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Abstract

We propose a new and simple methodology to estimate the loss func-
tion associated with experts’ forecasts. Under the assumption of con-
ditional normality of the data and the forecast distribution, the asym-
metry parameter of the lin-lin and linex loss function can easily be
estimated using a linear regression. This regression also provides an
estimate for potential systematic bias in the forecasts of the expert.
The residuals of the regression are the input for a test for the validity
of the normality assumption.

We apply our approach to a large data set of SKU-level sales fore-
casts made by experts and we compare the outcomes with those for
statistical model-based forecasts of the same sales data. We find sub-
stantial evidence for asymmetry in the loss functions of the experts,
with underprediction penalized more than overprediction.
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1 Introduction

Sales forecasts are often the outcome of a process in which an expert with

domain-specific knowledge modifies a model-generated forecast. Typically,

simple extrapolation models are used to create such model forecasts, and

often they are generated by automated statistical software which gets fed by

lagged sales and other possibly relevant variables.

There is a long tradition in the sales forecasting literature to examine

the quality of these expert forecasts relative to model forecasts (if these

are available). Key questions are whether the domain-specific knowledge

translates into improved forecasts, or whether experts downplay the model

forecasts too much, thereby quoting less accurate forecasts. Classical studies

are Blattberg and Hoch (1990) and Mathews and Diamantopoulos (1986)

where various case studies are examined.

Recently this literature has seen a revived interest with the advent of a

range of large data sets that allow for more generalizing statements. For

example, Fildes et al. (2009) study thousands of expert and model forecasts,

and conclude that expert forecasts tend to be biased and that expert forecasts

are not necessarily better than model forecasts. Franses and Legerstee (2010),

using a database with over 30,000 forecasts and realizations, show that, on

average, model forecasts and expert forecasts are about equally good, but

when expert forecasts are worse they are much worse.

A common finding in these two recent studies is that expert forecasts

tend to exceed model forecasts, or in other words, judgmental adjustment is

often positive. A potential explanation for this finding is that the experts

dislike underpredicting more than overpredicting, perhaps due to planning

reasons. Hence, when creating forecasts their loss function may not be a

mean squared error (MSE) loss function symmetric around zero, but some
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other, asymmetric loss function. If such an alternative loss function is used

indeed, this may then also explain why expert forecasts seem less accurate

than model forecasts, as typically forecasts are evaluated using criteria like

the root mean squared prediction error (RMSPE).

The loss function of experts is usually not known in practice. Given

available data, one may however try to estimate this loss function by eval-

uating theoretical properties of loss functions against actual data. Various

forms of asymmetric loss functions have been proposed in the literature, like,

for example, the lin-lin loss function, the quad-quad loss function and the

linex function proposed by Varian (1975). These loss functions have been

frequently analyzed, for example, by analyzing the optimal forecast under a

specific asymmetric loss function, see Zellner (1986) and Christoffersen and

Diebold (1996, 1997), among others.

In this paper we are interested in estimating the parameters of loss func-

tions given the availability of expert forecasts. Clatworthy et al. (2011) inves-

tigate whether financial analysts’ loss functions are asymmetric or not, but

they do not estimate the loss function. A notable exception is Elliott et al.

(2005). These authors propose a linear Instrumental Variable (IV) estimator

for the shape parameter of a general class of loss functions which signals the

degree of asymmetry in the loss function. The general class of loss func-

tions nests four popular loss functions, and these are the absolute deviation

loss function and its asymmetric counterpart the lin-lin loss function, and

the squared loss function and its asymmetric counterpart the quad-quad loss

function. They use their methodology to estimate the asymmetry in forecasts

of budget deficits for the G7 countries made by the IMF and OECD.

To estimate the loss function of experts in the sales forecasting indus-

try we propose a methodology that differs from the methodology proposed
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by Elliott et al. (2005) in a number of ways. By making a normality as-

sumption on the conditional distribution of the variable to be forecasted,

and by that on the forecast distribution, we demonstrate that the estima-

tion of the asymmetry parameter is simplified substantially. Elliott et al.

(2005) need instrumental variables for their estimation method, but in our

proposed methodology only simple linear regressions (OLS) are used, using

panel data on expert forecasts and on the variable to be forecasted. If the

normality assumption is valid, OLS is more efficient than using instrumental

variables and the methodology can easily be extended to multiple-step ahead

forecasts. Our proposed method can be used to estimate the key parameters

of the well-known and useful linex loss function.

The outline of our paper is as follows. In Section 2 we show that for two

well-defined loss functions, the lin-lin loss function and the linex loss func-

tion, simple regressions can be used to estimate the asymmetry parameter

of the functions, provided the availability of the relevant data. In Section 3

we illustrate this methodology for a large database covering forecasts from a

range of experts. We also consider statistical model forecasts to establish to

what extent symmetric loss functions prevail. The robustness of our crucial

assumption on the forecast distribution is tested in three ways. One way, for

example, is to compare our estimates with those obtained with the method-

ology of Elliott et al. (2005). Upon estimating our two loss functions we find

overwhelming support for the conjecture that experts may feel that negative

forecast errors (meaning the forecasts are below actual sales) require more

weight in the loss function than positive forecast errors. Section 4 concludes

this paper with a summary and suggestions for further research.
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2 Loss Functions

Suppose that Yt+1 is the random variable to be forecasted with forecast den-

sity f(yt+1; θ,Yt,Xt) that may depend on parameters θ and lagged values

Yt = {yt+1−j}Jj=1 and other exogenous variables summarized in Xt. To sim-

plify notation we write f(yt+1; θ) instead of f(yt+1; θ,Yt,Xt). In this paper

we confine our analysis to one-step ahead forecasts.

Given the forecast distribution, a point forecast pt+1 for Yt+1 can be ob-

tained by specifying a loss function. For example, the quadratic loss function

is given by

QL(Yt+1, pt+1) = (pt+1 − Yt+1)
2, (1)

where we adopt the convention that a forecast error is the forecast minus

the realization. The point forecast p̂t+1 results from minimizing expected

quadratic loss E[QL(Yt+1, pt+1)] with respect to pt+1, where E denotes the ex-

pectation operator. In case of quadratic loss, this results in p̂t+1 = E[YT+1|θ].

Hence, the optimal forecast is unbiased.

From a supply chain management point of view it can be necessary to put

a higher penalty on negative forecast errors than on positive forecast errors.

For example, if one forecasts sales, the consequences of a prediction which

is lower than the realized demand may be worse than a prediction which is

higher than the demand. In other words, being out of stock is worse than

having a little too much stock. To allow for different penalties one may then

consider an asymmetric loss function.
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2.1 Asymmetric absolute loss function

An example of an asymmetric function is the lin-lin loss function, further

also called the asymmetric absolute loss (AAL) function, which is given by

AAL(Yt+1, pt+1) =

 αA|pt+1 − Yt+1| if pt+1 ≤ Yt+1

|pt+1 − Yt+1| if pt+1 > Yt+1

(2)

One sets αA > 1 if one wants to put more penalty on a forecast which is

smaller than the true realization, see also Ferguson (1967). The optimal

point forecast is obtained by minimizing expected loss, that is,

E[AAL(Yt+1, pt+1)] =

∫
AAL(yt+1, pt+1)f(yt+1; θ)dyt+1. (3)

The expected loss function E[AAL(Yt+1, pt+1)] can be written as∫ pt+1

−∞
(pt+1 − yt+1)f(yt+1; θ)dyt+1 +

∫ ∞
pt+1

αA(yt+1 − pt+1)f(yt+1; θ)dyt+1. (4)

The first-order partial derivative is given by

∂E[AAL(Yt+1, pt+1)]

∂pt+1

=

∫ pt+1

−∞
f(yt+1; θ)dyt+1 −

∫ ∞
pt+1

αAf(yt+1; θ)dyt+1

= F (pt+1; θ)− αA(1− F (pt+1; θ)),

(5)

where we used the Leibniz integral rule and where F (·; θ) is the forecast

distribution function of Yt+1 (with f(·; θ) as its derivative). The optimal

point forecast is obtained when this derivative is set equal to zero and solved

for pt+1, which results in

F (p̂t+1; θ) =
αA

1 + αA

. (6)

The point estimate corresponds to the αA/(1+αA)th percentile of the forecast

distribution. Under symmetric loss (αA = 1) we obtain the median of the

forecast distribution. For αA > 1 we have a forecast which is larger than
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the median, and for αA < 1 we obtain a forecast which is smaller than the

median.

Hence, apparent biased forecasts of an expert may be due to the fact that

an asymmetric loss function is used. Our main claim in this paper is that if

we were to observe several forecasts of experts together with realizations of

the forecasts, it is possible under some testable assumptions to estimate the

value of αA, see also Subsection 2.3 below.

Suppose that we have data with T forecasts where for each point forecast

created at time t = 1, ..., T the conditional forecast distribution is normal

with mean mt and variance s2
t . Furthermore, assume that all forecasts are

constructed using the same asymmetric absolute loss function. Under these

assumptions the forecasts are thus generated by

pt+1 = mt + stΦ
−1

(
αA

1 + αA

)
, (7)

where Φ−1 is the inverse CDF of a standard normal distribution.

Further assume that the realizations yt+1 result from a normal distribution

with mean µt and variance σ2
t for t = 1, . . . , T and hence yt+1 = µt + σtηt,

where ηt is a realized draw from a standard normal distribution. If there is

a systematic bias in the forecast distribution it holds that mt = µt + b with

b 6= 0. If we consider the difference between pt+1 and yt+1 we obtain

(pt+1 − yt+1) = b+ stΦ
−1

(
αA

1 + αA

)
− σtηt. (8)

If we can obtain a consistent estimate of st and σt, one can use the simple

regression
(pt+1 − yt+1)

σ̂t

=
1

σ̂t

β0 +
ŝt

σ̂t

β1 + εt (9)

to provide the estimate for β0 = b and for β1 = Φ−1(αA/(1 + αA)). An

estimate of αA can easily be obtained by solving

αA

1 + αA

= Φ(β1)⇒ αA =
Φ(β1)

1− Φ(β1)
.
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In sum, in this scenario it is possible for a forecaster to have an asymmet-

ric loss function and a systematic bias in its forecasting distribution. The

expression in (9) shows that it is possible to calibrate the loss function and

the bias.

2.2 Linex loss function

An alternative nonlinear asymmetric loss function is the linear-exponential

function, also called the linex (LIN) loss function, see Varian (1975) and

Zellner (1986). This function is given by

LIN(Yt+1, pt+1) = exp(αL(pt+1 − Yt+1))− αL(pt+1 − Yt+1)− 1 (10)

with αL 6= 0. A negative value of αL implies that a pt+1 lower than Yt+1 is

more costly than a pt+1 higher than Yt+1. To be more precise, if αL < 0, the

linex loss function shows an almost exponential increase in loss to the left

of the origin (pT+1 − Yt+1) = 0 and an almost linear increase in loss to the

right of the origin. A positive value of αL implies the opposite and a αL → 0

implies symmetric loss. Zellner (1986) shows that the point forecast which

minimizes expected loss is given by

p̂t+1 = −α−1
L log E[exp(−αLYt+1)]. (11)

Hence, if we assume that the forecast distribution of Yt+1 is normal with

mean mt and variance s2
t , then the point forecast is given by

pt+1 = mt −
1

2
αLs

2
t . (12)

Again it is possible to estimate αL in case we observe several forecasts of

experts together with realized forecasts. Under the same conditions as above

and using the same arguments, taking the difference between pt+1 and yt+1
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and dividing by σ̂t results in the simple regression

(pt+1 − yt+1)

σ̂t

=
1

σ̂t

β0 +
ŝ2

t

2σ̂t

ŝ2
tβ1 + εt. (13)

OLS provides the estimate for the systematic bias b = β0 and asymmetry

parameter αL = −β1.

2.3 Parameter estimation

To run the regressions (9) and (13) we need estimates of s2
t and σ2

t . If we have

the availability of unbiased model forecasts (mf t+1 = E[yt+1|Yt,Xt]) and the

realizations yt+1, the variance of the data can be estimated using

σ̂2 =
1

T − 1

T∑
t=1

(yt+1 −mf t+1)
2 (14)

under the assumption that σ2
t = σ2.

The variance of the forecast distribution of the expert s2
t , however, cannot

be estimated from the variance of the available expert forecasts as these

forecasts may be biased and/or result from an asymmetric loss function.

To estimate the variance we assume that s2
t is constant (s2

t = s2 for t =

1, . . . , T ) and that the variance of the expert is equal to the variance of the

forecast distribution of an econometric model which fits the data at hand

and produces unbiased forecasts.

Because σt and st are constant over t we need panel data with expert

forecasts and realizations in order to estimate the parameters in (9) and

(13). In other words, if we have point forecasts for variables i = 1, ..., N over

periods t = 1, ..., T , denoted by pi,t+1 and mf i,t+1, we are able to estimate ŝ2
i

and σ̂2
i for each i. In case of the lin-lin loss function we can now estimate

the bias and asymmetry parameter with the regression

(pi,t+1 − yi,t+1)

σ̂i

=
1

σ̂i

β0 +
ŝi

σ̂i

β1 + εi,t, (15)
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where b = β0 and αA = Φ(β1)/(1− Φ(β1)). In case of the linex function we

can estimate the bias and asymmetry parameter with

(pi,t+1 − yi,t+1)

σ̂i

=
1

σ̂i

β0 +
ŝ2

i

2σ̂i

β1 + εi,t, (16)

where b = β0 and αL = −β1.

2.4 Misspecification

Under our assumptions the error terms εi,t for i = 1, ..., N and t = 1, ..., T

should be normal with mean 0 and variance 1 in regressions (15) and (16).

If this is not the case, (some of) the assumptions, such as the assumption of

a normal forecast distribution, may not be valid or the loss function may not

be adequate. It is therefore important to test if the estimated residuals are

standard normally distributed.

If tests show that the error terms are not standard normally distributed

or if there are other reasons to doubt whether the forecast density is normal,

it is also possible to assume that the forecasts are lognormally distributed in

case of the lin-lin loss function (AAL). Under this distribution, the forecasts

are generated by

log(pt+1) = mt + stΦ
−1

(
αA

1 + αA

)
, (17)

where mt is the mean and s2
t the variance of log(pt+1) and Φ−1 is the inverse

CDF of a standard normal distribution. Assume now that the realizations

yt+1 result from a lognormal distribution with parameters µt and σ2
t for t =

1, . . . , T and hence log(yt+1) = µt + σtηt where εt is a realized draw from a

standard normal distribution. We can now write

(log(pt+1)− log(yt+1)) = b+ stΦ
−1

(
αA

1 + αA

)
− σtηt, (18)
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where b is again the systematic bias in the forecast distribution, thus mt =

µt + b. Using the estimates of st and σt and using the relevant panel data

the regression

(log(pi,t+1)− log(yi,t+1))

σ̂i

=
1

σ̂i

β0 +
ŝi

σ̂i

β1 + εi,t (19)

provides β0 = b and β1 = Φ−1(αA/(1 + αA)) and hence αA = Φ(β1)/(1 −

Φ(β1)). Again, if the assumptions are correct, including the assumption of

lognormality of the forecast distribution, and the loss function is AAL, the

error terms εi,t for i = 1, ..., N and t = 1, ..., T should be normal with mean

0 and variance 1.

Another way to check if the assumptions are correct is to compare the

results for the AAL loss function with the results as found with the method

of Elliott et al. (2005). They use as a general loss function

L(Yt+1, pt+1) = [αE + (1− 2αE) · I(Yt+1 − pt+1 < 0)]|Yt+1 − pt+1|q, (20)

where I[·] is an indicator function which takes a value of 1 if the statement

between brackets is true and is 0 otherwise, where αE ∈ (0, 1) and where they

impose q = 1 or q = 2. By setting q = 1, the AAL loss function is obtained

as defined above in (2), but with weight αE for cases where pt+1 ≤ Yt+1

and with weight 1 − αE for cases where pt+1 > Yt+1. Stated differently,

αE/(1 − αE) = αA. Elliott et al. (2005) do not make assumptions on the

distribution of the forecasts. Therefore, if the normality assumption is valid,

their methodology should result in an α̂E for which α̂E/(1− α̂E) ≈ α̂A, where

α̂A is obtained from (15). Differences between α̂E/(1− α̂E) and α̂A might be

a result of the chosen instrumental variables for the estimation of αE or the

use of ŝ and σ̂ instead of s and σ for the estimation of αA or both.

In the next section we will illustrate the techniques and robustness checks

described in this section for a range of forecasts made by many experts.
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3 Illustration

We apply our methodology to an extensive panel data set. The data set

covers SKU-level sales data and is described in detail in the next subsection.

In Subsections 3.2 and 3.3 the results of our analysis are discussed.

3.1 Data set

For our case study we use monthly sales data of a large pharmaceutical com-

pany. The company has its headquarters in The Netherlands, and has local

offices in various countries worldwide. The company uses an automated sta-

tistical package to create forecasts using lagged sales data as the only input.

The experts know that these data are the only input. Each month model

selection and parameter estimation are updated, whereby the package uses

techniques such as Box-Jenkins and Holt-Winters. These model forecasts are

then sent to the managers/experts in the local offices, after which they quote

their own forecasts.

The forecasts are available for the months November 2004 through

November 2006. They are created for various horizons, but we only use the

1-step-ahead forecasts in the analysis presented in this paper. In each coun-

try, forecasts are created by a different expert and hence we have forecasts

for 35 countries and thus 35 distinct individuals. For confidentiality reasons

we denote the countries with roman numbers I to XXXV. Forecasts are cre-

ated for 1038 different products. In the notation of the previous section this

means that i ranges from 1 to 1038. Per product we have a minimum of 15

and a maximum of 25 observations for which the model forecast, the expert

forecast and realized sales are available to us. Thus, T depends on i and

15 ≤ Ti ≤ 25 for i = 1, ..., 1038. All together, we have 24897 observations.
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We denote the model forecasts as constructed by the statistical program

of the company as MF , and the final forecasts from the experts are denoted

as EF . The model that we use to estimate σi and si is for each i an AR(1)

model for which the parameters are estimated over all available observations

for i. For mf i,t+1 ∀i and ∀t we consider the in-sample forecasts generated by

these AR(1) models. Note that MFi,t+1 and mf i,t+1 are different forecasts,

the first is the statistical model forecast as used by the company and the

second is the forecast from the AR(1) model used to estimate σi and si.

The parameters in (15), (16) and (19) are estimated for each expert sepa-

rately by multiplying the two variables in the regressions by dummy variables

for the managers. We also estimate αE per expert. Observations per expert

range from 96 to 2132 with an approximate average of 710 observations.

3.2 Estimated asymmetry

We begin by analyzing the results as obtained under the assumption that

the AAL function is used by the experts. Column 2 in Table 1 presents the

estimated asymmetry parameter αA per expert. We see that 26 of the 35

experts have an α̂A that is significantly different from 1 at a significance level

of 10%. For 21 of these managers the difference is even significant at the 1%

significance level. For all those 26 managers the α̂A exceeds 1, meaning that

sales forecasts that are too low are penalized more than forecasts that are too

high. On average, over 35 experts, α̂A has a value of 1.40, which indicates

that too low forecasts are weighted 40% heavier than too high forecasts. To

get some more insight into this value for α̂A, see Figure 1.

The estimated systematic bias b for each expert can be found in Column

3 of Table 1. There are 11 experts with a significant systematic bias at the

1% significance level and another 2 experts with a significant systematic bias
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Table 1: The estimated asymmetry parameter αA of AAL and estimated systematic
bias b following from regression (15), for each expert. Columns 2 and 3 show results for
expert forecasts and Columns 4 and 5 for statistical model forecasts. The asterisks in the
second and fourth column indicate if the α̂A’s are significantly different from 1 and the
asterisks in the third and fifth column indicate if the b̂’s are significantly different from 0,
where one is for the 10%, two are for the 5% and three are for the 1% significance level.

Country/ EF MF

expert α̂A b̂ α̂A b̂

I 1.134* 10.513*** 0.964 3.596
II 1.659*** -4.163** 1.081 -4.502**
III 1.617*** -5.918*** 1.212*** -3.046
IV 1.310*** 2.651 1.036 18.650***
V 1.295*** 20.427*** 1.019 -4.434
VI 1.215*** 3.006 1.072 -8.601
VII 1.784*** 4.274** 0.990 1.874
VIII 1.772** 112.332*** 0.857 79.284***
IX 1.339*** -1.835 1.222 -13.143**
X 1.089 -0.263 1.037 -1.934
XI 1.489*** -1.431 1.026 0.710
XII 1.432*** -8.009*** 1.018 -5.830***
XIII 1.856*** 0.641 1.284*** -1.700
XIV 1.144* 0.522 1.250*** 2.049
XV 1.146 160.758*** 1.092 -53.567**
XVI 1.674*** -0.699 1.058 -12.795**
XVII 1.343*** -2.810 1.207*** 2.301
XVIII 2.511*** -8.023 1.219 -2.008
XIX 1.095 0.423 1.094 67.514
XX 1.396*** 24.837*** 0.845 -4.500
XXI 1.170 29.717*** 0.839 24.509**
XXII 0.964 -3.958 0.904 -3.199
XXIII 1.540*** 10.496*** 0.841** 3.136*
XXIV 1.161 26.693*** 0.964 18.843**
XXV 1.018 0.143 0.968 0.020
XXVI 1.337*** -1.446 0.892 -1.068
XXVII 1.088 -20.161 0.782 -1.016
XXVIII 0.846 -6.465 0.366*** -190.657
XXIX 1.810*** -4.480 1.521*** -3.126
XXX 1.925*** 2.411 0.854 5.099**
XXXI 1.267*** -10.693*** 1.328*** -9.900***
XXXII 1.369*** -2.620 1.031 5.679
XXXIII 1.425* 120.716 0.968 -140.564
XXXIV 1.202* -20.129 0.948 -27.534
XXXV 1.454*** -5.086 1.288*** -3.092



Figure 1: This figure shows the value of an AAL with αA = 1.4 for various values of the
forecast error p− y.

at the 5% significance level. Most of these are positive biases and most are

linked to a significantly positive asymmetry parameter.

If we only take the 1% significance level into consideration, we can con-

clude that 15 experts have an asymmetric loss function, but no systematic

bias. Another 6 experts have an asymmetric loss function and also a sys-

tematic bias. Only 5 experts have a systematic bias and no asymmetric loss

function, and finally, only 9 experts seem to have a symmetric loss function

and no systematic bias.

When we apply the test regression to the model forecasts MF , we obtain

the results as reported in Columns 4 and 5 of Table 1. As we might expect

from model forecasts based on techniques such as Box-Jenkins and Holt-

Winters, we find much less evidence of asymmetry in the loss function and of

systematic bias. For only 8 countries the α̂A are significantly different from 1

at the 1% significance level and in another 1 at the 5% significance level. The
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average of the 35 α̂A values is 1.03, which is very close to 1. Some evidence

of systematic bias is found in 12 countries, but at the 1% significance level

only 4 of these cases remain. In sum, the model-based forecasts in general

seem unbiased and have been created using a symmetric loss function.

Now we turn to the results when we assume that the linex loss function is

used by the experts. See Table 2 for the estimated asymmetry parameters and

systematic biases again for both EF and MF . In the second column of this

table we find α̂L for each expert. For 18 experts we find an α̂L significantly

different from 0 (thus asymmetry) at a significance level of 10%. For 12 of

these is the difference also significant at 1%. So this is almost half of the

cases where we found asymmetry for the AAL function. All except 1 (which

is only significant at the 10% level) have a negative asymmetry parameter,

indicating that again negative forecast errors weigh more heavy than positive

forecast errors. All except 2 (which are both again only significant at the

10% level) were also found to have an asymmetric loss function under AAL.

On average, α̂L has a value of −0.0002. See Figure 2 for the shape of LIN

with an αL equal to this average estimate.

However, we do find more often a significant systematic bias under the

linex loss function than under the lin-lin loss function, see Column 3 of Table

2. 22 experts have a b̂ significantly different from 0 at the 10% significance

level and for 16 of them is this difference also significant at the 1% level.

In some instances the linear asymmetry as found under AAL seems to be

replaced by a (more profound) systematic bias, see for example the experts

denoted with IV, XX and XXX. In general, the bias is positive again.

In sum, we find that at the 1% significance level there are far more experts

with a symmetric loss function (23) than with an asymmetric loss function

(12) if we assume the linex loss function. 12 of the experts with a symmetric
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Table 2: The estimated asymmetry parameter αL of LIN and estimated systematic bias
b following from regression (16), for each expert. Columns 2 and 3 show results for expert
forecasts and Columns 4 and 5 for statistical model forecasts. The asterisks in the second
and fourth column indicate if the α̂L’s are significantly different from 0 and the asterisks
in the third and fifth column indicate if the b̂’s are significantly different from 0, where
one is for the 10%, two are for the 5% and three are for the 1% significance level.

Country/ EF MF

expert α̂L b̂ α̂L b̂

I 4.4e-05 15.009*** 7.1e-05* 2.585
II -3.7e-04*** 2.528 -1.2e-04*** -3.548*
III -2.1e-04*** 3.775** -8.2e-05*** 0.852
IV 1.1e-05 11.290*** -1.7e-05 19.688***
V -9.2e-06 25.171*** 5.4e-06 -4.066
VI -6.4e-05*** 13.438*** -2.1e-05 -4.848
VII -5.8e-04*** 13.489*** -2.2e-04 1.522
VIII -4.2e-04** 136.130*** -2.3e-05 72.009***
IX -2.3e-04 10.143** -2.0e-04 -5.096
X 8.7e-05 1.611 2.1e-04 -0.888
XI -6.2e-04*** 2.742** -7.8e-05 0.954
XII -6.4e-04*** -4.652*** -1.3e-04 -5.689***
XIII -6.3e-04*** 8.567*** -4.3e-04** 1.414
XIV -6.2e-06 1.560 -3.1e-05* 3.755***
XV -8.5e-04* 160.967*** -1.8e-04 -48.658***
XVI -1.5e-03*** 9.614** -1.1e-04 -11.557**
XVII -8.4e-05*** 2.979 -3.9e-05** 6.029**
XVIII -3.0e-04*** 15.927*** 1.4e-04 3.585
XIX -4.4e-05 18.512 -5.5e-06 105.082
XX -7.6e-05 33.160*** 3.0e-04** -8.123**
XXI -4.0e-05 36.277*** -1.4e-06 16.901**
XXII -7.2e-05 -4.624 4.6e-04 -4.377
XXIII -8.9e-05 15.560*** 8.4e-05 1.126
XXIV -1.9e-05 35.699*** 1.5e-05 16.767**
XXV 2.9e-05 1.036 2.6e-05 -1.126
XXVI 1.1e-05 -0.221 4.2e-05 -1.543
XXVII 1.8e-05 -10.861 3.3e-04 -21.134
XXVIII 1.9e-05* -77.468 5.3e-05*** -652.308***
XXIX -9.7e-06** 6.806 2.1e-06 4.913
XXX 1.2e-05 7.557*** 4.7e-06 3.859**
XXXI -4.1e-05* -6.420** -6.3e-05** -4.799*
XXXII -1.3e-04** 20.429** 2.7e-05 8.526
XXXIII -2.5e-06 221.010*** -7.2e-07 -150.069**
XXXIV -4.5e-05*** -5.803 -2.7e-05 -33.433*
XXXV -3.0e-04*** 3.617 -1.4e-04* 2.981



Figure 2: This figure shows the value of a LIN with αL = −0.0002 for various values of
the forecast error p− y.

loss function also do not have a systematic bias, although 16 experts have a

systematic bias. Results are also a bit more ambiguous, because there are

more countries for which significant asymmetry and/or bias is found with

the 5%- or 10%-significance level and not with the 1% significance level, as

compared to the AAL situation.

Finally, we also compare these linex results for EF with the linex results

for MF , see Columns 4 and 5 of Table 2. Again we do not find much evidence

for asymmetry and systematic bias in the model forecasts. α̂L is on average

−4.13e-06, so much closer to 0 than the average α̂L of −0.0002 found for EF .

For only 10 countries is the asymmetry parameter significantly different from

0 at the 10% level and in only 3 countries at the 1% level. The number of

significant systematic biases is 16 at the 10% level and 6 at the 1% level. So

again these results confirm that statistical model forecasts are unbiased and

derived from a symmetric loss function.
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3.3 Specification checks

So far, we have analyzed the results given the assumptions underlying the

analysis. To test these assumptions we now follow the strategy as outlined

in Section 2.4.

The first step is to check if the error terms of the regression models (15)

for AAL and (16) for LIN are standard normally distributed. To that end, we

use the Kolmogorov-Smirnov test, see D’Agostino and Stephens (1986). The

test is performed on the error terms of each country separately, so we have

35 test results. In the second and third column of Table 3 we see how often

these 35 tests reject the null hypothesis of standard normally distributed

error terms at the 1% significance level. For the asymmetric absolute loss

function we see fairly low figures. For EF we see that in a little bit over

one-third of the tests the null hypothesis is rejected and for MF this is a

little bit over one-fifth. Note that the number of observations on which the

normality test is performed is quite large (see Subsection 3.1), which means

that the test has high power against tiny deviations of standard normality.

For countries with many observations we may therefore choose an even lower

significance level which implies that the number of rejections may even be

lower.

Table 3: This table shows the number of times out of 35 that the hypothesis that the
error terms of the regressions (15) (Column 2), (16) (Column 3) and (19) (Column 4) are
standard normally distributed is rejected. We use the Kolmogorov-Smirnov test with a
significance level of 1%.

AAL LIN AAL log

EF 13 23 35
MF 8 12 35

For the linex loss function we find much higher numbers of rejection,

namely 23 (66%) for EF and 12 (34%) for MF . As the numbers for AAL
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are much lower, this might indicate that we should not reject the assumption

of a normal forecast distribution at this point, but that the assumption of

a linex loss function is perhaps not an appropriate assumption. The AAL

function seems to be the loss function that is more likely to be used by the

managers creating the forecasts in this data set.

As we deal with sales forecasts in this application, which are always pos-

itive, it might be resonable to assume that the forecasts are lognormally

distributed instead of normally. Therefore, we also estimate (19), again with

separate coefficients for each country, and again we test if the error terms

are standard normally distributed. We find overwhelming evidence that the

forecast distribution is not lognormal, see Column 4 of Table 3. Both for

EF and MF the null hypothesis of standard normal error terms is rejected

for all 35 countries. This again indicates that assuming a normal forecast

distribution seems acceptable for our data.

Our final specification check involves a comparison of our AAL results

with those upon using the method of Elliott et al. (2005). Table 4 and Figures

3 and 4 give the results. Note that Columns 2 and 4 of Table 4 are the same

as Columns 2 and 4 in Table 1, but are repeated for ease of comparison.

Columns 3 and 5 present the results as obtained using the method of Elliott

et al. (2005), where we used as instrumental variables a constant and one-

month lagged sales. Remember that we expect α̂A and α̂E/(1 − α̂E) to be

approximately the same if the assumptions for our method are correct.

First note, from Table 4, that whenever α̂A is significantly larger than 1

at each significance level, α̂E/(1 − α̂E) is never significantly smaller than 1

at each significance level. Furthermore, whenever α̂A is significantly smaller

than 1 at the 1%-, 5%- or 10%-significance level (happens only twice for

MF ), α̂E/(1− α̂E) is never significantly larger than 1 at the 1%-, 5%- or
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Table 4: The estimated αA of AAL and estimated αE/(1− αE) of general loss function
(20) with q = 1 using the estimation method of Elliott et al. (2005), for each country.
Columns 2 and 3 show results for expert forecasts and Columns 4 and 5 for statistical
model forecasts. The asterisks in the second and fourth column indicate if the α̂A’s are
significantly different from 1 and the asterisks in the third and fifth column indicate if the
α̂E ’s are significantly different from 0.5, where one is for the 10%, two are for the 5% and
three are for the 1% significance level.

Country/ EF MF
expert α̂E/ α̂E/

α̂A (1− α̂E) α̂A (1− α̂E)

I 1.134* 1.321*** 0.964 1.091
II 1.659*** 1.387*** 1.081 1.001
III 1.617*** 1.579*** 1.212*** 1.170***
IV 1.310*** 1.170*** 1.036 1.148**
V 1.295*** 1.468*** 1.019 0.851**
VI 1.215*** 1.291*** 1.072 1.085
VII 1.784*** 1.618*** 0.990 1.036
VIII 1.772** 2.253*** 0.857 1.365
IX 1.339*** 1.505*** 1.222 1.057
X 1.089 1.045 1.037 0.888
XI 1.489*** 1.506*** 1.026 1.152**
XII 1.432*** 1.180** 1.018 0.918
XIII 1.856*** 1.778*** 1.284*** 1.078
XIV 1.144* 1.171** 1.250*** 1.211***
XV 1.146 2.118*** 1.092 0.780*
XVI 1.674*** 1.464*** 1.058 0.924
XVII 1.343*** 1.455*** 1.207*** 1.360***
XVIII 2.511*** 1.655*** 1.219 0.929*
XIX 1.095 1.090 1.094 1.423*
XX 1.396*** 1.296** 0.845 0.821**
XXI 1.170 1.802*** 0.839 1.268
XXII 0.964 0.970 0.904 0.990
XXIII 1.540*** 1.846*** 0.841** 1.043
XXIV 1.161 1.442*** 0.964 1.127
XXV 1.018 1.019 0.968 1.019
XXVI 1.337*** 1.415*** 0.892 1.105
XXVII 1.088 1.027 0.782 0.798**
XXVIII 0.846 1.136 0.366*** 0.598***
XXIX 1.810*** 1.651*** 1.521*** 1.007
XXX 1.925*** 1.532*** 0.854 1.087
XXXI 1.267*** 1.586*** 1.328*** 1.421***
XXXII 1.369*** 1.476*** 1.031 1.124
XXXIII 1.425* 2.228*** 0.968 0.916
XXXIV 1.202* 1.084 0.948 0.864
XXXV 1.454*** 1.397*** 1.288*** 1.290***



10%-significance level. Both statements also hold true when α̂E/(1− α̂E) is

evaluated against α̂A. These results indicate that we never find fully con-

flicting results with the two alternative methods.

The largest difference in results appears when we sometimes find a sig-

nificant asymmetry with one method and no significant asymmetry with the

other method. If we focus on the 1% significance level, this happens 8 times

for EF and 2 times for MF , but in most of these cases (7) the other method

also shows asymmetry at the 5% or 10% level. Hence, we find that both

methods may differ in terms of the amount of asymmetry, but not in the

sign of the asymmetry and hardly in the existence of the asymmetry.

To get a more precise idea of the size of the differences in estimated

asymmetry parameters, we can take a look at the histograms in Figures 3

and 4. Here the differences between α̂A and α̂E/(1 − α̂E) are depicted, for

EF in the first figure and for MF in the second. Multiplying the differences

with 100% shows the differences in percentages. Thus for example, a value

of 0.1 indicates that the difference in weight between too low forecasts and

too high forecasts is 10% higher according to α̂A than according to α̂E.

Figure 3: Histogram of differences between α̂A and α̂E/(1−α̂E) for 35 experts estimated
over EF.
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Figure 4: Histogram of differences between α̂A and α̂E/(1 − α̂E) for 35 countries esti-
mated over MF.

Although we see some outliers in the graphs, the largest one being that

α̂E is 97% larger than 1− α̂E than that α̂A is larger than 1, on average the

difference is around to be equal to 6% (0.06 in the figure). Furthermore, in

23 of the 35 countries the difference is smaller than 25% in absolute sense

and in 31 of the 35 countries the difference is smaller than 50%. For MF ,

see Figure 4, these differences are even smaller, with an average difference

of around 2.5% and a maximum difference of around 51%, both in absolute

terms.

The larger differences do not necessarily seem to be related with the re-

jection of the standard normality of the residuals of the regression. The cor-

relation between the absolute difference and the p-value of the Kolmogorov-

Smirnov test is −0.14 for EF and −0.06 for MF . If we look at the test results

for some countries with large differences in estimation results, we sometimes

find rejection of the null hypothesis and sometimes we do not.

To conclude, we do not find large differences in the results of both methods

and we take this as a final indication that the assumptions underlying our
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analysis do not need to be rejected, at least, for our data set at hand.

4 Conclusions

There is much available research on asymmetric loss functions for forecasters,

but most of it is focussed on the theoretical discussion of possible shapes of

those loss functions and on resulting optimal forecasts. Very little is known

about which loss function is actually exercised by experts when they create

their forecasts and rarely it is quantified to what extent the loss functions

are asymmetric. We are aware of one study only, and this is presented in

Elliott et al. (2005).

In the present paper we propose a new and simple methodology to deduce

the asymmetry parameter of the asymmetric absolute loss function and of the

linex loss function. The derivation is based on some simplifying assumptions

which can be held against actual data in a number of ways. The derivations

were shown to lead to simple linear regressions.

We applied our methodology to a large data set of SKU-level sales fore-

casts where model forecasts are received by experts, after which they provided

their final forecasts. We documented substantial evidence that the experts

use an asymmetric loss function, where we diagnosed that most likely it is

the asymmetric absolute loss function. Forecasts that are too low have a

weight in the loss function that is on average 40% higher than forecasts that

are too high.

The methodology proposed in this paper results in similar results as found

with the methodology of Elliott et al. (2005) and in general we find no obvious

indications that the assumptions underlying our analysis should be rejected.

To what extent this is true for other data sets remains to be analyzed.
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Further research on loss functions of experts could focus on multi-step-

ahead forecasts. As forecasts errors might be correlated in such situations,

the methodology might be a bit more complicated than the one presented

here. Finally, forecast updates, that is, sequential forecasts for the same

event, are also interesting to analyze.
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