) +
( k∑
i=2

θi(x− x0)i
)
· φβ(x− x0),

where the ‘transformation function’ φβ is defined according to,

φβ(x− x0) = exp
(
β(x− x0)2

)
∀x ∈ X ,

where β is a scalar satisfying β < 0. Note that while Pk(X ) is spanned by power

monomials of up to k-order,

Pk(X ) ⊆ Lin
{

1, (x− x0), (x− x0)2, ... , (x− x0)k
}
,

the space P̃k,β(X ), for fixed β < 0, is spanned by the alternative basis functions,

P̃k,β(X ) ⊆ Lin
{

1, (x− x0), (x− x0)2φβ(x− x0), ... , (x− x0)kφβ(x− x0)
}

and P̃k(X ) is then defined as P̃k(X ) := ⋃
β<0 P̃k,β(X ). Some basis functions of up to

fourth order that span Pk(X ) and P̃k,β(X ) are plotted in Figure 1.

As we shall see, while transformed polynomials inherit the approximation prop-

erties of polynomials, they do not inherit their diverging behavior as |x| → ∞. This
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Figure 1: Plots of power monomial xk (line), transformed monomial xk exp(βx2) with
β = −1/5 (dashed line) and β = −1/2 (dotted line) for k = 2 (left), k = 3 (center)
and k = 4 (right).

difference plays a critical role in the dynamic properties of autoregressive processes

such as those given by the transformed polynomial autoregression in (2).

3 Approximation Properties

Let C(X ) denote the space of continuous functions on X and P(X ) = ⋃
k∈N Pk(X )

denote the space of all polynomial functions on X . Weierstrass’s Theorem establishes

that P(X ) is sup-norm dense in C(X ) and hence that for every f ∈ C(X ), there exists

a sequence in P(X ) that converges to f uniformly on X . The following proposition

reveals that this approximation property also holds true for the class of transformed

polynomials P̃(X ) = ⋃
k∈N P̃k(X ).

Proposition 1. The space of transformed polynomials P̃(X ) is dense on C(X ) in

sup-norm for every compact X ⊂ R.

Proposition 1 was obtained by making use of Weierstrass’s Theorem and by noting

that P̃(X ) is dense on P(X ). It should be clear however that the same result can be

achieved if we restrict ourselves to subsets P̃β(X ) ⊂ P̃(X ) with β near zero. In

particular, it is important to note that the uniform convergence of sequences in P̃(X )

to continuous functions f ∈ C(X ) can always be obtained on ‘paths of vanishing
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transformation’, i.e. for those paths satisfying β → 0.1

In the proposition that follows we make use of a family of operators,

{Φβ : P(X )→ P̃β(X ) , β < 0}

conveniently defined as Φβ(pk) = p̃k,β, such that ∀ (x, k, β) ∈ X × N× R−,

Φβ

( k∑
i=0

θi(x− x0)i
)

= θ0 + θ1(x− x0) +
( k∑
i=2

θi(x− x0)i
)
· φβ(x− x0).

Proposition 2. Let p ∈ P(X ). Then limβ→0 supx∈X |p(x)−Φβ(p)(x)| = 0. Further-

more, for every f ∈ C(X ) and every sequence {pj}j∈N ⊂ P(X ) satisfying supx∈X |f −

pj| → 0 as j →∞, it holds true that limj→∞
β→0

sup |f(x)−Φβ(pj)(x)| = 0 jointly along

any diagonal path (j, β)→ (∞, 0).

Proposition 1 established that every point in C(X ) is a limit point of a sequence

in P̃(X ) and Proposition 2 explained how this convergence takes place on paths of

vanishing transformation. In what follows, we characterize further this convergence

by analyzing the rate at which such sequences approximate any f ∈ C(X ).

Definition 1. For every f ∈ C(X ), and any k ∈ N, the polynomial function

p∗k ∈ Pk(X ) satisfying p∗k = infpk∈Pk(X ) supx∈X
∣∣∣f(x) − pk(x)

∣∣∣ is called the best uni-

form approximation to f from Pk(X ) and Ek(f) = supx∈X
∣∣∣f(x) − p∗k(x)

∣∣∣ the best

uniform approximation error.

Existence is ensured by the following lemma in Timan (1963; Section 2.2).
1Sequences in P(X ) might be composed of polynomials of different orders. When explicit reference

to the order k is desirable, then sequences {pi}j∈N in P(X ) are denoted {pjkj
}j∈N where kj is the

order of the jth polynomial in the sequence. Similarly, sequences in P̃(X ) can be denoted {p̃jkj ,βj
}j∈N

when explicit reference to k and β is desired.
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Lemma 1. For every f ∈ C(X ), there exist a unique element p∗k ∈ Pk(X ) which is

the best uniform approximation to f from Pk(X ).

Note that Weierstrass’s Theorem implies that Ek(f) → 0 as k → ∞. The much

celebrated Jackson’s Theorem complements this result by relating the speed at which

Ek(f) → 0 to the differentiability of f and the modulus of continuity ω
(
f, δ

)
of its

derivatives, with ω
(
f (r), δ

)
defined as,

ω
(
f (r), δ

)
= sup

(x,x′)∈X×X : |x−x′|<δ

∣∣∣f (r)(x)− f (r)(x′)
∣∣∣

for any r ≥ 0. For completeness, Jackson’s Theorem is now stated as a lemma; see

e.g. Timan (1963, p.261).

Lemma 2. Let f ∈ Cr(X ) ≡ Cr([a, b]) then ∃ Mr > 0 such that,2

Ek(f) = Mr ·
(
d

k

)r
· ω
(
f (r), d/k

)
= O(k−r) as k →∞,

where d := b− a and Mr depends only on r for every r ≥ 0 and k ≥ 1.

Note that Jackson’s Theorem implies that Ek(f) = M0 · ω
(
f, d/k

)
for continuous

functions f ∈ Cr(X ), it implies Ek(f) = M ′
r(d/k)r+α = O(k−(r+α)) for Hölder func-

tions f ∈ Ck,α(X ) and Ek(f) = M ′
r(d/k)r+1 = O(k−(r+1)) for functions with Lipschitz

rth derivative f ∈ Ck,1(X ), and also, M ′
r = Mr for functions with quasi-smooth rth

derivative ω(f (r), δ) ≤ δ. In the context of semi-nonparametric autoregressive mod-

eling, Jackson’s Theorem allows us also to obtain as a corollary the lower bound on

the speed at which the polynomial order k must diverge, as a function of sample size

T , in order to obtain a bound for the approximation rate of the sequence of sieves.
2The added limit result uses the fact that ω(f, δ)→ 0 as δ → 0 for every f ∈ C(X ).
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Corollary 1. Let the polynomial order k be indexed by T satisfying kT = O(T q),

q > 0, as T → ∞. Then, EkT (f) = O(T−qr) for f ∈ Cr(X ), Ek(f) = O(T−q(r+α))

for f ∈ Ck,α(X ) and Ek(f) = O(T−q(r+1)) for f with quasi-smooth rth derivative.

Proposition 3 builds on Lemma 2 to deliver asymptotic approximation rates for

sequences of transformed polynomials. The result is obtained by considering trans-

formations of best polynomial approximations p̃∗k,β = Φβ(p∗k) ∈ P̃k,β(X ). The cor-

responding uniform approximation error to a function f ∈ C(X ) from P̃k,β(X ) is

then defined as Ẽk,β(f) = supx∈X |f(x) − p̃∗k,β(x)|. Note that for any given function

f ∈ C(X ), the transformed polynomial p̃∗k,β ⊂ P̃k,β(X ) is not necessarily the best

approximation to f from P̃k,β(X ). Instead, it is the transformation of the best poly-

nomial approximation p∗k to f from Pk(X ). This leaves room to possible improvement

in the convergence rate bounds.

Proposition 3. Let f ∈ Cr(X ) ≡ Cr([a, b]) and β be indexed by the order k such

that βk = O(log(k−sr)), s > 0, as k →∞. Then Ẽk,βk(f) = O(k−rmin{s,1}) as k →∞.

Furthermore, if f ∈ Ck,α(X ) and βk = O(log(k−s(r+α))), s > 0, as k → ∞. Then

Ẽk,βk(f) = O(k−(r+α) min{s,1}) as k →∞.

Once again, it is possible to establish as a corollary the speed at which the poly-

nomial order k must diverge and β must vanish, as a function of sample size T , in

order to obtain a given approximation rate bound.

Corollary 2. Let kT = O(T q), q > 0, as T →∞. Then, EkT ,βkT (f) = O(T−qrmin{s,1})

holds if f ∈ Cr(X ) and βk = O(log(k−sr)), s > 0, as k → ∞ and EkT ,βkT (f) =

O(T−q(r+α) min{s,1}) if f ∈ Ck,α(X ) and βk = O(log(k−s(r+α))), s > 0.
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4 Stability, Stationarity and Ergodicity

In what follows we analyze the strict stationarity, ergodicity, fading memory and ex-

istence of moments of stochastic sequences generated by the transformed polynomial

autoregressive model in (2) with iid innovations {εt}t∈Z. These are analyzed in a

general setting allowing k to take any value in N. This generality ensures model flex-

ibility in parametric settings and plays a crucial role in semi-nonparametric settings

where k is set to diverge to infinity with sample size.

Proposition 4 derives a condition on the parameter vector θ := (θ1, ..., θk) ∈

Θ ⊂ Rk that ensures the strict stationarity and ergodicity of the stochastic sequence

{xt}t∈Z generated by (2). This is done by appealing to a special case of the result

in Bougerol (1991). In particular, Proposition 4 finds a norm ‖ · ‖ on Rk such that

{xt}t∈Z is strictly stationary and ergodic for every θ satisfying ‖θ‖ < 1.

Proposition 4. Let {xt}t∈Z be generated according to (2) where {εt}t∈Z is an iid

sequence with E(εt) = 0 and E|εt|2 < ∞. Then, {xt}t∈Z is strictly stationary and

ergodic for every θ0 ∈ R and θ := (θ1, ..., θk) satisfying `1(θ,w(β)) < 1 where

`1(θ,w(β)) := ∑k
i=1wi(β)|θi| is a weighted l1-norm on θ with weights given by

w1(β) = 1 and wi(β) = i
(
1−2β

)(
−i+ ι

2β

) i+ι
2

exp
(
−i+ ι

2

)
, i = 2, ..., k, (3)

with ι =


−1 ∀ (β, i) : β < −(i+ 1) i+1

2
/

2e(i− 1) i−1
2

1 otherwise
. (4)

Proposition 4, allows us to verify, for any given θ, if the process {xt}t∈Z is strictly

stationary and ergodic. In the context of extremum estimation one can then design

algorithms that optimize the criterion function over the parameter space and verify, at
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every step, if `1(θ,w(β)) < 1. However, in certain occasions, it is sometimes preferable

to restrict the parameter space Θ in some simple way, rather than having to verify if

the condition holds for every θ. In particular, it is natural in applications with large

k to impose decreasing bounds to the sequence of parameters {θi} as i → ∞ that

vanish at some predefines speed. Proposition 5 establishes bounds on the parameter

space Θ ⊆ Rk+1 that ensure the strict stationarity and ergodicity of the transformed

polynomial autoregressive process for every θ := (θ0, θ1, ..., θk) ∈ Θ = ∏k
i=0 Θi with

Θi ⊆ R ∀ i.

For convenience we define Θ1 = (−δ, δ) and let the bounds on each Θi, i ≥ 2

be written in terms of a multiple ci of a scalar ∆, hence taking the form Θi =

(−ci∆ , ci∆) ⊂ R ∀ i ≥ 2. Centering at the origin is imposed for simplicity since,

from the outset, there is no reason to restrict intercepts, slopes and curvatures in any

particular direction. Proposition 5 then provides the maximal allowed ∆ for every

choice of δ, coefficients c := (c2, ..., ck) and transformation parameter β.

Proposition 5. Let {xt}t∈Z be generated according to (2) where {εt}t∈Z is an iid

sequence with E(εt) = 0 and E|εt|2 <∞. Let Θ ⊂ Rk+1 be given by,

Θ = R× (−δ, δ)× (−c2∆, c2∆)× ...× (−ck∆, ck∆). (5)

with ∆ <
1− δ

`1(c,w(β)) where `1(c,w(β)) :=
k∑
i=2
|ci|wi(β) (6)

so that `1(c,w(β, ι)) is a weighted l1-norm on the vector c := (c2, ..., ck) with weights

given in (3) and (4). Then, {xt}t∈Z is strictly stationary and ergodic for every θ ∈ Θ.

Note that the bound on ∆ depends crucially on the bound δ that restricts the slope

parameter θ1 and on the transformation parameter β through the vector of weights

w(β). Figure 2 plots the bounds for ∆ as a function of β ∈ [−2, 0) for different choices

10



of δ and order k, as well as alternative c. The choice of vector c takes into account

the idea mentioned above that in applications with large k, it is natural to impose

vanishing bounds on the sequence of parameters {θi} so that ci → 0 as i→∞. These

cases are covered by the harmonically and geometrically vanishing bounds in Figure

2. In applications where k is small, the vector c might however be chosen differently.

The uniform bounds in Figure 2 illustrate the effects of one such alternative.
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Figure 2: Plots of ∆ as a function of β for different δ = 0.1, 0.2, ..., 0.9 and k = 2, 4, 6, 8 increasing
from top row to bottom row, and uniform bounds c2 = ... = ck = 1 (left column), arithmetic bounds
ci = 1/(i− 1), i = 2, ..., k (center column) and geometric bounds ci = γi−2, γ = 0.5, i = 2, ..., k.

In each subplot of Figure 2, the graphs allowing for higher ∆ curves over β are

those that correspond to the smaller δ = 0.1. These curves then decrease vertically as

δ rises to δ = 0.9. Note also that, in each subplot of Figure 2, the lack of smoothness

of the graphs over certain β points is caused by the switch of bound implied by the

changing ι in (4) as a function of β. Naturally, Figure 2 shows that for k = 2,

the nature of the parameter space restriction (uniform, arithmetic or geometric) is
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irrelevant. For large k however, the geometric bounds allow for larger ∆ since they

impose stricter bounds as k → ∞. In contrast, the uniform bounds render the

smallest ∆ for increasing k.

Finally, Proposition 6 establishes the fading memory of the stochastic process

{xt}t∈Z in (2) by appealing to a special case of Theorem 6.10 in Pötscher and Prucha

(1997). In particular, it establishes conditions under which {xt}t∈Z is Lp-approximable

by a mixing sequence and supt ‖ξ‖p = (
∫
|ξ|pdP )1/p < ∞. The concept of Lp-

approximability generalizes the well known notion of near epoch dependence on an

α-mixing sequence (which corresponds essentially to L2-approximability). Similarly

to strict stationarity and ergodicity, these notions of limited dependence can be used

to obtain laws of large numbers and central limit theorems under appropriate condi-

tions; see Theorems 6.2, 6.3, 10.1 and 10.2 in Pötscher and Prucha (1997).

Proposition 6. Let {xt}t∈Z be generated according to (2) where {εt}t∈Z is an iid

sequence with ‖εt‖p < ∞ and ‖x0‖p < ∞ for some p ≥ 1. Then, {xt}t∈Z is

Lp-approximable by an α-mixing sequence and supt ‖xt‖p < ∞ ∀θ0 ∈ R and θ :=

(θ1, ..., θk) satisfying and `1(θ,w(β)) < 1 with weights defined in (3) and (4). The

same holds for every θ := (θ0, θ1, ..., θk) ∈ Θ ⊂ Rk+1 with Θ defined in (5) and (6).

5 Some Remarks on Estimation:

Asymptotic Properties and Finite Sample Behavior

Under the results established above it is easy to obtain the asymptotic properties of

various extremum estimators for both parametric or semi-nonparametric settings. For

example, Tjostheim (1986) establishes, under appropriate regularity conditions, the

consistency and asymptotic normality of least squares estimator for the conditional
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mean of strictly stationary and ergodic time-series. Gallant (1987) and Gallant and

White (1988) obtain similar results for extremum estimators under near epoch de-

pendence limiting memory assumptions that are further generalized by Pötscher and

Prucha (1997) to allow for processes that are Lp-Approximable by a mixing sequence.

These properties, together with the approximation results of Section 3 form also the

basis for the asymptotic results of sieve extremum estimators of semi-nonparametric

models; see e.g. Chen (2007).

The details involved in obtaining the asymptotic properties of extremum esti-

mators lie outside the scope of this paper. In any case, it is easy to show that

e.g. Propositions 4 or 5 can be used in conjunction with Theorems 3.1 and 3.2 in

Tjostheim (1986) to obtain the consistency and asymptotic normality of the least

squares estimator in transformed polynomial autoregression.

The following figures document the finite sample properties of the least squares

estimator of the conditional mean under two alternative data generating processes.

In both cases, the transformed polynomial autoregression is used to ‘approximate’

an unknown conditional mean, and hence, the autoregression is misspecified. In

particular, the Monte Carlo exercise obtains artificial ‘observed’ sequences {xt}t∈N

generated according to (1) with innovations {εt}t∈N are that are iid Gaussian N(0, σ2).

In the first case, the conditional expectation function f0 is smooth in xt−1 and given

by,

f0(xt−1) = α0 + α1 tanh(α2xt−1) ∀ t ∈ N. (7)

In the second case, f0 is continuous in xt−1 and can be seen as a time-varying param-

eter autoregressive model with threshold dynamics,

f0 = α0 + αtxt−1 with αt = α1Ixt−1≤0 + α2Ixt−1>0∀ t ∈ N. (8)
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A scatter of 100 simulated data points from both DGPs at the adopted parameter

values for this Monte Carlo study is plotted in Figure 3.
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Figure 3: Plots of the conditional means (in red) of DGP 1 in (7) [left] and DGP 2 in (8) [right],
and scatter plot of 100 pairs (xt, xt−1) generated using (7) [left] for (α0, α1, α2, σ

2) = (0, 0.1, 0.5, 1.2)
and (8) [right] for (α0, α1, α2, σ

2) = (0, 1, 0.75, 1.2).

The two DGPs in (7) and (8) are quite different in several respects. In the first, xt

is a smooth bounded function of xt−1 with infinitely many derivatives. In the second

case, the conditional expectation is only continuous on xt−1 as it is not differentiable

at xt−1 = 0. This DGP generates two distinct regimes for xt−1 ≤ 0 and xt−1 > 0, in

virtue of the discontinuous threshold behavior of the time-varying coefficient αt.

Figure 4 plots the density of the least squares estimator of the conditional mean

function for k = 1 and T = 100 (obtained from 1000 Monte Carlo draws). For a small

sample of T = 100 data points, a low order k = 1 seems appropriate. Clearly, this

amounts to a simple linear autoregressive approximation of the nonlinear AR process

and hence the choice of β is irrelevant. As expected, since the conditional mean is

forced to take values in a space of linear functions P̃1(R) = P1(R), the approximation

is naturally incapable of generating the nonlinear features that characterize the con-

ditional expectation f0. In particular, the linear autoregressive model is incapable of

describing the changes in slope that characterize the DGP’s conditional expectation.

Despite model misspecification, the limit behavior of the estimator as T → ∞
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Figure 4: Estimates of conditional expectation obtained as f̂(x) = θ̂0 + θ̂1x under the linear
autoregressive model defined in (2) when θi = 0 ∀ i ≥ 2, from T = 100 points of data generated by
(7) [left: DGP 1] and (8) [right: DGP 2]. Light gray, gray and dark gray areas contain contain 99%,
95% and 75% of the mass respectively. Red line is the true conditional expectation f0. Dark line
within dark gray area is the average estimated conditional expectation.

is generally well understood. In particular, under typical extremum estimation con-

ditions, for fixed k and β, the least squares estimator converges as T → ∞ to the

limit point that provides a best linear approximation (in the least squares sense) to

the underlying DGP; see e.g. Pötscher and Prucha (1997). Figure 5 documents the

convergence of the linear regression estimates of the conditional expectation to a limit

linear approximation.
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−1 2
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2

DGP 2 

(T=1000,  k=1)

x
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x
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Figure 5: Estimates of conditional expectation obtained under the linear autoregressive model
defined in (2) when θi = 0 ∀ i ≥ 2, from T = 1000 points of data generated by (7) [left: DGP 1] and
(8) [right: DGP 2]. Light gray, gray and dark gray areas contain contain 99%, 95% and 75% of the
mass respectively. Red line is the true conditional expectation f0. Dark line within dark gray area
is the average estimated conditional expectation.

For larger sample sizes, it can be however interesting to choose larger orders k.

Figure 6 plots the density of the estimated conditional expectation for certain pairs
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(T, k) using the transformed polynomial approximation proposed in this paper. Here

the estimates of conditional expectation lie in the space of transformed polynomials

Pk(R) generated by a parameter space Θ with geometric decaying bounds with decay

parameter γ = 0.6 and δ satisfying the bounds derived in Proposition 5 and plotted

in Figure 2.
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Figure 6: Estimates of conditional expectation for alternative pairs (T, k) using the transformed
polynomial autoregression in (2) on data generated from (7) [left column: DGP 1] and data generated
from (8) [right column: DGP 2]. Light gray, gray and dark gray areas contain contain 99%, 95%
and 75% of the mass respectively. Red line is the true conditional expectation f0. Dark line within
dark gray area is the average estimated conditional expectation.

Figure 6 reveals that the flexibility of the transformed polynomial is capable of

approximating important features of both DGPs even at reasonably small sample
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sizes T and low order k. These plots reveal the practical interest of transformed

polynomials as a basis for both parametric and semi-nonparametric estimation of the

conditional expectation. Most importantly, estimated conditional expectations define

approximate autoregressive processes with properties that are well understood both

in terms of approximation quality, through the results in Section 3, and stochastic

behavior, through the results established in Section 4.

A Proofs

Proof of Proposition 1

We show first that P̃(X ) is dense on P(X ) in sup-norm, i.e. that ∀ (ε, p) ∈ R+
0 ×

P(X ),∃p̃ ∈ P̃(X ) : supx∈X |p(x) − p̃(x)| < ε. This is achieved by selecting, for every

p, the element p̃ ∈ P̃(X ) with k and {θi}ki=0 identical to those of p to obtain,

sup
x∈X
|p(x)− p̃(x)| = sup

x∈X

∣∣∣∣(1− φβ(x− x0)) ·
k∑
i=2

θi(x− x0)i
∣∣∣∣.

As a result,

sup
x∈X
|p(x)− p̃(x)| ≤

∣∣∣1− exp(βz2)
∣∣∣ k∑
i=2
|θi|zi for z = | sup

x∈X
|x− x0||.

Hence, supx∈X |p(X )− p̃(X )| < ε is implied by,

∣∣∣1− exp(βz2)
∣∣∣ < ε/A for any A ≥

k∑
i=2
|θi|zi,

which holds for every ε by selecting a small enough β since
∣∣∣1 − exp(βz2)

∣∣∣ can be

made arbitrarily small by letting β vanish. Together with Weierstrass’s Theorem this

implies denseness of P̃(X ) on C(X ) since ∀ (ε, f) ∈ R+
0 ×C(X ), ∃(p̃, p) ∈ P̃(X )×P(X )
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such that,

sup
x∈X
|f(x)− p̃(x)| ≤ sup

x∈X
|f(x)− p(x)|+ sup

x∈X
|p(x)− p̃(x)| < ε/2 + ε/2 = ε. �

Proof of Proposition 2

The first claim follows immediately by inspection of the proof of Proposition 1 where

it was shown that,

sup
x∈X
|p(x)− Φβ(p)(x)| ≤

∣∣∣1− exp(βz2)
∣∣∣ · A

for any A >
∑k
i=2 |θi|zi where z = | supx∈X |x− x0||, and hence,

lim
β→0

sup
x∈X
|p(x)− Φβ(p)(x)| ≤ A · lim

β→0
sup
x∈X

∣∣∣1− exp(βz2)
∣∣∣ = A · 0 = 0.

The second claim follows first by norm sub-additivity,

lim
j→∞
β→0

sup |f(x)− Φβ(pj)(x)| ≤ lim
j→∞
β→0

sup
x∈X
|f(x)− pj(x)|+ lim

j→∞
β→0

sup
x∈X
|pj(x)− Φβ(pj)(x)|

Then by noting that

lim
j→∞
β→0

sup
x∈X
|f(x)− pj(x)| = lim

j→∞
sup
x∈X
|f(x)− pj(x)| = 0

holds by construction and that,3

lim
j→∞
β→0

sup
x∈X
|pj(x)− Φβ(pj)(x)| = lim

j→∞
β→0

sup
x∈X

∣∣∣1− φβ(x− x0)
∣∣∣ · sup

x∈X

∣∣∣∣ kj∑
i=2

θi,j(x− x0)i
∣∣∣∣

3Note that here we cannot use the previous construction and have limj→∞,β→0 supx∈X |pj(x) −
Φβ(pj)(x)| ≤ limj→∞Aj · limβ→0 supx∈X

∣∣1 − exp(βz2)
∣∣ because Aj =

∑kj

i=2 |θi,j |zi may diverge as
j →∞ since the coefficients θi,j need not be absolutely summable.
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which implies,

lim
j→∞
β→0

sup
x∈X
|pj(x)− Φβ(pj)(x)| = lim

β→0

∣∣∣1− φβ(z)
∣∣∣ · lim

j→∞

∣∣∣∣ kj∑
i=2

θi,jz
i

∣∣∣∣ ≤ 0 ·B = 0

where z = | supx∈X |x − x0|| and limj→∞

∣∣∣∣∑kj
i=2 θi,jz

i

∣∣∣∣ ≤ B for some B < ∞ because

f ∈ C(X ) implies that f is bounded on the compact X , and uniform convergence

of pj → f implies that pj is bounded on X uniformly on j ≥ j∗ for larger enough

j∗ ∈ N.

Proof of Proposition 3

Note first that for any f ∈ C(X ), and every k ∈ N,

sup
x∈X

∣∣∣f(x)− p̃∗k,β(x)
∣∣∣ ≤ sup

x∈X

∣∣∣f(x)− p∗k(x)
∣∣∣+ sup

x∈X

∣∣∣p∗k(x)− p̃∗k,β(x)
∣∣∣.

Note also that,

sup
x∈X

∣∣∣p∗k(x)− p̃∗k,β(x)
∣∣∣ = sup

x∈X

∣∣∣∣(1− φβ(x− x0))
k∑
i=2

θi(x− x0)i
∣∣∣∣

≤
∣∣∣1− exp(βz2)

∣∣∣ · A
where A denotes the upper bound supk

∣∣∣∑k
i=2 θiz

i
∣∣∣ ≤ A with z = | supx∈X |x − x0||

as in the proof of Proposition 1, and A does not depend on k and satisfies A < ∞

because by Weierstrass’s theorem p∗k → f uniformly as k → ∞ and hence {p∗k} is

uniformly bounded by the same argument as in Proposition 2.
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Finally, we obtain for f ∈ Cr(X ), r ≥ 1, and β = O(log(k−sr)),

sup
x∈X

∣∣∣f(x)− p̃∗k,β(x)
∣∣∣ ≤ sup

x∈X

∣∣∣f(x)− p∗k(x)
∣∣∣+ A ·

∣∣∣1− exp(βz2)
∣∣∣

= O(k−r) +O(1) · |1− exp(O(log(k−sr)))|

= O(k−r) +O(1) ·O(k−sr) = O(k−rmin{s,1}) as k →∞

since supx∈X
∣∣∣f(x)−p∗k(x)

∣∣∣ = O(k−r) as k →∞ by Lemma 2. By the same argument,

we obtain supx∈X
∣∣∣f(x) − p̃∗k,β(x)

∣∣∣ = O(k−(r+α) min{s,1}) for f ∈ Ck,α(X ) and β =

O(log(k−s(r+α))), and supx∈X
∣∣∣f(x) − p̃∗k,β(x)

∣∣∣ = O(k−(r+1) min{s,1}) for f ∈ Ck,1(X )

and β = O(log(k−s(r+1))).

Proof of Proposition 4

It follows immediately by Theorem 3.1 in Bougerol (1991), that a sequence {xt}t∈N
converges to a unique strictly stationary and ergodic solution if |x0| <∞, {εt}t∈N is iid

with E|εt|2 <∞ for some t and the uniform contraction condition supx∈R
∣∣∣ ∂p̃k,β(x)/∂x

∣∣∣ <
1 holds. We conclude that the time-series {xt}t∈Z is strictly stationary and ergodic,

under the maintained assumptions, if the uniform contraction condition holds. Using

the definition of p̃k,β(x) and norm sub-additivity,

sup
x∈R

∣∣∣∣ ∂p̃k,β(x)
∂x

∣∣∣∣ = sup
x∈R

∣∣∣∣θ1 +
( k∑
i=2

iθi(x− θ0)i−1
)
· φβ(x− θ0)

+
( k∑
i=2

θi(x− θ0)i
)
· 2β(x− θ0) · φβ(x− θ0)

∣∣∣∣
≤ |θ1|+

k∑
i=2

i|θi| sup
x∈R

∣∣∣∣(x− θ0)i−1 · φβ(x− θ0)
∣∣∣∣

+
k∑
i=2
|θi| sup

x∈R

∣∣∣∣(x− θ0)i · 2β(x− θ0) · φβ(x− θ0)
∣∣∣∣
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and hence,

sup
x∈R

∣∣∣∣ ∂p̃k,β(x)
∂x

∣∣∣∣ ≤ |θ1|+
k∑
i=2
|θi|

i sup
x∈R

∣∣∣∣(x− θ0)i−1 · φβ(x− θ0)
∣∣∣∣

− 2β sup
x∈R

∣∣∣∣(x− θ0)i+1 · φβ(x− θ0)
∣∣∣∣
.

(9)

Now, since we can split the inequality as,

sup
x∈R

∣∣∣∣ ∂p̃k,β(x)
∂x

∣∣∣∣ = max

 sup
x∈R : |x−θ0|≤1

∣∣∣∣ ∂p̃k,β(x)
∂x

∣∣∣∣ , sup
x∈R : |x−θ0|>1

∣∣∣∣ ∂p̃k,β(x)
∂x

∣∣∣∣


and use (9) to obtain ∀x ∈ R : |x− θ0| ≤ 1 the inequality,

sup
x∈R : |x−θ0|≤1

∣∣∣∣ ∂p̃k,β(x)
∂x

∣∣∣∣ ≤ |θ1|+
k∑
i=2
|θi|(i− 2β) sup

x∈R

∣∣∣∣(x− θ0)i−1 · φβ(x− θ0)
∣∣∣∣

and ∀x ∈ R : |x− θ0| > 1 the inequality,

sup
x∈R : |x−θ0|>1

∣∣∣∣ ∂p̃k,β(x)
∂x

∣∣∣∣ ≤ |θ1|+
k∑
i=2
|θi|(i− 2β) sup

x∈R

∣∣∣∣(x− θ0)i+1 · φβ(x− θ0)
∣∣∣∣

it follows that the unrestricted supremum satisfies,

sup
x∈R

∣∣∣∣ ∂p̃k,β(x)
∂x

∣∣∣∣ ≤ `1(θ,w(β))

where `1(θ,w(β)) := ∑k
i=1wi|θi| is a weighted l1-norm on the parameter vector θ :=

(θ1, ..., θk) with weights given by,

w1(β) = 1 and wi(β) = (i− 2β) ·max
{
ξi(β,−1) , ξi(β, 1)

}
for i = 2, ..., k

with ξi(β, ι) = sup
x∈R

∣∣∣∣(x− θ0)i+ι · φβ(x− θ0)
∣∣∣∣.

Furthermore, by standard calculus optimization it follows that the weights wi(β, ι)
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can be given the exact expression,

wi(β, ι) = (i− 2β)
(
−i+ ι

2β

) i+ι
2

exp
(
−i+ ι

2

)
, i = 2, ..., k

with ι =


−1 ∀ (β, i) : β < − (i+1)

i+1
2

2e(i−1)
i−1

2

1 otherwise
,

where e is Euler’s number, by noting that,

arg max
x∈R

∣∣∣∣(x− θ0)i+ι exp
(
β(x− θ0)2

)∣∣∣∣ = θ0 ±
√
−i+ ι

2β ∀ ι ∈ N,

and hence that,

ξi(β, ι) = sup
x∈R

∣∣∣∣(x− θ0)i+ι exp
(
β(x− θ0)2

)∣∣∣∣ =
(
−i+ ι

2β

) i+ι
2

exp
(
−i+ ι

2

)
∀ ι ∈ N.

and this implies that,

max
{
ξi(β,−1) , ξi(β, 1)

}
=


ξi(β,−1) ∀ (β, i) : β < − (i+1)

i+1
2

2e(i−1)
i−1

2

ξi(β, 1) otherwise
,

because,

ξi(β,−1) > ξi(β, 1) ⇔
(
−i− 1

2β

) i−1
2

exp
(
−i− 1

2

)
>

(
−i+ 1

2β

) i+1
2

exp
(
−i+ 1

2

)

⇔ −2β (i− 1) i−1
2

(i+ 1) i+1
2
> exp(−1) ⇔ −2β > (i+ 1) i+1

2

e(i− 1) i−1
2

⇔ β < − (i+ 1) i+1
2

2e(i− 1) i−1
2
.
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Proof of Proposition 5

The desired result obtained by noting that (9), together with supθ1∈Θ1 |θ1| = δ and

supθi∈Θ |θi| = ci∆, i ≥ 2, implies,

sup
θ∈Θ

sup
x∈R

∣∣∣∣∣∣ ∂p̃k,β(x)
∂x

∣∣∣∣∣∣ ≤ sup
θ∈Θ
|θ1|+

k∑
i=2

i sup
θi∈Θ
|θi| sup

x∈R

∣∣∣∣(x− θ0)i−1 · φβ(x− θ0)
∣∣∣∣

− 2β
k∑
i=2

sup
θi∈Θ
|θi| sup

x∈R

∣∣∣∣(x− θ0)i+1φβ(x− θ0)
∣∣∣∣

≤ δ + ∆
k∑
i=2

ici sup
x∈R

∣∣∣∣(x− θ0)i−1 · φβ(x− θ0)
∣∣∣∣

− 2βδ
k∑
i=2

ci sup
x∈R

∣∣∣∣(x− θ0)i+1φβ(x− θ0)
∣∣∣∣.

This implies, by the same argument as encountered in the proof of 4, that,

sup
θ∈Θ

sup
x∈R

∣∣∣∣∣∣ ∂p̃k,β(x)
∂x

∣∣∣∣∣∣ < 1 ⇔ δ + ∆`1(c,w(β, ι)) < 1 ⇔ δ <
1− δ

`1(c,w(β, ι))

where `1(c,w(β, ι)) := ∑k
i=2wi(β, ι)|ci| is a weighted l1-norm on the vector c :=

(c2, ..., ck) with weights, as derived in the proof of Proposition 4, given by,

wi(β, ι) = (i− 2β)
(
−i+ ι

2β

) i+ι
2

exp
(
−i+ ι

2

)
, i = 2, ..., k

with ι =


−1 ∀ (β, i) : β < − (i+1)

i+1
2

2e(i−1)
i−1

2

1 otherwise
.
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Proof of Proposition 6

Follows immediately by Theorem 6.10 of Pötscher and Prucha (1997) that the uniform

bound supx∈R
∣∣∣ ∂p̃kT (x)/∂x

∣∣∣ < 1 together with {εt}t∈N being iid with ‖εt‖p <∞ and

‖x0‖p <∞ imply that {xt}t∈N is Lp-approximable by the mixing sequence {εt}t∈N with

supt ‖xt‖ <∞. The proofs of Propositions 4 and 5 reveal that supx∈R
∣∣∣ ∂p̃kT (x)/∂x

∣∣∣ <
1 under the stated conditions.
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