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Abstract

We introduce an Owen-type value for games with two-level communication structures, be-
ing structures where the players are partitioned into a coalition structure such that there
exists restricted communication between as well as within the a priori unions of the coali-
tion structure. Both types of communication restrictions are modeled by an undirected
communication graph, so there is a communication graph between the unions of the coali-
tion structure as well as a communication graph on the players in every union. We also
show that, for particular two-level communication structures, the Owen value and the
Aumann-Dreze value for games with coalition structures, the Myerson value for communi-
cation graph games and the equal surplus division solution appear as special cases of this

new value.

Keywords: TU game, coalition structure, communication graph, Owen value, Myerson

value.
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1 Introduction

The study of TU games with coalition structures was initiated in the 1970’s, first by
Aumann and Dreze [1] and then Owen [10]. In these papers a coalition structure is given
by a partition of the set of players. Later this approach was extended in Winter [13] to
games with level structures. Another model of a game with limited cooperation presented
by means of communication graphs was introduced in Myerson [9]. Various studies in both
directions were done during the last three decades, but mostly either within one model or
another. Vézquez-Brage, Garcia-Jurado and Carreras [12] is the first study that combines
both models by considering a TU game endowed with independent of each other both a
coalition structure and a communication graph on the set of players. For this class of games
they propose a solution by applying the Owen value for games with coalition structures to
the Myerson restricted game of the game with communication graph.

Recently, Khmelnitskaya [7] and Kongo [8] independently from each other have
introduced another model of a TU game endowed with both a coalition structure and
communication graph, the so-called games with two-level communication structures. In
contrast to [12], in this model a two-level communication structure relates fundamentally
to the given coalition structure and consists of a communication graph on the collection
of the a priori unions in the coalition structure, as well as a communication graph within
every union. It is assumed that communication is only possible either among the a priori
unions or among single players within an a priori union. No communication and therefore
no cooperation is allowed between single players from distinct elements of the coalition
structure. Different from the framework of Khmelnitskaya, Kongo reduces the model to a
one-level communication model using a special assumption concerning the ability of players
to cooperate under the two-level communication structure, namely a set of players is able
to cooperate either if it is a connected component within an a priori union or the set of
players is the union of at least two connected a priori unions, independently whether the
players are connected inside the a priori union they belong to or not.

In this paper we abide by the Khmelnitskaya’s framework but we weaken the as-
sumption concerning communication on the upper level between a priori unions allowing
for one a priori union among connected unions to be represented by a proper subcoali-
tion. We introduce a new solution for the class of games with two-level communication
structures. Different from the solution concepts given in [7] and [8], the new solution is
an Owen-type value in the sense that it modifies the Owen value for games with two-level
communication structures. As in Owen [10], the payoffs of the players are determined
by applying the Shapley value twice. First, the Shapley value is applied to the Myerson
restricted game (with respect to the communication graph between unions) of Owen’s quo-

tient game between the unions. This gives for each union the total payoff to the players



of the union. To obtain the individual payoffs, within each union the Shapley value is
applied to a game on the players within the union. To construct the game within a union,
first a game is obtained by applying Owen’s procedure to find such a game but taking
account of the communication graph between the unions. Next we construct a restriction
of this game taking into account the communication graph within the union and apply the
Shapley value to this restriction.

The new Owen-type value for the class of games with two-level communication
structures is characterized by four axioms, two on the level of the communication graph
between the a priori unions, and two on the level of the communication graphs within the
a priori unions. We also show that the Owen value and the Aumann-Dreze value for games
with coalition structures, the Myerson value for communication graph games and the equal
surplus division solution appear as special cases of this new value for particular two-level
communication structures.

The paper is organized as follows. Basic definitions and notation are introduced in
Section 2. Section 3 is devoted to the axioms that we require from a solution for games
with two-level communication structures. In Section 4 we define an Owen-type value for
such games and show that it is the unique solution satisfying these axioms. In Section 5 we
consider several special cases and show that the new solution generalizes some well-known

solutions for games in coalition structure and communication graph games.

2 Preliminaries

2.1 TU games and values

A situation in which a finite set of players can obtain certain payoffs by cooperating can
be described by a cooperative game with transferable utility, or simply a TU game, being a
pair (N,v), where N C N is a finite set of n > 2 players and v: 2" — IR is a characteristic
function on N such that v()) = 0. For any coalition S C N, v(S) is the worth of coalition S,
i.e., the members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate.

We denote the set of all characteristic functions on player set N by GV. For simplic-
ity of notation and if no ambiguity appears, we write v instead of (N, v). The subgame of
v with respect to a player set T C N, T # (), is the game v|r defined as v|7(S) = v(S5), for
all S C T. We denote the cardinality of a given set A by |A|, along with lower case letters
like n = |[N|, m = |M|, ng = |Nk|, s = |S|, c = |C|, ¢ =|C"|, and so on. For K C N, we
denote IR as the k-dimensional vector space which elements z € IRX have components
x5, 1 € K. For every x € RN and S C N, we use the standard notation 2(S) = Y ics Ti
and g = {x; }ies.

For game v € GV, a vector € IR" may be considered as a payoff vector assigning



a payoff x; to each player ¢ € N. A single-valued solution, called a value, is a mapping &
that assigns for every N C IN and every v € GV a payoff vector £(v) € RY. A value ¢ is
efficient if ,_ &(v) = v(N) for every v € G¥ and N C N. The best-known efficient
value is the Shapley value [11], given by

Shi(v)= Y (n= M= DY gy oS\ {i})),  forall i€ N.

n!
{SCNlieS}

2.2 Games with coalition structure

A coalition structure on N C N is given by a partition P = { Ny, ..., N, } of N. Elements of
a partition will be called a priori unions. Let C*V denote the set of all coalition structures
on N. A pair (v,P) € GV x CV constitutes a game with coalition structure. A game with
coalition structure represents situations in which a priori unions are formed. For partition
P ={Ny,...,Ny,}, we denote M = {1,...,m} and for every i€ N, we denote by k(i) the
index of the a priori union containing player ¢, so k(i) is defined by the relation i € N .
For any payoff vector z € RY, let 2” = (z(Ny)),c,s € RY be the corresponding vector of
total payoffs to the a priori unions.

A value for games with coalition structures is a mapping ¢ that assigns for every N
and every (v, P) € GN x CV a payoff vector £(v, P) € IRY. One of the best-known values
for games with coalition structures is the Owen value [10] that can be seen as a two-step

L First, for every a priori union the

procedure in which the Shapley value applies twice.
total payoff to the players within that union is determined by applying the Shapley value
to the so-called quotient game being the game vp € GM, M = {1,...,m}, in which the

unions act as individual players,
vp(Q) = v(Ureq Ni), for all @ C M.

So, the worth of a coalition ) of a priori unions of M in game vp is the worth of the union
of all coalitions in ). The Shapley value of game vp gives the total payoff of the Owen
value to the a priori unions of the coalition structure. Second, the individual payoffs of
the players within an a priori union are obtained by applying the Shapley value to a game
on the players within the union. For every a priori union k& € M, this game v, € GV on

player set Nj is given by

5:(S) = Shi(ds), S C Ny, (2.1)

1See also van den Brink and van der Laan [2], in which Owen-type values for the class of games with
coalition structures are given that determine the individual payoffs as the multiplicative product of two

shares in the total payoff.



where, for every S C N, the game 9 € GM on the player set M of a priori unions, is
defined by

U(UheQ Nh)a k ¢ Q,
05(Q) = for all Q C M. (2.2)
V(Uneo\(ry Nn U S), ke qQ,
So, for every S C N, the worth of subset () of M in game 0g is the worth of the union
of all coalitions in @), except that coalition N, is replaced by S C Ni. Then the worth of
coalition S C Ny in vy is the payoff that the Shapley value assigns to k£ € M in game 0g.
The Owen value assigns to player ¢« € N the Shapley value of player i in the game ),

ie.,
Owi('U,P) = Shl(@k(z)), for all i € N.

Notice that for every k € M, the game 0y, is equal to the quotient game vp. It is well-
known that the Owen value is efficient.
Another well-known solution for games with coalition structures is the Aumann-

Dréze value [1] which assigns to every game (v, P) € GV x CV the payoff vector
AD;(v, P) = Shi(v|n,, ), for all i € N.

The Aumann-Dreze value assigns to a player ¢ the Shapley payoft of player ¢ in the sub-
game on the coalition N containing i. Notice that ),y AD;(v,P) = v(Ny), and thus
Yoien ADi(v,P) = ey v(Ni). Therefore the Aumann-Dreze value is not efficient. In
fact, according to the Aumann-Dreze value it is assumed that every a priori union is a

stand-alone coalition.

2.3 Communication graph games

For N C N, a communication structure on N is specified by a communication graph (N,T")
with ' C TN = {{i,j}|i,7 € N, i # j}, ie., I'is a collection of (unordered) pairs of nodes
(players), where a pair {7, j} represents a link between players i, j € N, and (N,T") is the
complete graph on N. Again, for simplicity of notation and if no ambiguity appears, we
write graph I' instead of (N,T'). Let £V denote the set of all communication graphs on
N. A pair {(v,T) € G x LN constitutes a game with (communication) graph structure or
simply a graph game on N. For given N, the subgraph of a graph I' € LV with respect to
set S C N, S # (), is the graph T'|g € £ defined by I'|s={{4,j} € I'|i,5 € S}. For ease of
notation given digraph I' and link {7, j} € I' the subgraph I'\{{7, j}} we denote via I'|_;.

For a graph I" on N, a sequence of different nodes (i1,...,i), kK > 2, is a path
from iy to ig, if for all h = 1,...,k — 1, {ip,ips1} € I'. A graph I' on a player set N is

connected, if for any two nodes in N there exists a path in I" from one node to the other.

4



For given graph I" on N, we say that the player set S C N is connected, if the subgraph
['|s is connected. For graph I on player set N and S C N, a subset 7" C S is a maximally
connected subset or component of S if (i) I'|y is connected, and (ii) for every i € S\ T,
the subgraph I'|7ug; is not connected. For I' on N and S € N, we denote by S/T" the set
of all components of S, and by (S/T"); the component of S containing i € S. Notice that
S/T is a partition of S.

A value for communication graph games, a graph game value, is a mapping & that
for every N C IN and every (v,T') € GV x LN assigns a payoff vector £(v,T) € RY. A
graph game value ¢ is component efficient if for any (v,T') € GNXLN, 3. &(v,T') = v(C)
for every C' € N/T'. A well-known component efficient graph game value is the Myerson
value. Following Myerson [9], we assume that in a communication graph game (v, ') only
connected coalitions are able to cooperate and to realise their worths. A non-connected
coalition S can only realise the sum of the worths of its components in S/T". This yields
the restricted game v* € GY defined by

V'(S)= > wu(T), forall SCN.
TeS)T
Then the Myerson value for communication graph games is the graph game value p that
assigns to every communication graph game (v, I") the Shapley value of its restricted game

b e,

w(v,T) = Shy(vh).

It is well-known that the Myerson value is the unique graph game value that is compo-
nent efficient and satisfies the so-called Myerson fairness axiom. A graph game value
¢ is fair if for every graph game (v,I') on any player set N, for every {h,k} € T,
En(v, 1) = &n(v, L] pk) = &(v, 1) — & (v, T ni)-

3 Games with two-level communication structures

We now consider situations in which the players are partitioned into a coalition structure
P and are linked to each other by communication graphs. First, there is a communication
graph I'); between the a priori unions M in the partition P. Second, for each a priori union
Ny, k € M, there is a communication graph I';, between the players in N;. Given P € C¥,
a two-level communication structure on N is given by the tuple I'p = (I, {Tk bren)-

For N C N and P € CV let LY be the set of all two-level communication structures

on N with fixed P and let £ = U ﬁg be the set of all two-level graph structures on

PecN
N. A tuple (v,I'p) € G x LY constitutes a game with two-level communication structure



or simply two-level graph game on N. A value for games with two-level communication
structure, a two-level graph game value, is a mapping & that assigns for every N C IN and
every two-level graph game (v, T'p) € G x L2 a payoff vector £(v,I'p) € RY.

We now state several axioms that can be satisfied by solutions for games with two-
level communication structures. The first three axioms are generalizations of axioms used
to characterize the Myerson value on the class of communication graph games. First,
quotient component efficiency states that on the level of the a priori unions (in the sequel
shortly to be called the upper level), the total payoff of the players in the a priori unions
of a component K € M/I'); is equal to the worth of the unions in the component in the

quotient game vp on M.

Axiom 3.1 (Quotient Component Efficiency (QCE)) For any player set NCN, for
every (v,Tp) € GN x LY, it holds

Z Z &(v,Tp) =vp(K),  for every K € M/Ty,.

k€K i€Ny

Quotient component efficiency requires the same as the axiom ‘component efficiency in
quotient’ used in Khmelnitskaya [7] for every non-singleton component K € M/I'y; and
every singleton component K = {k}, k € M, for which the corresponding graph I'; is
connected. When K € M/I') is a singleton component {k} with I'; not connected, then
the ‘component efficiency in quotient’ of [7] requires that the total payoff to the players in
Nj is equal to ). Ny /T'x v(C), whereas quotient component efficiency still requires that
the total payoff to the players in Ny is equal to vp({k}) = v(Ng). So, in this case, for the
union Ny, [7] requires component efficiency with respect to the within union communication
graph 'y, whereas quotient component efficiency requires efficiency within N,. Notice that
the Myerson value of the quotient game vp with respect to I'y; yields payoff v(Ny) to union
k when {k} is a singleton component in I'y;.

The next axiom applies the well-known Myerson fairness axiom between unions,
i.e., it applies fairness on the upper level with respect to the quotient game. If a link
{k,h} € I'j; is removed from the graph I'y; on the upper level, then the change in the
total payoff to a priori union N} is equal to the change in the total payoff to a priori
union Nj. For I'p = (I'y, {Tk brenr) and link {k,h} € I'y;, we denote by I'p|_gp, the tuple
(Cas|=kns {Tk Foen)-

Axiom 3.2 (Quotient Fairness (QF)) For any player set N C N, for every (v,T'p) €
GN x LY, and every {k,h} € Ty, it holds

Y (&(v,Tp) = &(v,Tplin)) = D (&(v.Tp) = &(v, Tp|-sa)-

1€ N 1EN},



Quotient fairness is similar to ‘fairness in the quotient’ used by Vézquez-Brage et al. [12],
but within the different framework of only one communication graph between all players.
The quotient fairness axiom is weaker than the ‘between block fairness’ of Kongo [8] which
not only requires quotient fairness, but also that when in I'j); a link between two unions
is deleted, within each of the two unions the change in payoff is the same for all players
within that union.

In the next section it will be shown that the axioms above uniquely determine the
total payoff to every a priori union N} in the coalition structure P, similar as in Myerson
[9] for a one-level communication graph. In fact, it follows that the total payoff to coalition
Ny, is equal to the Myerson payoff to union k£ € M of the quotient game vp with respect
to the upper level communication graph I'y; between the unions.

The next two axioms will determine for every k € M the distribution of the total
payoff assigned to coalition N, amongst the players in N,. The first one applies the
Myerson fairness axiom within the unions, i.e., if a link {7, j} € 'y is removed from the
communication graph I'y, within the union Ny, then the change of payoff to player i is equal
to the change of payoff to player j. For I'p = (I'ps, {I' }rens) and link {4, j} € I'y, k € M,
we denote by Fp’]il-j the tuple (I, {fh}h€M> where fh =T, for h # k, and fk = Iyl

Axiom 3.3 (Union Fairness (UF)) For any player set N C N, for every (v,I'p) €
GN x LY, ke M, and {i,j} € Ty, it holds

&(0,Tp) = &(0,Tpl*) = &(v,Tp) — &(v, Tpl",)).

The union fairness axiom is the same as the ‘within block fairness’ axiom in Kongo [8].
Quotient fairness requires Myerson fairness on the upper level, while union fairness requires
Myerson fairness on the lower level. Also in the ‘(m + 1)-tuple of deletion link axioms’
used in Khmelnitskaya [7], Myerson fairness can be applied both on the upper level and
the lower level. In this case the requirement of (m + 1)-tuple of deletion link axioms in [7]
is similar to the total requirement of both quotient fairness and union fairness axioms.
As it was already mentioned before, the total payoff assigned to the players in N, in
the quotient game on the upper level has to be fully distributed over the players in N in
the game within the union, also when the communication graph I'y partitions the union Ny
into several components. So, within an a priori union /N, we have efficiency in the sense that
the total payoff assigned to Ny is distributed and thus within /N, the component efficiency
axiom does not hold. The last axiom determines the distribution of the total payoff to /Ny
among the several components of Ny in the communication graph I'y. For some k € M
and component C' € Ny /Ty, let v% denote the subgame v|(nm\nue of v with respect to the
coalition (N \ Nj)U C. Further, let P& denote the partition on (N \ N;) U C consisting
of union C' and all unions N, in P, h # k, and let Fpé = ([, {fh}heM) with fk =Tkle

7



and T, = T, for all h € M \ {k}, denote the two-level communication structure that is
obtained from (I'ys, {I's }rear) by replacing the communication graph I'y by its restriction
on C' C N,.2 This axiom applies the component balancedness axiom for communication
graph games, introduced recently in van den Brink, Khmelnitskaya, and van der Laan [3],

to graph games within the unions.

Axiom 3.4 (Union Component Balancedness (UCB)) For any player set N C N,
for every (v,Tp) € GN x LY, k € M, and component C' € Ny /T, it holds

%Z(av,rp)—&(vé,rpg)) =nik2 (6. Tp) = &vbv o Trs, 1)) -

ieC iENy
Notice that this axiom only states a requirement for the distribution of the total payoff
within a union N, when N, consists of multiple components with respect to the internal
communication graph I'y, otherwise the requirement reduces to an identity. Since
Z;V:k E(v(nry T Phy o, HE%;/F}C ZEZH &i UH,Fm

it follows that for some component C' € Ny, /'y union component balancedness also can be

written as
C
> (&(Uarp) — &(ve, Tpt) ) r d G Te) = > > &(vly Tps)
icC iEN, HEN, /Ty icH

Since for i € H € Ny /T, &(vh;, Fpg) is the payoff to player ¢ when the component
H € N /T, containing i replaces Ny in the game between the unions, union component bal-
ancedness means that the excess (positive or negative), realized by the players of N when
they all cooperate together in the game between the unions (instead of the cooperation
within Ny being restricted to players within one component of Ny /T'y) is distributed to the
components in proportion to the number of players in the components. Union component
balancedness is equivalent to saying that for any two components C,C” € Ny /Ty,

S (6. Te) — &b Te))) = 5 3 (600, Tp) — &b T ))
ieC ieC’

meaning that considering only the players in component C' in I'j instead of all players
in Vg, the change in the average payoff of the players in this component is the same as
the change in the average payoff of the players in any other component C’ resulting from
considering only the players in that component C’ in I'y,. Therefore, the last equality

provides an alternative representation of the union component balancedness axiom.

2Note that in this axiom we consider games with two-level communication structures where the player
set N is replaced by (N \ Ni) U C. To be precise we therefore need to write such a game as a triple
(N,v,Tp), respectively ((N \ Ni) U C,vg, Fpg). Since the player set is clear from the context, we ignore

the player set in the notation of a game.



4 An Owen-type value for two-level graph games

In this section we first show that there exists a two-level graph game value that satisfies
the four axioms. After that we show that this solution is characterized by the four axioms,
i.e., it is the unique two-level graph game value satisfying these axioms.

Analogously to the Owen value for games with coalition structures, we introduce
an Owen-type value for the class of games with two-level communication structures. First,
for every k € M and S C N, recall the game 95 € GM on the player set M of a priori
unions defined by (2.2), where the worth of a coalition ) of a priori unions of M equals
the worth of the union of all unions in ), except that union Ny is replaced by S C N;. We
now take into account the communication graph I';; between the a priori unions. Instead
of the game v, € GM* on player set N, given by (2.1), we now define the game v, € G™* by
taking the Myerson value of © with respect to I'j; instead of the Shapley value of 0. So,

0(S) = ux(0s,Tar) = Shy(05™),  for all S C N,

Notice that vy (Ny) = Shk(@?g) = Shi(vpM), i.e., the worth of Ny, in the game ¥y, is equal
to the Myerson value of k € M (representing union Ni) in the quotient game with respect
to the communication graph I'j;. Next, recall again from Subsection 2.2 that without
communication graphs, the Owen value of a player i € Ny is the Shapley payoff to player
i in the game 7, € GV*. Taking into account the communication graph I'y within Ny, we
take for player ¢« € Ny its Shapley payoff in a modification of the Myerson restricted game
7, * of the game T, € GV, The modification concerns the worth of the coalition Ny itself,
for which we take its own worth U (Vy) instead of the sum of the worths of components
>_cen,r, Uk(C). This is because the players in Ny have to distribute the total payoff
assigned to a priori union Nj in the restricted quotient game. The value constructed in

this way is denoted by 1, so,
Vi(v,T'p) = Shi(Uxy), forall i € N, N € N,
where for all k € M, v), € GMr is defined by
5 7,.0(9), S G Ny,
{ U(Ng) = Shy(vpM), S = Ny.

Analogously to the Owen value, the value ¢ can be seen as a two-step procedure in which
first every coalition gets its Shapley value of the Myerson restriction of the quotient game
with respect to communication graph I'y;, and second every player ¢ in a priori union Ny
gets its Shapley payoff in the within a priori union game o, € GV*. We now have the

following theorem.

Theorem 4.1 The two-level graph game value 1 satisfies QCE, QF, UF and UCB.



Proof.

QCE. First,
> (v, Tp) =Y Shi(tn) = Sha(vp) = p(vp, Tar), (4.3)
iENk ZENk

where the first equality follows by definition of v, the second equality follows from efficiency
of the Shapley value, and the third equality follows from the definition of the Myerson value
. Thus, we have

Z Z Yi(v, T'p) = Z/%(UP,FM) = vp(K),
k€K i€Ny, keK

where the first equality follows from (4.3) and the second equality follows from component

efficiency of p.

QF. We have
Z Yi(v,I'p) — Z Yi(v, I'p|—kn) =
iENk iENk

i (vp, Tar) — p(vp, Taa|—in) = pn(vp, Tar) — pn(vp, Dol —in) =

> Wi, Tp) = > whiv, Tp| ),

1EN}, 1ENy,

where the first and third equality follow from (4.3), and the second equality follows by
fairness of pu.
UF'. By definition

x T

Uy = By +w, (4.4)
where w € GVr® is given by

0, S'S Nigy,

w(S) - T ~Tr()
Shk(UP ) — Uk(z) (Nk(z)); S = Nk(z)a

Fk<

i.e., game vk is obtamed by adding (Shk(vp )— Uiy '(Ng(»))) times the unanimity game?

of Ny to the game vk(i) . From this it follows that

- Shi(V5) — 550 (N
Ui(0,Tp) = Shi(Ti) = Shi(B())) + £(0p") — Ty Ne) _

Mok (i)

31t is well known [11] that the collection of unanimity games {ur} TeN, defined as up(S) = 1,if T C S,
T

and ur(S) = 0 otherwise, create a basis in GV.
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tkiy (vp, Tar) — Z/ v(C)
- CENk(i) /T(i)
i (Oncays Drgy) + ; (4.5)
Mok (d)

where the first equality follows by definition of the value v, the second equality follows
from additivity of the Shapley value and (4.4), and the third equality follows by definition

of i and '17]5('“2()) Hence,

k(¢ ~ ~
i (v, Tp) = (0, Tp ") = 1 @iy Trny) — 1a(Bciys Taoy|—iy) +

,Uk(i)('UPaFM) - > v(C) Mk(i)(UPaFM) - > v(C)
CeNk(s) /T(i) B CENk()/T(iyl-ij

) o)
145 (Oniys Drgiy) — 15 (Ongays Tyl —ig) +

ey (op, Tar) = 30 0(C) gy (vp, i) — > v(C)

CENk(i)/Tha) CENk()/Th(iy|-ij

N (i) 70
(0. Tp) — 0 (0. Topl*®
w](”? 7’) w](”? P'—z])v

where the first and third equality follow from (4.5), and the second equality follows by
fairness of .
UCB. By (4.5), we obtain for every C' € Ny /T that

D (e, Tp) = D il o)+ o walop, Tar) = 30 w(H)

ieC ieC HGNk/Fk
Further,
~k ~ ~
D (v Tpr) = 56(C) = 55(C) = > pa(@w, T),
ieC ieC

where the first and second equality follow from the definition of v, efficiency of the Shapley
value and C' being the only component in I'y, and the third equality follows from component

efficiency of p. Thus

D (4i(0.Tp) = a(b.Tpe)) = o | malem Tar) = D0 w(H)

ieC HENk/Fk

Similarly, we can derive

> (%0.Tp) = vilobym Do, o)) = mlop, Tar) = > w(H)).

1€ Ny, HeN /Ty,

11



Hence it follows that

1 k 1 k
e ; (%‘(Ua I'p) —i(ve, PP@)) = GZN <¢i(va Lp) — i(v(n, rp),0 FP(’“NMW)) ;
7 1 k

showing that v satisfies UCB. O

Remark Note that (4.5) gives an alternative definition of the value 1 assigning to every
graph game its Myerson value and distributing the difference between the worth of the
grand coalition NV and the sum of the worths of all components equally over all players. In
this sense 1 can be seen as combining elements of the Myerson value and equal division
solution. This idea is similar to Kamijo [6] who introduced a solution for games in coalition
structure that allocates to every player its Shapley value in the game restricted to its own
union and distributes the excess of the Shapley value of its union in the (quotient) game

between the unions over the worth of this union equally among the players in this union.

The next theorem characterizes the value v as the unique solution satisfying the

four axioms.

Theorem 4.2 There is a unique two-level graph game value & satisfying QCE, QF, UF
and UCB.

Proof. By Theorem 4.1 we only need to show uniqueness. Let P = {Ny,..., N, } € C¥
and (v,T'p) € GV x LY with T'p=(Tas, {Ts}nenr). For a solution &, we denote £*(v, I'p) =
> ien, §i(v, T'p) as the total payoff to the players in the union Ny, k= 1,...,m. Suppose

that solution £ satisfies the four axioms. We determine the individual payoffs in three steps.

Step 1. We determine the ‘union payoffs’ in the game (v,I'p) € GV x LY with T'p =
(Uar, {T'n}hem) by induction on the number of links in I'y; in a similar way as uniqueness
of the Myerson value for one-level graph games is shown in Myerson [9]. When |I'y;| = 0
then, for all & € M, the set of neighboring unions {h € M | {h,k} € T} = (), and thus
" (v, I'p) = vp(Ny) = v(Ny) by QCE.

Proceeding by induction, assume that the values £*(v,I5) have been determined
whenever I, = (IV, {T'y, }rhen) for every I with |IV| < |I'p|. Let @ € M/I'y be a com-
ponent in (M,T'y). If @ C M is a singleton set {k}, then it follows from QCE that
(v, Tp) = v(Ng). If ¢ = |Q] > 2, then there exists a spanning tree I C il on @, ie.,
(Q,T) is connected and (Q,T\{k, h}) is not connected for all {k, h} € I'. So, the number
of links in T is ¢ — 1. By QF, for all {k,h} € [ it holds that

(v, Tp) — (v, Tp| ) = €"(v,'p) — €" (v, Tp|_sn)- (4.6)

12



Moreover, by QCE it holds that
> &(v,Tp) = vp(K). (4.7)
keQ
Since |y \{h,k}| = [T'x| — 1, it follows by the induction hypothesis that all the values
(v, Tp|_), {k,h} € T, have been determined, and thus (4.6) and (4.7) yield g linear
equations in the ¢ unknown payoffs £¥(v,I'p), k € Q. Since these equations are linearly

independent, for every Q € M/T, all payoffs £*(v,I'p), k € Q, are uniquely determined.

Step 2. Second, similarly as in Step 1, we determine for every k € M, for every sub-
set C' C Ny the ‘union payoffs’ in the game (vC,Fpé ), where v, denotes the subgame
v|(vvgyue of v with respect to the coalition (N '\ Ny) UC, and I'px denotes the two-level
communication structure (I'ys, {T'}nens), where Ty is the communication graph on the
partition (P \ {Nx}) U {C} (where the ‘position’ of Ny is taken over by C') and with the
communication graph I'y replaced by its restriction on C' C Nj. Note that now, for k € M,
the union payoff fk(v(k),l“pé ) is the total payoff to the players in C' C Ny in the game

(U(]iW FP’C&)‘

Step 3. Third, we determine the individual payoffs in every coalition Ny, k € M. Take
some k € M. If |T'y| = 0 then {i} € Ny /T for all i € Nj. UCB then implies that

€k<U>F7’) Z €k<v{]}7FPk )
&i(v, Tp) — &* (U{},Fpk )= 1E , for all i € Ni,. (4.8)

N

From Step 1 and 2 above, we know &*(v, I'p) and {k(vl{“j}, FP?J_}), for all j € Nj.. So, equation
(4.8) determines &;(v,I'p) for all i € Nj.

Now we proceed by induction similar as in Step 1, but first we show that for each
component C' € N /T’y the total payoff to the players in C' is uniquely determined. The
payoff £¥(v,T'p) to the a priori union N, has been determined already in Step 1, so

> &(v,Tp) =& (v, Tp). (4.9)
1€ Nk
If Ny is the unique component in Ny /T, then UCB does not state any requirement. When
N /T\ consists of multiple components, then for every component C' € Ny /I'y, UCB states
that

> &i(v, Tp) — &8 (v, Lps) o p) = 3 ok, Tpy)
i€C KEN,/T
- - b . (4.10)

4Note that in the proof of the induction step, every possible spanning tree r yields the same solution
for the values &* (v,T'p), k € Q, because otherwise a solution does not exist, which contradicts Theorem
4.1.
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Notice that every payoff £¥ in this equation has been determined in either Step 1 or Step
2. We now prove the induction step similar as in Step 1, and as in [9]. Let I, denote the
two-level graph structure (I, {I'} }rhen) with I') = 'y if b # k and I'}, = I" for some graph
[V on Ni. Above we already showed that the payoffs in N are determined if |I'y| = 0.
Now, assume that the values &;(v, ;) have been determined for every IV with [IV| < |T'y|.
Let C' € Ny /T’y be a component in (Ng, I'y). If C C Ny is a singleton set {i}, then the
payoff &;(v,I'p) of the single player i € C' follows from (4.10). If ¢ = |C| > 2, then there
exists a spanning tree I C k| on C. So, the number of links in Tisc—1. By UF, for all
{i,j} € T it holds that

&(0,Tp) — &, Tpl* ) = &(v,Tp) — &(v,Tp[*,). (4.11)

Since |I'x\{4, j}| = |I'x|—1, it follows by the induction hypothesis that all payoffs ; (v, F’p|lil-j),
{i,j} € T, have been determined. If C' # Ny then the equations (4.10) and (4.11) yield ¢
linearly independent equations in the ¢ unknown payoffs &;(v,I'p), ¢ € C. If C' = Nj then
the equations (4.9) and (4.11) yield ¢ linearly independent equations in the ¢ unknown
payoffs & (v,I'p), i € C. Hence, for every C' € N /Iy, all payoffs &(v,I'p), i € C, are

uniquely determined. O

Note that in the proof of Theorem 4.2 we used QCE and QF to determine the sum
of the payoffs in every union, similar as done in [9]. In fact, we considered I'y; as a one-level
graph on M. We cannot apply a similar proof using component efficiency to determine
the individual payoffs inside each union, because the total payoff to the players in each
union should be equal to the total payoff to the union as determined in Step 1, which could
be more (or less) than the sum of the payoffs that the components of the communication
graph within the union obtain in the internal game. Instead, we applied UCB to obtain
uniqueness on the individual level.

We conclude this section by showing that the four axioms are logically independent.

1. [Equal division within the a priori unions] Let the two-level graph game value
¢W assign for every (v, T'p) € GN x LY payoff

Uk (Ng)

My, Tp) =
’Sz (Ua ’P) ng )

to every player ¢ € Ny, k € M. This value divides for each a priori union k£ € M
the worth v (Vi) of coalition Ny, in the restricted quotient game equally amongst the
players in Ng. It satisfies quotient component efficiency, quotient fairness and union

fairness but does not satisfy union component balancedness.
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2. [Equal division within the components of the a priori unions] Let the two-

level graph game value £ assign for every (v,I'p) € GV x LY payoff

Ue(N,) — o (H
o) M,
gi (U7 77)_ c + )

N

to every player i € C, C' € Ni/Ty, k € M. Each player i € C € N/} gets an
equal share in the worth ;(C) of his component and an equal share in the surplus
of Ny over the sum of the worths of the components in Ny /T'y. This value satisfies
quotient component efficiency, quotient fairness and union component balancedness

but it does not satisfy union fairness.

3. [Equal division within the components of the upper-level structure] Let the

two-level graph game value ¢ be defined for every (v,T'p) € GV x LY by

£, Tp) = Shi(wy),  forall i € N,

(2

where for a priori union k € M belonging to a component K € M /Ty, of the upper-

level structure, the game w;, € G™V* is defined by

7,%(9), S G Ny,
wi(S) = 1

— (K = N,.

|K|U< )7 S k

In this case every a priori union N; gets an equal share in the worth of the compo-
nent to which it belongs in the upper level structure. This value satisfies quotient
component efficiency, union fairness and union component balancedness but it does

not satisfy quotient fairness.

4. [Efficient total payoff distribution] Let the two-level graph game value ¢®be
defined for every (v,T'p) € GV x LY by

(v, Tp) = Shi(wi),  forall i € N,

7

where for a priori union k € M w} € GM¢ is defined by

wi(S) =
+(5) Shy (), S = N,

with game @ on M defined by w(Q) = vx"(Q) for every Q S M and w(M) =
vp(M) = v(N). In this case the total payoff is equal to the worth v(N) of the
grand coalition N of all players, i.e., £® is efficient. This value £¢® satisfies quotient
fairness, union fairness and union component balancedness but it does not satisfy

quotient component efficiency.
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5 Comparison with other values

In this final section we consider several special cases of two-level structure I'p and its
corresponding Owen-type value 1) and show that, for example the Owen value, Aumann-
Dreze value (for games in coalition structure), Myerson value (for communication graph
games) and equal surplus division solutions can be obtained as special cases of this value.
We distinguish two types of values, one depending on special communication graphs, and

the other depending on special partitions.

5.1 Special communication graphs

Two special cases of a communication graph are the complete and the empty graph. In
this paper these two special cases can occur both on the upper level between the unions
as on the lower level within the unions. We first discuss three special cases with an empty
graph on the upper level and next three special cases with a complete graph on the upper

level.

1. [Empty upper level structure, complete graph within the unions: The
Aumann-Dréze value] Consider the case I'p with I'y; the empty graph and every
['x, k € M, the complete graph. In this case every a priori union NV stands alone and
the Myerson value applied to the quotient game with empty communication graph
assigns to every a priori union N, k € M, its own payoff v(Ny). In the game vy
on Ny, every coalition S C N gets its own worth v(S), thus v (S) = v(S) for every
S C N, k € M. Within the union there is no restriction on the cooperation between
the players and thus ;(S) = v(S) for every S C N, k € M. Tt follows that

Yi(v,I'p) = Shi(v|n,,)) = AD;(v, P), for all 7 € N,

i.e., every player ¢ gets its Shapley value within the subgame of v on the a priori union
N}, containing 7, and therefore, in this case the value 1 is equal to the Aumann-Dreze

value [1].

2. [Empty two-level structure: Equal surplus division] Consider the case I'p
with both I'y; and every 'y, K € M, empty. As in the previous case every a priori
coalition Ny, k € M, stands alone and gets its own worth v(Ng). Next, within a
priori union Nj, every player i is a stand alone component and v,({i}) = v({i}) for
every ¢ € Ni. Then it follows from union component balancedness that for every
ke M and i € Ny,

v(Ne) = 22 v({i})

1€ N},

¢i(v, I'p) = v({i}) +

ng
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So, in this case the value v assigns within each a priori union N the equal surplus
division solution on the subgame v|y,, first considered in Driessen and Funaki [5]
under the name of the center of the imputation set (CIS-value). In case v is zero-
normalized, and thus v({i}) = 0 for every ¢ € N, the value ¢ yields the equal division

solution within each a priori union V.

. [Empty upper level structure, connected graphs within the unions: The
Myerson value] Consider the case I'p with Ty, the empty graph and every Ty,
k € M, connected, i.e., for every k € M, union N}, itself is the only element in
Ny /Tk. Again every a priori union Ny, k € M, stands alone and gets its own worth
v(Ng) and in the game vy every coalition S C Ny gets its own worth v(S), thus
Ue(S) = v(S) for every S C Ni, k € M. Since I'y is connected it follows that
U (Ni) = Tr(Ni) = v(Ny) and therefore oy = v™*. So 1 yields to every player i in
every a priori union N}, the payoff of the Myerson value of the subgame on N, with
respect to the communication graph I'y within N,. Even more, let I' = Ugepr '
be the communication graph between all players obtained by taking the union of
all graphs within the unions. Then, by definition every N, is a component of T’
ie., N/T'={Ny,...,Np,}. By component efficiency of the Myerson value it follows
immediately that for the case of an empty upper level structure and connected graphs
within the unions, the value 1 is equal to the Myerson value y for the game v on N

with respect to the (one-level) induced communication stucture I' = Ugeps 'y on N.

. [Complete two-level structure: The Owen value| Consider the case I'p with
both I'y; and every I'y, k € M, complete graphs. In this case there is no restriction
on the cooperation between a priori unions and within the a priori unions. Hence,
for every @ C M, @ is the only component of the subgraph I'y/|o and also for every
k and every C' C Ni, C is the only component of the subgraph T'y|c. Therefore 1
reduces to the Owen value on P: (v, ['p) = Ow(v, P). Notice that in this case quo-
tient component efficiency reduces to efficiency and union component balancedness

becomes redundant.

. [Complete upper level structure, empty graphs within the unions: Equal
union surplus division] Consider the case I'p with I'j; the complete graph and 'y
the empty graph for every k € M. Again there is no restriction on the cooperation

between the unions and therefore
Ue(S) = vk(9), for all k€ M and all S C Ny.

On the other hand, within an a priori union N, every player i € N, is a stand alone
Component. With szk({l}) = @k({l}> for all ¢ S Nk, and 73k(Nk) = T)k(Nk> = Shk(U'p)
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the Shapley value of a priori union k in the quotient game, it follows from union
component balancedness that, for every k € M and ¢ € N},
Shi(vp) — > wel({i})

1€ENE

VYi(v, I'p) = vp({i}) +

N

So, within a priori union N every player i gets its stand alone value in the game vy,

plus an equal share in the surplus of N, in the quotient game.

6. [Complete upper level structure, connected graphs within the unions: The
efficient Myerson-type value of Casajus [4]] Consider the case I'p with Iy the
complete graph and every I'y, k € M, connected. Again v(S) = vx(S) for all k € M
and S C Ng. Because of connectedness of every I'y, the value 1 is obtained by
applying within every a priori union /Ny the Myerson value p to v, = v, with respect
to I'y, so for every k € M and i € Ny,

Yi(v,T'p) = p;(0x, T'g).

Furthermore, every I'y, is connected and by definition (2.1) of @, T, *(N;,) = T (Ng) =
Shi(vp). Then from the efficiency of the Shapley value it follows that for every k,
>ien, Yilv,I'p) = Shy(vp) and 3, ¥i(v,T'p) = 370y Shi(vp) = v(N). So
distributes the total worth v(N) and thus meets efficiency.

In fact, in this case the two-level graph game value ¢ yields the same payofts as the so-
called CO-value ¢, introduced in Theorem 4.2 of Casajus [4] as an efficient alternative
for the Myerson value for games with a one-level communication graph. For such a
game (v, ') with I" a communication graph on N, [4] considers the collection N/T’
of components of I' as a cooperation structure P induced by the communication
structure I'. Let Nj be such a component. Then, within Ny the Shapley value is
applied to the Myerson restricted game of 5. This gives the same payoffs as (v, I'p)
for the two-level structure when I'y; is taken to be the complete graph on M and for

each k € M graphs 'y are connected. In this case the Casajus’s graph I' = ULy

5.2 Special coalition structures

Finally we discuss the two special cases with respect to the coalition structure.

1. [Partition in singletons: The Myerson value] When P = {{1},...,{n}} every

a priori union consists of a single player ¢ and there is no game within the unions.
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Hence the value 1 reduces to the Myerson value with respect to the upper level graph

structure 'y, thus
Vi(v,Tp) = pi(v, Tpr) = Shi(v'™), for all i € N.

2. [Single a priori union: The efficient Myerson value| Consider the case P =
{N}, thus the grand coalition N itself is the singleton a priori union within the
coalition structure P. In this case m = 1 and denoting 0 =10, and ' = Ty for the

single a priori union N = N; in P we have

By definition, the value ) assigns the Shapley value of the game ¢ on N that equals
to the Myerson value of (v,I") plus an equal split of the excess of the worth of the

grand coalition over the total worth of all components in graph I'; i.e.,

bi(v,Dp) = ps(v,T) + CENT _ forall i€ N.
n

It appears that this is the unique value that satisfies union fairness (within the grand
coalition V) and efficiency. Considering this case as just a one-level communication
graph game (v, I') on N, recall that the Myerson value is the unique value that satisfies
component efficiency and fairness. In fact, in case of P = { N} the value 1) yields the
same payoffs as the efficient Myerson-type value of the game (v,T") for games with
one-level communication graphs, recently studied in van den Brink, Khmelnitskaya,

and van der Laan [3].
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