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Abstract

Factor construction methods are widely used to summarize a large panel of variables by means of

a relatively small number of representative factors. We propose a novel factor construction procedure

that enjoys the properties of robustness to outliers and of sparsity; that is, having relatively few nonzero

factor loadings. Compared to more traditional factor construction methods, we find that this procedure

leads to better interpretable factors and to a favorable forecasting performance, both in a Monte Carlo

experiment and in two empirical applications to large data sets, one from macroeconomics and one from

microeconomics.
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1 Introduction

Empirical researchers in a wide variety of fields face the problem of summarizing large data sets by a small

number of representative factors, which can then be used for either descriptive or predictive purposes. In

particular, the econometrics literature of the last decade contains successful applications of factor models to

forecasting macroeconomic time series (Stock and Watson, 2002; Bai and Ng, 2008) and excess returns in

stock and bond markets (Ludvigson and Ng, 2007, 2009).

Principal component analysis (PCA) is the classical tool for extracting such factors. In recent years,

however, two major drawbacks of PCA have received attention. First, PCA lacks robustness to outliers. Even

a very small proportion of data contamination results in inaccurate factors. This problem has been alleviated

by explicitly downweighting such observations (Pison et al., 2003), by employing more robust loss functions

than the usual sum of squares (De la Torre and Black, 2001), or by a combination of both approaches (Croux

et al., 2003; Maronna and Yohai, 2008).

Second, in standard PCA all variables generally load on all extracted factors; that is, every original vari-

able is represented as a linear combination of all factors. This feature leads to difficulties in giving an inter-

pretation to the factors, as well as to a loss of degrees of freedom and thus to unnecessarily large estimation

uncertainties. Penalized variants of standard PCA to overcome this problem have recently been developed by

Jolliffe et al. (2003) and Witten et al. (2009), among others.

In this paper, we propose a factor construction method that unifies both approaches, yielding robust factors

with sparse loadings. Our procedure is a combination of the robust estimation methods from Maronna and

Yohai (2008) and the penalization technique introduced by Witten et al. (2009). We provide a relatively simple

alternating algorithm to solve the resulting optimization problem, and we document the good interpretability

and forecasting properties of our method in a Monte Carlo study and in two empirical applications. Our first

application concerns forecasting key U.S. macroeconomic variables, as in Stock and Watson (2002). The

other application is microeconomic: we analyze the Boston housing data set from Harrison and Rubinfeld

(1978). The results show that ignoring the presence of outlying observations, which are often overlooked in

empirical econometric studies, has important consequences for forecast accuracy.

To the best of our knowledge, our proposed method is the first to combine robustness and sparsity in the
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context of factor modelling. Moreover, while factors models are common in the macroeconomic forecasting

literature, robustness issues are typically only considered in small sets of predictors (Fagiolo et al., 2008;

Bańbura et al., 2010). Sparsity is not commonly studied either, although a related approach using reduced-

rank vector autoregressions was recently found to improve macroeconomic forecasts by Carriero et al. (2011).

The remainder of this article is structured as follows. We describe the methodology in Section 2 and test

it in a simulation study in Section 3. Empirical applications to macroeconomic forecasting and to the Boston

housing data set follow in Sections 4 and 5, respectively, and Section 6 concludes.

2 Methodology

2.1 Robust Matrix Approximation

We consider the problem of approximating an n × p matrix X by a rank-q matrix X̂ = FA′, where F has

dimensions n × q and A is p × q. The standard way to proceed is to apply principal component analysis

(PCA), in which F and A are estimated by minimizing

QL2 (F,A;X) =
1
2n

p∑
j=1

n∑
i=1

(
xij − f ′iaj

)2
, (1)

where fi and aj denote rows of F and A, respectively. Although it is well-known that QL2 can be minimized

using the singular value decomposition ofX , we note that an alternating approach (due to Wold, 1966) is also

possible. Given initial estimated of F and A, we iterate until convergence:

• Solve (1) forA by solving p ordinary least-squares (OLS) problems: the jth row is aj = (F ′F )−1 F ′xj ,

where xj denotes the jth column of X .

• Solve (1) for F by solving n OLS problems: the ith row is fi = (A′A)−1A′xi, where xi denotes the

ith row of X .

As all least-squares procedures, PCA is very sensitive to outlying observations (Maronna et al., 2006). A

more robust alternative to (1) is to replace the sums of squared deviations by sums of absolute deviations; that

is, to minimize
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QL1 (F,A;X) =
1
2n

p∑
j=1

n∑
i=1

∣∣xij − f ′iaj∣∣ . (2)

This L1 minimization problem can be solved using a similar alternating algorithm as in the L2 case, replacing

OLS regressions by least absolute deviations (LAD) regressions. This procedure was advocated by Croux

et al. (2003), who labelled it Robust Alternating L1 Regressions (RAR).

Maronna and Yohai (2008) propose to replace the squared or absolute deviations by an even more robust

error measure, using the Tukey biweight loss function ρ (r) = min
{

1,
(
1− (r/c)2

)3
}

. This loss function

is bounded, which makes it very robust to large outliers. The constant c is fixed at 3.4437, so that 85%

efficiency at the normal distribution is attained. Because the Tukey loss function downweights large residuals,

it is essential that the columns are appropriately scaled to decide what “large” means. Thus, for every variable

j, let σ̂j denote an estimate of the scale of the residuals xij − f ′iaj , for i = 1, 2, . . . , n. Then, Maronna and

Yohai (2008) propose to minimize

QTukey (F,A;X) =
1
2n

p∑
j=1

σ̂2
j

n∑
i=1

ρ

(
xij − f ′iaj

σ̂j

)
. (3)

As a robust scale estimate, they consider the median absolute deviation

σ̂j = 1.4826 median
i

{∣∣xij − f ′iaj∣∣} . (4)

If we would set ρ (r) = r2, Criterion (3) would reduce to the PCA criterion (1). In order to be able to

apply the alternating algorithm to minimize (3) for the Tukey loss function as well, we rewrite it as a weighted

least squares (WLS) problem. Defining weights

wij =
(
xij − f ′iaj

σ̂j

)−2

ρ

(
xij − f ′iaj

σ̂j

)
, (5)

the objective in equation (3) can be rewritten as

QTukey (F,A;X) =
1
2n

p∑
j=1

n∑
i=1

wij
(
xij − f ′iaj

)2
. (6)
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This means that, given initial estimates of F , A, and the residual scales σ̂j , we can solve (3) by iterating the

following scheme until convergence:

• Solve (6) for A by solving p WLS problems: the jth row is aj = (F ′DjF )−1 F ′Djxj , where Dj is a

diagonal matrix containing w1j , w2j , . . . , wnj .

• Update σ̂j for j = 1, 2 . . . , p using (4) and, hence, all weights wij using (5).

• Solve (6) for F by solving n WLS problems: the ith row is fi = (A′DiA)−1A′Dixi, where Di is a

diagonal matrix containing wi1, wi2, . . . , wip.

• Update the scale estimates σ̂j and the weights wij again.

We shall consider all three different criteria introduced above. All columns of X are standardized before

the estimation procedure. For the L2 criterion (1) we standardize all columns to mean zero and variance one;

for the L1 criterion (2), to median zero and mean absolute deviation one; and for the Tukey criterion (3), to

median zero and median absolute deviation one. Initial estimates for F and A are obtained as described by

Maronna and Yohai (2008).

2.2 A Sparsity Condition

In factor-model terminology, the columns of F represent factors and A is the loading matrix. In order to

improve the interpretability of the estimated factors, it may be desirable to impose a sparsity condition on the

loading matrix; that is, to limit the number of nonzero factor loadings. In addition to improving interpretabil-

ity, another interesting effect of such a condition is reducing the estimation uncertainty, which is an important

consideration for forecasting. In the spirit of Witten et al. (2009), we implement this sparsity condition by

adding an L1 penalty to (1), (2), or (3): for some positive scalar λ, we aim to minimize

Q (F,A;X) + λ

p∑
j=1

q∑
k=1

|ajk| , (7)

where Q denotes either QL2 , QL1 , or QTukey. As it stands, objective (7) does not attain a minimum value.

Although the linear subspace spanned by the columns of F is identified, we observe that for any candidate
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minimum point
(
F̂ , Â

)
, the equivalent factorization

(
cF̂ , 1

c Â
)

leads to a smaller objective value for any

c > 1. To remove this unwanted feature, we restrict the magnitude of F by adding another penalty term to

(7). As our purpose is not to impose sparsity on F , this additional term will be an L2 penalty: we minimize

Q (F,A;X) + λ

p∑
j=1

q∑
k=1

|ajk|+ ν
n∑
i=1

q∑
k=1

f2
ik. (8)

Finally, we note that Problem (8) is overparameterized: if the factorization
(
F̂ , Â

)
solves (8) for the penalty

parameters (λ∗, ν∗), then the equivalent factorization
(
cF̂ , 1

c Â
)

is a solution for
(
cλ∗, ν

∗

c2

)
for any c > 0.

Therefore, we lose no generality in fixing either λ or ν at a specific positive value. We set ν = 1/ (2n), so

that only λ measures the degree of sparsity.

The alternating procedures in Section 2.1 can be adapted for problem (8). First, given F and (in the Tukey

case) the weights wij , finding the jth row of A amounts to minimizing

Q (F,A;X) + λ

q∑
k=1

|ajk| . (9)

For the L2 and Tukey criterion functions, we recognize (9) as a Lasso problem (Tibshirani, 1996), with

regressand
(√
wij
)
xij and regressors

(√
wij
)
fi. Efficient algorithms to solve this problem are known; see

Friedman et al. (2010). For the L1 criterion, minimizing (9) is a LAD-Lasso problem (Wang et al., 2007).

Second, given A (and the weights), finding the ith row of F is equivalent to minimizing

Q (F,A;X) +
1
2n

q∑
k=1

f2
ik. (10)

The ridge regression problem (10) can be solved analytically for the L2 and Tukey criteria, resulting in

fi =
(
A′DiA+ I

)−1
A′Dixi, (11)

where we set Di = I in the L2 case. For the L1 criterion, we use a standard numerical minimization routine.
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2.3 Tuning Parameters

The sparse and robust factor extraction procedure that we developed in Sections 2.1 and 2.2 is characterized

by two tuning parameters; the number of factors (q) and the penalty parameter (λ). To specify values for q

and λ, we minimize the Bayesian Information Criterion

BICq,λ = 2
p∑
j=1

log σ̂j;q,λ + dfq,λ ·
log n
n

. (12)

As argued by Zou et al. (2007), the “degrees of freedom” dfq,λ can be approximated by the number of nonzero

entries in the estimated A. Further, we approximate the determinant of the residual covariance matrix by the

product of scale estimates σ̂2
j , which are median absolute deviations (4) when using theQTukey criterion, mean

absolute deviations when using QL1 , and standard deviations when using QL2 . This amounts to discarding

all covariances between columns of the residual matrix. We feel that this is a reasonable choice, as most of

the correlation structure in X should be captured by the factors. Moreover, this procedure circumvents the

nontrivial task of robustly estimating covariances.

3 Monte Carlo Simulation

To evaluate the potential of the sparse robust factor extraction procedure described in Section 2, we assess its

performance through a Monte Carlo study. As n ≈ p is typical for situations to which factor modelling is

applied, we simulate data sets with n = p = 100. The number of latent factors will be q = 2.

We generate data from a factor model X = FA′ + E. Here, the matrix A contains the factor loadings,

and we impose that its true structure is sparse. The loading matrix has 100 rows and two columns:

A =



10 rows ( +1, +1 )

10 rows ( +1, −1 )

10 rows (−1, +1 )

10 rows (−1, −1 )

60 rows ( 0, 0 )


. (13)
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For the 100 × 2 matrix of latent factors F and the 100 × 100 matrix of noise E, we consider the following

four data-generating processes:

• Normal: the entries of F and E are independent draws from the N (0, 1) distribution.

• Heavy tails: the entries of F are drawn from the N (0, 1) distribution, those of E from Student’s t

distribution with two degrees of freedom.

• Vertical outliers: like the “Normal” DGP, but a random selection of 10% of the entries ofE are replaced

by the value 20.

• Bad leverage rows: like the “Normal” DGP, but a random selection of 10% of the rows of F are

replaced by (+20,+40), and the corresponding rows of E are replaced by (−20,−40)A′.

Note the difference between the final two DGPs. If an observation is a vertical outlier, the latent factors

behave normally but the observed variable is contaminated. On the other hand, in a bad leverage row the

factors behave abnormally but the observed variables are not informative about this fact.

In Tables 1 and 2 we report average results over 1000 simulation runs for each of these DGPs. We consider

the L2, L1, and Tukey loss functions. For each of these, we report results using both the unpenalized criteria

(1)-(3) and the penalized criterion (8). In the latter case, the penalty parameter λ is selected by minimizing the

BIC (12) over the grid {0.0001, 0.001, 0.01, 0.1, 1}. We treat the true number of factors (q = 2) as known.

Table 1 reports on the structure of the estimated loading matrix A. Specifically, it shows how many of

the 60 zero rows and 40 nonzero rows of the true A were correctly identified as zero or nonzero. From these

results, it is clear that unpenalized estimation methods cannot succeed in exactly estimating zero loadings.

The results for all penalized methods, on the other hand, are quite good: the penalized L1 criterion correctly

estimates more than half of the zero rows. Moreover, except for the penalized L2 criterion, there are no false

zero rows in the estimated loading matrix; thus, all variables that load on the factors are correctly identified.

An important application of factor models is forecasting a variable y, which is assumed to be driven by

(a subset of) the same factors that drive X; say, y = Fβ + η, where η is noise. After F̂ is obtained as above,

we would estimate β using a form of regression (either ordinary least squares or a more robust variant) on the

observations for which yi is known, and then construct a forecast ŷi = f̂ ′i β̂ for the remaining observations.
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Table 1: Estimated structure of the loading matrix in the Monte Carlo simulations.

Number of rows Number of rows
correct correct correct correct

DGP Criterion zero nonzero DGP Criterion zero nonzero
Normal L2, λ = 0 0 40 Vertical outliers L2, λ = 0 0 40

L2, λ > 0 8.781 40 L2, λ > 0 11.957 34.872
L1, λ = 0 0 40 L1, λ = 0 0 40
L1, λ > 0 27.326 40 L1, λ > 0 37.977 40
Tukey, λ = 0 0 40 Tukey, λ = 0 0 40
Tukey, λ > 0 6.377 40 Tukey, λ > 0 6.995 40

Heavy tails L2, λ = 0 0 40 Bad leverage rows L2, λ = 0 0 40
L2, λ > 0 11.314 39.860 L2, λ > 0 5.266 40
L1, λ = 0 0 40 L1, λ = 0 0 40
L1, λ > 0 29.902 40 L1, λ > 0 30.791 40
Tukey, λ = 0 0 40 Tukey, λ = 0 0 40
Tukey, λ > 0 5.710 40 Tukey, λ > 0 14.603 40

Notes: This table reports average results over 1000 replications of each of the data-generating processes described in the text. The
numbers indicate how many of the rows of the loading matrix A were correctly estimated to be zero/nonzero; the true loading matrix
contains 60 zero and 40 nonzero rows.

Instead of forecasting a specific linear combination of the factors, we consider the problem of forecasting

any linear combination of the factors. The quality of such forecasts is assessed by computing the angle

between the two-dimensional linear subspaces of R100 spanned by F and F̂ , respectively: the smaller this

angle is, the more suitable F̂ is for forecasting variables of the form Fβ.

The average values of this angle, again over 1000 simulation runs, are reported in the rightmost column

of Table 2. Here, the value of using a penalized criterion function becomes apparent: in almost all cases,

the angle between the true and estimated factors is smaller if a nonzero penalty is present. For the normal

DGP, the different criterion functions yield similar results. For the other three DGPs, in which outliers

are present, the L2 factor estimates are much less accurate than the estimates obtained using more robust

criterion functions. An extreme example is the “bad leverage rows” DGP, for which angles between 1.2 and

1.3 radians are observed. As a right angle measures π/2 ≈ 1.571 radians, it is clear that the L2 criterion is

severely misguided by the bad leverage rows. The Tukey criterion performs remarkably well in this case.

We also report results for the approximation of the data matrix X in Table 2, expressed as the root mean

squared error (RMSE), mean absolute error (MnAE), and median absolute error (MdAE). First, we notice
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Table 2: Summary statistics for the Monte Carlo simulations.

Approximation of X Angle
DGP Criterion RMSE MnAE MdAE (F, F̂ )
Normal L2, λ = 0 0.975 0.778 0.658 0.225

L2, λ > 0 0.979 0.781 0.660 0.219
L1, λ = 0 0.991 0.770 0.640 0.259
L1, λ > 0 0.995 0.778 0.650 0.256
Tukey, λ = 0 0.981 0.778 0.653 0.233
Tukey, λ > 0 0.984 0.780 0.655 0.228

Heavy tails L2, λ = 0 3.423 1.478 0.915 0.435
L2, λ > 0 3.436 1.453 0.886 0.412
L1, λ = 0 3.487 1.383 0.793 0.295
L1, λ > 0 3.493 1.395 0.804 0.291
Tukey, λ = 0 3.480 1.396 0.816 0.326
Tukey, λ > 0 3.483 1.396 0.813 0.311

Vertical outliers L2, λ = 0 5.873 3.638 2.182 1.314
L2, λ > 0 5.898 3.599 2.147 1.332
L1, λ = 0 6.316 2.681 0.747 0.286
L1, λ > 0 6.325 2.697 0.763 0.288
Tukey, λ = 0 6.312 2.692 0.762 0.300
Tukey, λ > 0 6.315 2.694 0.764 0.291

Bad leverage rows L2, λ = 0 1.169 0.867 0.671 1.264
L2, λ > 0 1.185 0.880 0.697 1.289
L1, λ = 0 0.944 0.701 0.562 0.344
L1, λ > 0 0.948 0.706 0.569 0.338
Tukey, λ = 0 0.936 0.708 0.575 0.325
Tukey, λ > 0 0.938 0.713 0.577 0.320

Notes: This table reports average results over 1000 replications of each of the data-generating processes described in the text. In the
group of columns headed “Approximation ofX”,X is compared to X̂ = F̂ Â′; the root mean squared error and the mean and median
absolute error are reported. In the rightmost column, we report the angle between the linear subspaces spanned by the columns of
F and F̂ , in radians; for the “Bad leverage rows” DGP, the bad leverage rows are removed for this computation. For each DGP, the
smallest RMSE, MeanAE, MedianAE and angle are printed in boldface.

that the in-sample approximation of X is most accurate without a penalty term, and using the L2 or L1 loss

function, depending on whether the approximation quality is measured in squared or absolute errors. This

result was to be expected, as the corresponding objective minimizes this error. The only exception to this rule

is the “bad leverage rows” DGP, where the L2 algorithm apparently failed to converge. We also note that little

accuracy is lost when a positive penalty term λ is applied, and that the differences between loss functions in

RMSEs are minor. Measured in mean or median absolute errors, the differences between the results from

using the Tukey or L1 loss are still small, but L2 performs markedly worse in all DGPs except the normal.
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4 Application: Macroeconomic Forecasting

4.1 Data and Forecast Model

To evaluate the forecast performance of sparsely and robustly estimated factor models in an empirical ap-

plication, we consider forecasting of four key macroeconomic variables. The data set consists of monthly

observations on 132 U.S. macroeconomic variables, including various measures of production, consumption,

income, sales, employment, monetary aggregates, prices, interest rates, and exchange rates. All series have

been transformed to stationarity by taking logarithms and/or differences, as described in Stock and Watson

(2002). They also define a partitioning of the data set into economically meaningful groups of related vari-

ables. We use an updated version of their data set, covering the period from January 1959 until (and including)

January 2010, taken from Exterkate et al. (2011). Some of the 132 time series start later than January 1959,

while a few other variables have been discontinued before the end of the sample period. For each month

under consideration, observations on at most five variables are missing.

A heat map of this data set is shown in Figure 1. For this figure, all time series were standardized to have

median zero and median absolute deviation one. Each entry of the resulting matrix is shown in either black

or white, depending on whether the standardized value is greater or smaller than five in absolute value. Time

runs along the horizontal axis, and the different time series are organized in groups of related variables shown

along the vertical axis. Despite the efforts to transform the data to near normality, a relatively large number

of outliers shows up in various time series, mainly in interest rates series during the monetarist experiment

in 1979-82, and in money and credit series in the recessions of 2000-01 and (especially) 2008-09. For this

reason, we analyze these data using the robust methods outlined in Section 2.

We focus on forecasting four key measures of real economic activity: Industrial Production, Personal

Income, Manufacturing & Trade Sales, and Employment. (The acronyms by which Stock and Watson (2002)

refer to these series are ip, gmyxpq, msmtq, and lhnag, respectively.) For each of these variables, we

produce out-of-sample forecasts for the annualized h-month percentage growth rate, which are computed as

yht+h = (1200/h) ln (vt+h/vt), where vt is the untransformed observation on the level of each variable in

month t. We consider growth rate forecasts for h = 1, 3, 6 and 12 months.
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Figure 1: Heat map of the macroeconomic data, with absolute standardized values greater than 5 in black.

Real Output & Income

Employment & Hours

Housing

Orders & Inventories

Money & Credit
Stock Prices

Interest Rates & Spreads
Exchange Rates

Price Indices
WagesConsumer Expectations

Jan 1960 Jan 1970 Jan 1980 Jan 1990 Jan 2000 Jan 2010

The most widely used approach to forecasting in this setup is the diffusion index (DI) approach of Stock

and Watson (2002), who document its good performance for forecasting these four macroeconomic variables.

The DI methodology extends the standard principal component regression by including autoregressive lags

as well as lags of the principal components in the forecast equation. Specifically, using `y autoregressive lags

and `f lags of q factors, at time t, this “extended” principal-components method produces the forecast

ŷht+h|t = α̂+
`y−1∑
s=0

β̂sy
1
t−s +

`f−1∑
s=0

q∑
k=1

γ̂ksf̂k,t−s. (14)

The lags of the dependent variable in Equation (4.3) are one-month growth rates, irrespective of the forecast

horizon h, because using h-month growth rates for h > 1 would lead to highly correlated regressors. In

Stock and Watson (2002), the factors f̂kt are standard principal components extracted from all 132 predictor

variables, and α̂, β̂s and γ̂ks are OLS estimates.

In this study, we retain the forecast equation (4.3), but we change the estimation methods for the factors

f̂kt and the regression coefficients. In addition to standard principal components, which corresponds to the
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L2 criterion (1), we use the L1 and Tukey variants of this criterion to estimate the factors. Moreover, we

also estimate factors using the penalized criterion (8) for these three loss functions. After the f̂kt have been

obtained, we estimate the coefficient vector
(
α, β0, . . . , β`y−1, γ10, . . . , γq0, γ11, . . . , γq,`f−1

)′ in (4.3) using

either OLS, L1 regression, or Tukey regression; the same loss function used to extract the factors. As the

number of parameters is relatively small, we do not consider penalized regression estimation in this equation.

In each case, the lag lengths `y and `f , the number of factors q, and (if applicable) the penalty parameter

λ are selected by minimizing the Bayesian Information Criterion (BIC). As our primary concern in this

exercise is forecasting, we do not use expression (12) for the BIC, which measures how well the factors F̂ fit

X . Instead, we minimize

BIC`y ,`f ,q,λ = 2 log σ̂`y ,`f ,q,λ + (1 + `y + `f · q)
log n
n

, (15)

where (1 + `y + `f · q) is the number of parameters in Equation (4.3), and where σ̂`y ,`f ,q,λ is an estimate of

the scale of the residuals yht+h − ŷht+h|t. As in Section 2.1, this scale estimate is either the standard deviation,

the mean absolute deviation, or the median absolute deviation, depending on which loss function is used.

As Stock and Watson (2002) find that allowing for multiple lags of the factors does not substantially

improve the forecasting performance, we fix `f = 1. For the other parameters, we allow 0 ≤ `y ≤ 6,

0 ≤ q ≤ 4, and log10 λ ∈ {−4,−3,−2,−1, 0}. Note that `y = 0 and q = 0 correspond to using no

autoregressive information and no information from factors, respectively.

All models are estimated on rolling windows with a fixed length of 120 months, such that the first forecast

is produced for the growth rate during the first h months of 1970. For each window, the tuning parameter

values are re-selected and the regression coefficients are re-estimated. That is, all of the tuning parameters

(`y, q, λ) are allowed to differ over time and across methods.

4.2 In-Sample Fit

Before turning to forecasting, we first consider the ability of estimated factor models to summarize the data

set. To this end, we extracted q = 10 factors using each of the three different loss functions. We selected the

penalization parameter λ by minimizing the BIC (12); in all three cases, λ = 0.1 was selected. From Table 3
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Table 3: Summary statistics for the in-sample fit in the macroeconomic data set.

Nonzero Approximation quality Nonzero Approximation quality
Criterion loadings RMSE MnAE MdAE Criterion loadings RMSE MnAE MdAE
L2, λ = 0 1320 1.068 0.663 0.454 L2, λ = 0.1 753 1.061 0.656 0.447
L1, λ = 0 1320 1.246 0.616 0.364 L1, λ = 0.1 842 1.258 0.622 0.365
Tukey, λ = 0 1320 1.081 0.626 0.422 Tukey, λ = 0.1 296 1.213 0.643 0.424

Notes: This table reports the number of nonzero entries in the estimated 132×10 loading matrix Â, as well as the root mean squared
error and mean and median absolute error for the approximation X ≈ F̂ Â′, after standardizing all variables to median zero and
median absolute deviation one.

we note that, as expected, using the L2 criterion leads to the smallest mean squared error
∣∣∣∣∣∣X − X̂∣∣∣∣∣∣2

2
, while

using the L1 criterion leads to the smallest mean and median absolute error. For all error measures, the Tukey

criterion yields results in between these extremes. As for the simulated data in Section 3, we observe that

setting a positive penalty term does not substantially influence the in-sample goodness of fit.

This table also clearly shows the sparsity effect of choosing λ > 0, leading to as few as 296 (out of 1320)

nonzero factor loadings for the Tukey criterion. Figures 2 and 3 show how this property aids in the interpre-

tation of the factors. In these figures, the variable number is on the horizontal axis, with groups of variables

separated by vertical lines. The factor loading is on the vertical axis, and exact zero loadings were omitted

for legibility. The factor loadings obtained by standard PCA (Figure 2) are quite difficult to interpret. (Stock

and Watson (2002) resort to computing pairwise correlations between constructed factors and original vari-

ables to alleviate this problem.) On the other hand, Figure 3 allows for a reasonable interpretation of all ten

factors extracted using the penalized Tukey criterion. For example, the pattern of nonzero loadings on the

first component (circles in the top panel of Figure 3) suggests that this component is mostly associated with

employment-related series. Continuing in this manner, we can assign labels to all ten factors as follows:

1. employment; 6. housing;

2. interest rates; 7. producer price inflation;

3. production; 8. exchange rates;

4. interest rate spreads; 9. monetary policy; and

5. consumer price inflation; 10. stock prices.

13



Figure 2: Nonzero factor loadings for the macroeconomic data, L2 criterion, λ = 0.

−6

−4

−2

0

2

4

6

8

R
ea

l O
ut

pu
t &

 In
co

m
e

E
m

pl
oy

m
en

t &
 H

ou
rs

H
ou

si
ng

O
rd

er
s 

&
 In

ve
nt

or
ie

s

M
on

ey
 &

 C
re

di
t

S
to

ck
 P

ric
es

In
te

re
st

 R
at

es
 &

 S
pr

ea
ds

E
xc

ha
ng

e 
R

at
es

P
ric

e 
In

di
ce

s
W

ag
es

C
on

su
m

er
 E

xp
ec

ta
tio

ns

 

 

comp 1 comp 2 comp 3 comp 4 comp 5

−6

−4

−2

0

2

4

6

8

R
ea

l O
ut

pu
t &

 In
co

m
e

E
m

pl
oy

m
en

t &
 H

ou
rs

H
ou

si
ng

O
rd

er
s 

&
 In

ve
nt

or
ie

s

M
on

ey
 &

 C
re

di
t

S
to

ck
 P

ric
es

In
te

re
st

 R
at

es
 &

 S
pr

ea
ds

E
xc

ha
ng

e 
R

at
es

P
ric

e 
In

di
ce

s
W

ag
es

C
on

su
m

er
 E

xp
ec

ta
tio

ns

 

 

comp 6 comp 7 comp 8 comp 9 comp 10

14



Figure 3: Nonzero factor loadings for the macroeconomic data, Tukey criterion, λ = 0.1.
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Figure 4: Heat maps of the residuals for the macroeconomic data. Top: L2 criterion, λ = 0. Bottom: Tukey, λ = 0.1.
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Table 4: Forecasting results for the macroeconomic data set: Industrial Production and Personal Income.

Horizon Criterion RMSE MnAE MdAE Horizon Criterion RMSE MnAE MdAE

Industrial Production Personal Income
h = 1 L2, λ = 0 8.258 5.917 4.395 h = 1 L2, λ = 0 5.723 3.703 2.716

L2, λ > 0 8.368 5.961 4.357 L2, λ > 0 5.932 3.706 2.786
L1, λ = 0 7.889 5.717 4.161 L1, λ = 0 5.416 3.550 2.628
L1, λ > 0 8.023 5.742 4.238 L1, λ > 0 5.430 3.563 2.587
Tukey, λ = 0 7.944 5.720 4.322 Tukey, λ = 0 5.390 3.505 2.642
Tukey, λ > 0 7.969 5.768 4.422 Tukey, λ > 0 5.414 3.537 2.563

h = 3 L2, λ = 0 5.811 4.352 3.350 h = 3 L2, λ = 0 3.369 2.521 1.945
L2, λ > 0 5.834 4.347 3.338 L2, λ > 0 3.387 2.539 2.038
L1, λ = 0 5.792 4.305 3.455 L1, λ = 0 3.403 2.541 1.923
L1, λ > 0 5.750 4.300 3.347 L1, λ > 0 3.364 2.513 1.981
Tukey, λ = 0 5.927 4.346 3.171 Tukey, λ = 0 3.515 2.575 1.997
Tukey, λ > 0 5.927 4.351 3.243 Tukey, λ > 0 3.415 2.547 2.101

h = 6 L2, λ = 0 4.933 3.682 2.760 h = 6 L2, λ = 0 2.775 2.141 1.689
L2, λ > 0 4.875 3.617 2.756 L2, λ > 0 2.792 2.148 1.728
L1, λ = 0 4.867 3.758 3.080 L1, λ = 0 2.880 2.100 1.598
L1, λ > 0 4.925 3.802 3.115 L1, λ > 0 2.841 2.081 1.545
Tukey, λ = 0 5.281 3.820 2.672 Tukey, λ = 0 3.025 2.209 1.625
Tukey, λ > 0 4.965 3.684 2.673 Tukey, λ > 0 3.011 2.235 1.697

h = 12 L2, λ = 0 3.825 2.769 2.051 h = 12 L2, λ = 0 2.486 1.957 1.557
L2, λ > 0 3.821 2.775 2.165 L2, λ > 0 2.447 1.937 1.557
L1, λ = 0 4.073 3.002 2.265 L1, λ = 0 2.537 1.935 1.465
L1, λ > 0 3.996 2.947 2.243 L1, λ > 0 2.487 1.920 1.455
Tukey, λ = 0 4.001 2.862 2.043 Tukey, λ = 0 2.566 1.994 1.551
Tukey, λ > 0 3.999 2.889 2.125 Tukey, λ > 0 2.534 1.951 1.546

Notes: This table reports the root mean squared forecast error and mean and median absolute forecast error for the macroeconomic
forecasting example. For each series, the smallest RMSE, MeanAE, and MedianAE are printed in boldface.

Recalling the large number of outliers in the data, as visualized in the heat map in Figure 1, it is of

interest to repeat this outlier detection exercise for the residuals after ten factors have been extracted. The

corresponding heat maps are shown in Figure 4. We observe that theL2 factor extraction procedure is severely

influenced by the outlying observations identified in Figure 1: many of the outliers are no longer present in

the residuals, which means that the extracted factors fit these observations well. This result continues to hold

if a positive penalty λ is selected. On the other hand, the residuals from the Tukey criterion exhibit a similar

outlier pattern to the original data. In this criterion, large outliers are downweighted, so that they have less

impact on the factor estimates. Similar results are obtained using the L1 criterion (not shown).
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Table 5: Forecasting results for the macroeconomic data set: Manufacturing & Trade Sales and Employment.

Horizon Criterion RMSE MnAE MdAE Horizon Criterion RMSE MnAE MdAE

Manufacturing & Trade Sales Employment
h = 1 L2, λ = 0 11.463 8.680 7.040 h = 1 L2, λ = 0 2.980 2.227 1.708

L2, λ > 0 11.540 8.774 6.990 L2, λ > 0 3.045 2.277 1.779
L1, λ = 0 11.779 8.963 7.246 L1, λ = 0 2.991 2.226 1.710
L1, λ > 0 11.819 9.021 7.449 L1, λ > 0 2.983 2.229 1.771
Tukey, λ = 0 12.072 9.028 6.795 Tukey, λ = 0 3.072 2.307 1.778
Tukey, λ > 0 12.108 9.066 6.669 Tukey, λ > 0 3.071 2.293 1.761

h = 3 L2, λ = 0 6.205 4.689 3.648 h = 3 L2, λ = 0 1.765 1.322 0.984
L2, λ > 0 6.363 4.781 3.747 L2, λ > 0 1.773 1.336 1.025
L1, λ = 0 6.201 4.719 3.787 L1, λ = 0 1.733 1.296 0.987
L1, λ > 0 6.074 4.660 3.705 L1, λ > 0 1.757 1.323 1.015
Tukey, λ = 0 6.297 4.763 3.625 Tukey, λ = 0 1.770 1.343 1.044
Tukey, λ > 0 6.345 4.802 3.672 Tukey, λ > 0 1.780 1.338 1.038

h = 6 L2, λ = 0 4.663 3.406 2.509 h = 6 L2, λ = 0 1.422 1.076 0.820
L2, λ > 0 4.757 3.448 2.567 L2, λ > 0 1.435 1.093 0.827
L1, λ = 0 5.127 3.695 2.605 L1, λ = 0 1.456 1.108 0.837
L1, λ > 0 4.920 3.603 2.728 L1, λ > 0 1.444 1.107 0.845
Tukey, λ = 0 4.922 3.538 2.367 Tukey, λ = 0 1.524 1.143 0.823
Tukey, λ > 0 4.868 3.494 2.467 Tukey, λ > 0 1.525 1.137 0.839

h = 12 L2, λ = 0 3.664 2.613 1.931 h = 12 L2, λ = 0 1.235 0.932 0.685
L2, λ > 0 3.557 2.607 2.016 L2, λ > 0 1.194 0.904 0.671
L1, λ = 0 3.740 2.734 2.110 L1, λ = 0 1.228 0.913 0.710
L1, λ > 0 3.714 2.731 2.156 L1, λ > 0 1.238 0.914 0.711
Tukey, λ = 0 3.630 2.679 2.121 Tukey, λ = 0 1.294 0.979 0.747
Tukey, λ > 0 3.579 2.656 2.013 Tukey, λ > 0 1.290 0.978 0.737

4.3 Forecasting Results

Next, we focus on forecasting four key macroeconomic series, as described above. The results are summa-

rized in Tables 4 and 5. For Industrial Production and Personal Income (Table 4), we find that our sparse and

robust methods often outperform the benchmark of standard PCA. For horizons shorter than a year, the more

robust Tukey and L1 criterions generally lead to better forecasts than the standard L2 criterion, irrespective

of which measure we use to evaluate the performance. Thus, the lack of robustness in PCA that we observed

negatively affects the forecasting performance, and more robust criterion functions remedy this situation.

For the easier task of forecasting annual growth rates (h = 12), we find that the L2 criterion does lead

to adequate forecasts. In this case, however, imposing a sparsity constraint improves the forecast quality: a

relatively simple task is best performed using relatively simple models.
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The results for the other two series, Manufacturing & Trade Sales and Employment, are shown in Table

5. It is very hard to improve on standard PCA forecasts for these series, a finding that was also documented

by Exterkate et al. (2011). Nevertheless, our result that sparse modelling leads to better forecasts for annual

growth rates also applies here.

5 Application: Boston Housing Data

5.1 Data and Forecast Model

The Boston Housing data set, originating with Harrison and Rubinfeld (1978), has been extensively analyzed

in the robust statistics literature. We use the corrected version of the data set by Pace and Gilley (1997).

The data set contains various characteristics of houses, demographics, air pollution, and geographical details

on 506 census tracts in or nearby Boston. The objective is to relate the median house price to the other

characteristics, and our model will be inspired by the one in Pace and Gilley (1997):

log Price =


1, ZN, CHAS, CRIM, INDUS, NOX2, RM2, AGE, . . .

log DIS, log RAD, TAX, PTRATIO, B, log LSTAT, . . .

LON, LAT, LON× LAT, LON2, LAT2

β + ε, (16)

where the regressors denote the proportion of area zoned with large lots (ZN), a dummy for a location contigu-

ous to the Charles River (CHAS), the crime rate (CRIM), the proportion of nonretail business areas (INDUS),

levels of nitrogen oxides (NOX), the average number of rooms (RM), the proportion of structures built be-

fore 1940 (AGE), weighted distances to the employment centers (DIS), an index of accessibility (RAD), the

property tax rate (TAX), the pupil/teachter ration (PTRATIO), the black population proportion (B), the lower

status population proportion (LSTAT), and the geographical longitude (LON) and latitude (LAT).

Before applying the methods of Section 2 to this data set, we remove two variables for which the median

absolute deviation is zero; namely, the proportion of large lots (ZN) and the Charles River dummy (CHAS).

As we scale all variables by dividing by their median absolute deviations before extracting factors using the

Tukey criterion, we cannot handle these variables in our algorithm. As a compromise, we estimate the model

19



Figure 5: Heat map of the Boston housing data, with absolute standardized values greater than 5 in black.
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log Price = α+ β1 ZN + β2 CHAS + Fγ + ε, (17)

where the factors in F are extracted from the remaining right-hand-side variables in Equation (16).

A heat map of the data is shown in Figure 5, with the variables ordered as in Equation (16), starting with

CRIM. Thus, the variables containing relatively many outlying observations can be identified as the crime

rate (CRIM, variable 1) and the proportion of black population (B, variable 10). The groups of observations

at which these outliers occur correspond to the locations in the cities of Cambridge (around observation 150)

and Boston (around observations 400-450).

Our forecasting procedure is as follows. We first extract the factors F from the full data set. Then, we

estimate Model (17) on a random selection of 80% of the 506 observations, and we decide on the number

of factors, the value of λ, and whether or not to include ZN and/or CHAS in the model by minimizing

a Bayesian Information Criterion similar to the one in Equation (15). The selected model is then used to

forecast the prices for the 20% of the observations that were left out in the estimation, and we repeat the

procedure five times, ensuring that each observation is being predicted exactly once.
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Table 6: Summary statistics for the in-sample fit in the Boston housing data set.

Approximation quality Approximation quality
Criterion RMSE MnAE MdAE Criterion RMSE MnAE MdAE

L2, λ = 0, q = 5 4.683 1.159 0.186 L2, λ = 0.001, q = 5 4.687 1.153 0.185
L1, λ = 0, q = 5 6.219 0.915 0.039 L1, λ = 0.100, q = 5 6.600 0.985 0.056

Tukey, λ = 0, q = 5 1.619 0.391 0.204 Tukey, λ = 0.010, q = 5 5.496 0.748 0.172

Notes: This table reports the selected numbers of factors and penalization parameters, as well as the root mean squared error and
mean and median absolute error, after standardizing all variables to median zero and median absolute deviation one. The smallest
errors are printed in boldface.

Table 7: Forecasting results for the Boston housing data set.

Criterion RMSE MnAE MdAE Criterion RMSE MnAE MdAE
L2, λ = 0 0.224 0.148 0.100 L2, λ > 0 0.217 0.142 0.097
L1, λ = 0 0.240 0.156 0.097 L1, λ > 0 0.241 0.157 0.100
Tukey, λ = 0 0.269 0.191 0.130 Tukey, λ > 0 0.233 0.152 0.100

Notes: This table reports the root mean squared error and mean and median absolute error in forecasting the logarithm of the median
house price. The smallest errors are printed in boldface.

5.2 In-Sample Fit

Again, we first consider the in-sample fit, selecting the number of factors and the penalization parameter by

minimizing the BIC in Equation (12). Summary statistics are shown in Table 6. Note that in all cases, the

maximum number of five components is selected. Given that the data set contains only sixteen variables, it

seems undesirable to extract even more factors. As in the other data sets, we find that allowing for a positive

penalization parameter λ does not substantially worsen the in-sample fit — except, in this case, for the Tukey

criterion, which performs extremely well with λ = 0.

Heat maps of the residuals are shown in Figure 6. The heat map for standard PCA residuals (top panel)

indicates that many of the outlying observations that were identified from Figure 5 are fitted by the factor

structure. This is the well-known effect of least-squares methods being sensitive to large outliers. On the other

hand, most of the outliers are still present in the residuals from penalized Tukey factor extraction. In fact,

new groups of outliers are now detected, especially in the variables numbered 12 (geographical longitude),

14 (longitude times latitude), and 15 (longitude squared). It turns out that the outliers correspond to locations

relatively far to the west of Boston. The Tukey criterion tries to fit most of the data, rather than all of the data.
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Figure 6: Heat maps of the residuals for the Boston housing data. Top: L2 criterion, λ = 0. Bottom: Tukey, λ = 0.010.
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5.3 Forecasting Results

Table 7 summarizes the forecasting results. We observe that even in this relatively small data set, penalized

estimation leads to better forecasts. On the other hand, despite the large number of outliers identified in Figure

5, robust methods perform (somewhat) worse than L2 estimation. Closer inspection of the data reveals that

the house price has a high correlation with the two variables containing most outliers. Thus, in this case, it is

undesirable to downweight the outlying observations, but the results are not too heavily affected by this fact.

To illustrate this result, we re-estimated Equation (17) over the full sample, again selecting the number of

factors and the value of λ by minimizing the BIC. The residuals, standardized to median absolute deviation

one, are plotted in Figure 7 for the L2 and Tukey factor estimates. These plots show that although both

methods have difficulties fitting the house prices for the city of Boston (around observation 400), using the
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Figure 7: Standardized residuals for the house price equation (17). Top: L2 criterion, λ = 0.1, q = 5. Bottom: Tukey
criterion, λ = 0.1, q = 4.
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more robust Tukey factors leads to greater errors for these observations than using L2-based factors. This

result implies that these outliers can be considered “good leverage points”: downweighting them adversely

affects the fit of the model.

6 Conclusion

We propose a novel factor extraction method that unifies two recent strands in the factor modelling literature,

robustness and sparsity. This method leads to a sparse factor loading matrix and to factors that are robust to
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outlying observations in the original data. We are the first to combine these two issues in the context of factor

modelling, and we argue that both properties can be helpful in forecasting. A Monte Carlo study confirms

this intuition: compared to standard principal component analysis, our proposed method gives a much closer

approximation to the true factor space; hence, it is more suitable for forecasting purposes. This improvement

is obtained at the cost of only small losses in in-sample fit.

We apply this method to two economic data sets. Our first application concerns macroeconomic forecast-

ing using a large panel of predictors. We show that, compared to traditional principal component analysis,

our proposed method leads to more interpretable factors. Moreover, we report favorable forecasting perfor-

mance: for annual growth rates, imposing sparsity on the factor loadings leads to more accurate forecasts

for all target variables considered. For shorter-term growth rates, robust estimation provides an additional

advantage in forecasting U.S. Industrial Production and Personal Income. This result shows that our factor

extraction method, which can be thought of as “multivariate data cleaning”, is useful even after the standard

univariate data cleaning that was performed by Stock and Watson (2002).

In the second economic application, we analyze the well-known Boston Housing data set. Even in this

relatively small data set (sixteen predictor variables), we find that sparse estimation improves the quality of

forecasts. We also argue that robust techniques can be expected to fare worse in this data set, as the outliers

are actually “good leverage points”; however, their impact on the forecast accuracy turns out to be minimal.

We note that if prior knowledge on a sparse factor structure is available, it is of course possible to impose

that certain elements of the loading matrix are zero and use more traditional factor extraction methods. This is

the case in the macroeconomic data set analyzed in Section 4 of this paper, in which the series are categorized

into groups of related variables. However, the results in Section 4.2 show that even in this case, the selection

of factor loadings that our methodology sets to zero in a data-driven way is similar to the selection that we

would impose to be zero based on prior information.

To conclude, we find that sparse and robust estimation of factor models has a great potential for im-

proving both the interpretability of the estimated factors and the accuracy of forecasts. Given its favorable

performance in a macroeconomic forecasting study, an interesting generalization of our method would be to

dynamic factor models, in which explicit assumptions about the evolution of the factors over time are made.
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