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Abstract

This paper presents the R package MitISEM, which provides an automatic and flexible
method to approximate a non-elliptical target density using adaptive mixtures of Student-
t densities, where only a kernel of the target density is required. The approximation can
be used as a candidate density in Importance Sampling or Metropolis Hastings methods
for Bayesian inference on model parameters and probabilities. The package provides also
an extended MitISEM algorithm, ‘sequential MitISEM’, which substantially decreases the
computational time when the target density has to be approximated for increasing data
samples. This occurs when the posterior distribution is updated with new observations
and/or when one computes model probabilities using predictive likelihoods. We illustrate
the MitISEM algorithm using three canonical statistical and econometric models that are
characterized by several types of non-elliptical posterior shapes and that describe well-
known data patterns in econometrics and finance. We show that the candidate distribution
obtained by MitISEM outperforms those obtained by ‘naive’ approximations in terms of
numerical efficiency. Further, the MitISEM approach can be used for Bayesian model
comparison, using the predictive likelihoods.

Keywords: finite mixtures, Student-t distributions, Importance Sampling, MCMC, Metropolis-
Hastings algorithm, Expectation Maximization, Bayesian inference, R software.

1. Introduction

There exist classes of statistical and econometric models where the joint and marginal pos-
terior distributions of the parameters have unknown analytical properties and non-elliptical
Bayesian Highest Posterior Density (HPD) credible sets, see e.g. Berger (1985). In such cases
it is not trivial to perform inference on the joint posterior distribution. Accurate estimation
of such non-elliptical posterior distributions, e.g. with multimodal or skewed shapes, may be
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very important for the measurement of uncertainty in forecasts and policy measures and this
phenomenon of non-elliptical shapes occurs frequently in empirical econometric analysis.

An important example is the class of instrumental variable models with weak instruments
like some of the income-education models relevant for government agencies responsible for
compulsory schooling laws. A second example is the class of mixture processes where one
component is nearly non-identified since it corresponds to very few observations, which may
occur in financial models with data that exhibit time varying volatility patterns and heavy
tails. A detailed analysis of this literature is beyond the scope of the present paper. For more
details on such econometric models we refer to Imbens and Angrist (1994) and Bos, Mahieu,
and Van Dijk (2000) and the references cited there. An important issue is that it is non-trivial
to simulate (pseudo-) random draws from such a non-elliptical joint posterior distribution in
a numerically efficient way. Even if simulation from the conditional distributions is relatively
easy, for example if application of the well-known Gibbs sampler is feasible, multi-modality
and/or high correlations between the model parameters may cause the Gibbs sampler to
converge extremely slowly or even yield erroneous results with a given sample of posterior
draws.

This paper presents the R package MitISEM, which provides an automatic and flexible method
to approximate a target density using adaptive mixtures of Student-t densities. The multi-
variate target density can be non-elliptical and only a kernel of the target density is required
for the MitISEM method. The target density is usually a posterior or a predictive density in
Bayesian inference. The approximation can – in a next stage – be used as a candidate density
in Importance Sampling or Metropolis Hastings methods, in particular for Bayesian inference
on model parameters and model probabilities. The MitISEM method has been introduced by
Hoogerheide, Opschoor, and Van Dijk (2012) and it has been shown that the method provides
substantial gains in computational efficiency in Bayesian estimation. The MitISEM method
makes use of convex combinations of densities, and the approximation properties of such den-
sity combinations have been analyzed extensively in the literature. For instance Zeevi and
Meir (1997) show that under certain conditions any density function may be approximated
to arbitrary accuracy by a convex combination of ‘basis’ densities. The class of mixture of
Student-t densities falls within this framework.

The basic algorithm in MitISEM iterates over importance weighted Expectation Maximization
steps in order to efficiently construct a mixture of Student-t densities to achieve an accurate
approximation of the target distribution. Starting with a single adapted Student-t density, a
new mixture component is added iteratively until the required approximation is reached. At
each iteration, parameters of each mixture component – including the mode, scale, degrees
of freedom and mixing probability – are optimized such that the Kullback-Leibler divergence
between target and mixture is minimized. The constructed mixture can then be used as a
candidate density for an efficient and robust application of either Importance Sampling (IS)
or the independence chain Metropolis-Hastings (MH) method.

We illustrate the MitISEM algorithm using a well-known statistical workhorse model from
Gelman and Meng (1991) that is characterized by a very non-elliptical joint distribution while
the conditional distributions are normal. We also use two classes of canonical econometric
models: the Instrumental Variables (IV) regression model and the Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) model. Both classes of models yield non-elliptical
posterior and predictive distributions for posterior and predictive densities. Furthermore, we
show that the MitISEM approach can be used for the evaluation of model probabilities from
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predictive likelihoods, which are useful for Bayesian model comparison. We also introduce an
R program for an adapted MitISEM algorithm as in Hoogerheide, Opschoor, and Van Dijk
(2012), named ‘sequential MitISEM’, which substantially decreases the computational time
required for the candidate density optimization, when the posterior distribution is updated
using new observations or when one computes model probabilities with predictive likelihoods.

The remainder of this paper is organized as follows: Section 2 discusses the basic an se-
quential MitISEM methods, and briefly addresses the Importance Sampling and Expectation
Maximization algorithms. Section 3 presents applications of the algorithm to several model
structures and datasets. Section 4 concludes.

2. Mixture of Student-t Distributions by IS weighted EM (MitISEM)

The mixture of Student-t distributions constructed by Importance Sampling weighted Expec-
tation Maximization is based on an iterative construction of a mixture of Student-t distribu-
tions (Hoogerheide, Opschoor, and Van Dijk 2012). The algorithm provides an automatic and
flexible method to construct a proposal density minimizing the Kullback-Leibler divergence
(or Cross-entropy distance) (Kullback and Leibler 1951) between two densities: the so-called
target density and the proposal density. Each new Student-t component in the proposal den-
sity covers the areas of the target density that are not well-approximated by the previous
proposal density. Parameters of the new Student-t component are quickly obtained using the
Importance Sampling weighted Expectation Maximization method.

Henceforth we use the notation f(θ) for the target density kernel of θ, the k-dimensional
vector of interest. f(θ) can be a posterior density kernel of model parameters or a density
kernel of data. In the former case we simplify the notation and remove the conditioning
on data for convenience. g(θ) is the candidate/proposal density, a mixture of H Student-t
densities such that:

g(θ) = g(θ|ζ) =
H∑
h=1

ηh tk(θ|µh,Σh, νh), (1)

where ζ is the set of modes µh, scale matrices Σh, degrees of freedom νh, and mixing proba-
bilities ηh (h = 1, . . . ,H) of the k-dimensional Student-t components with density:

tk(θ|µh,Σh, νh) =
Γ
(
νh+k

2

)
Γ
(νh

2

)
(πνh)k/2

|Σh|−1/2

(
1 +

(θ − µh)
′
Σ−1
h (θ − µh)
νh

)−(k+νh)/2

. (2)

Here Σh is positive definite, ηh ≥ 0 and
∑H
h=1 ηh = 1. We further restrict νh such that νh > 0,

but the user can adapt this lower bound.

The closest approach to MitISEM in the literature is the AdMit method (Hoogerheide,
Kaashoek, and Van Dijk 2007b), implemented in Ardia, Hoogerheide, and Van Dijk (2009a,b).
Both methods rely on the iterative construction of a mixture of Student-t densities as the
candidate density, but there are three substantial differences between these methods. First,
AdMit aims at minimizing the variance of the IS estimator, or the variance of the IS weights
directly, whereas MitISEM aims at this goal indirectly by minimizing the Kullback-Leibler
divergence. As a result, AdMit optimizes the mixture component weights using a non-linear
optimization procedure that requires considerable computational effort. Second, in the Ad-
Mit method, means and scale matrices of the candidate components are chosen heuristically
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and are never updated when additional components are added to the mixture, whereas in
MitISEM all mixture parameters are optimized jointly by means of the relatively quick EM
algorithm. This implies a large reduction of the computing time in the approximation proce-
dure, and is expected to lead to a better candidate in most applications. Third, as shown in
Hoogerheide, Opschoor, and Van Dijk (2012), AdMit requires the joint target density kernel,
whereas MitISEM requires candidate draws and importance weights. This implies that AdMit
can not be applied partially to the marginal and conditional posterior distributions of subsets
of parameters, whereas MitISEM can be used to approximate a marginal density of which no
kernel is explicitly available.

2.1. Background on Importance Sampling

Importance Sampling (Hammersley and Handscomb 1975; Kloek and Van Dijk 1978) is a
general method for estimating expectations of a function h(θ) of parameter θ where the
probability density function of θ is possibly non-standard. Given a density kernel f(θ) for
θ, Importance Sampling is based on draws from a candidate density g(θ) which is easy to
simulate from, instead of direct simulations from f(θ), and it is a reasonable approximation
to f(θ). The draws from the candidate density are weighted according to the Importance
Sampling (IS) weights. For a consistent estimator of the expectation of the function of θ,
E(h(θ)), the candidate should cover the whole domain of θ values with f(θ) > 0, and the
finite sample properties of the estimator improve if g(θ) is a good approximation to the target
kernel (Van Dijk 1984; Van Dijk, Hop, and Louter 1987; Geweke 1989; Hop and Van Dijk
1992). IS weights for parameter draws θ̃ from g(θ) are calculated as:

W̃ (θ̃) = f(θ̃)/g(θ̃), (3)

i.e. draws with highest IS weights correspond to the region of the target which is covered
relatively too little by the candidate density.

Cappé, Douc, Guillin, Marin, and Robert (2008) note that there is a renewed interest in
Importance Sampling, due to the possibility of parallel processing implementation. Numerical
efficiency in sampling methods is not only related to the efficient sample size or relative
numerical efficiency, but also to the possibility to perform the simulation process in a parallel
fashion. Unlike alternative methods such as the random walk Metropolis Hastings or the
Gibbs Sampler, Importance Sampling makes use of independent draws from the candidate
density, which in turn can be obtained from multiple core machines or computer clusters. See
Durham and Geweke (2011) for a very novel approach. We also comment on this possibility
in section 4.

2.2. Background on the Expectation Maximization Algorithm

The EM algorithm is a method (Dempster, Laird, and Rubin 1977) to achieve the Maximum
Likelihood estimates of parameters θ in models with incomplete data or latent variables. An
example of the latter case is the finite mixture model. For the use of the EM algorithm on
finite mixture models, we refer to e.g. McLachlan and Peel (2000); McLachlan and Krishnan
(2008).

If the latent variables would be observable, the computation of the Maximum Likelihood es-
timate of θ would be relatively straightforward, depending on the degree of nonlinearity of
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the first order conditions. The idea behind EM is to take the expectation of the objective
function, in most cases the log-likelihood function, with respect to the latent variables. The
expectation of the log-likelihood function is then maximized with respect to the model param-
eters. In most models, expectations of the latent variables depend on the model parameters
θ, hence the two steps are repeated until convergence.
As shown in Hoogerheide, Opschoor, and Van Dijk (2012), in the MitISEM approach, the
objective function corresponds to the logarithm of the candidate density g(.|ζ) evaluated at
a set of draws θi from a previous candidate g0(θ), where each candidate value log g(θi|ζ) is
weighted by the Importance Sampling weights W i ≡ f(θi)/g0(θi) of each draw θi from the
previous candidate g0(θ):

1
N

N∑
i=1

W i log g(θi|ζ)

where g(.|ζ) is the mixture of Student-t densities to be optimally chosen. Note that we use
an importance weighted EM algorithm, because we have candidate draws and corresponding
importance weights, rather than draws from the posterior density.
The mixture of Student-t densities (1) for θi is equivalent with the specification

θi ∼ N(µh, wihΣh) if zih = 1,

where zi is a latent H-dimensional vector indicating from which Student-t component the
‘observation’ θi stems: if θi stems from component h, then zih = 1, zij = 0 for j 6= h;
Pr[zi = eh] = ηh with eh the h-th column of the identity matrix; wih has the Inverse-Gamma
distribution IG(νh/2, νh/2). For a more extensive explanation of this mixture, see e.g. Peel
and McLachlan (2000).

2.3. The IS weighted EM algorithm

Here we stress that in literature the EM algorithm is typically used to find the optimal values
of model parameters that maximize the log-likelihood for a given set of data. Here we could
use EM to find the optimal mixture of Student-t distributions for a given set of posterior draws
that were obtained by MH and draws from a previous candidate. However, the IS-weighted
EM method has three advantages. First, we do not require a burn-in sample. Second, the use
of all candidate draws (without the rejections of the MH method) helps to prevent numerical
problems with estimating scale matrices of Student-t components; also draws with relatively
small, but positive importance weights are helpful for this purpose. Third, the use of all
candidate draws may lead to a better approximation.
As shown in Hoogerheide, Opschoor, and Van Dijk (2012), the L-th Expectation step for the
mixture of Student-t distributions is achieved as follows:

z̃ih ≡ E
[
zih

∣∣∣θi, ζ = ζ(L−1)
]

=
tk(θi|µh,Σh, νh) ηh∑H
j=1 tk(θi|µj ,Σj , νj) ηj

, (4)

z̃/w
i

h ≡ E

[
zih
wih

∣∣∣∣∣ θi, ζ = ζ(L−1)

]
= z̃ih

k + νh
ρih + νh

, (5)

ξih ≡ E
[
logwih

∣∣∣θi, ζ = ζ(L−1)
]

=

=

[
log

(
ρih + νh

2

)
− ψ

(
k + νh

2

)]
z̃ih +

[
log

(
νh
2

)
− ψ

(
νh
2

)]
(1− z̃ih), (6)
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δih ≡ E

[
1
wih

∣∣∣∣∣ θi, ζ = ζ(L−1)

]
=

k + νh
ρih + νh

z̃ih + (1− z̃ih), (7)

with ρih ≡ (θi−µh)′Σ−1
h (θi−µh), ψ(.) the digamma function (the derivative of the logarithm

of the gamma function log Γ(.)), and all parameters µh,Σh, νh, ηh elements of the set of can-
didate’s parameters ζ(L−1) optimized in the previous EM step (L−1). Given the expectation
of the latent variables in (4) to (7), parameters of each mixture component are updated using
the first order conditions of the expectation of the objective function in the Maximization
step:

µ
(L)
h =

[
N∑
i=1

W i z̃/w
i

h

]−1 [ N∑
i=1

W i z̃/w
i

h θ
i

]
, (8)

Σ̂(L)
h =

∑N
i=1W

i z̃/w
i

h (θi − µ(L)
h )(θi − µ(L)

h )′∑N
i=1W

i z̃ih
, (9)

η
(L)
h =

∑N
i=1W

i z̃ih∑N
i=1W

i
. (10)

Further, ν(L)
h is solved from the first order condition of νh:

− ψ(νh/2) + log(νh/2) + 1−
∑N
i=1W

i ξih∑N
i=1W

i
−
∑N
i=1W

i δih∑N
i=1W

i
= 0. (11)

Cappé et al. (2008) only update the expectations and scale structures of the Student-t dis-
tributions and not the degrees of freedom, because there is no closed-form solution for the
latter. The degrees of freedom parameter νh during the EM procedure is optimized to obtain
a better approximation of the target distribution. Furthermore, the resulting values of νh
(h = 1, . . . ,H) may provide information on the shape, e.g. kurtosis of the target distribution.

2.4. MitISEM: The basic algorithm

The Mixture of Student-t densities is constructed using the following steps:

Algorithm 1. The MitISEM approach for obtaining an approximation to a target density:

(0) Initialization: Simulate draws θ1, . . . , θN from the naive proposal density gnaive. First,
one obtains a Student-t distribution with a fixed degree of freedom. Second, the mode
and scale matrix equal to the target distribution’s mode and minus the inverse Hessian
of the log-target density kernel evaluated at the mode. The mode and scale of this initial
density are updated using the IS weighted EM algorithm.

(1) Adaptation: Estimate the target distribution’s mean and covariance matrix using IS
with the draws θ1, . . . , θN from gnaive. Use these estimates as the mode and scale matrix
of Student-t density gadaptive. Draw a sample θ1, . . . , θN from this adaptive Student-t
distribution g0 = gadaptive, and compute the IS weights for this sample.

(2) Apply the IS-weighted EM algorithm given the latest IS weights and the drawn
sample of step 1. The output consists of the new candidate density g with optimized
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ζ, the set of µh,Σh, νh, ηh (h = 1, . . . ,H). Draw a new sample θ1, . . . , θN from this
proposal density and compute corresponding IS weights.

(3) Iterate on the number of mixture components: Given the current mixture of H
components with corresponding µh,Σh, νh and ηh (h = 1, . . . ,H), take x% of the sample
θ1, . . . , θN that correspond to the highest IS weights. Construct with these draws and
IS weights a new mode µH+1 and scale matrix ΣH+1 which are starting values for the
additional component in the mixture candidate density. This choice ensures that the
new component covers a region of the parameter space in which the previous candidate
mixture had relatively too little probability mass. Given the latest IS weights and the
drawn sample from the current mixture of H components, apply the IS-weighted EM
algorithm to optimize each mixture component µh,Σh, νh and ηh with h = 1, . . . ,H+1.
Draw a new sample from the mixture of H + 1 components and compute corresponding
IS weights.

(4) Assess convergence using the IS weights and return to step 3 unless the algorithm
has converged.

In Step (0), we added a novel robustification by updating the initial proposal density using
an IS weighted EM step. Step (1) can be seen as an intermediate step which quickly tries to
improve the initial candidate distribution g0. If during the EM algorithm, a scale matrix Σh

of a Student-t component (with very small weight ηh) becomes (nearly) singular, then this
h-th component is removed from the mixture.

In Step (4) convergence can be assessed by computing the relative change in Coefficient of
Variation (CoV) of the IS weights, i.e. the standard deviation of the IS weights divided by
their mean, as in Hoogerheide, Opschoor, and Van Dijk (2012), who use the candidate from
MitISEM for Importance Sampling or the independence chain MH method. Zellner, Ando,
Baştürk, Hoogerheide, and Van Dijk (2012), who use the MitISEM candidate for rejection
sampling, propose an alternative criterion for the convergence of the MitISEM algorithm.
They use the unconditional acceptance probability, which is a more natural and intuitive
convergence criterion in this case. The default convergence in MitISEM is defined as the
change of the CoV being smaller than 10%, but the user can specify convergence in terms of
the acceptance probability. The convergence tolerance can also be altered by the user.

Starting values for ηH+1 and νH+1 are at each iteration set at 0.10 and 1, respectively. I.e. the
new component has fat tails, and a relatively low probability ex-ante. Starting values for µh,
Σh, and νh (h = 1, . . . ,H) are the optimal values in the previous mixture of H components,
while ηh (h = 1, . . . ,H) is 0.90 times the previously optimal value. Alternative initial values
for ηH+1 and νH+1 can be set by the user.

Finally, we introduce another novel robustification of the MitISEM method. With this robus-
tification, the given number of candidate draws that is used to construct the candidate does
not include draws for which the candidate density is 0. If the target density is concentrated in
a restricted parameter space, for example for a mixture GARCH model, the number of ‘use-
ful’ or ‘effective’ draws can be otherwise very smal,. especially the first steps of the MitISEM
algorithm. This robust simulation is the default simulation method in the provided package,
but can be disregarded by the user.
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2.5. Sequential MitISEM

This section presents the algorithm for ‘Sequential MitISEM’, proposed by Hoogerheide, Op-
schoor, and Van Dijk (2012). Sequential MitISEM applies MitISEM in a sequential manner,
so that the candidate distribution for posterior simulation is updated when new data become
available. The alternative to this method is to repeatedly apply the basic MitISEM approach
when new data become available. Such an ‘ad hoc’ approach, applying the whole MitISEM
algorithm from scratch to achieve multiple estimates over time, can be computationally inef-
ficient for example for daily Bayesian forecasts.
Sequential MitISEM relies on the possibility that the posterior for y1:T+1 = {y1, . . . , yT+1} is
similar to the posterior for data y1:T = {y1, . . . , yT }. One can check if the same candidate
can be used for the posterior density for the updated data, and ‘recycle’ the same candidate
distribution if the previous candidate is a good approximation to the posterior of the updated
data. Even if the ‘old’ candidate is not a good approximation to the updated data, it may
suffice to perform an update using the IS-weighted EM algorithm, keeping the number H
of Student-t components the same. If the resulting quality is still below a desired level,
then one can start the MitISEM algorithm for the updated data, adding components until
convergence. Note that the IS-weighted EM algorithm of MitISEM is much more suited
to perform (either small or large) adaptations than the AdMit method, since all student-t
components are updated.
Suppose that the MitISEM candidate is optimized for the data until time T and the data set
now includes observations upto time T + τ (τ = 1, 2, . . .). Define y1:T+τ = {y1, . . . , yT+τ}.
For the updated data until T + τ the Sequential MitISEM steps are as follows:

Algorithm 2. The Sequential MitISEM approach for obtaining a candidate density for the
posterior density for data y1:T+τ :

(1) Compute CoVr
T+τ , the CoV value (Coefficient of Variation of the IS weights) that is

based on the posterior density kernel for data y1:T+τ and the current, reused candidate
density.

(2) Compare CoVr
T+τ with CoVT , the CoV value for the same candidate and the posterior

for data, the last time when the candidate was updated. If the change is below a certain
threshold (10%), stop. Otherwise go to step (3).

(3) Run the IS-weighted EM algorithm with the current mixture of H Student-t densities as
starting values. Sample from the new distribution (with the same number of components
H) and compute IS weights and the corresponding CoVu

T+τ , the CoV value with only
an EM update. Since the IS-weighted EM algorithm updates all mixture components,
it can easily perform a useful shift of the candidate density.

(4) Compare CoVu
T+τ and CoVr

T+τ . If the change of quality is below a certain threshold
(10%), stop. Otherwise go to step (5).

(5) Iterate on the number of components until the CoV value has converged.

Note that the change in CoV value can be substantial if the new observation yT+1 is an outlier.
Steps (3) and (5) in that case will typically be required. A Student-t component is deleted
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from the mixture if the weight of this component is minimal. Hence the number of Student-t
components is not necessarily monotonically increasing over time. The default tolerance for
the required mixing probability is 10%, but this can be altered by the user. Further, in step
(2) CoVr

T+τ is compared with CoVT rather than the CoV for the posterior at time yT+τ−1,
since in the latter case a series of small increases of the CoV may eventually lead to a much
worse candidate density.

3. Applications

In the following subsections, we apply the MitISEM and the sequential MitISEM methods
to non-elliptical distributions arising from different canonical model structures. We first an-
alyze the conditionally normal distribution of Gelman and Meng (1991), which can have
non-elliptical shapes depending on the specific values of the function parameters. Second, we
consider a standard GARCH model and a mixture of GARCH model (for S&P 500 data),
which are classes of models extensively used in financial practice. Third, we consider an in-
strumental variables (IV) model (for income-education data). Both GARCH and IV models
yield non-elliptical distributions for posterior and predictive densities. For this reason, ob-
taining a good candidate density, for example for Importance Sampling or the independence
chain Metropolis Hastings method, is crucial for Bayesian estimation of the model parameters
as well as model probabilities.

We summarize the application of the R package MitISEM, and compare the performance of
the MitISEM method with a single, relatively ‘naive’ Student-t candidate density. The ‘naive’
density is still an adapted density, obtained by the IS weighted EM algorithm, with degrees
of freedom set as 1. The fat tails of the ‘naive’ candidate distribution (due to the low degrees
of freedom parameter 1) reduce the probability that relevant parts of the target distribution
are not covered by the ‘naive’ candidate. Still, despite the optimized mode and scale, this
density is expected to lead to a relatively poor approximation in particular for multimodal
target densities. In section 3.4, we also compare the performance of the AdMit and MitISEM
methods in terms of the approximation accuracy and computing time.

3.1. The Gelman-Meng distribution with banana shape

In this section we illustrate the MitISEM approach with a non-elliptical, bivariate distribution
proposed by Gelman and Meng (1991). The target density kernel is:

f (x1, x2) = exp
{
−0.5

(
Ax2

1 + x2
1 + x2

2 − 2Bx1x2 − 2C1x1 − 2C2x2

)}
, (12)

where (x1, x2)′ plays the role of the vector of interest θ.

In order to obtain the MitISEM approximation to the density f(x1, x2) one first defines the
target density kernel (see also Ardia, Hoogerheide, and Van Dijk (2009b)) and an initial point
for the optimization in step (0):

> set.seed(1111)
> GelmanMeng <- function(x, A = 1, B = 0, C1 = 3, C2 = 3, log = TRUE){
+ if (is.vector(x))
+ x <- matrix(x, nrow = 1)
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+ r <- -0.5 * (A*x[,1]^2*x[,2]^2 + x[,1]^2 + x[,2]^2 - 2*B*x[,1]*x[,2] -
+ 2*C1*x[,1] - 2*C2*x[,2])
+ if (!log)
+ r <- exp(r)
+ as.vector(r)
+ }
> mu0<-c(3,4)
> App.GM <- MitISEM(KERNEL=GelmanMeng,mu0=mu0)

The output of the function MitISEM is a list. The first component is CV, a vector containing the
coefficient of variation at each step of the adaptive fitting procedure. The second component is
mit, a list consisting of the modes (mu), scale matrices (Sigma), degrees of freedom parameters
(df) and mixing probabilities (p) of the mixture of Student-t distributions constructed by
MitISEM. The third component is summary, a data frame containing information on the
adaptive fitting procedure, which will be explained in the GARCH example.

Similarly, the ‘naive’ approximation results are obtained by restricting the candidate density
in the MitISEM approximation to have a single multivariate Student-t component where the
degrees of freedom parameter is 1 by default and it is not optimized in the MitISEM algorithm:

> control <- list(optim.df=FALSE,Hmax=1)
> app.Naive <- MitISEM(KERNEL=GelmanMeng,mu0=mu0,control=control)

After obtaining the MitISEM approximation, the Student-t components of the obtained can-
didate can be plotted as follows:

> mit <- App.GM$mit
> x1 <- seq(-2,6,0.05)
> x2 <- seq(-2,7,0.05)
> H <- length(mit$p)
> Mitcontour <- function(x1,x2,mit,log=FALSE){
+ dMit(cbind(x1,x2),mit=mit,log=log)
+ }
> for (h in 1:H){
+ mit.h <- mapply(function(x)(as.matrix(x)[h,]),mit,SIMPLIFY=FALSE)
+ mit.h$mu = matrix(mit.h$mu,nrow=1)
+ mit.h$Sigma = matrix(mit.h$Sigma,nrow=1)
+ mit.h$p = 1
+ z <- outer(x1,x2,FUN=Mitcontour,mit=mit.h)
+ contour(x1,x2,z,col=h,lty=h,labels="",add=(h!=1),xlab="x1",ylab="x2",
+ main="MitISEM approximation")
+ }
> legend("topright",paste("component ",1:H),lty=1:H,col=1:H)

We first set A = 1, B = 0, C1 = C2 = 3 in equation (12). This selection of parameters in (12)
leads to a non-elliptical banana shape in the target kernel, as shown in the top-left panel in
Figure 1. We compare the performance of the MitISEM approach with a ‘naive’ density. For
both approximations we use N = 104 draws to form the mixture components. Figure 1 shows
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the target density kernel and approximations by the naive and MitISEM approximations,
the computational time and CoV measures for both approximations. The naive Student-t
density captures only one mode of the target distribution while the MitISEM approximation
captures the banana shape in the target kernel, with 4 components. The accuracy measure,
the coefficient of variation (CoV) of the importance weights, is substantially different for the
two methods: the CoV is more than four times lower for the MitISEM candidate.

−2 0 2 4 6

−2

0

2

4

6

x1

x2

x1

x2
  

  

  

  

  

  

  

  

  

−2 0 2 4 6

−
2

0
2

4
6

  

  

    

  

  

  

  

  

  
  

  

  

  

    

  
  

  

  

  

  

  

  

  

  

  

component  1
component  2
component  3
component  4

target kernel composition of the MitISEM candidate

−2 0 2 4 6

−2

0

2

4

6

x1

x2

−2 0 2 4 6

−2

0

2

4

6

x1

x2

MitISEM candidate (4 components) Naive candidate
CoV: 0.34, time: 29.02 seconds CoV: 1.50, time: 0.53 seconds

Figure 1: Bimodal target density kernel, approximation by the naive Student-t density
(achieved by Step 0 and Step 1 of the MitISEM algorithm), and optimal MitISEM candi-
date for the Gelman & Meng distribution with A = 1, B = 0, C1 = C2 = 3.

3.2. The Gelman-Meng distribution with diamond shape

In this section we set A = 1, B = C1 = C2 = 0 in the Gelman Meng kernel in equation (12),
a choice that was analyzed in Hoogerheide, Kaashoek, and Van Dijk (2003). This choice of
parameters leads to a diamond shape in the target density kernel as shown in the top-left
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graph in Figure 2.
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Figure 2: Posterior kernel, approximation by the naive Student-t density and the optimal
MitISEM candidate for the Gelman & Meng distribution with A = 1, B = C1 = C2 = 0.

We compare the precision of the naive and MitISEM approximations of the target density.
Figure 2 presents these approximations of the target density. Similar to the previous case,
the MitISEM approximation is more precise. This example shows that also in case of a target
distribution that is relatively close to an elliptical distribution, the MitISEM method can be
useful. Here the MitISEM algorithm stops quickly with adding Student-t components and
still provides a substantially better approximation of the target density than the alternative
approaches.

3.3. The posterior distribution of a GARCH(1,1) model

In this subsection the MitISEM approach is applied to the posterior density of a GARCH (1,1)
model (Bollerslev 1986). The standard GARCH model and its extensions may adequately
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capture changing volatility patterns, but the likelihood function, hence the posterior density
under an uninformative prior may have non-elliptical shapes (Zivot 2009).

For the applications of GARCH models we use the S&P 500 index percentage log-returns
(100 times the change of the logarithm of the closing price) from January 2 1998 to December
26 2002. Figure 3 shows the returns data and their histogram.1 These data are characterized
by changing volatility patterns as well as fat tails. For this reason, several extensions of the
standard GARCH models are proposed to capture such data patterns. We first illustrate the
use of the MitISEM approach for the Bayesian estimation of the standard GARCH model for
this data. An extended GARCH model, possibly leading to relatively more irregular posterior
densities, is considered in the next subsection.
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Figure 3: Daily log-returns of the S&P 500 index for the period from January 2 1998 to
December 26 2002 .

The standard GARCH(1,1) model for a time series yt (t = 1, 2, . . . , T ) is given by

yt = µ+
√
ht εt, (13)

ht = ω + α(yt−1 − µ)2 + βht−1, (14)
εt ∼ N(0, 1) i.i.d. (15)

with ht the conditional variance of yt given the information set It−1 = {yt−1, yt−2, yt−3, . . .}.
In addition, h0 is treated as a known constant, set as the sample variance of the time series
yt, which will consist of daily stock index (log) returns in our paper.

We restrict ω > 0, α ≥ 0 and β ≥ 0 to ensure positivity of ht. We specify flat priors for
the model parameters. Moreover, we truncate ω and µ such that these have proper (non-
informative) priors. For the k = 4 dimensional parameter vector θ = (µ, ω, α, β), we have
a uniform prior on [−1, 1] × (0, 1] × [0, 1) × [0, 1) with α + β < 1 which implies covariance
stationarity.

The posterior density for the GARCH(1,1) model is implemented as follows:

1Standard and Poor’s (S&P) 500 data can be obtained from several sources online, e.g. from http://

finance.yahoo.com.

http://finance.yahoo.com
http://finance.yahoo.com


14 The R package MitISEM

> prior.GARCH<-function(omega,beta,alpha,mu,log=TRUE){
+ c1 <- (omega>0 & omega <1 & beta>=0 & alpha>=0)
+ c2 <- (beta + alpha< 1)
+ c3 <- (mu>-1 & mu<1)
+ r1 <- c1 & c2 & c3
+ r2 <- rep.int(-Inf,length(omega))
+ r2[r1==TRUE] <- 1
+ if (!log)
+ r2 <- exp(r2)
+ cbind(r1,r2)
+ }
> post.GARCH <- function(theta,data,h1,log=TRUE){
+ if (is.vector(theta))
+ theta <- matrix(theta, nrow = 1)
+ omega <- theta[,1]
+ beta <- theta[,2]
+ alpha <- theta[,3]
+ mu <- theta[,4]
+ N <- nrow(theta)
+ pos <- 2:length(data)
+ prior <- prior.GARCH(omega=omega,beta=beta,alpha=alpha,mu=mu)
+ d <- rep.int(-Inf,N)
+ for (i in 1:N){
+ if (prior[i,1] == TRUE){
+ h <- c(h1, omega[i] + alpha[i] * (data[pos-1]-mu[i])^2)
+ for (j in pos)
+ h[j] <- h[j] + beta[i] * h[j-1]
+ tmp <- dnorm(data[pos],mu[i],sqrt(h[pos]),log=TRUE)
+ d[i] <- sum(tmp) + prior[i,2]
+ }
+ }
+ if (!log) d <- exp(d)
+ as.numeric(d)
+ }

The function prior.GARCH is coded outside the kernel function to render the program more
readable and more flexible. The function prior.GARCH tests whether the constraints are
fulfilled, and outputs a (N × 2) matrix whose first column indicates if the constraints are
satisfied, and the second column returns the value of the prior at the corresponding point.
Given the data vector/matrix and an initial point satisfying the prior parameter constraints,
the MitISEM approximation is obtained. Posterior parameter draws can then be obtained
using the Metropolis-Hastings or rejection sampling algorithm given the candidate constructed
by MitISEM, or one can estimate posterior moments using Importance Sampling. In order to
use the MitISEM candidate for Importance Sampling or the Metropolis Hastings algorithm,
one can make use of the function AdMitIS or AdMitMH provided by the R package AdMit,
since these functions just perform IS or MH using a given mixture of Student-t candidate:
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> data(SP500)
> theta <- c(0.08, 0.86, 0.02, 0.03)
> names(theta) <- c("omega","beta","alpha","mu")
> h1 <- var(data);
> set.seed(1111)
> app.GARCH <- MitISEM(KERNEL=post.GARCH,mu0=theta,h1=h1,data=data)
> app.GARCH$summary

H METHOD TIME CV
1 1 BFGS 1.91 0.8619167
2 1 IS-EM 63.13 0.4592493
3 2 IS-EM 126.33 0.4027914
4 3 IS-EM 137.03 0.3979564
> IS.GARCH <- AdMitIS(N = 10e4, KERNEL=post.GARCH,
+ mit=app.GARCH$mit,data=data,h1=h1)
> IS.GARCH
$ghat
[1] 0.08865471 0.84870010 0.10627791 0.03348575
$NSE
[1] 1.166434e-04 1.135065e-04 7.701554e-05 1.168803e-04
$RNE
[1] 0.6902620 0.7016991 0.7181217 0.8564122

The summary output of the function MitISEM is a data frame containing information on
the adaptive fitting procedure: H is the number of Student-t components; METHOD indicates
whether the IS-weighted EM algorithm has been used to optimize the candidate; TIME gives
the computing time required for this optimization; CV gives the coefficient of variation of the
importance sampling weights. The output of the function AdMitIS is a list. The first compo-

nent is ghat, the importance sampling estimator Ĝ =
∑N

i=1
W iG(θi)∑N

i=1
W i

of the property of interest

E[G(θ)], which is in our case the posterior mean of the parameters. The second component
is NSE, a vector containing the numerical standard errors (i.e., the standard deviation of the
estimates that can be expected if the simulations were to be repeated) of the components
of ghat. The third component is RNE, a vector containing the relative numerical efficiencies
of the components of ghat (i.e., the ratio between the estimated variance of a hypothetical
estimator based on direct sampling and the importance sampling estimator’s estimated vari-
ance with the same number of draws). RNE is an indicator of the efficiency of the chosen
importance density; if target and importance densities coincide, RNE equals one, whereas a
very poor importance density will have a RNE close to zero. Both NSE and RNE are estimated
by the method given in Geweke (1989). For estimating E[G(θ)] the N candidate draws are
approximately as ‘valuable’ as RNE × N independent draws from the target would be.

The MitISEM approximation of the posterior density consists of 3 Student-t components. The
low CoV values and the high RNE values show that the MitISEM candidate approximates
the posterior density accurately.

3.4. The posterior distribution of a mixture GARCH(1,1) model
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In this subsection the MitISEM approach is applied to the non-elliptical posterior distribution
in the two-component Gaussian Mixture GARCH (1,1) model of Auśın and Galeano (2007).
For the Bayesian estimation of this model, Auśın and Galeano (2007) propose a Griddy-
Gibbs sampler (Ritter and Tanner 1992), since the recursive structure of the likelihood in
GARCH-type models implies that a regular Gibbs sampling approach is not feasible.

The Griddy-Gibbs sampler is known to be very slow. As an alternative we use Importance
Sampling with a candidate density resulting from the MitISEM algorithm, and compare the
performance of the MitISEM candidate density with the naive Student-t candidate density
and a candidate obtained from the AdMit method.

The two-component Gaussian mixture GARCH(1,1) model for the returns yt (t = 1, 2, . . . , T )
is given by

yt = µ+
√
ht εt, (16)

ht = ω + α(yt−1 − µ)2 + βht−1, (17)

εt ∼
{
N(0, σ2) with probability ρ,
N(0, σ2/λ) with probability 1− ρ,

(18)

with ht the conditional variance of yt given the information set It−1 = {yt−1, yt−2, yt−3, . . .}.
In addition, 0 < λ < 1, and σ2 ≡ 1/(ρ + (1 − ρ)/λ) so that var(εt) = 1; h0 is treated as a
known constant, set as the sample variance of the return series. We restrict ω > 0, α ≥ 0 and
β ≥ 0 to ensure positivity of ht. We follow Auśın and Galeano (2007) by imposing the prior
restriction 0.5 < ρ < 1, so that it is ensured that the state with smaller variance has larger
probability than the state with larger variance. The mixture distribution in (18) has fatter
tails than a Gaussian distribution. We follow Auśın and Galeano (2007) also in specifying flat
priors for the model parameters. Moreover, we truncate ω and µ such that these have proper
(non-informative) priors. For the k = 6 dimensional parameter vector θ = (ρ, λ, µ, ω, α, β),
we have a uniform prior on (0.5, 1] × (0, 1) × [−1, 1] × (0, 1] × [0, 1) × [0, 1) with α + β < 1
which implies covariance stationarity.

The posterior density for the Gaussian mixture GARCH(1,1) model is implemented as follows:

> prior.mGARCH<-function(omega, lambda, beta, alpha, rho, mu, log=TRUE){
+ c1 <- (omega>0 & omega<1 & beta>=0 & alpha>=0)
+ c2 <- (beta + alpha< 1)
+ c3 <- (lambda>=0 & lambda<=1)
+ c4 <- (rho>0.5 & rho<1)
+ c5 <- (mu>-1 & mu<1)
+ r1 <- c1 & c2 & c3 & c4 & c5
+
+ r2 <- rep.int(-Inf,length(omega))
+ tmp <- log(1/2) # uniform prior
+ r2[r1==TRUE] <- tmp
+
+ if (!log)
+ r2 <- exp(r2)
+ cbind(r1,r2)
+ }
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> post.mGARCH <- function(theta, data, h1, log = TRUE){
+ if (is.vector(theta))
+ theta <- matrix(theta, nrow = 1)
+ omega <- theta[,1]
+ lambda <- theta[,2]
+ beta <- theta[,3]
+ alpha <- theta[,4]
+ rho <- theta[,5]
+ mu <- theta[,6]
+ N <- nrow(theta)
+ pos <- 2:length(data) # # observation index (removing 1st)
+ prior <- prior.mGARCH(omega=omega,lambda=lambda,beta=beta,alpha=alpha,
+ rho=rho,mu=mu)
+ d <- rep.int(-Inf,N)
+ for (i in 1:N){
+ if (prior[i,1] == TRUE){
+ h <- c(h1, omega[i] + alpha[i] * (data[pos-1]-mu[i])^2)
+ for (j in pos){
+ h[j] <- h[j] + beta[i] * h[j-1]
+ }
+ sigma <- 1 / (rho[i] + ((1-rho[i]) / lambda[i]))
+ tmp1 <- dnorm(data[pos],mu[i],sqrt(h[pos]*sigma),log=TRUE)
+ tmp2 <- dnorm(data[pos],mu[i],sqrt(h[pos]*sigma/lambda[i]),log=TRUE)
+
+ tmp <- log(rho[i] * exp(tmp1) + (1-rho[i]) * exp(tmp2))
+ d[i] <- sum(tmp) + prior[i,2]
+ }
+ }
+ if (!log)
+ d <- exp(d)
+ as.numeric(d)
+ }

Given the data vector/matrix data the MitISEM approximation is calculated starting from
an initial point satisfying the prior parameter constraints. Posterior parameter draws (or
appropriately weighted candidate draws) are then obtained using the Metropolis-Hastings
algorithm (or Importance Sampling) given the candidate constructed by MitISEM.

Given the MitISEM candidate, one can again obtain Importance Sampling results using the
AdMitIS function provided by the R package AdMit:

> data(SP500)
> mu0 <- c(0.08, 0.37, 0.86, 0.03, 0.82, 0.03)
> names(mu0) <- c("omega","lambda","beta","alpha","p","mu")
> h1 = var(data); # initial variance
> app.mGARCH <- MitISEM(KERNEL=post.mGARCH,mu0=mu0,h1=h1,data=data)
> app.mGARCH <- MitISEM(KERNEL=post.mGARCH,mu0=mu0,h1=h1)
> app.mGARCH$summary
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H METHOD TIME CV
1 1 BFGS 4.22 1.5817680
2 1 IS-EM 72.58 1.1987712
3 2 IS-EM 148.02 1.0519608
4 3 IS-EM 141.15 0.9878679
> IS.mGARCH <- AdMitIS(N = 10e4, KERNEL=post.mGARCH, mit=app.mGARCH$mit,
+ data=data,h1=h1)
> print(IS.mGARCH,2)
$ghat
[1] 0.079 0.369 0.862 0.098 0.787 0.029
$NSE
[1] 0.00054 0.00170 0.00050 0.00033 0.00231 0.00050
$RNE
[1] 0.32 0.25 0.35 0.39 0.29 0.46

Whereas MitISEM yields a mixture of 3 Student-t components, AdMit yields a mixture of
5 Student-t components. That AdMit requires more components reflects MitISEM’s superi-
ority, since it jointly optimizes all Student-t components. The conditional posterior density
kernel of parameters (ρ, λ) given the posterior means of the other parameters and the approx-
imations by three methods are shown in Figure 4. The MitISEM density is clearly the best
approximation of the posterior. Table 1 and Table 2 show that for this example, both naive
and MitISEM candidates outperform the AdMit approximation in terms of the importance
weights’ CoV, and in terms of the NSEs of the estimated posterior means. There are two
reasons for the better performance of the naive candidate compared with the AdMit candi-
date. First, the IS-weighted EM algorithm implies that the naive candidate’s single Student-t
distribution is specified in an optimal way. Second, the novel robustification introduced in this
paper, discarding candidate draws outside the ‘allowed range’ from the number of candidate
draws during the construction of a new candidate, ensures that enough relevant, ‘allowed’ can-
didate draws are obtained for the construction of the naive candidate. In particular for target
densities with several parameter restrictions, such as the posterior in the mixture GARCH
model, this robustification is important. Further, the additional Student-t components of the
MitISEM candidate imply that it has a higher accuracy than the naive candidate. Here we
make two additional remarks on the comparison between the naive, AdMit and MitISEM
method. First, if we require simulation results with a certain very high precision, then Mi-
tISEM would obviously require much fewer draws than the alternative methods, so that the
total computing time (for both the construction and the subsequent use of the candidate
density) would be shorter for MitISEM. Second, the higher quality of the MitISEM approx-
imation of the target density implies that there is less risk that a relevant part of the target
distribution is ‘missed’, for example in case of a multimodal target distribution, which would
possibly cause substantially biased results for the other methods.

3.5. Predictive likelihood for a mixture GARCH(1,1) model

In this subsection we show the candidate density obtained by the MitISEM method can
be used to accurately calculate a model’s predictive likelihood. The calculation of model
probabilities can be based on the models’ marginal likelihoods or the predictive likelihoods,
where the former are problematic under non-informative priors on parameters that only occur
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Table 1: Summary of naive, AdMit and MitISEM candidates for the mixture GARCH(1,1)
model for S&P 500 data. The table reports number of Student-t components (# t), opti-
mization method, time (in seconds) and CoV for all compared algorithms. Candidates are
constructed using by 104 draws.

algorithm # t components time (seconds) CoV
AdMit 5 419.48 1.99
naive 1 72.82 1.22
MitISEM 3 365.97 0.99

Table 2: Posterior means of parameters in mixture GARCH(1,1) model and Numerical Stan-
dard Errors (NSE) of the IS estimates using the naive, AdMit and MitISEM candidates for
the S&P 500 data. Candidate approximations and posterior results are based on 104 and 103

draws, respectively.

Posterior mean NSE ×100
AdMit naive MitISEM AdMit naive MitISEM

ω 0.08 0.08 0.08 0.07 0.06 0.05
λ 0.37 0.37 0.37 0.17 0.20 0.17
β 0.86 0.86 0.86 0.07 0.06 0.05
α 0.10 0.10 0.10 0.06 0.04 0.03
ρ 0.79 0.79 0.79 0.30 0.28 0.23
µ 0.03 0.03 0.03 0.07 0.07 0.05

in one of the models, in the sense that the ‘smaller’ model may be favored even if the ‘larger’
model is the true Data Generating Process (DGP) (Bartlett 1957). The MitISEM package
provides functions to calculate the marginal or predictive likelihood of a model given its
posterior density kernel and a candidate density obtained by the MitISEM method. The
reason is that the computation of marginal or predictive likelihoods is an important ingredient
of many Bayesian analyses.

The predictive likelihood of a model M1 is obtained by splitting the data y = (y1, . . . yT ) into
y∗ = (y1, . . . ym) and ỹ = (ym+1, . . . yT ) (Gelfand and Dey 1994; Eklund and Karlsson 2007):

p(ỹ|y∗,M1) =
∫
p(ỹ|θ1, y∗,M1)p(θ1|y∗,M1)dθ1, (19)

which is the marginal likelihood if we consider ỹ as ‘the data’ and p(θ1|y∗,M1), the exact
posterior density after observing y∗, as the prior. Using Bayes’ rule for this exact posterior
density p(θ1|y∗,M1) and substituting into (19) yields

p(ỹ|y∗,M1) =
∫
p(y|θ1,M1)p(θ1|M1)dθ1∫
p(y∗|θ1,M1)p(θ1|,M1)dθ1

. (20)

Hence this predictive likelihood is the ratio of the marginal likelihood for all observations over
the marginal likelihood for the first part of the data.



20 The R package MitISEM

0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ

λ

0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ

λ

conditional posterior naive candidate

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.2

0.4

0.6

0.8

ρ

λ

0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ

λ

AdMit candidate MitISEM candidate
5 components 3 components

Figure 4: Conditional posterior density kernel of (ρ, λ) given posterior means of the other
parameters (ω, β, α, µ) in the mixture GARCH(1,1) model together with the naive, AdMit
and MitISEM approximations

As an illustration, we apply the model in (16)–(18) to S&P 500 data and perform the
simulation-based computation of the predictive likelihoods. We also compare the perfor-
mance of the MitISEM candidate with a ‘naive’ candidate. The first half of the observations
are regarded as the ‘training sample’ y∗ = (y1, . . . ym). The calculation of the predictive
likelihood for this example is implemented as:

> data(SP500)
> y.ss <- y[1:626] # subsample of data
> h1 = var(y); # initial variance
> KERNEL = match.fun(post.mGARCH) # posterior density
> N <- 1e3 # # draws for IS
> mu0 <- c(0.08, 0.37, 0.86, 0.03, 0.82, 0.03) # initial parameters



Nalan Baştürk, Lennart Hoogerheide, Anne Opschoor, Herman K. van Dijk 21

> names(theta) <- c("omega","lambda","beta","alpha","p","mu")
> # full sample approximation
> mit.fs <- MitISEM(KERNEL=KERNEL,mu0=mu0,y=y,h1=h1)$mit
> # subsample approximation
> mit.ss <- MitISEM(KERNEL=KERNEL,mu0=mu0,y=y.ss,h1=h1)$mit
> # predictive likelihood
> PL.mGARCH <- PredLik(N=N,mit.fs=mit.fs$mit,mit.ss=mit.ss$mit,KERNEL=KERNEL,
+ y.fs=y,y.ss=y.ss,h1=h1)

In order to calculate the accuracy of the estimates, we replicate the predictive likelihood
calculation 50 times. Table 3 shows simulation results where the average predictive likelihoods
and Numerical Standard Errors are calculated from 50 replications. The candidates for all
cases are calculated using 104 draws, and the estimated predictive likelihood values are based
on 103 draws, where the latter was done to decrease the computing time of the 50 repetitions.

Table 3: Approximation and predictive likelihood for the mixture of GARCH model. Candi-
date approximations and posterior results are based on 104 and 103 draws, respectively. Mean
and Numerical Standard Error (NSE) for each estimate is based on 50 replications.

# t components Predictive likelihood
full sample training sample mean ×10470 NSE ×10472

3 3 1.68 1.25

The MitISEM candidate consists of three mixture components for both the training sample
and the full sample, indicating highly non-elliptical posterior shapes for both datasets. Despite
these irregularities in the posterior densities, the small NSE reported in Table 3 shows that,
even with the relatively small number of posterior draws, calculated predictive likelihoods for
this model are quite accurate given the MitISEM approximation to the posterior density.

3.6. Computing a sequence of predictive likelihoods using Sequential Mi-
tISEM

We next apply the Sequential MitISEM algorithm to the two-component mixture GARCH
model with the S&P 500 data. Sequential MitISEM is used to efficiently construct a series of
candidates that approximate posteriors for increasing data sets, where the candidate can be
used for estimation of posterior moments, marginal likelihoods or predictive likelihoods. In
this example we consider the latter. We use the first half of the observations as the training
sample y∗ (for the marginal likelihood in the denominator of the predictive likelihood (20)).
At each time t = 1203, . . . , 1217, the predictive likelihood is computed while the training
sample y∗ is kept fixed. Such a sequence of updated predictive likelihoods could be used in an
application of Bayesian Model Averaging (BMA), combining forecasts from several models at
each time t = 1203, . . . , 1217 by weighting these with the estimated model probabilities. Once
the posterior kernel is specified, the sequential MitISEM approximations can be obtained as
follows:

> data(SP500)
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> mu0 <- c(0.08, 0.37, 0.86, 0.03, 0.82, 0.03) # initial parameters
> names(mu0) <- c("omega","lambda","beta","alpha","p","mu")
> h1 = var(data) # initial variance
> # MitISEM approximation to the initial sample
> data.ss <- data[1:floor(length(data)/2)]
> MitISEMapp.subsample <- MitISEM(KERNEL=post.mGARCH,mu0=mu0,,h1=h1,data=data.ss)
> # Sequential MitISEM applied to updated samples
> control.seq <- list(T0 = 1203,tau=1:20)
> app.mGARCH.SeqMitISEM <- SeqMitISEM(data,KERNEL=post.mGARCH,mu0,
+ control.seq=control.seq,h1=h1)

Table 4 presents the number of mixture components, CoV values and estimated predictive
likelihoods for each sequential algorithm, and provides more details about the results of the
Sequential MitISEM algorithm. Note that for the calculation of predictive likelihoods in
increased data samples, an ‘ad hoc’ MitISEM procedure would be applied 14 times, while the
Sequential MitISEM ‘extends’ the candidate density only once, for the sample size of 1213.
In the remaining time periods, the candidate is simply ‘reused’, with minimal computational
time.

Table 4: Predictive Likelihoods for the mixture GARCH model using Sequential MitISEM.
Candidate approximations and posterior results are based on 104 and 103 draws, respectively.

#observations # t components CoV Predictive Likelihood
1203 2 1.00 0.35×10433

1204 2 0.94 0.38×10434

1205 2 0.97 0.61×10435

1206 2 1.01 0.80×10436

1207 2 0.95 1.31×10437

1208 2 0.97 0.27×10438

1209 2 1.01 0.37×10439

1210 2 1.07 0.51×10440

1211 2 0.97 0.94×10441

1212 2 1.04 0.20×10442

1213 4 0.89 0.42×10443

1214 4 0.94 1.00×10444

1215 4 1.01 1.41×10445

1216 4 0.97 0.32×10446

1217 4 1.00 0.80×10447

Sequential MitISEM steps
# reused 13
# adapted 0
# adapted and extended 1
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3.7. Model Probabilities from predictive likelihoods for an IV model

In this section we apply the MitISEM algorithm to an Instrumental Variables (IV) model that
describes the effect of education on income. Our IV model with one explanatory endogenous
variable and p instruments is defined by (Bowden and Turkington 1990):

y = xβ + ε, (21)

x = zΠ + v, (22)

where y is the N × 1 vector of the dependent variable income, x is the N × 1 vector of the
endogenous explanatory variable, education, z is the N × p matrix of instruments and all
variables are demeaned i.e. y, x and z do not include a constant term. The residuals are
assumed to come from a normal distribution: (ε′, v′)′ ∼ NID(0,Σ⊗ I).

The posteriors resulting from the IV model in (21)-(22) are non-standard due to the possible
‘endogeneity’ of the variable x. The endogeneity problem in the model simply arises from
the correlation between the structural errors: if the covariance matrix Σ is diagonal, the
IV model simplifies to a simple regression model, with elliptical posterior densities (Zellner
1971). Therefore the instruments are only necessary if the correlation between the structural
errors, ρ ≡ corr (εi, νi) is different from zero. The effect of latent abilities (leading to both a
higher education and a higher income given a certain education level) may cause a positive
correlation ρ, whereas measurement errors in observed education may cause a negative ρ.
Under conventional flat priors, the posterior density for the parameters for the IV model is
non-standard (Drèze 1976, 1977; Kleibergen and Van Dijk 1998). For an exactly identified
model with a single instrument, the posterior density resulting from this model is improper.
We specify a Jeffreys prior (see e.g. Hoogerheide, Kleibergen, and Van Dijk (2007a)), which
leads to a proper posterior density. The posterior density of the model in (21)-(22) under the
Jeffreys prior can be implemented as:

> KERNEL<-function(theta,data,scale=0,log=TRUE){
+ if(is.vector(theta))
+ theta = matrix(theta,nrow=1)
+
+ y <- data[,1] # dependent variable
+ x <- data[,2] # endogenous variable
+ z <- data[,3] # instrument
+
+ # (log) Jeffreys prior p(beta,Pi,Sigma) = |Pi|*(|Sigma|^(-2))
+ # for an IV model with a single instrument
+ Jeff.prior<-function(beta, Pi,Sigma11,rho, Sigma22){
+ # check covariance constraints
+ c1 <- (Sigma11 > 0)
+ c2 <- (Sigma22 > 0)
+ c3 <- (rho > -1)
+ c4 <- (rho < 1)
+
+ r1 <- c1 & c2 & c3 &c4
+ r2 <- rep.int(-Inf,length(Sigma11))
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+ r2[r1==TRUE] <- log(abs(Pi[r1==TRUE])) - 2* log(Sigma11[r1==TRUE] *
+ Sigma22[r1==TRUE] * (1- rho[r1==TRUE]^2))
+ return(cbind(r1,r2))
+ }
+ if (is.vector(theta))
+ theta <- matrix(theta, nrow = 1)
+
+ logprior <- Jeff.prior(theta[,1],theta[,2],theta[,3],theta[,4],theta[,5])
+ rcov <- logprior[,1]==TRUE # covariance restriction
+
+ # determinant and exponent factors in likelihood for each parameter set
+ fn_aux <- function(theta_aug,y,x,z){
+ # covariance matrix
+ tmp <- matrix(c(theta_aug[3],theta_aug[4],theta_aug[4],theta_aug[5]),2,2)
+ # log-determinant
+ detfac <- log(det(tmp))
+ # (log) exponent
+ beta <- theta_aug[1]
+ Pi <- theta_aug[2]
+ res <- cbind(y - x * beta,x - z * Pi)
+ SigmaInv <- solve(tmp)
+ S <- SigmaInv %*% crossprod(res)
+ expfac <- -0.5*sum(diag(S))
+ (c(detfac,expfac))
+ }
+ # covariance matrix from correlations
+ theta_aug = theta[rcov,]
+ if(is.vector(theta_aug))
+ theta_aug = matrix(theta_aug,nrow=1)
+ Sigma12 <- theta[rcov,4] * sqrt(theta[rcov,3] * theta[rcov,5])
+ theta_aug[,4] = Sigma12
+
+ # log posterior
+ T <- length(y)
+ d <- rep.int(-Inf,nrow(theta))
+ if(any(rcov)){
+ tmp_1 = t(apply(theta_aug,1,FUN=fn_aux,y=y,x=x,z=z))
+ d[rcov] = - (T/2)* tmp_1[,1] + tmp_1[,2] + logprior[rcov,2]
+ }
+
+ if (!log)
+ d <- exp(d)
+ as.numeric(d)
+ }

For the application we consider data of Card (1995) on income and education. In these data,
income levels are measured by hourly wage (in natural logarithms), education level is 1 if the
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individual attended college and 0 otherwise. College proximity, which takes the value 1 if
there is a nearby college and 0 otherwise, is the proposed instrument for the education level
of individuals. The data further consist of other covariates such as gender, experience and
area of residence, for 1030 men in 1976.2 For the analysis of the IV model, we first demean
the income, education and college proximity data, and transform these into residuals after
regression on the exogenous covariates in the dataset, which is equivalent to integrating out
the corresponding coefficients under a flat prior.

We define two models, one treating education as an endogenous explanatory variable (i.e. the
IV model), and the second model treating education as an exogenous explanatory variable (i.e.
the simple linear regression model). For a comparison of these two models under uninformative
priors, we use the predictive likelihoods. The predictive probability of the null model (which
assumes exogeneity) can be calculated using the Savage-Dickey Density Ratio (SDDR). Dickey
(1971) shows that the Bayes factor can be calculated using a single model if the alternative
models are nested and the prior densities satisfy the condition that the prior for the restricted
model equals the corresponding conditional prior in the unrestricted model. Under that
condition the model probabilities can be simplified to:

p(M0 | y)
p(M1 | y)

=
p(ỹ | y∗,M0)
p(ỹ | y∗,M1)

p(M0)
p(M1)

=
p(ρ = 0 | ỹ, y∗,M1)
p(ρ = 0 | y∗,M1)

× p (M0)
p (M1)

, (23)

hence the model probabilities can be calculated from the general model only, using draws from
the marginal posterior density of the endogeneity parameter ρ conditioning on the training
sample and the full sample to compute p(ρ = 0 | ỹ, y∗,M1) and p(ρ = 0 | y∗,M1) using kernel
density estimates. We get these parameter draws from the Metropolis Hastings sampler,
using the MitISEM candidate and the AdMitMH function from the R package AdMit (Ardia
et al. 2009b). Then we calculate the predictive likelihoods using (23), a random training
sample consisting of 5% of the original data points, and using the ‘naive’ and the MitISEM
approximations to the posterior density. The implementation of this predictive likelihood
approach is straightforward using MitISEM:

> require(AdMit)
> data(Card)
> # random training sample
> pc.train = 0.05 # training sample percentage
> N <- nrow(data.fs)
> M <- round(N*pc.train)
> data.ss <- data.fs[sample(1:N,M),]
>
> # full sample MitISEM approximation
> mit.fs <- MitISEM(KERNEL=KERNEL,mu0=mu0,df0=30,data=data.fs,
> control=list(tol.pr=0.02))
> # training sample MitISEM approximation
> mit.ss <- MitISEM(KERNEL=KERNEL,mu0=mu0,df0=30,data=data.ss,
> control=list(tol.pr=0.02))
>
> # Metropolis Hastings using the MitISEM candidate

2The dataset can be obtained from http://davidcard.berkeley.edu/data_sets.html.

http://davidcard.berkeley.edu/data_sets.html
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> post.fs <- AdMitMH(N=N,KERNEL,mit=mit.fs$mit,y=y,x=x,z=z)
> post.ss <- AdMitMH(N=N,KERNEL,mit=mit.ss$mit,y=y.ss,x=x.ss,z=z.ss)
>
> # Predictive likelihood calculation
> ind.post = (N/5+1):N # remove the burn-in period
> rho.fs <- post.fs$draws[ind.post,4]
> rho.ss <- post.ss$draws[ind.post,4]
> Pred.Lik <- density(rho.fs,from=0,to=0)$y[1] / density(rho.ss,from=0,to=0)$y[1]

We repeat the whole predictive likelihood estimation 20 times, with 20 different random seeds,
so that also the random selection of the training sample and the approximation of the posterior
for all data are different each time. We specify equal prior probabilities p (M0) = p (M1) = 1

2 .
Table 5 presents the details of the MitISEM and naive density approximations to the posterior,
together with the predictive likelihoods. First, the average number of Student-t components is
typically rather high in training samples and the full sample, indicating non-elliptical posterior
shapes for this model. Hence a flexible candidate density, such as the MitISEM candidate,
is motivated. Second, the obtained predictive likelihoods are more accurate, as indicated by
relatively smaller NSE values, when the candidate density is obtained from the MitISEM
method. Note that 0.14 may seem only slightly smaller than 0.16, but since in this case most
of the variation is caused by the random selection of the training sample rather than the
finiteness of the number of posterior draws, the relative improvement of quality provided by
the MitISEM candidate is still considerable.

Table 5: Model probabilities (p(M0|y) and p(M1|y), for models without/with endogeneity)
based on predictive likelihood (23) using ‘naive’ and MitISEM approximations. ‘# t com-
ponents’ denotes the average number of Student-t components in the MitISEM candidate
over the 20 repetitions. Mean, NSE and # t are also based on these 20 repetitions. The
candidate and posterior results at each repetition are based on 104 draws, respectively. For
the Metropolis Hastings method, we use a burn-in sample size of 2000.

MitISEM candidate naive candidate
CoV # t components CoV

full sample 2.65 3.15 9.85
training sample 1.46 3.80 6.76

MitISEM candidate naive candidate
mean NSE mean NSE

p(M0|y) 0.37 0.16 0.38 0.14
p(M1|y) 0.63 0.16 0.62 0.14

4. Concluding remarks

We presented the R package MitISEM which provides an automatic algorithm for the approx-
imation of a possibly non-elliptical target density. In particular the obtained approximation



Nalan Baştürk, Lennart Hoogerheide, Anne Opschoor, Herman K. van Dijk 27

can be used for the Bayesian analysis of models with non-elliptical posterior shapes, and
for Bayesian model comparison based on marginal or predictive likelihoods. The package
also provides the ‘Sequential MitISEM’ algorithm, which decreases the computational time
substantially if the candidate density is used to assess posterior distributions or model prob-
abilities for increasing data samples, when the posterior distribution is updated using new
observations. For the Bayesian estimation, the package provides an efficient method to calcu-
late marginal and predictive likelihoods, given a user-supplied posterior density kernel of the
model parameters.

We illustrated the MitISEM algorithm using several canonical statistical and economet-
ric models: two different Gelman-Meng (Gelman and Meng 1991) distributions, a mixture
GARCH model for the S&P 500 data and an IV model for the Card (1995) data. The
Gelman-Meng distribution is a standard example of a distribution with possibly non-elliptical
shapes. The posterior densities of the IV and (mixture) GARCH models are also character-
ized by non-elliptical shapes, in which case Bayesian inference of the model parameters and
model probabilities using Importance Sampling and Metropolis Hastings algorithms require
a flexible and appropriate candidate density. We illustrated the use of the MitISEM method
for forming such a flexible candidate density, and show that the obtained candidate can be
used for efficient estimations of model parameters as well as predictive likelihoods. Finally, we
showed that the ‘Sequential MitISEM’ algorithm provides computational gains in subsequent
estimation of the predictive likelihoods. In future research we will explore the possibility of
parallelized computation for the different steps of the MitISEM method, so that one can utilize
graphical cards or multi-core computer systems to substantially speed up the calculations.
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