Koopman, Siem Jan; Nguyen, Thuy Minh

Working Paper
Fast Efficient Importance Sampling by State Space Methods

Tinbergen Institute Discussion Paper, No. 12-008/4

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam


This Version is available at:
http://hdl.handle.net/10419/87536

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Fast Efficient Importance Sampling by State Space Methods

Siem Jan Koopman¹
Thuy Minh Nguyen²

¹ Faculty of Economics and Business Administration, VU University Amsterdam, and Tinbergen Institute;
² Deutsche Bank London.
Tinbergen Institute is the graduate school and research institute in economics of Erasmus University Rotterdam, the University of Amsterdam and VU University Amsterdam.

More TI discussion papers can be downloaded at [http://www.tinbergen.nl](http://www.tinbergen.nl)

Tinbergen Institute has two locations:

**Tinbergen Institute Amsterdam**
Gustav Mahlerplein 117
1082 MS Amsterdam
The Netherlands
Tel.: +31(0)20 525 1600

**Tinbergen Institute Rotterdam**
Burg. Oudlaan 50
3062 PA Rotterdam
The Netherlands
Tel.: +31(0)10 408 8900
Fax: +31(0)10 408 9031

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the ambition to support innovative research and offer top quality academic education in core areas of finance.

DSF research papers can be downloaded at: [http://www.dsf.nl/](http://www.dsf.nl/)

**Duisenberg school of finance**
Gustav Mahlerplein 117
1082 MS Amsterdam
The Netherlands
Tel.: +31(0)20 525 8579
Fast Efficient Importance Sampling 
by State Space Methods

*Siem Jan Koopman*\(^{(a,b)}\)  *Thuy Minh Nguyen*\(^{(c)}\)

\(^{(a)}\) Department of Econometrics, VU University Amsterdam 
\(^{(b)}\) Tinbergen Institute 
\(^{(c)}\) Deutsche Bank, London 

January 30, 2012

*Some keywords:* Kalman filter; Monte Carlo maximum likelihood; Simulation smoothing. 
*JEL classification:* C32, C51.

---

**Acknowledgements:** We would like to thank André Lucas and Marcel Scharth for giving comments on an earlier version of this paper. The usual disclaimer applies.

*Address of correspondence:* S.J. Koopman, Department of Econometrics, VU University Amsterdam, De Boelelaan 1105, NL-1081 HV Amsterdam, The Netherlands.  
*Email:* s.j.koopman@vu.nl
Abstract

We show that efficient importance sampling for nonlinear non-Gaussian state space models can be implemented by computationally efficient Kalman filter and smoothing methods. The result provides some new insights but it primarily leads to a simple and fast method for efficient importance sampling. A simulation study and empirical illustration provide some evidence of the computational gains.

1 Introduction

For the modeling of an observed time series $y_1, \ldots, y_n$, we consider a parametric model that we formulate conditionally on a time-varying parameter vector $\theta_t$. The conditional model for the observations is given by

$$y_t|\theta_t \sim p(y_t|\theta_t; \psi), \quad t = 1, \ldots, n,$$

where $\psi$ is a fixed parameter vector, with observation density $p(y_t|\theta_t; \psi)$ that is possibly non-Gaussian and may represent a nonlinear relation between $y_t$ and $\theta_t$. Conditional on $\theta_1, \ldots, \theta_n$, the observations $y_1, \ldots, y_n$ are serially independent. The time-varying parameters in $\theta_t$ can represent different features of the model including constant, variance and regression coefficients. Different dynamic specifications for the parameters in $\theta_t$ can be adopted. In our analysis, the conditional observation density and the dynamic model for $\theta_t$ must be specified but both may depend on the fixed parameter vector $\psi$.

When (i) the conditional observation density is Gaussian, (ii) the relation between $y_t$ and $\theta_t$ is linear and (iii) the dynamic model for $\theta_t$ is linear Gaussian, our time series modelling framework reduces to the linear Gaussian state space model as discussed, for example, in Durbin and Koopman (2001, Part I). In this framework, we can rely on the celebrated Kalman filter and its related smoothing method for the signal extraction of $\theta_t$, the maximum likelihood estimation of $\psi$ and the forecasting of $y_t$. However, when we depart from one of the three assumptions, these analyses cannot be carried out using the Kalman filter. We then rely on numerical methods to evaluate the high-dimensional integrals that are required for such analyses. In this paper we discuss Monte Carlo estimation based on importance sampling methods.
The general ideas of importance sampling are established in statistics and econometrics, see Kloek and Van Dijk (1978), Ripley (1987), and Geweke (1989). Importance sampling techniques for state space models have been explored by Danielsson and Richard (1993), Shephard and Pitt (1997), Durbin and Koopman (1997), So (2003) and Jungbacker and Koopman (2007). A textbook treatment is given by Durbin and Koopman (2001). The performance of this approach to Monte Carlo estimation relies on the successful construction of an importance density. Several methods for designing an importance density for time series modelling have been proposed. For example, Shephard and Pitt (1997) and Durbin and Koopman (1997) adopt an importance density based on the mode of the conditional density.

In this paper we consider the efficient importance sampling (EIS) method of Liesenfeld and Richard (2003) and Richard and Zhang (2007) where the sampling is based on a global approximation of the original model. We show that EIS can be implemented using standard Kalman filter methods. It leads to a simple and fast procedure for importance sampling. We discuss how the resulting EIS procedure is related to the procedure of Shephard and Pitt (1997) and Durbin and Koopman (1997), hereafter referred to as SPDK. A simulation study provides the evidence of the computational efficiency gains.

The remainder of the paper is organized as follows. In Section 2 we review the EIS and SPDK methods for constructing the importance density for nonlinear non-Gaussian state space models. In Section 3 we show how the EIS method can be implemented using state space methods and illustrate the gains of our modified efficient importance sampling method by a simulation study. In Section 4, details are provided for an effective implementation of the method. In Section 5, the method is applied to a time-varying model for counts in a simulation study and a stochastic volatility model for daily returns of pound/dollar exchange rates in an empirical study.

2 The model

The dynamic model specification under consideration is given by the observation density \( p(y_t|\theta_t; \psi) \) as introduced in (1) and with the stochastically time-varying parameter vector \( \theta_t \) specified as

\[
\theta_t = Z_t(\alpha_t), \quad t = 1, \ldots, n, \tag{2}
\]

where \( Z_t(\cdot) \) is a fixed known function that may depend on the parameter vector \( \psi \) and where \( \alpha_t \) is the stochastically time-varying state vector. The linear Gaussian dynamic process for
\( \alpha_t \) is given by

\[
\alpha_{t+1} = T_t \alpha_t + R_t \eta_t, \quad \eta_t \sim \text{NID}(0, Q_t), \quad \alpha_1 \sim \text{N}(0, Q_0),
\]

(3)

where the elements of the matrices \( T_t \) and \( R_t \) and the variance matrices \( Q_t \) and \( Q_0 \) are known except that some elements have a possible dependence on parameter vector \( \psi \), for \( t = 1, \ldots, n \). The disturbances \( \eta_t \) are normally independently distributed, serially uncorrelated and are not dependent on the normally distributed initial state vector \( \alpha_1 \). All stochastic and non-stochastic variables have appropriate dimensions and they will be given only when it is necessary. The observation \( y_t \) is typically a scalar but the methods presented in Section 3 are also applicable for a vector of observations \( y_t \). Illustrations of special cases of our general modelling framework are given below.

**Signal plus heavy-tailed error model**

When the time series observations \( y_t \) are randomly contaminated by noise with with large shocks, we may wish to remove the noise from the signal and to model the noise explicitly by a heavy-tailed density. We then may consider the model

\[
y_t = \theta_t + \varepsilon_t, \quad \varepsilon_t \sim \tau(0, \sigma^2, \nu), \quad t = 1, \ldots, n,
\]

(4)

where \( \tau(\mu, \sigma^2, \nu) \) refers to the Student’s \( t \) density with mean \( \mu \), variance \( \sigma^2 \) and degrees of freedom \( \nu \). The dynamic specification for \( \theta_t \) can be determined by (2) and (3). The model clearly fits in our general framework with \( p(y_t|\theta_t; \psi) = \tau(\theta_t, \sigma^2, \nu) \) in (1).

**Stochastic volatility model**

A time series of financial returns is mostly subject to clusters of volatility changes which can effectively be modelled by a dynamic processes for the variance. A basic version of the stochastic volatility model for a time series of returns \( y_t \) is given by

\[
y_t = \mu + \exp(\frac{1}{2} \theta_t) \varepsilon_t, \quad \varepsilon_t \sim \text{NID}(0, \sigma^2), \quad t = 1, \ldots, n,
\]

(5)

where \( \mu \) is a constant and \( \varepsilon_t \) is normally distributed with zero mean and variance \( \sigma^2 \). The dynamic specification for \( \theta_t \) can be determined by (2) and (3). The conditional observation density (1) is given by

\[
p(y_t|\theta_t; \psi) = -\frac{1}{2} \log(2\pi \sigma^2) - \frac{1}{2} \theta_t - \frac{1}{2\sigma^2} \exp(-\theta_t)(y_t - \mu)^2, \quad t = 1, \ldots, n.
\]
The stochastic volatility model can be extended in many ways. For example, the Gaussian density for \( \varepsilon_t \) can be replaced by the Student’s t density as in (4); we refer to Shephard (2005) for extensive discussions on stochastic volatility models.

**Time-varying model for counts**

Time series of counts can be modelled by the Poisson density with the intensity parameter as a function of the time-varying signal \( \theta_t \) that we can specify as (2) and (3). The observation density is then given by

\[
p(y_t|\theta_t; \psi) = y_t \log \theta_t - \theta_t - \log(y_t!), \quad t = 1, \ldots, n. \quad (6)
\]

Other densities from the exponential family can also be considered such as the Binomial density. More examples are documented in Durbin and Koopman (2001, Chapter 10).

**3 Efficient importance sampling**

We discuss our implementation of the efficient importance sampling (EIS) method by considering likelihood evaluation. In the next section we discuss other applications in which EIS plays an important role including signal extraction, maximum likelihood estimation of \( \psi \) and forecasting of future observations \( y_t \).

The likelihood function of the model (1), (2) and (3) for the observed vector \( y = (y_1', \ldots, y_n')' \) and as a function of parameter vector \( \psi \) can be represented by

\[
L(y; \psi) = \int p(y, \alpha; \psi) \, d\alpha = \int p(y|\alpha; \psi)p(\alpha; \psi) \, d\alpha,
\]

where \( \alpha = (\alpha_1', \ldots, \alpha_n')' \). This expression may suggest a basic Monte Carlo evaluation of the likelihood function via

\[
\hat{L}(y; \psi) = \sum_{i=1}^{M} p(y|\alpha^{(i)}; \psi), \quad \alpha^{(i)} \sim p(\alpha; \psi), \quad (8)
\]

where \( \alpha^{(i)} \) refers to the \( i \)th simulated sample of \( \alpha \) that is generated from the unconditional density \( p(\alpha; \psi) \) with \( i = 1, \ldots, M \). The standard law of large numbers (LLN) insists that \( \hat{L}(y; \psi) \) converges to \( L(y; \psi) \) as \( M \to \infty \). However, since the simulation of \( \alpha \) has no reference to the data vector \( y \), the efficiency of the estimate will be very low and therefore we need an extremely large value of \( M \). Numerical evaluation of (7) is also not feasible given the high
dimensional vector $\alpha$.

Given the serial independence properties for the observations $y_t$ conditional on $\theta_t$ and for the disturbances $\eta_t$, we have

$$L(y; \psi) = \int \prod_{t=1}^{n} p(y_t|\alpha_t; \psi)p(\alpha_t|\alpha_{t-1}; \psi) \, d\alpha,$$

(9)

with $p(\alpha_1|\alpha_0; \psi) = p(\alpha_1; \psi)$ and where $p(y_t|\alpha_t; \psi) = p(y_t|\theta_t; \psi)$ given the signal specification (2). We also have $p(\alpha_t|\alpha_{t-1}; \psi) = p(\eta_{t-1}; \psi) = \text{NID}(0, Q_{t-1})$ for $t = 1, \ldots, n$.

### 3.1 Importance density

The numerical evaluation of (9) becomes feasible when using Monte Carlo methods and we consider the method of importance sampling; see Ripley (1987) for an introduction to simulation methods. For the purpose of evaluating (9) via importance sampling, we introduce the importance density based on the linear Gaussian joint density $g(y, \alpha; \psi)$ with properly defined mean vector and variance matrix. Its dependence on $\psi$ is derivative from the original model (1) – (3). The decomposition $g(y, \alpha; \psi) = g(y|\alpha; \psi)g(\alpha; \psi)$ is valid and we assume that

$$g(y|\alpha; \psi) = \prod_{t=1}^{n} g(y_t|\theta_t; \psi), \quad g(\alpha; \psi) = p(\alpha; \psi) = \prod_{t=1}^{n} p(\alpha_t|\alpha_{t-1}; \psi),$$

since $g(y_t|\alpha_t; \psi) = g(y_t|\theta_t; \psi)$ from (2) and where $p(\alpha_t|\alpha_{t-1}; \psi) = \text{NID}(0, Q_{t-1})$, for $t = 1, \ldots, n$. Since the dynamic specification for the state vector in (3) is linear Gaussian, we adopt the same state specification for the importance density. The Gaussian observation density is expressed by

$$g(y_t|\theta_t; \psi) = \exp \left( a_t + b'_t \theta_t - \frac{1}{2} \theta_t' C_t \theta_t \right), \quad t = 1, \ldots, n,$$

(10)

where $z_t = z_t(y_t; \psi)$ is a known function of $y_t$ and $\psi$ for $z = a, b, C$ and $t = 1, \ldots, n$. The constant $a_t$ is needed to ensure that $g(y_t|\theta_t; \psi)$ integrates to one. The key functions are $b_t$ and $C_t$ which determine the mean and variance of the density $g(y_t|\theta_t; \psi)$. An effective importance sampler is obtained by selecting appropriate values for $b_t$ and $C_t$ for $t = 1, \ldots, n$. Hence the design of the importance sampler is elegantly reduced to a choice for $b_t$ and $C_t$.

We notice that the importance density can also be expressed in terms of the constructed variable $x_t = C_t^{-1}b_t$ and the linear Gaussian model

$$x_t = \theta_t + u_t, \quad u_t \sim \text{NID}(0, C_t^{-1}), \quad t = 1, \ldots, n,$$

(11)
where the Gaussian disturbances $u_1, \ldots, u_n$ are serially uncorrelated. We can show that the conditional observation density function (10) is equivalent to $g(x_t|\theta_t; \psi)$; in logs, we have

$$\log g(x_t|\theta_t; \psi) = -\frac{1}{2} \log 2\pi - \frac{1}{2} \log |C_t| - \frac{1}{2} \{ (x_t - \theta_t)'C_t^{-1}(x_t - \theta_t) \}$$

$$= a_t + b_t'\theta_t - \frac{1}{2} \theta_t'C_t\theta_t,$$

since $x_t = C_t^{-1}b_t$, where $a_t$ collects all terms that are not associated with $\theta_t$. Hence it follows immediately that

$$g(y|\alpha; \psi) \equiv \prod_{t=1}^n g(x_t|\theta_t; \psi),$$

when we assume that $x_t$ is modelled by (11) for $t = 1, \ldots, n$.

### 3.2 Likelihood evaluation via importance sampling

The actual importance density for the evaluation of (7) is chosen as

$$g(\alpha|y; \psi) = g(y|\theta; \psi) g(\alpha; \psi) / g(y; \psi),$$

where $g(\alpha; \psi) = p(\alpha; \psi)$. The likelihood function (7) with the importance sampling density incorporated is given by

$$L(y; \psi) = \int \frac{p(y|\alpha; \psi)p(\alpha; \psi)}{g(\alpha|y; \psi)} g(\alpha|y; \psi) d\alpha.$$

After some minor manipulations, we can express the likelihood function as

$$L(y; \psi) = g(y; \psi) \prod_{t=1}^n \left[ \frac{w(y_t, \alpha_t; \psi)}{g(\alpha|y_t; \psi)} \right] g(\alpha|y_t; \psi) d\alpha, \quad w(y_t, \alpha_t; \psi) = \frac{p(y_t|\alpha_t; \psi)}{g(y_t|\alpha_t; \psi)},$$

where $w(y_t, \alpha_t; \psi)$ is referred to as the importance weight, for $t = 1, \ldots, n$.

The evaluation of the likelihood function by means of importance sampling takes place by simulating state vectors from the importance density $g(\alpha|y; \psi)$ which we denote by

$$\alpha^{(i)} = (\alpha_1^{(i)}, \ldots, \alpha_n^{(i)})' \sim g(\alpha|y; \psi), \quad i = 1, \ldots, N.$$
and Shephard (1995) and Durbin and Koopman (2002). Given the simulated realisations \( \alpha^{(i)} \), for \( i = 1, \ldots, N \), the likelihood function is computed by

\[
\hat{L}(y; \psi) = g(y; \psi)M^{-1} \sum_{i=1}^{N} \prod_{t=1}^{n} w_{it}, \quad w_{it} = w(y_{it}, \alpha^{(i)}_{it}; \psi).
\] (13)

Some practical guidance for the computation of \( \hat{L}(y; \psi) \) for the purpose of parameter estimation is given in Section 4.1. We expect that the Monte Carlo estimate (13) is more efficient than the estimate (8) since we simulate \( \alpha^{(i)}_{it} \) with a reference to the data vector \( y \).

### 3.3 Efficient importance sampling

The values for \( b_t \) and \( C_t \), with \( t = 1, \ldots, n \), need to be determined before the calculation of (13) can start. Here we follow Richard and Zhang (2007) and adopt their efficient importance sampling (EIS) method. They propose to choose \( b_t \) and \( C_t \) such that the criterion

\[
I_t = \int \lambda_t^2(y_t, \alpha_t; \psi) p(y_t, \alpha_t; \psi) \, d\alpha_t, \quad \lambda_t(y_t, \alpha_t; \psi) = \log w(y_t, \theta_t; \psi) - \bar{\lambda},
\] (14)

is minimized for each \( t \) separately and where \( \bar{\lambda} \) is the normalizing constant such that the expectation of \( \lambda_t \) with respect to the true model \( p(y_t, \alpha_t; \psi) \) is zero. We therefore interpret \( I_t \) as the variance of the logged importance weight function with respect to \( p(y_t, \alpha_t; \psi) \). We notice that the variables \( b_t \) and \( C_t \) determine \( g(y_t|\alpha_t; \psi) \) that is part of \( w(y_t, \theta_t; \psi) \) and hence of \( \lambda_t(y_t, \alpha_t; \psi) \). The function \( I_t \) cannot be evaluated analytically for the same reason as the likelihood function (7) cannot be evaluated analytically. Hence we follow the same approach of introducing the importance density \( g(\alpha_t|y; \psi) \). The criterion to be minimized can then be expressed as

\[
I_t = \int \lambda_t^2(y_t, \alpha_t; \psi) \frac{p(y_t, \alpha_t; \psi)}{g(\alpha_t|y; \psi)} g(\alpha_t|y; \psi) \, d\alpha_t
\]

\[
\propto \int \lambda_t^2(y_t, \alpha_t; \psi) \frac{p(y_t|\alpha_t; \psi)}{g(y_t|\alpha_t; \psi)} g(\alpha_t|y; \psi) \, d\alpha_t
\]

\[
\propto I_t^*,
\]

where

\[
I_t^* = \int \lambda_t^2(y_t, \alpha_t; \psi) w(y_t, \theta_t; \psi) g(\alpha_t|y; \psi) \, d\alpha_t.
\] (15)
The statements above are valid since $b_t$ and $C_t$ only have an impact on $y_t$ and $\theta_t$. Also, we have

$$g(\alpha_t|y; \psi) \propto g(y_t|\alpha_t; \psi)g(\alpha_t; \psi),$$

with $g(\alpha_t; \psi) = p(\alpha_t; \psi)$. The minimization of $I_t^*$ with respect to $(b_t, C_t)$ is therefore equivalent to the minimization of $I_t$. The evaluation and minimization of $I_t^*$ takes place via importance sampling. We minimize

$$\hat{I}_t^* = M^{-1} \sum_{i=1}^{M} \lambda_t^2(y_t, \alpha_t^{(i)}; \psi)w(y_t, \theta_t^{(i)}; \psi), \quad \theta_t^{(i)} = Z_t(\alpha_t^{(i)}),$$

where $\alpha_t^{(i)}$ is obtained by sampling from $g(\alpha|y; \psi)$. This minimization of $\hat{I}_t^*$ leads to the weighted least squares solution. In case $\theta_t$ is a scalar, we define the regression coefficient vector $\beta_t = (a_t^*, b_t, C_t)$ and the minimum is obtained at

$$\hat{\beta}_t = \left( \sum_{i=1}^{M} w_u v_u p_{u} \right)^{-1} \sum_{i=1}^{M} w_u v_u p_{u}, \quad (16)$$

where $w_{it}$ is defined in (13) and where

$$v_{it} = (1, \theta_t^{(i)}, \theta_t^{(i)2})', \quad p_{u} = \log p(y_t|\theta_t^{(i)}; \psi),$$

for $t = 1, \ldots, n$. The sampling of $\alpha_t^{(i)}$ requires the simulation smoother that is applied to $g(y, \alpha; \psi) = g(y|\alpha; \psi)p(\alpha; \psi)$, in particular its model representation (11), (2) and (3). However, observation equation (11) requires values for $b_t$ and $C_t$, for $t = 1, \ldots, n$, which we want to establish via the least squares solution (16). Since the Gaussian kernel of the log-density $\log g(y|\alpha; \psi)$ acts effectively as a second order Taylor approximation to $\log p(y|\alpha; \psi)$, around some value of $\theta_t$, we can carry out the minimization iteratively as follows. We set values for $b_1, \ldots, b_n$ and $C_1, \ldots, C_n$ initially. A search for good starting values can be conducted but in many cases of practical interest, any set of initial values work sufficiently well. Next we simulate $\theta_t^{(i)}$ by means of simulation smoothing applied to the linear Gaussian model (11), (2) and (3) based on the current set of values for $(b_t, C_t)$ for $t = 1, \ldots, n$. A new set of values can be obtained from (16). This iterative scheme continues until some level of convergence is obtained. It is assumed that at each iteration when samples are generated from $g(\theta|y; \psi)$ using a new set of values for $(b_t, C_t)$, the same random numbers are used (or the same random seed is used) for computing $\alpha_t^{(i)}$ so that a smooth convergence process takes place.
3.4 A comparison with EIS

Our proposed implementation of the efficient importance sampling (EIS) method is clearly different than the one proposed by Richard and Zhang (2007) although the objective function is the same. The key insight that we explore is the representation of \( g(y, \alpha; \psi) \) by the linear Gaussian state space model (11), (2) and (3) for the constructed variable \( x_t \). This allows us to treat the EIS method on the basis of the computationally efficient Kalman filter and its related smoothing methods including the simulation smoother; see Durbin and Koopman (2001) for a treatment of state space methods.

Richard and Zhang (2007) have proposed the minimization of (14) and have provided the solution (16). The key difference is how the draws \( \alpha_t^{(i)} \) are generated. In their implementation of EIS, they adopt an approximate backwards scheme, starting from \( t = n \) towards \( t = 1 \), and need to track an integration constant so that each density at time \( t \) integrates to unity. We circumvent this time-consuming process since we interpret the density as a well-defined model for \( x_t \) and apply the simulation smoothing method of Durbin and Koopman (2002) for computing the draws \( \theta_t^{(i)} \) directly.

Another key development in our implementation of the EIS is that the simulations in Richard and Zhang (2007) are with respect to the state vector \( \alpha_t \) while the simulations in our implementation of EIS is based on the signal vector \( \theta_t \). In many empirical models of interest, the state vector is typically of a higher dimension than the signal vector which has the same dimension of \( y_t \). We therefore expect that in many studies, our implementation will gain computational efficiency.

4 Nonlinear non-Gaussian state space analysis

In this section we briefly illustrate other applications of efficient importance sampling and provide the details for an effective implementation.

4.1 Maximum likelihood estimation of \( \psi \)

In Section 3.2 we have shown how the likelihood function can be evaluated by the method of importance sampling. The maximum likelihood estimate (MLE) of parameter vector \( \psi \) can be simply obtained via a numerical optimization method. Quasi-Newton methods are often used for this task. It may be clear that analytical expressions for the MLE are not available in almost all cases.

A number of numerical issues need to be addressed before the actual maximization of the likelihood function can take place. We evaluate the likelihood function as a Monte Carlo
estimate. The use of different sets of random values for generating the importance draws of $\alpha^i$, with $i = 1, \ldots, M$, leads clearly to different estimates of the likelihood function $L(y; \psi)$. Since numerical optimization methods require smooth functions, we evaluate the likelihood functions using the same set of random values. In other words, the same “seed” of the random number generator is taken for each likelihood evaluation. The likelihood is then a smooth function of $\psi$ only.

In practice, the loglikelihood function is maximized. However, the log of the estimate (13) is not equal to the estimate of the loglikelihood function. The bias in the log of the estimate can be approximately corrected on the basis of a second-order Taylor expansion. We therefore maximize the bias-corrected loglikelihood estimate

$$\ell(y; \psi) = \log \hat{L}(y; \psi) + \frac{1}{2M} \bar{w}^{-2} s^2_w, \quad s^2_w = (M - 1)^{-1} \sum_{i=1}^{M} (w_i - \bar{w})^2,$$

where $\ell(y; \psi) = \log L(y; \psi)$, $w_i = \prod_{t=1}^{n} w_{it}$ and $\bar{w} = M^{-1} \sum_{i=1}^{M} w_i$; see Durbin and Koopman (1997) for more details.

The bias-corrected loglikelihood estimate can be expressed as

$$\ell(y; \psi) = \log g(y; \psi) + \log \bar{w} + \frac{1}{2M} \bar{w}^{-2} s^2_w,$$

(17)

The computation of $w_i$, $\log \bar{w}$ and $\bar{w}^{-2} s^2_w$ requires modifications for a numerically feasible and stable implementation. Define

$$a_i = \log w_i = \sum_{t=1}^{n} \log p(y_t | \alpha^i_t; \psi) - \log g(y_t | \alpha^i_t; \psi), \quad \bar{a} = M^{-1} \sum_{j=1}^{M} a_j,$$

for $i = 1, \ldots, M$. The computation of $a_i$ and $\bar{a}$ is numerically stable. However, the computation of $w_i = \exp(a_i)$ can lead to numerical overflow problems whereas the computation of $u_i = \exp(a_i - \bar{a})$ is numerical stable. It follows that $w_i = \exp(\bar{a})u_i$. After some further minor manipulations, it can be shown that

$$\log \bar{w} = \bar{a} + \log \bar{u}, \quad \text{and} \quad \bar{w}^{-2} s^2_w = \bar{u}^{-2} s^2_u,$$

where

$$u_i = \exp(a_i - \bar{a}), \quad \bar{u} = M^{-1} \sum_{i=1}^{M} u_i, \quad s^2_u = (M - 1)^{-1} \sum_{i=1}^{M} (u_i - \bar{u})^2.$$
The bias-corrected loglikelihood estimate (17) is computed in a numerically feasible manner using these results.

### 4.2 Signal extraction: estimation of $\alpha_t$ and $\theta_t$

The estimation of $\alpha_t$ is based on the evaluation of the integral

$$\tilde{\alpha} = \int \alpha p(\alpha | y; \psi) \, d\alpha.$$ 

We have argued that also the evaluation of such integral in a computational efficient way can be carried out by efficient importance sampling. The construction of a Monte Carlo estimate for $\tilde{\alpha}$ is based on

$$\tilde{\alpha} = \int \alpha \left[ p(\alpha | y; \psi) / g(\alpha | y; \psi) \right] g(\alpha | y; \psi) \, d\alpha,$$

since $g(y | \alpha; \psi) = p(y | \alpha; \psi)$, where

$$w(y, \alpha; \psi) = \frac{p(y | \alpha; \psi)}{g(y | \alpha; \psi)} = \prod_{t=1}^{n} w(y_t, \alpha_t; \psi),$$

with $w(y_t, \alpha_t; \psi)$ as defined in (12). The density $p(y; \psi)$ reflects the likelihood function (12) and its substitution in (18) leads to the equation

$$\tilde{\alpha} = \frac{\int \alpha w(y, \alpha; \psi) g(\alpha | y; \psi) \, d\alpha}{\int w(y, \alpha; \psi) g(\alpha | y; \psi) \, d\alpha}.$$

The two integrals can be evaluated by Monte Carlo simulation. The estimate of $\tilde{\alpha}$ is then given by

$$\hat{\tilde{\alpha}} = \frac{\sum_{i=1}^{M} \alpha^{(i)} w_i}{\sum_{i=1}^{M} w_i},$$

where $w_i = \prod_{t=1}^{n} w_{it}$ with $w_{it}$ defined as in (13) and where both $\alpha^{(i)}$ and $w_i$ are based on the draws from the importance density, that is

$$\alpha^{(i)} \sim g(\alpha | y; \psi), \quad i = 1, \ldots, M.$$
The draws are obtained by using the method of efficient importance sampling described in Section 3.3. The nominator and denominator are typically computed by using the same random numbers and therefore we can base the estimate on normalised weights, that is

\[ \hat{\alpha} = \sum_{i=1}^{M} \alpha^{(i)} w_{i}^{*}, \quad w_{i}^{*} = \frac{w_{i}}{\sum_{i=1}^{M} w_{i}}. \]

The signal is a function of the state vector, we have \( \theta_{t} = Z_{t}(\alpha_{t}) \) and \( \theta = Z(\alpha) \) where \( Z(\alpha) = [Z_{1}(\alpha_{1}), \ldots, Z_{n}(\alpha_{n})]' \). Using the same arguments as above, the estimate of \( \theta \) is given by

\[ \hat{\theta} = \frac{\int \theta w(y, \alpha; \psi) g(\alpha | y; \psi) d\alpha}{\int w(y, \alpha; \psi) g(\alpha | y; \psi) d\alpha}, \]

and we evaluate it via the efficient importance sampling method to obtain

\[ \hat{\theta} = \sum_{i=1}^{M} Z(\alpha^{(i)}) w_{i}^{*}, \]

where the normalised weight \( w_{i}^{*} \) is defined above. These arguments are also valid for any other known function of \( \alpha \). State vectors at time periods after \( n \) can be estimated using this approach. It facilitates forecasting of state and signal vectors in time series models of this class.

5 Two Illustrations

5.1 Time-varying model for counts: some simulation evidence

To illustrate the EIS method, our modified EIS method and the SPDK method, we consider a simulation study for a time-varying model for counts with density (6), with time-varying signal \( \theta_{t} \) specified by (2) and (3) and with state initialisation \( \alpha_{1} \sim N(0, \sigma^{2}_{\eta} / (1 - \phi^{2})) \). We simulate time series of counts \( y_{t} \) for \( t = 1, \ldots, n \) and \( n = 1000 \). The parameter vector is set equal to \( (\phi, \log \sigma^{2}_{\eta}) = (0.9, -2) \). For each simulated time series, we estimate the two unknown parameter coefficients of \( \psi \) by maximizing the simulated likelihood function as defined by (13). For the numerical maximisation we adopt the BFGS optimization algorithm with starting values equal to the true parameter values. Likelihood evaluation is based on three methods SPDK, EIS and the modified EIS (MEIS). For the EIS and MEIS methods, we take \( M = 50 \) draws for constructing the importance density. Subsequently, we take \( M = 500 \) draws for the Monte Carlo likelihood evaluation. The empirical distributions of the estimates
for the two parameters and for the three methods are presented in Figure 1. Although the empirical distributions are different from each other, for each parameter the distributions are centered around the true parameter values while the variations around the sample mean have similar sizes. However, the computer times for the three different methods are different. SPDK is fast as it fully relies on state space methods. The EIS method is slow since the construction of the importance density also relies on simulation. In the MEIS method, the importance density is obtained using state space methods and is therefore almost as fast as the SPDK method.

Figure 1: Empirical distributions for the two parameters of the time-varying model for counts as estimated by the three methods SPDK, EIS and the modified EIS (MEIS).

5.2 Stochastic volatility model for pound/dollar exchange rates

To empirically illustrate our modified EIS method, we analyse the volatility of log returns of pound/dollar exchange rates from 1-Oct-1981 to 28-Jun-1985 which is time series also analysed by Harvey, Ruiz, and Shephard (1994) and Durbin and Koopman (2001). The stochastic volatility model is specified as (5) with time-varying signal \( \theta_t \) that is specified by (2) and (3) where the initial state is given by \( \alpha_1 \sim N(0, \sigma_\eta^2/(1 - \phi^2)) \). Parameter estimation
takes place using the modified EIS method. The first step is to find a suitable approximating linear Gaussian state space model to (5) with the observation density given by

$$\hat{y}_t = \theta_t + u_t, \quad u_t \sim N\left(0, d_t^{-1}\right), \quad t = 1, \ldots, n,$$

where $\hat{y}_t = b_t / d_t$ and where the coefficients $b_t$ and $d_t$ are obtained via applying least squares computations (16) repeatedly and are evaluated at the simulated samples $\theta^1, \ldots, \theta^M$ from the importance density $g(\theta | \hat{y})$ with $\hat{y} = (\hat{y}_1, \ldots, \hat{y}_n)'$. Simulation takes place via the simulation smoother of Durbin and Koopman (2002). The iteration process is initialised with the second-order Taylor coefficients evaluated at the mode. Once the coefficients have converged in the iteration process, we have obtained the importance density and the Monte Carlo estimate of the loglikelihood function can be evaluated.

The BFGS method is used to maximise the simulated loglikelihood function with respect to the parameter vector. The estimates of $\hat{\phi}$, $\hat{\sigma}_\eta^2$ and $\hat{\sigma}$ together with its standard errors are presented for the SPDK and MEIS methods in Table 5.2. We can conclude that the values of the estimated parameters obtained from the SPDK and MEIS methods are very close. The estimated volatility with a 95% confidence interval is displayed in Figure 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SPDK</th>
<th>MEIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi$</td>
<td>0.9731</td>
<td>0.9750</td>
</tr>
<tr>
<td></td>
<td>(0.501)</td>
<td>(0.504)</td>
</tr>
<tr>
<td>$\sigma_\eta$</td>
<td>0.1726</td>
<td>0.1643</td>
</tr>
<tr>
<td></td>
<td>(0.217)</td>
<td>(0.223)</td>
</tr>
<tr>
<td>$\sigma$</td>
<td>0.6338</td>
<td>0.6359</td>
</tr>
<tr>
<td></td>
<td>(0.103)</td>
<td>(0.108)</td>
</tr>
</tbody>
</table>

Table 1: Simulated maximum likelihood parameter estimates for $\phi$, $\sigma_\eta$, and $\sigma$ using SPDK and MEIS methods based on $N = 500$ draws to estimate the likelihood function. The standard errors of the estimates are displayed between parantheses below.

References


Figure 2: Estimated volatility process and the 95% confidence interval for the log returns of pound/dollar exchange rates from 1-Oct-1981 to 28-Jun-1985.


Kloek, T. and H. K. Van Dijk (1978). Bayesian estimates of equation system parameters:


