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Fast Efficient Importance Sampling by State Space Methods

Siem Jan Koopman and Thuy Minh Nguyen

Abstract

We show that efficient importance sampling for nonlinear non-Gaussian state space

models can be implemented by computationally efficient Kalman filter and smoothing

methods. The result provides some new insights but it primarily leads to a simple

and fast method for efficient importance sampling. A simulation study and empirical

illustration provide some evidence of the computational gains.

1 Introduction

For the modeling of an observed time series y1, . . . , yn, we consider a parametric model that

we formulate conditionally on a time-varying parameter vector θt. The conditional model

for the observations is given by

yt|θt ∼ p(yt|θt;ψ), t = 1, . . . , n, (1)

where ψ is a fixed parameter vector, with observation density p(yt|θt;ψ) that is possibly

non-Gaussian and may represent a nonlinear relation between yt and θt. Conditional on

θ1, . . . , θn, the observations y1, . . . , yn are serially independent. The time-varying parameters

in θt can represent different features of the model including constant, variance and regression

coefficients. Different dynamic specifications for the parameters in θt can be adopted. In our

analysis, the conditional observation density and the dynamic model for θt must be specified

but both may depend on the fixed parameter vector ψ.

When (i) the conditional observation density is Gaussian, (ii) the relation between yt and

θt is linear and (iii) the dynamic model for θt is linear Gaussian, our time series modelling

framework reduces to the linear Gaussian state space model as discussed, for example, in

Durbin and Koopman (2001, Part I). In this framework, we can rely on the celebrated

Kalman filter and its related smoothing method for the signal extraction of θt, the maximum

likelihood estimation of ψ and the forecasting of yt. However, when we depart from one of

the three assumptions, these analyses cannot be carried out using the Kalman filter. We

then rely on numerical methods to evaluate the high-dimensional integrals that are required

for such analyses. In this paper we discuss Monte Carlo estimation based on importance

sampling methods.
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The general ideas of importance sampling are established in statistics and econometrics,

see Kloek and Van Dijk (1978), Ripley (1987), and Geweke (1989). Importance sampling

techniques for state space models have been explored by Danielsson and Richard (1993),

Shephard and Pitt (1997), Durbin and Koopman (1997), So (2003) and Jungbacker and

Koopman (2007). A textbook treatment is given by Durbin and Koopman (2001). The

performance of this approach to Monte Carlo estimation relies on the successful construction

of an importance density. Several methods for designing an importance density for time

series modelling have been proposed. For example, Shephard and Pitt (1997) and Durbin

and Koopman (1997) adopt an importance density based on the mode of the conditional

density.

In this paper we consider the efficient importance sampling (EIS) method of Liesenfeld

and Richard (2003) and Richard and Zhang (2007) where the sampling is based on a global

approximation of the original model. We show that EIS can be implemented using standard

Kalman filter methods. It leads to a simple and fast procedure for importance sampling. We

discuss how the resulting EIS procedure is related to the procedure of Shephard and Pitt

(1997) and Durbin and Koopman (1997), hereafter referred to as SPDK. A simulation study

provides the evidence of the computational efficiency gains.

The remainder of the paper is organized as follows. In Section 2 we review the EIS and

SPDK methods for constructing the importance density for nonlinear non-Gaussian state

space models. In Section 3 we show how the EIS method can be implemented using state

space methods and illustrate the gains of our modified efficient importance sampling method

by a simulation study. In Section 4, details are provided for an effective implementation of

the method. In Section 5, the method is applied to a time-varying model for counts in a

simulation study and a stochastic volatility model for daily returns of pound/dollar exchange

rates in an empirical study.

2 The model

The dynamic model specification under consideration is given by the observation density

p(yt|θt;ψ) as introduced in (1) and with the stochastically time-varying parameter vector θt

specified as

θt = Zt(αt), t = 1, . . . , n, (2)

where Zt(·) is a fixed known function that may depend on the parameter vector ψ and where

αt is the stochastically time-varying state vector. The linear Gaussian dynamic process for
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αt is given by

αt+1 = Ttαt +Rtηt, ηt ∼ NID(0, Qt), α1 ∼ N(0, Q0), (3)

where the elements of the matrices Tt and Rt and the variance matrices Qt and Q0 are

known except that some elements have a possible dependence on parameter vector ψ, for t =

1, . . . , n. The disturbances ηt are normally independently distributed, serially uncorrelated

and are not dependent on the normally distributed initial state vector α1. All stochastic and

non-stochastic variables have appropriate dimensions and they will be given only when it is

necessary. The observation yt is typically a scalar but the methods presented in Section 3

are also applicable for a vector of observations yt. Illustrations of special cases of our general

modelling framework are given below.

Signal plus heavy-tailed error model

When the time series observations yt are randomly contaminated by noise with with large

shocks, we may wish to remove the noise from the signal and to model the noise explicitly

by a heavy-tailed density. We then may consider the model

yt = θt + εt, εt ∼ τ(0, σ2, ν), t = 1, . . . , n, (4)

where τ(µ, σ2, ν) refers to the Student’s t density with mean µ, variance σ2 and degrees of

freedom ν. The dynamic specification for θt can be determined by (2) and (3). The model

clearly fits in our general framework with p(yt|θt;ψ) = τ(θt, σ
2, ν) in (1).

Stochastic volatility model

A time series of financial returns is mostly subject to clusters of volatility changes which

can effectively be modelled by a dynamic processes for the variance. A basic version of the

stochastic volatility model for a time series of returns yt is given by

yt = µ+ exp(
1

2
θt)εt, εt ∼ NID(0, σ2), t = 1, . . . , n, (5)

where µ is a constant and εt is normally distributed with zero mean and variance σ2. The

dynamic specification for θt can be determined by (2) and (3). The conditional observation

density (1) is given by

p(yt|θt;ψ) = −
1

2
log(2π σ2)−

1

2
θt −

1

2σ2
exp(−θt)(yt − µ)2, t = 1, . . . , n.
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The stochastic volatility model can be extended in many ways. For example, the Gaussian

density for εt can be replaced by the Student’s t density as in (4); we refer to Shephard

(2005) for extensive discussions on stochastic volatility models.

Time-varying model for counts

Time series of counts can be modelled by the Poisson density with the intensity parameter as

a function of the time-varying signal θt that we can specify as (2) and (3). The observation

density is then given by

p(yt|θt;ψ) = yt log θt − θt − log(yt!), t = 1, . . . , n. (6)

Other densities from the exponential family can also be considered such as the Binomial

density. More examples are documented in Durbin and Koopman (2001, Chapter 10).

3 Efficient importance sampling

We discuss our implementation of the efficient importance sampling (EIS) method by con-

sidering likelihood evaluation. In the next section we discuss other applications in which

EIS plays an important role including signal extraction, maximum likelihood estimation of

ψ and forecasting of future observations yt.

The likelihood function of the model (1), (2) and (3) for the observed vector y =

(y′1, . . . , y
′

n)
′ and as a function of parameter vector ψ can be represented by

L(y;ψ) =

∫
p(y, α;ψ) dα =

∫
p(y|α;ψ)p(α;ψ) dα, (7)

where α = (α′

1, . . . , α
′

n)
′. This expression may suggest a basic Monte Carlo evaluation of the

likelihood function via

L̂(y;ψ) =

M∑

i=1

p(y|α(i);ψ), α(i) ∼ p(α;ψ), (8)

where α(i) refers to the ith simulated sample of α that is generated from the unconditional

density p(α;ψ) with i = 1, . . . ,M . The standard law of large numbers (LLN) insists that

L̂(y;ψ) converges to L(y;ψ) asM → ∞. However, since the simulation of α has no reference

to the data vector y, the efficiency of the estimate will be very low and therefore we need an

extremely large value of M . Numerical evaluation of (7) is also not feasible given the high
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dimensional vector α.

Given the serial independence properties for the observations yt conditional on θt and for

the disturbances ηt, we have

L(y;ψ) =

∫ [ n∏

t=1

p(yt|αt;ψ)p(αt|αt−1;ψ)

]
dα, (9)

with p(α1|α0;ψ) = p(α1;ψ) and where p(yt|αt;ψ) = p(yt|θt;ψ) given the signal specification

(2). We also have p(αt|αt−1;ψ) = p(ηt−1;ψ) = NID(0, Qt−1) for t = 1, . . . , n.

3.1 Importance density

The numerical evaluation of (9) becomes feasible when using Monte Carlo methods and

we consider the method of importance sampling; see Ripley (1987) for an introduction to

simulation methods. For the purpose of evaluating (9) via importance sampling, we introduce

the importance density based on the linear Gaussian joint density g(y, α;ψ) with properly

defined mean vector and variance matrix. Its dependence on ψ is derivative from the original

model (1) – (3). The decomposition g(y, α;ψ) = g(y|α;ψ) g(α;ψ) is valid and we assume

that

g(y|α;ψ) =

n∏

t=1

g(yt|θt;ψ), g(α;ψ) = p(α;ψ) =

n∏

t=1

p(αt|αt−1;ψ),

since g(yt|αt;ψ) = g(yt|θt;ψ) from (2) and where p(αt|αt−1;ψ) = NID(0, Qt−1), for t =

1, . . . , n. Since the dynamic specification for the state vector in (3) is linear Gaussian, we

adopt the same state specification for the importance density. The Gaussian observation

density is expressed by

g(yt|θt;ψ) = exp

(
at + b′tθt −

1

2
θ′tCtθt

)
, t = 1, . . . , n, (10)

where zt = zt(yt;ψ) is a known function of yt and ψ for z = a, b, C and t = 1, . . . , n. The

constant at is needed to ensure that g(yt|θt;ψ) integrates to one. The key functions are

bt and Ct which determine the mean and variance of the density g(yt|θt;ψ). An effective

importance sampler is obtained by selecting appropriate values for bt and Ct for t = 1, . . . , n.

Hence the design of the importance sampler is elegantly reduced to a choice for bt and Ct.

We notice that the importance density can also be expressed in terms of the constructed

variable xt = C−1
t bt and the linear Gaussian model

xt = θt + ut, ut ∼ NID(0, C−1
t ), t = 1, . . . , n, (11)

5



where the Gaussian disturbances u1, . . . , un are serially uncorrelated. We can show that the

conditional obervation density function (10) is equivalent to g(xt|θt;ψ); in logs, we have

log g(xt|θt;ψ) = −
1

2
log 2π −

1

2
log |Ct| −

1

2

{
(xt − θt)

′C−1
t (xt − θt)

}

= at + b′tθt −
1

2
θ′tCtθt,

since xt = C−1
t bt, where at collects all terms that are not associated with θt. Hence it follows

immediately that

g(y|α;ψ) ≡

n∏

t=1

g(xt|θt;ψ),

when we assume that xt is modelled by (11) for t = 1, . . . , n.

3.2 Likelihood evaluation via importance sampling

The actual importance density for the evaluation of (7) is chosen as

g(α|y;ψ) = g(y|θ;ψ) g(α;ψ) / g(y;ψ),

where g(α;ψ) = p(α;ψ). The likelihood function (7) with the importance sampling density

incorporated is given by

L(y;ψ) =

∫
p(y|α;ψ)p(α;ψ)

g(α|y;ψ)
g(α|y;ψ) dα.

After some minor manipulations, we can express the likelihood function as

L(y;ψ) = g(y;ψ)

∫ [ n∏

t=1

w(yt, αt;ψ)

]
g(α|y;ψ) dα, w(yt, αt;ψ) =

p(yt|αt;ψ)

g(yt|αt;ψ)
, (12)

where w(yt, αt;ψ) is referred to as the importance weight, for t = 1, . . . , n.

The evaluation of the likelihood function by means of importance sampling takes place

by simulating state vectors from the importance density g(α|y;ψ) which we denote by

α(i) =
(
α
(i) ′
1 , . . . , α(i) ′

n

)
′

∼ g(α|y;ψ), i = 1, . . . , N.

Since we can represent g(y, α;ψ) by the linear Gaussian state space model (11), (2) and

(3), we can simulate α from the smooth density g(y, α;ψ) via the simulation smoothing

method; see, for example, Fruhwirth-Schnatter (1994), Carter and Kohn (1994), de Jong
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and Shephard (1995) and Durbin and Koopman (2002). Given the simulated realisations

α(i), for i = 1, . . . , N , the likelihood function is computed by

L̂(y;ψ) = g(y;ψ)M−1

N∑

i=1

n∏

t=1

wit, wit = w(yt, α
(i)
t ;ψ). (13)

Some practical guidance for the computation of L̂(y;ψ) for the purpose of parameter estima-

tion is given in Section 4.1. We expect that the Monte Carlo estimate (13) is more efficient

than the estimate (8) since we simulate α
(i)
t with a reference to the data vector y.

3.3 Efficient importance sampling

The values for bt and Ct, with t = 1, . . . , n, need to be determined before the calculation of

(13) can start. Here we follow Richard and Zhang (2007) and adopt their efficient importance

sampling (EIS) method. They propose to choose bt and Ct such that the criterion

It =

∫
λ2t (yt, αt;ψ)p(yt, αt;ψ) dαt, λt(yt, αt;ψ) = logw(yt, θt;ψ)− λ̄, (14)

is minimized for each t separately and where λ̄ is the normalizing constant such that the

expectation of λt with respect to the true model p(yt, αt;ψ) is zero. We therefore interpret

It as the variance of the logged importance weight function with respect to p(yt, αt;ψ). We

notice that the variables bt and Ct determine g(yt|θt;ψ) that is part of w(yt, θt;ψ) and hence

of λt(yt, αt;ψ). The function It cannot be evaluated analytically for the same reason as the

likelihood function (7) cannot be evaluated analytically. Hence we follow the same approach

of introducing the importance density g(αt|y;ψ). The criterion to be minimized can then be

expressed as

It =

∫
λ2t (yt, αt;ψ)

p(yt, αt;ψ)

g(αt|y;ψ)
g(αt|y;ψ) dαt

∝

∫
λ2t (yt, αt;ψ)

p(yt|αt;ψ)

g(yt|αt;ψ)
g(αt|y;ψ) dαt

∝ I∗t ,

where

I∗t =

∫
λ2t (yt, αt;ψ)w(yt, θt;ψ)g(αt|y;ψ) dαt. (15)
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The statements above are valid since bt and Ct only have an impact on yt and θt. Also, we

have

g(αt|y;ψ) ∝ g(yt|αt;ψ)g(αt;ψ),

with g(αt;ψ) = p(αt;ψ). The minimization of I∗t with respect to (bt, Ct) is therefore equiv-

alent to the minimization of It. The evaluation and minimization of I∗t takes place via

importance sampling. We minimize

Î∗t =M−1
M∑

i=1

λ2t (yt, α
(i)
t ;ψ)w(yt, θ

(i)
t ;ψ), θ(i) = Zt(α

(i)
t ),

where α
(i)
t is obtained by sampling from g(α|y;ψ). This minimization of Î∗t leads to the

weighthed least squares solution. In case θt is a scalar, we define the regression coefficient

vector βt = (a∗t , bt, Ct) and the minimum is obtained at

β̂t =

(
M∑

i=1

witvitv
′

it

)−1 M∑

i=1

witvitpit, (16)

where wit is defined in (13) and where

vit = (1, θ
(i)
t , θ

(i) 2
t )′, pit = log p(yt|θ

(i)
t ;ψ),

for t = 1, . . . , n. The sampling of α
(i)
t requires the simulation smoother that is applied

to g(y, α;ψ) = g(y|α;ψ)p(α;ψ), in particular its model representation (11), (2) and (3).

However, observation equation (11) requires values for bt and Ct, for t = 1, . . . , n, which we

want to establish via the least squares solution (16). Since the Gaussian kernel of the log-

density log g(y|α;ψ) acts effectively as a second order Taylor approximation to log p(y|α;ψ),

around some value of θt, we can carry out the minimization iteratively as follows. We

set values for b1, . . . , bn and C1, . . . , Cn initially. A search for good starting values can be

conducted but in many cases of practical interest, any set of initial values work sufficiently

well. Next we simulate θ
(i)
t by means of simulation smoothing applied to the linear Gaussian

model (11), (2) and (3) based on the current set of values for (bt, Ct) for t = 1, . . . , n. A new

set of values can be obtained from (16). This iterative scheme continues until some level of

convergence is obtained. It is assumed that at each iteration when samples are generated

from g(θ|y;ψ) using a new set of values for (bt, Ct), the same random numbers are used (or

the same random seed is used) for computing α(i) so that a smooth convergence process

takes place.
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3.4 A comparison with EIS

Our proposed implementation of the efficient importance sampling (EIS) method is clearly

different than the one proposed by Richard and Zhang (2007) although the objective function

is the same. The key insight that we explore is the representation of g(y, α;ψ) by the linear

Gaussian state space model (11), (2) and (3) for the constructed variable xt. This allows

us to treat the EIS method on the basis of the computationally efficient Kalman filter and

its related smoothing methods including the simulation smoother; see Durbin and Koopman

(2001) for a treatment of state space methods.

Richard and Zhang (2007) have proposed the minimization of (14) and have provided the

solution (16). The key difference is how the draws α
(i)
t are generated. In their implementation

of EIS, they adopt an approximate backwards scheme, starting from t = n towards t = 1,

and need to track an integration constant so that each density at time t integrates to unity.

We circumvent this time-consuming process since we interpret the density as a well-defined

model for xt and apply the simulation smoothing method of Durbin and Koopman (2002)

for computing the draws θ
(i)
t directly.

Another key development in our implementation of the EIS is that the simulations in

Richard and Zhang (2007) are with respect to the state vector αt while the simulations in

our implementation of EIS is based on the signal vector θt. In many empirical models of

interest, the state vector is typically of a higher dimension than the signal vector which has

the same dimension of yt. We therefore expect that in many studies, our implementation

will gain computational efficiency.

4 Nonlinear non-Gaussian state space analysis

In this section we briefly illustrate other applications of efficient importance sampling and

provide the details for an effective implementation.

4.1 Maximum likelihood estimation of ψ

In Section 3.2 we have shown how the likelihood function can be evaluated by the method of

importance sampling. The maximum likelihood estimate (MLE) of parameter vector ψ can

be simply obtained via a numerical optimization method. Quasi-Newton methods are often

used for this task. It may be clear that analytical expressions for the MLE are not available

in almost all cases.

A number of numerical issues need to be addressed before the actual maximization of

the likelihood function can take place. We evaluate the likelihood function as a Monte Carlo

9



estimate. The use of different sets of random values for generating the importance draws of

αi, with i = 1, . . . ,M , leads clearly to different estimates of the likelihood function L(y;ψ).

Since numerical optimization methods require smooth functions, we evaluate the likelihood

functions using the same set of random values. In other words, the same “seed” of the

random number generator is taken for each likelihood evaluation. The likelihood is then a

smooth function of ψ only.

In practice, the loglikelihood function is maximized. However, the log of the estimate

(13) is not equal to the estimate of the loglikelihood function. The bias in the log of the

estimate can be approximately corrected on the basis of a second-order Taylor expansion.

We therefore maximize the bias-corrected loglikelihood estimate

ℓ̂(y;ψ) = log L̂(y;ψ) +
1

2M
w̄−2s2w, s2w = (M − 1)−1

M∑

i=1

(wi − w̄)2,

where ℓ(y;ψ) = logL(y;ψ), wi =
∏n

t=1 wit and w̄ =M−1
∑M

i=1wi; see Durbin and Koopman

(1997) for more details.

The bias-corrected loglikelihood estimate can be expressed as

ℓ̂(y;ψ) = log g(y;ψ) + log w̄ +
1

2M
w̄−2s2w, (17)

The computation of wi, log w̄ and w̄−2s2w requires modifications for a numerically feasible

and stable implementation. Define

ai = logwi =

n∑

t=1

log p(yt|α
(i)
t ;ψ)− log g(yt|α

(i)
t ;ψ), ā =M−1

M∑

j=1

aj,

for i = 1, . . . ,M . The computation of ai and ā is numerically stable. However, the compu-

tation of wi = exp(ai) can lead to numerical overflow problems whereas the computation of

ui = exp(ai− ā) is numerical stable. It follows that wi = exp(ā)ui. After some further minor

manipulations, it can be shown that

log w̄ = ā + log ū, and w̄−2s2w = ū−2s2u,

where

ui = exp(ai − ā), ū =M−1
M∑

i=1

ui, s2u = (M − 1)−1
M∑

i=1

(ui − ū)2.

10



The bias-corrected loglikelihood estimate (17) is computed in a numerically feasible manner

using these results.

4.2 Signal extraction : estimation of αt and θt

The estimation of αt is based on the evaluation of the integral

α̃ =

∫
αp(α|y;ψ) dα.

We have argued that also the evaluation of such integral in a computational efficient way

can be carried out by efficient importance sampling. The construction of a Monte Carlo

estimate for α̃ is based on

α̃ =

∫
α [p(α|y;ψ) / g(α|y;ψ)]g(α|y;ψ) dα

= [g(y;ψ) / p(y : ψ)]

∫
αw(y, α;ψ)g(α|y;ψ) dα, (18)

since g(y|α;ψ) = p(y|α;ψ), where

w(y, α;ψ) =
p(y|α;ψ)

g(y|α;ψ)
=

n∏

t=1

w(yt, αt;ψ),

with w(yt, αt;ψ) as defined in (12). The density p(y;ψ) reflects the likelihood function (12)

and its substitution in (18) leads to the equation

α̃ =

∫
αw(y, α;ψ)g(α|y;ψ) dα∫
w(y, α;ψ)g(α|y;ψ) dα

.

The two integrals can be evaluated by Monte Carlo simulation. The estimate of α̃ is then

given by

̂̃α =

∑M

i=1 α
(i)wi∑M

i=1wi

,

where wi =
∏n

t=1 wit with wit defined as in (13) and where both α(i) and wi are based on the

draws from the importance density, that is

α(i) ∼ g(α|y;ψ), i = 1, . . . ,M.

11



The draws are obtained by using the method of efficient importance sampling described in

Section 3.3. The nominator and denominator are typically computed by using the same

random numbers and therefore we can base the estimate on normalised weights, that is

̂̃α =
M∑

i=1

α(i)w∗

i , w∗

i =
wi∑M

i=1wi

.

The signal is a function of the state vector, we have θt = Zt(αt) and θ = Z(α) where

Z(α) = [Z1(α1)
′, . . . , Zn(αn)

′]′. Using the same arguments as above, the estimate of θ is

given by

θ̃ =

∫
θw(y, α;ψ)g(α|y;ψ) dα∫
w(y, α;ψ)g(α|y;ψ) dα

,

and we evaluate it via the efficient importance sampling method to obtain

̂̃
θ =

M∑

i=1

Z(α(i))w∗

i ,

where the normalised weight w∗

i is defined above. These arguments are also valid for any

other known function of α. State vectors at time periods after n can be estimated using this

approach. It facilitates forecasting of state and signal vectors in time series models of this

class.

5 Two Illustrations

5.1 Time-varying model for counts : some simulation evidence

To illustrate the EIS method, our modified EIS method and the SPDK method, we consider

a simulation study for a time-varying model for counts with density (6), with time-varying

signal θt specified by (2) and (3) and with state initialisation α1 ∼ N(0, σ2
η/(1 − φ2)). We

simulate time series of counts yt for t = 1, . . . , n and n = 1000. The parameter vector is set

equal to (φ, log σ2
η) = (0.9,−2). For each simulated time series, we estimate the two unknown

parameter coefficients of ψ by maximizing the simulated likelihood function as defined by

(13). For the numerical maximisation we adopt the BFGS optimization algorithm with

starting values equal to the true parameter values. Likelihood evaluation is based on three

methods SPDK, EIS and the modified EIS (MEIS). For the EIS and MEIS methods, we take

M = 50 draws for constructing the importance density. Subsequently, we take M = 500

draws for the Monte Carlo likelihood evaluation. The empirical distributions of the estimates

12



for the two parameters and for the three methods are presented in Figure 1. Although the

empirical distributions are different from each other, for each parameter the distributions

are centered around the true parameter values while the variations around the sample mean

have similar sizes. However, the computer times for the three different methods are different.

SPDK is fast as it fully relies on state space methods. The EIS method is slow since the

construction of the importance density also relies on simulation. In the MEIS method, the

importance density is obtained using state space methods and is therefore almost as fast as

the SPDK method.
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Figure 1: Empirical distributions for the two parameters of the time-varying model for counts
as estimated by the three methods SPDK, EIS and the modified EIS (MEIS).

5.2 Stochastic volatility model for pound/dollar exchange rates

To empirically illustrate our modified EIS method, we analyse the volatility of log returns

of pound/dollar exchange rates from 1-Oct-1981 to 28-Jun-1985 which is time series also

analysed by Harvey, Ruiz, and Shephard (1994) and Durbin and Koopman (2001). The

stochastic volatility model is specified as (5) with time-varying signal θt that is specified by

(2) and (3) where the initial state is given by α1 ∼ N(0, σ2
η/(1− φ2)). Parameter estimation
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takes place using the modified EIS method. The first step is to find a suitable approximating

linear Gaussian state space model to (5) with the observation density given by

ŷt = θt + ut, ut ∼ N
(
0, d−1

t

)
, t = 1, . . . , n, (19)

where ŷt = bt/dt and where the coefficients bt and dt are obtained via applying least squares

computations (16) repeatedly and are evaluated at the simulated samples θ1, . . . , θM from the

importance density g(θ|ŷ) with ŷ = (ŷ1, . . . , ŷn)
′. Simulation takes place via the simulation

smoother of Durbin and Koopman (2002). The iteration process is initialised with the

second-order Taylor coefficients evaluated at the mode. Once the coefficients have converged

in the iteration process, we have obtained the importance density and the Monte Carlo

estimate of the loglikelihood function can be evaluated.

The BFGS method is used to maximise the simulated loglikelihood function with respect

to the parameter vector. The estimates of φ̂, σ̂2
η and σ̂ together with its standard errors are

presented for the SPDK and MEIS methods in Table 5.2. We can conclude that the values

of the estimated parameters obtained from the SPDK and MEIS methods are very close.

The estimated volatility with a 95% confidence interval is displayed in Figure 2.

Parameter SPDK MEIS
φ 0.9731 0.9750

(0.501) (0.504)
ση 0.1726 0.1643

(0.217) (0.223)
σ 0.6338 0.6359

(0.103) (0.108)

Table 1: Simulated maximum likelihood parameter estimates for φ, ση, and σ using SPDK
and MEIS methods based on N = 500 draws to estimate the likelihood function. The
standard errors of the estimates are displayed between parantheses below.
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