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Abstract

We introduce an Owen-type value for games with two-level communication structures, be-

ing structures where the players are partitioned into a coalition structure such that there

exists restricted communication between as well as within the a priori unions of the coali-

tion structure. Both types of communication restrictions are modeled by an undirected

communication graph, so there is a communication graph between the unions of the coali-

tion structure as well as a communication graph on the players in every union. We also

show that, for particular two-level communication structures, the Owen value and the

Aumann-Drèze value for games with coalition structures, the Myerson value for communi-

cation graph games and the equal surplus division solution appear as special cases of this

new value.

Keywords: TU game, coalition structure, communication graph, Owen value, Myerson

value.

JEL code: C71



1 Introduction

The study of TU games with coalition structures was initiated in the 1970’s, first by

Aumann and Drèze [1] and then Owen [10]. In these papers a coalition structure is given

by a partition of the set of players. Later this approach was extended in Winter [13] to

games with level structures. Another model of a game with limited cooperation presented

by means of communication graphs was introduced in Myerson [9]. Various studies in both

directions were done during the last three decades, but mostly either within one model or

another. Vázquez-Brage, Garćıa-Jurado and Carreras [12] is the first study that combines

both models by considering a TU game endowed with independent of each other both a

coalition structure and a communication graph on the set of players. For this class of games

they propose a solution by applying the Owen value for games with coalition structures to

the Myerson restricted game of the game with communication graph.

Recently, Khmelnitskaya [7] and Kongo [8] independently from each other have

introduced another model of a TU game endowed with both a coalition structure and

communication graph, the so-called games with two-level communication structures. In

contrast to [12], in this model a two-level communication structure relates fundamentally

to the given coalition structure and consists of a communication graph on the collection

of the a priori unions in the coalition structure, as well as a communication graph within

every union. It is assumed that communication is only possible either among the a priori

unions or among single players within an a priori union. No communication and therefore

no cooperation is allowed between single players from distinct elements of the coalition

structure. Different from the framework of Khmelnitskaya, Kongo reduces the model to a

one-level communication model using a special assumption concerning the ability of players

to cooperate under the two-level communication structure, namely a set of players is able

to cooperate either if it is a connected component within an a priori union or the set of

players is the union of at least two connected a priori unions, independently whether the

players are connected inside the a priori union they belong to or not.

In this paper we abide by the Khmelnitskaya’s framework but we weaken the as-

sumption concerning communication on the upper level between a priori unions allowing

for one a priori union among connected unions to be represented by a proper subcoali-

tion. We introduce a new solution for the class of games with two-level communication

structures. Different from the solution concepts given in [7] and [8], the new solution is

an Owen-type value in the sense that it modifies the Owen value for games with two-level

communication structures. As in Owen [10], the payoffs of the players are determined

by applying the Shapley value twice. First, the Shapley value is applied to the Myerson

restricted game (with respect to the communication graph between unions) of Owen’s quo-

tient game between the unions. This gives for each union the total payoff to the players
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of the union. To obtain the individual payoffs, within each union the Shapley value is

applied to a game on the players within the union. To construct the game within a union,

first a game is obtained by applying Owen’s procedure to find such a game but taking

account of the communication graph between the unions. Next we construct a restriction

of this game taking into account the communication graph within the union and apply the

Shapley value to this restriction.

The new Owen-type value for the class of games with two-level communication

structures is characterized by four axioms, two on the level of the communication graph

between the a priori unions, and two on the level of the communication graphs within the

a priori unions. We also show that the Owen value and the Aumann-Drèze value for games

with coalition structures, the Myerson value for communication graph games and the equal

surplus division solution appear as special cases of this new value for particular two-level

communication structures.

The paper is organized as follows. Basic definitions and notation are introduced in

Section 2. Section 3 is devoted to the axioms that we require from a solution for games

with two-level communication structures. In Section 4 we define an Owen-type value for

such games and show that it is the unique solution satisfying these axioms. In Section 5 we

consider several special cases and show that the new solution generalizes some well-known

solutions for games in coalition structure and communication graph games.

2 Preliminaries

2.1 TU games and values

A situation in which a finite set of players can obtain certain payoffs by cooperating can

be described by a cooperative game with transferable utility, or simply a TU game, being a

pair 〈N, v〉, where N ⊂ IN is a finite set of n ≥ 2 players and v: 2N → IR is a characteristic

function on N such that v(∅) = 0. For any coalition S ⊆ N , v(S) is the worth of coalition S,

i.e., the members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate.

We denote the set of all characteristic functions on player set N by GN . For simplic-

ity of notation and if no ambiguity appears, we write v instead of 〈N, v〉. The subgame of

v with respect to a player set T ⊆ N , T 6= ∅, is the game v|T defined as v|T (S) = v(S), for

all S ⊆ T . We denote the cardinality of a given set A by |A|, along with lower case letters

like n = |N |, m = |M |, nk = |Nk|, s = |S|, c = |C|, c′ = |C ′|, and so on. For K ⊂ IN, we

denote IRK as the k-dimensional vector space which elements x ∈ IRK have components

xi, i ∈ K. For every x ∈ IRN and S ⊆ N , we use the standard notation x(S) =
∑

i∈S xi

and xS = {xi}i∈S.

For game v ∈ GN , a vector x ∈ IRN may be considered as a payoff vector assigning
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a payoff xi to each player i ∈ N . A single-valued solution, called a value, is a mapping ξ

that assigns for every N ⊂ IN and every v ∈ GN a payoff vector ξ(v) ∈ IRN . A value ξ is

efficient if
∑

i∈N ξi(v) = v(N) for every v ∈ GN and N ⊂ IN. The best-known efficient

value is the Shapley value [11], given by

Shi(v) =
∑

{S⊆N |i∈S}

(n− s)!(s− 1)!

n!
(v(S)− v(S \ {i})), for all i ∈ N.

2.2 Games with coalition structure

A coalition structure on N ⊂ IN is given by a partition P = {N1, ..., Nm} of N . Elements of

a partition will be called a priori unions . Let CN denote the set of all coalition structures

on N . A pair 〈v,P〉 ∈ GN × CN constitutes a game with coalition structure. A game with

coalition structure represents situations in which a priori unions are formed. For partition

P = {N1, . . . , Nm}, we denote M = {1, . . . ,m} and for every i∈N , we denote by k(i) the

index of the a priori union containing player i, so k(i) is defined by the relation i∈Nk(i).

For any payoff vector x∈ IRN , let xP = (x(Nk))k∈M ∈ IRM be the corresponding vector of

total payoffs to the a priori unions.

A value for games with coalition structures is a mapping ξ that assigns for every N

and every 〈v,P〉 ∈ GN × CN a payoff vector ξ(v,P) ∈ IRN . One of the best-known values

for games with coalition structures is the Owen value [10] that can be seen as a two-step

procedure in which the Shapley value applies twice.1 First, for every a priori union the

total payoff to the players within that union is determined by applying the Shapley value

to the so-called quotient game being the game vP ∈ GM , M = {1, . . . ,m}, in which the

unions act as individual players,

vP(Q) = v(∪k∈Q Nk), for all Q ⊆M.

So, the worth of a coalition Q of a priori unions of M in game vP is the worth of the union

of all coalitions in Q. The Shapley value of game vP gives the total payoff of the Owen

value to the a priori unions of the coalition structure. Second, the individual payoffs of

the players within an a priori union are obtained by applying the Shapley value to a game

on the players within the union. For every a priori union k ∈ M , this game v̄k ∈ GNk on

player set Nk is given by

v̄k(S) = Shk(v̂S), S ⊆ Nk, (2.1)

1See also van den Brink and van der Laan [2], in which Owen-type values for the class of games with

coalition structures are given that determine the individual payoffs as the multiplicative product of two

shares in the total payoff.
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where, for every S ⊆ Nk, the game v̂S ∈ GM on the player set M of a priori unions, is

defined by

v̂S(Q) =

 v(∪h∈Q Nh), k /∈ Q,

v(∪h∈Q\{k} Nh ∪ S), k ∈ Q,
for all Q ⊆M. (2.2)

So, for every S ⊆ Nk, the worth of subset Q of M in game v̂S is the worth of the union

of all coalitions in Q, except that coalition Nk is replaced by S ⊆ Nk. Then the worth of

coalition S ⊆ Nk in v̄k is the payoff that the Shapley value assigns to k ∈ M in game v̂S.

The Owen value assigns to player i ∈ N the Shapley value of player i in the game v̄k(i),

i.e.,

Owi(v,P) = Shi(v̄k(i)), for all i ∈ N.

Notice that for every k ∈ M , the game v̂Nk
is equal to the quotient game vP . It is well-

known that the Owen value is efficient.

Another well-known solution for games with coalition structures is the Aumann-

Drèze value [1] which assigns to every game 〈v,P〉 ∈ GN × CN the payoff vector

ADi(v,P) = Shi(v|Nk(i)
), for all i ∈ N.

The Aumann-Drèze value assigns to a player i the Shapley payoff of player i in the sub-

game on the coalition Nk containing i. Notice that
∑

i∈Nk
ADi(v,P) = v(Nk), and thus∑

i∈N ADi(v,P) =
∑

k∈M v(Nk). Therefore the Aumann-Drèze value is not efficient. In

fact, according to the Aumann-Drèze value it is assumed that every a priori union is a

stand-alone coalition.

2.3 Communication graph games

For N ⊂ IN, a communication structure on N is specified by a communication graph 〈N,Γ〉
with Γ ⊆ ΓN = { {i, j} | i, j ∈ N, i 6= j}, i.e., Γ is a collection of (unordered) pairs of nodes

(players), where a pair {i, j} represents a link between players i, j ∈ N , and 〈N,ΓN〉 is the

complete graph on N . Again, for simplicity of notation and if no ambiguity appears, we

write graph Γ instead of 〈N,Γ〉. Let LN denote the set of all communication graphs on

N . A pair 〈v,Γ〉 ∈ GN × LN constitutes a game with (communication) graph structure or

simply a graph game on N . For given N , the subgraph of a graph Γ ∈ LN with respect to

set S ⊆ N , S 6= ∅, is the graph Γ|S ∈ LS defined by Γ|S ={{i, j} ∈ Γ | i, j ∈ S}. For ease of

notation given digraph Γ and link {i, j} ∈ Γ the subgraph Γ\{{i, j}} we denote via Γ|−ij.
For a graph Γ on N , a sequence of different nodes (i1, . . . , ik), k ≥ 2, is a path

from i1 to ik, if for all h = 1, . . . , k − 1, {ih, ih+1} ∈ Γ. A graph Γ on a player set N is

connected , if for any two nodes in N there exists a path in Γ from one node to the other.
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For given graph Γ on N , we say that the player set S ⊆ N is connected, if the subgraph

Γ|S is connected. For graph Γ on player set N and S ⊆ N , a subset T ⊆ S is a maximally

connected subset or component of S if (i) Γ|T is connected, and (ii) for every i ∈ S \ T ,

the subgraph Γ|T∪{i} is not connected. For Γ on N and S ⊆ N , we denote by S/Γ the set

of all components of S, and by (S/Γ)i the component of S containing i ∈ S. Notice that

S/Γ is a partition of S.

A value for communication graph games, a graph game value, is a mapping ξ that

for every N ⊂ IN and every 〈v,Γ〉 ∈ GN×LN assigns a payoff vector ξ(v,Γ) ∈ IRN . A

graph game value ξ is component efficient if for any 〈v,Γ〉 ∈ GN×LN ,
∑

i∈C ξi(v,Γ) = v(C)

for every C ∈ N/Γ. A well-known component efficient graph game value is the Myerson

value. Following Myerson [9], we assume that in a communication graph game 〈v,Γ〉 only

connected coalitions are able to cooperate and to realise their worths. A non-connected

coalition S can only realise the sum of the worths of its components in S/Γ. This yields

the restricted game vΓ∈GN defined by

vΓ(S) =
∑

T∈S/Γ

v(T ), for all S ⊆ N.

Then the Myerson value for communication graph games is the graph game value µ that

assigns to every communication graph game 〈v,Γ〉 the Shapley value of its restricted game

vΓ, i.e.,

µ(v,Γ) = Shi(v
Γ).

It is well-known that the Myerson value is the unique graph game value that is compo-

nent efficient and satisfies the so-called Myerson fairness axiom. A graph game value

ξ is fair if for every graph game 〈v,Γ〉 on any player set N , for every {h, k} ∈ Γ,

ξh(v,Γ)− ξh(v,Γ|−hk) = ξk(v,Γ)− ξk(v,Γ|−hk).

3 Games with two-level communication structures

We now consider situations in which the players are partitioned into a coalition structure

P and are linked to each other by communication graphs. First, there is a communication

graph ΓM between the a priori unions M in the partition P . Second, for each a priori union

Nk, k ∈M , there is a communication graph Γk between the players in Nk. Given P ∈ CN ,

a two-level communication structure on N is given by the tuple ΓP=〈ΓM , {Γk}k∈M〉.
For N ⊂ IN and P ∈ CN let LN

P be the set of all two-level communication structures

on N with fixed P and let LN
C =

⋃
P∈CN

LN
P be the set of all two-level graph structures on

N . A tuple 〈v,ΓP〉 ∈ GN ×LN
C constitutes a game with two-level communication structure
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or simply two-level graph game on N . A value for games with two-level communication

structure, a two-level graph game value, is a mapping ξ that assigns for every N ⊂ IN and

every two-level graph game 〈v,ΓP〉 ∈ GN × LN
C a payoff vector ξ(v,ΓP) ∈ IRN .

We now state several axioms that can be satisfied by solutions for games with two-

level communication structures. The first three axioms are generalizations of axioms used

to characterize the Myerson value on the class of communication graph games. First,

quotient component efficiency states that on the level of the a priori unions (in the sequel

shortly to be called the upper level), the total payoff of the players in the a priori unions

of a component K ∈ M/ΓM is equal to the worth of the unions in the component in the

quotient game vP on M .

Axiom 3.1 (Quotient Component Efficiency (QCE)) For any player set N⊂ IN, for

every 〈v,ΓP〉 ∈ GN × LN
C , it holds∑

k∈K

∑
i∈Nk

ξi(v,ΓP) = vP(K), for every K ∈M/ΓM .

Quotient component efficiency requires the same as the axiom ‘component efficiency in

quotient’ used in Khmelnitskaya [7] for every non-singleton component K ∈ M/ΓM and

every singleton component K = {k}, k ∈ M , for which the corresponding graph Γk is

connected. When K ∈ M/ΓM is a singleton component {k} with Γk not connected, then

the ‘component efficiency in quotient’ of [7] requires that the total payoff to the players in

Nk is equal to
∑

C∈Nk/Γk
v(C), whereas quotient component efficiency still requires that

the total payoff to the players in Nk is equal to vP({k}) = v(Nk). So, in this case, for the

union Nk, [7] requires component efficiency with respect to the within union communication

graph Γk, whereas quotient component efficiency requires efficiency within Nk. Notice that

the Myerson value of the quotient game vP with respect to ΓM yields payoff v(Nk) to union

k when {k} is a singleton component in ΓM .

The next axiom applies the well-known Myerson fairness axiom between unions,

i.e., it applies fairness on the upper level with respect to the quotient game. If a link

{k, h} ∈ ΓM is removed from the graph ΓM on the upper level, then the change in the

total payoff to a priori union Nk is equal to the change in the total payoff to a priori

union Nh. For ΓP = 〈ΓM , {Γk}k∈M〉 and link {k, h} ∈ ΓM , we denote by ΓP |−kh the tuple

〈ΓM |−kh, {Γk}k∈M〉.

Axiom 3.2 (Quotient Fairness (QF)) For any player set N ⊂ IN, for every 〈v,ΓP〉 ∈
GN × LN

C , and every {k, h} ∈ ΓM , it holds∑
i∈Nk

(ξi(v,ΓP)− ξi(v,ΓP |−kh)) =
∑
i∈Nh

(ξi(v,ΓP)− ξi(v,ΓP |−kh)).
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Quotient fairness is similar to ‘fairness in the quotient’ used by Vázquez-Brage et al. [12],

but within the different framework of only one communication graph between all players.

The quotient fairness axiom is weaker than the ‘between block fairness’ of Kongo [8] which

not only requires quotient fairness, but also that when in ΓM a link between two unions

is deleted, within each of the two unions the change in payoff is the same for all players

within that union.

In the next section it will be shown that the axioms above uniquely determine the

total payoff to every a priori union Nk in the coalition structure P , similar as in Myerson

[9] for a one-level communication graph. In fact, it follows that the total payoff to coalition

Nk is equal to the Myerson payoff to union k ∈ M of the quotient game vP with respect

to the upper level communication graph ΓM between the unions.

The next two axioms will determine for every k ∈ M the distribution of the total

payoff assigned to coalition Nk amongst the players in Nk. The first one applies the

Myerson fairness axiom within the unions, i.e., if a link {i, j} ∈ Γk is removed from the

communication graph Γk within the union Nk, then the change of payoff to player i is equal

to the change of payoff to player j. For ΓP = 〈ΓM , {Γh}h∈M〉 and link {i, j} ∈ Γk, k ∈M ,

we denote by ΓP |k−ij the tuple 〈ΓM , {Γ̂h}h∈M〉 where Γ̂h = Γh for h 6= k, and Γ̂k = Γk|−ij.

Axiom 3.3 (Union Fairness (UF)) For any player set N ⊂ IN, for every 〈v,ΓP〉 ∈
GN × LN

C , k ∈M , and {i, j} ∈ Γk, it holds

ξi(v,ΓP)− ξi(v,ΓP |k−ij) = ξj(v,ΓP)− ξj(v,ΓP |k−ij).

The union fairness axiom is the same as the ‘within block fairness’ axiom in Kongo [8].

Quotient fairness requires Myerson fairness on the upper level, while union fairness requires

Myerson fairness on the lower level. Also in the ‘(m + 1)-tuple of deletion link axioms’

used in Khmelnitskaya [7], Myerson fairness can be applied both on the upper level and

the lower level. In this case the requirement of (m+ 1)-tuple of deletion link axioms in [7]

is similar to the total requirement of both quotient fairness and union fairness axioms.

As it was already mentioned before, the total payoff assigned to the players in Nk in

the quotient game on the upper level has to be fully distributed over the players in Nk in

the game within the union, also when the communication graph Γk partitions the union Nk

into several components. So, within an a priori union Nk we have efficiency in the sense that

the total payoff assigned to Nk is distributed and thus within Nk the component efficiency

axiom does not hold. The last axiom determines the distribution of the total payoff to Nk

among the several components of Nk in the communication graph Γk. For some k ∈ M

and component C ∈ Nk/Γk, let vkC denote the subgame v|(N\Nk)∪C of v with respect to the

coalition (N \ Nk) ∪ C. Further, let Pk
C denote the partition on (N \ Nk) ∪ C consisting

of union C and all unions Nh in P , h 6= k, and let ΓPk
C

= 〈ΓM , {Γ̃h}h∈M〉 with Γ̃k = Γk|C

7



and Γ̃h = Γh for all h ∈ M \ {k}, denote the two-level communication structure that is

obtained from 〈ΓM , {Γh}h∈M〉 by replacing the communication graph Γk by its restriction

on C ⊂ Nk.2 This axiom applies the component balancedness axiom for communication

graph games, introduced recently in van den Brink, Khmelnitskaya, and van der Laan [3],

to graph games within the unions.

Axiom 3.4 (Union Component Balancedness (UCB)) For any player set N ⊂ IN,

for every 〈v,ΓP〉 ∈ GN × LN
C , k ∈M , and component C ∈ Nk/Γk, it holds

1

c

∑
i∈C

(
ξi(v,ΓP)− ξi(vkC ,ΓPk

C
)
)

=
1

nk

∑
i∈Nk

(
ξi(v,ΓP)− ξi(vk(Nk/Γk)i

,ΓPk
(Nk/Γk)i

)
)
.

Notice that this axiom only states a requirement for the distribution of the total payoff

within a union Nk when Nk consists of multiple components with respect to the internal

communication graph Γk, otherwise the requirement reduces to an identity. Since∑
i∈Nk

ξi(v
k
(Nk/Γk)i

,ΓPk
(Nk/Γk)i

) =
∑

H∈Nk/Γk

∑
i∈H

ξi(v
k
H ,ΓPk

H
),

it follows that for some component C ∈ Nk/Γk union component balancedness also can be

written as∑
i∈C

(
ξi(v,ΓP)− ξi(vkC ,ΓPk

C
)
)

=
c

nk

∑
i∈Nk

ξi(v,ΓP)−
∑

H∈Nk/Γk

∑
i∈H

ξi(v
k
H ,ΓPk

H
)

 .

Since for i ∈ H ∈ Nk/Γk, ξi(v
k
H ,ΓPk

H
) is the payoff to player i when the component

H ∈ Nk/Γk containing i replaces Nk in the game between the unions, union component bal-

ancedness means that the excess (positive or negative), realized by the players of Nk when

they all cooperate together in the game between the unions (instead of the cooperation

within Nk being restricted to players within one component of Nk/Γk) is distributed to the

components in proportion to the number of players in the components. Union component

balancedness is equivalent to saying that for any two components C,C ′ ∈ Nk/Γk,

1

c

∑
i∈C

(
ξi(v,ΓP)− ξi(vkC ,ΓPk

C
))
)

=
1

c′

∑
i∈C′

(
ξi(v,ΓP)− ξi(vkC′ ,ΓPk

C′
)
)
,

meaning that considering only the players in component C in Γk instead of all players

in Nk, the change in the average payoff of the players in this component is the same as

the change in the average payoff of the players in any other component C ′ resulting from

considering only the players in that component C ′ in Γk. Therefore, the last equality

provides an alternative representation of the union component balancedness axiom.

2Note that in this axiom we consider games with two-level communication structures where the player

set N is replaced by (N \ Nk) ∪ C. To be precise we therefore need to write such a game as a triple

(N, v,ΓP), respectively ((N \Nk) ∪ C, vkC ,ΓPk
C

). Since the player set is clear from the context, we ignore

the player set in the notation of a game.
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4 An Owen-type value for two-level graph games

In this section we first show that there exists a two-level graph game value that satisfies

the four axioms. After that we show that this solution is characterized by the four axioms,

i.e., it is the unique two-level graph game value satisfying these axioms.

Analogously to the Owen value for games with coalition structures, we introduce

an Owen-type value for the class of games with two-level communication structures. First,

for every k ∈ M and S ⊆ Nk, recall the game v̂S ∈ GM on the player set M of a priori

unions defined by (2.2), where the worth of a coalition Q of a priori unions of M equals

the worth of the union of all unions in Q, except that union Nk is replaced by S ⊆ Nk. We

now take into account the communication graph ΓM between the a priori unions. Instead

of the game v̄k ∈ GNk on player set Nk given by (2.1), we now define the game ṽk ∈ GNk by

taking the Myerson value of v̂ with respect to ΓM instead of the Shapley value of v̂. So,

ṽk(S) = µk(v̂S,ΓM) = Shk(v̂ΓM
S ), for all S ⊆ Nk.

Notice that ṽk(Nk) = Shk(v̂ΓM
Nk

) = Shk(vΓM
P ), i.e., the worth of Nk in the game ṽk is equal

to the Myerson value of k ∈M (representing union Nk) in the quotient game with respect

to the communication graph ΓM . Next, recall again from Subsection 2.2 that without

communication graphs, the Owen value of a player i ∈ Nk is the Shapley payoff to player

i in the game v̄k ∈ GNk . Taking into account the communication graph Γk within Nk, we

take for player i ∈ Nk its Shapley payoff in a modification of the Myerson restricted game

ṽΓk
k of the game ṽk ∈ GNk . The modification concerns the worth of the coalition Nk itself,

for which we take its own worth ṽk(Nk) instead of the sum of the worths of components∑
C∈Nk/Γk

ṽk(C). This is because the players in Nk have to distribute the total payoff

assigned to a priori union Nk in the restricted quotient game. The value constructed in

this way is denoted by ψ, so,

ψi(v,ΓP) = Shi(˜̃vk(i)), for all i ∈ N, N ∈ IN,

where for all k ∈M , ˜̃vk ∈ GNk is defined by

˜̃vk(S) =

{
ṽΓk
k (S), S $ Nk,

ṽk(Nk) = Shk(vΓM
P ), S = Nk.

Analogously to the Owen value, the value ψ can be seen as a two-step procedure in which

first every coalition gets its Shapley value of the Myerson restriction of the quotient game

with respect to communication graph ΓM , and second every player i in a priori union Nk

gets its Shapley payoff in the within a priori union game ˜̃vk ∈ GNk . We now have the

following theorem.

Theorem 4.1 The two-level graph game value ψ satisfies QCE, QF, UF and UCB.
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Proof.

QCE. First,∑
i∈Nk

ψi(v,ΓP) =
∑
i∈Nk

Shi(˜̃vk(i)) = Shk(vΓM
P ) = µk(vP ,ΓM), (4.3)

where the first equality follows by definition of ψ, the second equality follows from efficiency

of the Shapley value, and the third equality follows from the definition of the Myerson value

µ. Thus, we have∑
k∈K

∑
i∈Nk

ψi(v,ΓP) =
∑
k∈K

µk(vP ,ΓM) = vP(K),

where the first equality follows from (4.3) and the second equality follows from component

efficiency of µ.

QF. We have∑
i∈Nk

ψi(v,ΓP)−
∑
i∈Nk

ψi(v,ΓP |−kh) =

µk(vP ,ΓM)− µk(vP ,ΓM |−kh) = µh(vP ,ΓM)− µh(vP ,ΓM |−kh) =∑
i∈Nh

ψi(v,ΓP)−
∑
i∈Nh

ψi(v,ΓP |−kh),

where the first and third equality follow from (4.3), and the second equality follows by

fairness of µ.

UF. By definition

˜̃vk(i) = ṽ
Γk(i)

k(i) + w, (4.4)

where w ∈ GNk(i) is given by

w(S) =

 0, S $ Nk(i),

Shk(vΓM
P )− ṽΓk(i)

k(i) (Nk(i)), S = Nk(i),

i.e., game ˜̃vk(i) is obtained by adding (Shk(vΓM
P )− ṽΓk(i)

k(i) (Nk(i))) times the unanimity game3

of Nk(i) to the game ṽ
Γk(i)

k(i) . From this it follows that

ψi(v,ΓP) = Shi(˜̃vk(i)) = Shi(ṽ
Γk(i)

k(i) ) +
Shk(vΓM

P )− ṽΓk(i)

k(i) (Nk(i))

nk(i)

=

3It is well known [11] that the collection of unanimity games {uT }T⊆N
T 6=∅

, defined as uT (S) = 1, if T ⊆ S,

and uT (S) = 0 otherwise, create a basis in GN .

10



µi(ṽk(i),Γk(i)) +

µk(i)(vP ,ΓM) −
∑

C∈Nk(i)/Γk(i)

v(C)

nk(i)

, (4.5)

where the first equality follows by definition of the value ψ, the second equality follows

from additivity of the Shapley value and (4.4), and the third equality follows by definition

of µ and ṽ
Γk(i)

k(i) . Hence,

ψi(v,ΓP)− ψi(v,ΓP |k(i)
−ij ) = µi(ṽk(i),Γk(i))− µi(ṽk(i),Γk(i)|−ij) +

µk(i)(vP ,ΓM) −
∑

C∈Nk(i)/Γk(i)

v(C)

nk(i)

−
µk(i)(vP ,ΓM) −

∑
C∈Nk(i)/Γk(i)|−ij

v(C)

nk(i)

=

µj(ṽk(i),Γk(i))− µj(ṽk(i),Γk(i)|−ij) +

µk(i)(vP ,ΓM) −
∑

C∈Nk(i)/Γk(i)

v(C)

nk(i)

−
µk(i)(vP ,ΓM) −

∑
C∈Nk(i)/Γk(i)|−ij

v(C)

nk(i)

=

ψj(v,ΓP)− ψj(v,ΓP |k(i)
−ij ),

where the first and third equality follow from (4.5), and the second equality follows by

fairness of µ.

UCB. By (4.5), we obtain for every C ∈ Nk/Γk that

∑
i∈C

ψi(v,ΓP) =
∑
i∈C

µi(ṽk,Γk) +
c

nk

µk(vP ,ΓM)−
∑

H∈Nk/Γk

v(H)

 .

Further,∑
i∈C

ψi(v
k
C ,ΓPk

C
) = ˜̃v

k

C(C) = ṽkC(C) =
∑
i∈C

µi(ṽk,Γk),

where the first and second equality follow from the definition of ψ, efficiency of the Shapley

value and C being the only component in Γ̃k, and the third equality follows from component

efficiency of µ. Thus

∑
i∈C

(
ψi(v,ΓP)− ψi(v

k
C ,ΓPk

C
)
)

=
c

nk

µk(vP ,ΓM)−
∑

H∈Nk/Γk

v(H)

 .

Similarly, we can derive∑
i∈Nk

(
ψi(v,ΓP)− ψi(v

k
(Nk/Γk)i

,ΓPk
(Nk/Γk)i

)
)

= µk(vP ,ΓM)−
∑

H∈Nk/Γk

v(H)).

11



Hence it follows that

1

c

∑
i∈C

(
ψi(v,ΓP)− ψi(v

k
C ,ΓPk

C
)
)

=
1

nk

∑
i∈Nk

(
ψi(v,ΓP)− ψi(v

k
(Nk/Γk)i

,ΓPk
(Nk/Γk)i

)
)
,

showing that ψ satisfies UCB. 2

Remark Note that (4.5) gives an alternative definition of the value ψ assigning to every

graph game its Myerson value and distributing the difference between the worth of the

grand coalition N and the sum of the worths of all components equally over all players. In

this sense ψ can be seen as combining elements of the Myerson value and equal division

solution. This idea is similar to Kamijo [6] who introduced a solution for games in coalition

structure that allocates to every player its Shapley value in the game restricted to its own

union and distributes the excess of the Shapley value of its union in the (quotient) game

between the unions over the worth of this union equally among the players in this union.

The next theorem characterizes the value ψ as the unique solution satisfying the

four axioms.

Theorem 4.2 There is a unique two-level graph game value ξ satisfying QCE, QF, UF

and UCB.

Proof. By Theorem 4.1 we only need to show uniqueness. Let P = {N1, . . . , Nm} ∈ CN

and (v,ΓP) ∈ GN ×LN
C with ΓP=〈ΓM , {Γh}h∈M〉. For a solution ξ, we denote ξk(v,ΓP) =∑

i∈Nk
ξi(v,ΓP) as the total payoff to the players in the union Nk, k = 1, . . . ,m. Suppose

that solution ξ satisfies the four axioms. We determine the individual payoffs in three steps.

Step 1. We determine the ‘union payoffs’ in the game (v,ΓP) ∈ GN × LN
C with ΓP =

〈ΓM , {Γh}h∈M〉 by induction on the number of links in ΓM in a similar way as uniqueness

of the Myerson value for one-level graph games is shown in Myerson [9]. When |ΓM | = 0

then, for all k ∈ M , the set of neighboring unions {h ∈ M | {h, k} ∈ Γ} = ∅, and thus

ξk(v,ΓP) = vP(Nk) = v(Nk) by QCE.

Proceeding by induction, assume that the values ξk(v,Γ′P) have been determined

whenever Γ′P = 〈Γ′, {Γh}h∈M〉 for every Γ′ with |Γ′| < |ΓM |. Let Q ∈ M/ΓM be a com-

ponent in 〈M,ΓM〉. If Q ⊆ M is a singleton set {k}, then it follows from QCE that

ξk(v,ΓP) = v(Nk). If q = |Q| ≥ 2, then there exists a spanning tree Γ̃ ⊆ ΓM |Q on Q, i.e.,

〈Q, Γ̃〉 is connected and 〈Q, Γ̃\{k, h}〉 is not connected for all {k, h} ∈ Γ̃. So, the number

of links in Γ̃ is q − 1. By QF, for all {k, h} ∈ Γ̃ it holds that

ξk(v,ΓP)− ξk(v,ΓP |−kh) = ξh(v,ΓP)− ξh(v,ΓP |−kh). (4.6)
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Moreover, by QCE it holds that∑
k∈Q

ξk(v,ΓP) = vP(K). (4.7)

Since |ΓM\{h, k}| = |ΓM | − 1, it follows by the induction hypothesis that all the values

ξk(v,ΓP |−kh), {k, h} ∈ Γ̃, have been determined, and thus (4.6) and (4.7) yield q linear

equations in the q unknown payoffs ξk(v,ΓP), k ∈ Q. Since these equations are linearly

independent, for every Q ∈M/Γ, all payoffs ξk(v,ΓP), k ∈ Q, are uniquely determined.4

Step 2. Second, similarly as in Step 1, we determine for every k ∈ M , for every sub-

set C ⊂ Nk the ‘union payoffs’ in the game (vC ,ΓPk
C

), where vkC denotes the subgame

v|(N\Nk)∪C of v with respect to the coalition (N \Nk) ∪ C, and ΓPk
C

denotes the two-level

communication structure 〈ΓM , {Γh}h∈M〉, where ΓM is the communication graph on the

partition (P \ {Nk}) ∪ {C} (where the ‘position’ of Nk is taken over by C) and with the

communication graph Γk replaced by its restriction on C ⊂ Nk. Note that now, for k ∈M ,

the union payoff ξk(vkC ,ΓPk
C

) is the total payoff to the players in C ⊂ Nk in the game

(vkC ,ΓPk
C

).

Step 3. Third, we determine the individual payoffs in every coalition Nk, k ∈ M . Take

some k ∈M . If |Γk| = 0 then {i} ∈ Nk/Γk for all i ∈ Nk. UCB then implies that

ξi(v,ΓP)− ξk(vk{i},ΓPk
{i}

) =

ξk(v,ΓP)−
∑

j∈Nk

ξk(vk{j},ΓPk
{j}

)

nk

, for all i ∈ Nk. (4.8)

From Step 1 and 2 above, we know ξk(v,ΓP) and ξk(vk{j},ΓPk
{j}

), for all j ∈ Nk. So, equation

(4.8) determines ξi(v,ΓP) for all i ∈ Nk.

Now we proceed by induction similar as in Step 1, but first we show that for each

component C ∈ Nk/Γk the total payoff to the players in C is uniquely determined. The

payoff ξk(v,ΓP) to the a priori union Nk has been determined already in Step 1, so∑
i∈Nk

ξi(v,ΓP) = ξk(v,ΓP). (4.9)

If Nk is the unique component in Nk/Γk, then UCB does not state any requirement. When

Nk/Γk consists of multiple components, then for every component C ∈ Nk/Γk, UCB states

that ∑
i∈C

ξi(v,ΓP)− ξk(vkC ,ΓPk
C

)

c
=

ξk(v,ΓP)−
∑

K∈Nk/Γ

ξk(vkK ,ΓPk
K

)

nk

. (4.10)

4Note that in the proof of the induction step, every possible spanning tree Γ̃ yields the same solution

for the values ξk(v,ΓP), k ∈ Q, because otherwise a solution does not exist, which contradicts Theorem

4.1.
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Notice that every payoff ξk in this equation has been determined in either Step 1 or Step

2. We now prove the induction step similar as in Step 1, and as in [9]. Let Γ′P denote the

two-level graph structure 〈ΓM , {Γ′h}h∈M〉 with Γ′h = Γh if h 6= k and Γ′k = Γ′ for some graph

Γ′ on Nk. Above we already showed that the payoffs in Nk are determined if |Γk| = 0.

Now, assume that the values ξi(v,Γ
′
P) have been determined for every Γ′ with |Γ′| < |Γk|.

Let C ∈ Nk/Γk be a component in (Nk,Γk). If C ⊆ Nk is a singleton set {i}, then the

payoff ξi(v,ΓP) of the single player i ∈ C follows from (4.10). If c = |C| ≥ 2, then there

exists a spanning tree Γ̃ ⊆ Γk|C on C. So, the number of links in Γ̃ is c− 1. By UF, for all

{i, j} ∈ Γ̃ it holds that

ξi(v,ΓP)− ξi(v,ΓP |k−ij) = ξj(v,ΓP)− ξj(v,ΓP |k−ij). (4.11)

Since |Γk\{i, j}| = |Γk|−1, it follows by the induction hypothesis that all payoffs ξi(v,ΓP |k−ij),
{i, j} ∈ Γ̃, have been determined. If C 6= Nk then the equations (4.10) and (4.11) yield c

linearly independent equations in the c unknown payoffs ξi(v,ΓP), i ∈ C. If C = Nk then

the equations (4.9) and (4.11) yield c linearly independent equations in the c unknown

payoffs ξi(v,ΓP), i ∈ C. Hence, for every C ∈ Nk/Γk, all payoffs ξi(v,ΓP), i ∈ C, are

uniquely determined. 2

Note that in the proof of Theorem 4.2 we used QCE and QF to determine the sum

of the payoffs in every union, similar as done in [9]. In fact, we considered ΓM as a one-level

graph on M . We cannot apply a similar proof using component efficiency to determine

the individual payoffs inside each union, because the total payoff to the players in each

union should be equal to the total payoff to the union as determined in Step 1, which could

be more (or less) than the sum of the payoffs that the components of the communication

graph within the union obtain in the internal game. Instead, we applied UCB to obtain

uniqueness on the individual level.

We conclude this section by showing that the four axioms are logically independent.

1. [Equal division within the a priori unions] Let the two-level graph game value

ξ(1) assign for every 〈v,ΓP〉 ∈ GN × LN
C payoff

ξ
(1)
i (v,ΓP) =

ṽk(Nk)

nk

,

to every player i ∈ Nk, k ∈ M . This value divides for each a priori union k ∈ M

the worth ṽk(Nk) of coalition Nk in the restricted quotient game equally amongst the

players in Nk. It satisfies quotient component efficiency, quotient fairness and union

fairness but does not satisfy union component balancedness.
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2. [Equal division within the components of the a priori unions] Let the two-

level graph game value ξ(2) assign for every 〈v,ΓP〉 ∈ GN × LN
C payoff

ξ
(2)
i (v,ΓP) =

˜̃vk(C)

c
+

ṽk(Nk)−
∑

H∈Nk/Γk

˜̃vk(H)

nk

,

to every player i ∈ C, C ∈ Nk/Γk, k ∈ M . Each player i ∈ C ∈ Nk/Γk gets an

equal share in the worth ˜̃vk(C) of his component and an equal share in the surplus

of Nk over the sum of the worths of the components in Nk/Γk. This value satisfies

quotient component efficiency, quotient fairness and union component balancedness

but it does not satisfy union fairness.

3. [Equal division within the components of the upper-level structure] Let the

two-level graph game value ξ(3) be defined for every 〈v,ΓP〉 ∈ GN × LN
C by

ξ
(3)
i (v,ΓP) = Shi(wk(i)), for all i ∈ N,

where for a priori union k ∈M belonging to a component K ∈M/ΓM of the upper-

level structure, the game wk ∈ GNk is defined by

wk(S) =


ṽΓk
k (S), S $ Nk,

1

|K|
v(K), S = Nk.

In this case every a priori union Nk gets an equal share in the worth of the compo-

nent to which it belongs in the upper level structure. This value satisfies quotient

component efficiency, union fairness and union component balancedness but it does

not satisfy quotient fairness.

4. [Efficient total payoff distribution] Let the two-level graph game value ξ(4)be

defined for every 〈v,ΓP〉 ∈ GN × LN
C by

ξ
(4)
i (v,ΓP) = Shi(w

∗
k(i)), for all i ∈ N,

where for a priori union k ∈M w∗k ∈ GNk is defined by

w∗k(S) =

{
ṽΓk
k (S), S $ Nk,

Shk(w̄), S = Nk,

with game w̄ on M defined by w̄(Q) = vΓM
P (Q) for every Q $ M and w̄(M) =

vP(M) = v(N). In this case the total payoff is equal to the worth v(N) of the

grand coalition N of all players, i.e., ξ(4) is efficient. This value ξ(4) satisfies quotient

fairness, union fairness and union component balancedness but it does not satisfy

quotient component efficiency.
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5 Comparison with other values

In this final section we consider several special cases of two-level structure ΓP and its

corresponding Owen-type value ψ and show that, for example the Owen value, Aumann-

Drèze value (for games in coalition structure), Myerson value (for communication graph

games) and equal surplus division solutions can be obtained as special cases of this value.

We distinguish two types of values, one depending on special communication graphs, and

the other depending on special partitions.

5.1 Special communication graphs

Two special cases of a communication graph are the complete and the empty graph. In

this paper these two special cases can occur both on the upper level between the unions

as on the lower level within the unions. We first discuss three special cases with an empty

graph on the upper level and next three special cases with a complete graph on the upper

level.

1. [Empty upper level structure, complete graph within the unions: The

Aumann-Drèze value] Consider the case ΓP with ΓM the empty graph and every

Γk, k ∈M , the complete graph. In this case every a priori union Nk stands alone and

the Myerson value applied to the quotient game with empty communication graph

assigns to every a priori union Nk, k ∈ M , its own payoff v(Nk). In the game ṽk

on Nk every coalition S ⊂ Nk gets its own worth v(S), thus ṽk(S) = v(S) for every

S ⊆ Nk, k ∈M . Within the union there is no restriction on the cooperation between

the players and thus ˜̃vk(S) = v(S) for every S ⊆ Nk, k ∈M . It follows that

ψi(v,ΓP) = Shi(v|Nk(i)
) = ADi(v,P), for all i ∈ N,

i.e., every player i gets its Shapley value within the subgame of v on the a priori union

Nk containing i, and therefore, in this case the value ψ is equal to the Aumann-Drèze

value [1].

2. [Empty two-level structure: Equal surplus division] Consider the case ΓP

with both ΓM and every Γk, k ∈ M , empty. As in the previous case every a priori

coalition Nk, k ∈ M , stands alone and gets its own worth v(Nk). Next, within a

priori union Nk every player i is a stand alone component and ˜̃vk({i}) = v({i}) for

every i ∈ Nk. Then it follows from union component balancedness that for every

k ∈M and i ∈ Nk,

ψi(v,ΓP) = v({i}) +

v(Nk)−
∑
i∈Nk

v({i})

nk

.
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So, in this case the value ψ assigns within each a priori union Nk the equal surplus

division solution on the subgame v|Nk
, first considered in Driessen and Funaki [5]

under the name of the center of the imputation set (CIS-value). In case v is zero-

normalized, and thus v({i}) = 0 for every i ∈ N , the value ψ yields the equal division

solution within each a priori union Nk.

3. [Empty upper level structure, connected graphs within the unions: The

Myerson value] Consider the case ΓP with ΓM the empty graph and every Γk,

k ∈ M , connected, i.e., for every k ∈ M , union Nk itself is the only element in

Nk/Γk. Again every a priori union Nk, k ∈ M , stands alone and gets its own worth

v(Nk) and in the game ṽk every coalition S ⊂ Nk gets its own worth v(S), thus

ṽk(S) = v(S) for every S ⊆ Nk, k ∈ M . Since Γk is connected it follows that

ṽΓk
k (Nk) = ṽk(Nk) = v(Nk) and therefore ˜̃vk = vΓk . So ψ yields to every player i in

every a priori union Nk the payoff of the Myerson value of the subgame on Nk with

respect to the communication graph Γk within Nk. Even more, let Γ = ∪k∈M Γk

be the communication graph between all players obtained by taking the union of

all graphs within the unions. Then, by definition every Nk is a component of Γ,

i.e., N/Γ = {N1, . . . , Nm}. By component efficiency of the Myerson value it follows

immediately that for the case of an empty upper level structure and connected graphs

within the unions, the value ψ is equal to the Myerson value µ for the game v on N

with respect to the (one-level) induced communication stucture Γ = ∪k∈M Γk on N .

4. [Complete two-level structure: The Owen value] Consider the case ΓP with

both ΓM and every Γk, k ∈ M , complete graphs. In this case there is no restriction

on the cooperation between a priori unions and within the a priori unions. Hence,

for every Q ⊆M , Q is the only component of the subgraph ΓM |Q and also for every

k and every C ⊆ Nk, C is the only component of the subgraph Γk|C . Therefore ψ

reduces to the Owen value on P : ψ(v,ΓP) = Ow(v,P). Notice that in this case quo-

tient component efficiency reduces to efficiency and union component balancedness

becomes redundant.

5. [Complete upper level structure, empty graphs within the unions: Equal

union surplus division] Consider the case ΓP with ΓM the complete graph and Γk

the empty graph for every k ∈ M . Again there is no restriction on the cooperation

between the unions and therefore

ṽk(S) = v̄k(S), for all k ∈M and all S ⊆ Nk.

On the other hand, within an a priori union Nk every player i ∈ Nk is a stand alone

component. With ˜̃vk({i}) = v̄k({i}) for all i ∈ Nk, and ˜̃vk(Nk) = v̄k(Nk) = Shk(vP)
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the Shapley value of a priori union k in the quotient game, it follows from union

component balancedness that, for every k ∈M and i ∈ Nk

ψi(v,ΓP) = v̄k({i}) +

Shk(vP)−
∑
i∈Nk

v̄k({i})

nk

.

So, within a priori union Nk every player i gets its stand alone value in the game v̄k

plus an equal share in the surplus of Nk in the quotient game.

6. [Complete upper level structure, connected graphs within the unions: The

efficient Myerson-type value of Casajus [4]] Consider the case ΓP with ΓM the

complete graph and every Γk, k ∈M , connected. Again ṽk(S) = v̄k(S) for all k ∈M
and S ⊆ Nk. Because of connectedness of every Γk, the value ψ is obtained by

applying within every a priori union Nk the Myerson value µ to ṽk = v̄k with respect

to Γk, so for every k ∈M and i ∈ Nk,

ψi(v,ΓP) = µi(v̄k,Γk).

Furthermore, every Γk is connected and by definition (2.1) of v̄, v̄Γk
k (Nk) = v̄k(Nk) =

Shk(vP). Then from the efficiency of the Shapley value it follows that for every k,∑
i∈Nk

ψi(v,ΓP) = Shk(vP) and
∑

i∈N ψi(v,ΓP) =
∑

k∈M Shk(vP) = v(N). So ψ

distributes the total worth v(N) and thus meets efficiency.

In fact, in this case the two-level graph game value ψ yields the same payoffs as the so-

called CO-value φ, introduced in Theorem 4.2 of Casajus [4] as an efficient alternative

for the Myerson value for games with a one-level communication graph. For such a

game 〈v,Γ〉 with Γ a communication graph on N , [4] considers the collection N/Γ

of components of Γ as a cooperation structure P induced by the communication

structure Γ. Let Nk be such a component. Then, within Nk the Shapley value is

applied to the Myerson restricted game of v̄k. This gives the same payoffs as ψ(v,ΓP)

for the two-level structure when ΓM is taken to be the complete graph on M and for

each k ∈M graphs Γk are connected. In this case the Casajus’s graph Γ = ∪k∈MΓk.

5.2 Special coalition structures

Finally we discuss the two special cases with respect to the coalition structure.

1. [Partition in singletons: The Myerson value] When P = {{1}, . . . , {n}} every

a priori union consists of a single player i and there is no game within the unions.
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Hence the value ψ reduces to the Myerson value with respect to the upper level graph

structure ΓM , thus

ψi(v,ΓP) = µi(v,ΓM) = Shi(v
ΓM ), for all i ∈ N.

2. [Single a priori union: The efficient Myerson value] Consider the case P =

{N}, thus the grand coalition N itself is the singleton a priori union within the

coalition structure P . In this case m = 1 and denoting ˜̃v = ˜̃v1 and Γ = Γ1 for the

single a priori union N = N1 in P we have

˜̃v(S) =

{
vΓ(S), S $ N,

v(N), S = N.

By definition, the value ψ assigns the Shapley value of the game ˜̃v on N that equals

to the Myerson value of 〈v,Γ〉 plus an equal split of the excess of the worth of the

grand coalition over the total worth of all components in graph Γ, i.e.,

ψi(v,ΓP) = µi(v,Γ) +

v(N)−
∑

C∈N/Γ

v(C)

n
, for all i ∈ N.

It appears that this is the unique value that satisfies union fairness (within the grand

coalition N) and efficiency. Considering this case as just a one-level communication

graph game 〈v,Γ〉 onN , recall that the Myerson value is the unique value that satisfies

component efficiency and fairness. In fact, in case of P = {N} the value ψ yields the

same payoffs as the efficient Myerson-type value of the game 〈v,Γ〉 for games with

one-level communication graphs, recently studied in van den Brink, Khmelnitskaya,

and van der Laan [3].
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