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Abstract

It is known that peer group games are a special class of games with a permission structure.

However, peer group games are also a special class of (weighted) digraph games. To be

specific, they are digraph games in which the digraph is the transitive closure of a rooted

tree. In this paper we first argue that some known results on solutions for peer group

games hold more general for digraph games.

Second, we generalize both digraph games as well as games with a permission struc-

ture into a model called games with a local permission structure, where every player needs

permission from its predecessors only in order to generate worth, but does not need its

predecessors in order to give permission to its own successors. We introduce and axioma-

tize a Shapley value type solution for these games, generalizing the conjunctive permission

value for games with a permission structure and the β-measure for weighted digraphs.

Keywords: Cooperative TU-game, peer group game, digraph game, game with a per-

mission structure, local permission structure.

JEL code: C71



1 Introduction

Recently, the use of cooperative game theory to model economic situations is growing.

In several of these situations there is an underlying hierarchical ordering of the players.

Examples are e.g. the airport games of Littlechild and Owen (1973) where aircraft landings

can be ordered by the cost of the landig strip they need, the auction situations of Graham

and Marshall (1987) and Graham, Marshall and Richard (1990) where players can be

ordered according to their valuation of a good, the sequencing games of Curiel, Potters,

Rajendra Prasad, Tijs and Veltman (1993, 1994) where jobs are ordered in an initial queue,

the queueing games of Maniquet (2003) where jobs are not in an initial queue but can be

ordered according to their waiting cost, the water distribution problems of Ambec and

Sprumont (2002) or polluted river problems of Ni and Wang (2007) where countries are

ordered by their location on a river flowing from upstream to downstream.

All of these examples imply an underlying hierarchical structure where some agents

are not able to cooperate fully without the presence of other agents. Cooperative game

theory has been applied to study such structures. This has resulted in several types of

games. One class of games in the study of hierarchical structures is formed by the so-called

games with a permission structure in Gilles, Owen and van den Brink (1992), van den Brink

and Gilles (1996), Gilles and Owen (1994) and van den Brink (1997). In these games with a

permission structure it is assumed that the players in a cooperative game with transferable

utility, shortly TU-game, are part of a hierarchical (permission) structure (represented by

a directed graph or digraph) such that players need permission from other players in order

to cooperate. A distinction is made between the conjunctive and disjunctive approach. In

the conjunctive approach as developed in Gilles, Owen and van den Brink (1992) and van

den Brink and Gilles (1996), a player needs permission from all its predecessors (if it has

any) in the digraph in order to cooperate. Consequently, a player can only be in a feasible

coalition if all its superiors (being all players from whom he can be reached by a directed

path) are in the coalition. On the other hand, in the disjunctive approach as developed

in Gilles and Owen (1994) and van den Brink (1997) for acyclic, quasi-strongly connected

permission structures, a player needs permission from at least one of its predecessors (if it

has any).

These games have been applied to describe several economic organizations, such as

hierarchically structured firms in e.g. van den Brink (2008) and van den Brink and Ruys

(2008). But also the above mentioned auction games of Graham and Marshall (1987) and

Graham, Marshall and Richard (1990), the so-called DR-polluted river game of Ni and

Wang (2007) and the dual of the airport game of Littlechild and Owen (1973) are special

classes of these games with a permission structure. In fact, these last three applications

are a special class of peer group games as introduced in Brânzei, Fragnelli and Tijs (2002),
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being a special class of games with a permission structure where the game is additive and

the permission structure is a rooted tree. Since the permission structure in a peer group

game is a rooted tree, in all these applications the conjunctive and disjunctive approaches

coincide.

Besides being a special class of games with a permission structure, peer group games

are also a special class of (weighted) digraph games that are introduced in van den Brink

and Borm (2002). For a given (weighted) digraph, with weights assigned to the nodes,

the associated digraph game assigns to every coalition of nodes the sum of the weights of

all nodes in the coalition whose predecessors also belong to the coalition. To be specific,

a digraph game is a peer group game if the digraph is the transitive closure of a rooted

tree. We show that results stated in the literature for peer group games can be extended

straightforward to weighted digraph games.

In this paper we develop a new, more local, approach to permission structures. In

order for a player to generate value, it is no longer needed that all its superiors are present,

but it is sufficient if its direct predecessors belong to the coalition. So, every player needs

permission from its direct predecessors in order to cooperate, but it can give permission to

its own successors without permission from its predecessors. In this way, this model allows

a certain degree of separation between authority and value generation. Since a player can

now give permission to its successors, without approval of its own predecessors, the value

generating part of a coalition might not contain this player, although it is needed for the

value generating part to be active.

For hierarchically structured firms we can say that in a ‘standard’ permission struc-

ture a worker at the bottom can only be ‘activated’ by obtaining permission from all of

its superiors. This is in line with Williamson (1967) where it are only these bottom level

workers who are able to generate worth, while the higher level managers only organize and

manage the production process, but do not actively take part in it. However, rarely does

permission really consist of a whole chain of predecessors being involved in every step of

the production process. The local permission structures do not require this full line of

approval.

Similar to the conjunctive (and disjunctive) approach, we associate with every game

with a permission structure a new restricted game, called the locally restricted game, where

the worth of any coalition equals the worth of its value generating set, that is the subset of

players in the coalition whose predecessors all belong to the coalition. Whereas peer group

games are a special case of games with a permission structure as well as digraph games,

we show that the games with a local permission structure that we develop in this paper

generalize the classes of games with a permission structure as well as digraph games in the

sense that the conjunctive restricted game of a game with permission structure equals its
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locally restricted game if the digraph is transitive, and a weighted digraph game equals

the locally restricted game of the additive game defined by the weights of the nodes on the

digraph as permission structure.

After studying several properties of games with a local permission structure and

the locally restricted game, we introduce the local permission value as the solution that is

obtained by applying the Shapley value to the locally restricted game, and compare it with

the ‘standard’ conjunctive permission value by providing an axiomatization with axioms

similar to those that characterize the conjunctive permission value.

The paper is organized as follows. Section 2 contains preliminaries. Section 3 explores the

relation between digraph games and peer group games. In Section 4 we introduce the new

local restriction and study several properties. In Section 5 we introduce and axiomatize

the local permission value. Finally, Section 6 contains concluding remarks.

2 Preliminaries

2.1 Cooperative TU-games

A situation in which a finite set of players N ⊂ IN can generate certain payoffs by co-

operation can be described by a cooperative game with transferable utility (or simply a

TU-game), being a pair (N, v) where v: 2N → IR is a characteristic function on N satis-

fying v(∅) = 0. For any coalition S ⊆ N , v(S) ∈ IR is the worth of coalition S, i.e. the

members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate. Since

we take the player set to be fixed, we denote a TU-game (N, v) just by its characteristic

function v. We denote the collection of all TU-games on player set N by GN .

A payoff vector for game v ∈ GN is an |N |-dimensional vector x ∈ IRN assigning a

payoff xi ∈ IR to any player i ∈ N . A (single-valued) solution for TU-games is a function

that assigns a payoff vector to every TU-game. One of the most famous solutions for

TU-games is the Shapley value (Shapley (1953)) given by

Shi(v) =
1

|N |!
∑

π∈Π(N)

mπ
i (v),

where Π(N) is the set of all permutations of N and for every permutation π:N → N , the

corresponding marginal vector mπ(v) is given bymπ
i (v) = v({j ∈ N | π(j) ≤ π(i)})−v({j ∈

N | π(j) < π(i)}) for all i ∈ N .

The core (Gillies (1953)) of v ∈ GN is the set of all efficient payoff vectors that are

stable in the sense that no coalition can do better by separating, and is given by

core(v) =

{
x ∈ IRN

∣∣∣∣∣∑
i∈N

xi = v(N) and
∑
i∈S

xi ≥ v(S) for all S ⊂ N

}
.
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As known, the Core of a game is nonempty if and only if the game is balanced, see e.g.

Bondareva (1962) or Shapley (1967).

Game v ∈ GN is superaditive if v(E ∪F ) ≥ v(E) + v(F ) for all E,F ⊆ N such that

E∩F = ∅. Game v ∈ GN is convex if v(E∪F )+v(E∩F ) ≥ v(E)+v(F ) for all E,F ⊆ N .

For each T ⊆ N , T 6= ∅, the unanimity game uT is given by uT (S) = 1 if T ⊆ S, and

uT (S) = 0 otherwise. It is well-known that the unanimity games form a basis for GN . For

every v ∈ GN it holds that v =
∑

T⊆N
T 6=∅

∆v(T )uT , where ∆v(T ) =
∑

S⊆T (−1)|T |−|S|v(S) are

the Harsanyi dividends , see Harsanyi (1959).

Finally, a game is additive or inessential if v(S) =
∑

i∈S v({i}) for all S ⊆ N .

Equivalently, we can say that a game is additive if only singletons have a nonzero dividend.

2.2 Games with a permission structure

A game with a permission structure describes a situation where some players in a TU-game

need permission from other players before they are allowed to cooperate within a coalition.

Formally, a permission structure can be described by a directed graph on N . A directed

graph or digraph is a pair (N,D) where N = {1, ..., n} is a finite set of nodes (representing

the players) and D ⊆ N × N is a binary relation on N . We assume the digraph to be

irreflexive, i.e., (i, i) 6∈ D for all i ∈ N . Since we take the player set to be fixed, in the sequel

we simply refer to D for a digraph (N,D), and we denote the collection of all irreflexive

digraphs on N by DN . For i ∈ N the nodes in SD(i) := {j ∈ N | (i, j) ∈ D} are called the

successors of i, and the nodes in PD(i) := {j ∈ N | (j, i) ∈ D} are called the predecessors

of i in D. For given D ∈ DN , a (directed) path from i to j in N is a sequence of distinct

nodes (h1, . . . , ht) such that h1 = i, hk+1 ∈ SD(hk) for k = 1, . . . , t − 1, and ht = j. The

transitive closure of D ∈ DN is the digraph tr(D) given by (i, j) ∈ tr(D) if and only if

there is a directed path from i to j. By ŜD(i) = Str(D)(i) we denote the set of successors

of i in the transitive closure of D, and refer to these players as the subordinates of i in

D. We refer to the players in P̂D(i) = {j ∈ N | i ∈ ŜD(j)} as the superiors of i in D.

A digraph D ∈ DN is transitive if D = tr(D). For a set of players E ⊆ N we denote by

SD(E) =
⋃
i∈E SD(i), respectively, PD(E) =

⋃
i∈E PD(i), the sets of successors, respectively

predecessors of players in coalition E. Also, for E ⊆ N , we denote ŜD(E) = ∪i∈E ŜD(i).

A directed path (i1, . . . , it), t ≥ 2, in D is a cycle in D if (it, i1) ∈ D. We call digraph

D acyclic if it does not contain any cycle. Note that acyclicity of digraph D implies that

D is irreflexive and has at least one node that does not have a predecessor. A digraph

D ∈ DN is a rooted tree if and only if (i) there is an i0 ∈ N such that PD(i0) = ∅ and

ŜD(i0) = N \ {i}, and (ii) |PD(i)| = 1 for all i ∈ N \ {i0}. Note that this implies that D is

acyclic. We denote the collection of all rooted trees on N by DNtree.
A triple (N, v,D) with N ⊂ IN a finite set of players, v ∈ GN a TU-game and
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D ∈ DN a digraph on N is called a game with a permission structure. Again, since we

take the player set N to be fixed, we denote a game with a permission structure just as a

pair (v,D). In the conjunctive approach as introduced in Gilles, Owen and van den Brink

(1992) and van den Brink and Gilles (1996) it is assumed that a player needs permission

from all its predecessors in order to cooperate with other players. Therefore a coalition

is feasible if and only if for any player in the coalition all its predecessors are also in the

coalition. So, for permission structure D the set of conjunctive feasible coalitions is given

by

Φc
D = {E ⊆ N |PD(i) ⊆ E for all i ∈ E } .

For any E ⊆ N , let σcD(E) =
⋃
{F ∈ Φc

D | F ⊆ E} = E \ ŜD(N \ E) be the largest

conjunctive feasible subset1 of E in the collection Φc
D. Then, the induced conjunctive

restricted game of the pair (v,D) is the game rcv,D: 2N → R, given by

rcv,D(E) = v(σcD(E)) for all E ⊆ N, (2.1)

i.e., the restricted game rcv,D assigns to each coalition E ⊆ N the worth of its largest

conjunctive feasible subset. Then the conjunctive permission value ϕc is the solution that

assigns to every game with a permission structure the Shapley value of the restricted game,

thus

ϕc(v,D) = Sh(rcv,D) for all (v,D) ∈ GN ×DN .

As shown by Algaba, Bilbao, van den Brink and Jiménez-Losada (2004a), when D

is acyclic then the collection Φc
D is an antimatroid.

2.3 Peer group games

Brânzei, Fragnelli and Tijs (2002) define a peer group situation as a triple (N, a, T ) where

N ⊂ IN is a set of players, T ∈ DNtree is a rooted tree, and a ∈ IRN
+ is a vector of nonnegative

weights assigned to the players. Again, since we take the player set N to be fixed, we denote

a peer group situation just as a pair (a, T ). To each peer group situation (a, T ), they assign

the peer group game vPa,T given by vPa,T (E) =
∑

i∈E
P̂T (i)⊆E

ai, E ⊆ N . So, a coalition E ⊆ N

might be considered feasible if P̂T (i) ⊆ E for all i ∈ E (i.e. when it belongs to the set of

conjunctive feasible coalitions), and the worth of an arbitrary coalition E ⊆ N is the sum

of the weights of the players in its largest feasible subset. In terms of unanimity games a

peer group game can be written as vPa,T =
∑

i∈N aiuP̂T (i).

1Every coalition having a unique largest feasible subset follows from the fact that ΦcD is union closed.
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In Brânzei, Fragnelli and Tijs (2002) it is already mentioned that every peer group

situation (a, T ) can be seen as a game with a permission structure (wa, T ) where the

permission structure T is a rooted tree and the game wa is the additive game given by

wa(E) =
∑

i∈E ai for all E ⊆ N .

Since the conjunctive restricted game is the same for a game with permission struc-

ture (v,D) and that game v on the transitive closure tr(D) of the permission struc-

ture, i.e. rcv,D = rcv,tr(D) for all (v,D) ∈ GN × DN , for peer group games it holds that

vPa,T = rcwa,T = rcwa,tr(T ).

2.4 Digraph games

Another model of games with a digraph on the set of players are the (weighted) digraph

games introduced in van den Brink and Borm (2002). A reflexive weighted directed graph,

shortly refered to as weighted digraph, is a triple (N, δ,D) where N ⊂ IN is a set of

nodes, D ∈ DN is an irreflexive digraph, and δ ∈ IRN
+ is a vector of nonnegative weights

assigned to the nodes. The (weighted) digraph game corresponding to (N, δ,D) is the game

(N, vδ,D) where the players represent the nodes and the characteristic function is given by

vδ,D(E) =
∑

i∈E
PD(i)⊆E

δi, E ⊆ N . So, the worth of an arbitrary coalition E ⊆ N is the sum of

the weights of the players in that coalition for whom all predecessors belong to the coalition.

In terms of unanimity games, a digraph game can be written as vδ,D =
∑

i∈N δiuPD(i)∪{i}.

Again, since we take the player set N to be fixed, we denote a weighted digraph and

weighted digraph game on N as (δ,D), respectively, vδ,D.

In van den Brink and Borm (2002) a relational power measure assigning values

to every node in a weighted digraph is obtained by applying the Shapley value to the

associated weighted digraph game. This power measure is refered to as the β-measure and

is given by2

βi(D) = Shi(vδ,D) =
∑

j∈SD(i)∪{i}

δj
(|PD(j)|+ 1)

.

3 Peer group games are digraph games

It is already mentioned in Brânzei, Fragnelli and Tijs (2002) that peer group situations

are a special case of games with a permission structure. However, peer group situations

2In van den Brink and Gilles (2000) a similar game and measure are defined, but a node does not ‘share’

in the power over itself, i.e. they consider the game v′δ,D(E) =
∑

i∈N

PD(i)⊆E
δi, E ⊆ N , having Shapley value

β′i(D) = Shi(v
′
δ,D) =

∑
j∈SD(i)

δj
|PD(j)| . A disadvantage of this measure is that a node can do better in the

associated ranking after ‘being defeated’ by more other nodes.
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are also a special class of weighted digraph games in the sense that for every peer group

situation, the associated peer group game coincides with the digraph game on the transitive

closure of the peer group tree.

Proposition 3.1 For every peer group situation (a, T ) it holds that vPa,T = va,tr(T ).

Proof

Let (a, T ) be a peer group situation. By definition of the transitive closure it holds that

Ptr(T )(i) = P̂T (i). Therefore, taking weighted digraph (δ, T ) with δi = ai it holds that

vPa,T (E) =
∑

i∈E
P̂T (i)⊆E

ai =
∑

i∈E
Ptr(T )(i)⊆E

δi = vδ,tr(D)(E), for all E ⊆ N .

2

On the other hand, not every weighted digraph game is a peer group game.

Example 3.2 Consider the weighted digraph (δ,D) on N = {1, 2, 3} given by δ = (1, 1, 1)>

and D = {(1, 2), (2, 3)}. The corresponding weighted digraph game is vδ,D = u{1}+u{1,2}+

u{2,3}. There is no peer group situation (a, T ) such that vPa,T = vδ,D since vδ,D({1}) = 1 im-

plies that 1 is the root of T . But then vPa,T ({2, 3}) must be equal to zero, while vδ,D({2, 3}) =

1.

We have the following corollary.

Corollary 3.3 For every peer group situation (a, T ) it holds that vPa,T = rcwa,T = rcwa,tr(T ) =

va,tr(T ).

So, in the literature we encounter two classes of games with a hierarchical structure on the

player set which generalize peer group games. Whereas the results on solutions for peer

group games as given in Brânzei, Fragnelli and Tijs (2002, Proposition 1) do not hold for

general games with a permission structure, they do hold for digraph games.3

Proposition 3.4 Let (δ,D) be a weighted digraph and let v = vδ,D be the associated digraph

game. Then

(i) The bargaining set of v coincides with the core of v;

(ii) The kernel of v coincides with the pre-kernel of v and consists of a unique point being

the nucleolus of v;

(iii) The nucleolus of v occupies a central position in its core and is the unique point

satisfying Nu(v) = {x ∈ C(v) | sij(x) = sji(x)∀i, j}, where sij(x) = max{v(S) −
x(S) | i ∈ S ⊆ N \ {j}};

3We refer to the mentioned literature for definitions of the solutions.
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(iv) The core of v coincides with the Weber set of v (being the convex hull of all marginal

vectors of v);

(v) The Shapley value Sh(v) is the center of gravity of the extreme points of the core and

is given by Shi(v) =
∑

j∈SD(i)∪{i}
δj

(|PD(j)|+1)
, i ∈ N ;

(vi) The τ -value τ(v) is given by τi(v) =

{
αδi + (1− α)Mi(v) if PD(i) = ∅

(1− α)Mi(v) if PD(i) 6= ∅,
where

Mi(v) =
∑

j∈SD(i)∪{i} δj and α ∈ [0, 1] is obtained such that
∑

i∈N τi(v) = v(N).

(vii) The core of v coincides with the selectope of v;

(viii) There exist population monotonic allocation schemes.

Similar as in Brânzei, Fragnelli and Tijs (2002), the parts (i), (ii) and (iii) follow directly

from convexity of vδ,D, Maschler, Peleg and Shapley (1972) and Maschler (1992). (vii)

follows from the game being totally positive (meaning that all dividends are non-negative),

see Derks, Haller and Peters (2000) and Vasil’ev and van der Laan (2002), as already

mentioned by van den Brink and Borm (2002). This then also implies (iv) since the Weber

set always is a subset of the selectope and contains the core. Computation of the τ -value

in (vi) is straightforward from its definition. Finally, (v) is shown in van den Brink and

Borm (2002).

Part (vii) of Proposition 3.4 states that for digraph games the core (being equal to

the convex hull of all marginal vectors if the game is convex) and selectope (being equal to

the convex hull of all selectope vectors) coincide. Theorem 4.4 of van den Brink and Borm

(2002) shows that the set of marginal vectors equals the set of selectope vectors if and only

if the digraph D has no anti-directed semi-circuit being a sequence (i1, i2, . . . , it), t ≥ 2 of t

even distinct nodes such that (i) ik ∈ N for all k ∈ {1, . . . , t}, (ii) ik ∈ SD(ik−1)∩SD(ik+1)

if k 6= t is even, and (iii) it ∈ SD(it−1) ∩ SD(i1). Although a rooted tree does not have an

anti-directed semi-circuit, the transitive closure of a rooted tree such that there is a path

from the top node to another node that contains at least four nodes, has an anti-directed

semi-circuit, and therefore the set of selectope vectors and marginal vectors of a peer group

game can be different.

Example 3.5 Consider the peer group situation (a, T ) on N = {1, 2, 3, 4} given by a =

(1, 1, 1, 1) and T = {(1, 2), (2, 3), (3, 4)}. The corresponding peer group game is vPa,T =

u{1} + u{1,2} + u{1,2,3} + u{1,2,3,4}. (Note that this is also the digraph game corresponding

to δ = a and tr(T ) = T ∪ {(1, 3), (1, 4), (2, 4)}.) One of the selectope vectors is (2, 2, 0, 0)

(assigning the dividend of {1} and one of the other dividends to player 1, and two of the

dividends to player 2). However, there is no permutation of the players such that this is the

8



corresponding marginal vector of v = vPa,T since mπ
1 (v) = 1 if π(1) < π(2), and mπ

2 (v) = 0

if π(2) < π(1).

Brânzei, Fragnelli and Tijs (2002) conclude by mentioning some applications of peer group

games. Since their above mentioned results on solutions also hold for more general digraph

games, these results also can be applied to more situations, such as the ranking of teams in

sports competitions, defining social choice correspondences or voting rules in social choice

theory, and measuring relational power in social networks.

4 Locally restricted games

Comparing games with a permission structure with weighted digraph games, there are

two essential differences, one considering the games and one considering the effect of the

digraph on the restrictions in cooperation. First, games with a permission structure allow

any game, but weighted digraphs only consider additive games. On the other hand, to

have permission to cooperate, a player in a game with (conjunctive) permission structure

needs permission from all its superiors, but in a weighted digraph game it needs permission

only from its (direct) predecessors. Obviously, the digraph game associated to a transitive

digraph equals the conjunctive restricted game of the corresponding additive game on that

digraph as permission structure.

Proposition 4.1 For every weighted digraph (δ,D) it holds that vδ,tr(D) = rc
wδ,D

, where

wδ(E) =
∑

i∈E δi for all E ⊆ N . In particular, if D is transitive then vδ,D = rc
wδ,D

.

Proof

Let (δ,D) be a weighted digraph. By definition of the transitive closure it holds that

Ptr(D)(i) = P̂D(i). Therefore, vδ,tr(D)(E) =
∑

i∈E
Ptr(D)(i)⊆E

δi =
∑

i∈E
P̂D(i)⊆E

wδ({i}) = wδ({i ∈

E | P̂D(i) ⊆ E}) = wδ(σcD(E)) = rc
wδ,D

(E) for all E ⊆ N .

2

Next, we generalize the (weighted) digraph games as well as games with a permission

structure in the sense that we consider pairs (v,D) where v ∈ GN can be any game,

D ∈ DN can be any digraph, but every player needs permission only from its direct

predecessors in order to cooperate. So, a player needs permission from its predecessors

in order to cooperate with other players, but it can give permission to its own successors

without permission from its predecessors. In this paper we only follow the conjunctive

approach (remarks on a disjunctive approach are made in the final section).

For any E ⊆ N , let σlD(E) = {i ∈ E | PD(i) ⊆ E} be the subset of players in E

for whom all predecessors also belong to E. We refer to this as the value generating set of

9



coalition E in D. Then, we define the locally restricted game rlv,D associated to the pair

(v,D) ∈ GN ×DN by

rlv,D(E) = v(σlD(E)) for all E ⊆ N. (4.2)

An important difference with the conjunctive feasible coalitions is the fact that

σlD(σlD(E)) need not be equal to σlD(E), so the value generating set of a coalition need not

be equal to its own value generating set. Note that in the conjunctive approach, for every

digraph D it holds that σcD(σcD(E)) = σcD(E) for all E ⊆ N .4

Example 4.2 Consider the digraph D on N = {1, 2, 3} given by D = {(1, 2), (2, 3)}. Then

σlD({2, 3}) = {3} but σlD({3}) = ∅.

Because of this, the cooperation structure cannot be described just by a set of feasible

coalitions. In the example above, the coalition {3} can be considered not feasible, but

there is a coalition, to be specific coalition {2, 3}, such that {3} is exactly the coalition

that generates value. Therefore, we call {3} a value generating set in D.

Proposition 4.3 Let (v,D) ∈ GN ×DN and E ⊆ N be given.

(i) For all F such that σcD(E) ⊆ F ⊆ E it holds that rcv,D(F ) = v(σcD(E))

(ii) For all F ⊆ E \ σcD(E) it holds that rcv,D(F ) = 0

(iii) For all F such that σlD(E) ∪ PD(σlD(E)) ⊆ F ⊆ E it holds that rlv,D(F ) = v(σlD(E))

(iv) For all F ⊆ E \ σlD(E) it holds that rlv,D(F ) = 0.

Proof

Let (v,D) ∈ GN × DN and E ⊆ N be given. (i) follows straightforward since σcD(F ) =

σcD(E) for all F such that σcD(E) ⊆ F ⊆ E. (ii) follows since P̂D(i) 6⊆ E for all i ∈
E \ σcD(E), and thus σcD(F ) = ∅ for all F ⊆ E \ σcD(E). (iii) and (iv) follow in a similar

way, but using σlv,D instead of σcv,D, and PD(i) instead of P̂D(i). 2

Part (i) implies that for conjunctive restricted games, if a coalition of players E is able

to generate its own worth, then it does not need permission from players outside E to

do so; value generation and permission imply one another. For this reason, this approach

can be described in terms of sets of feasible coalitions Φc
D. This is not the case for locally

restricted games as reflected in part (iii). This part states that the value generating set

4In most models of restricted cooperation, such as the communication graph games of Myerson (1977),

and its generalization to games on union stable systems in Algaba, Bilbao, Borm and López (2000, 2001),

it is the case that the worth of a feasible coalition in the restricted game equals the worth of this coalition

in the original game.
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of a coalition E can generate its worth together with its predecessors (which are in E),

without these predecessors actually generating any value within this coalition themselves:

these coalitions still earn the worth of σlD(E). Note that a coalition containing the value

generating set of E, but not all its predecessors might generate a different worth. Although

it is true that σlD(F ) = σlD(E) for all F such that σlD(E)∪PD(σlD(E)) ⊆ F ⊆ E, this does

not necessarily hold for all F such that σlD(E) ⊆ F ⊆ E. This is an important difference

with the ‘standard’ conjunctive approach to games with a permission structure.

Example 4.4 Consider the digraph D on N = {1, 2, 3} given in Example 4.2, and the

game v = u{3}. For coalition E = {2, 3}, we have that σlD(E) ∪ PD(σlD(E)) = {3} ∪ {2} =

{2, 3} = E. However, taking F = {3} we have σlD(E) = F ⊂ E, but rlv,D(F ) = v(σlD(F )) =

v(∅) = 0 while v(σlD(E)) = v({3}) = 1. So, indeed the predecessor of the value generating

set of E = {2, 3} is necessary to generate its worth.

Next, we introduce some notions to describe the value generation and permission in games

with a local permission structure. For any E ⊆ N we define αlD(E) = σlD(E)∪PD(σlD(E))

as the active set of E. These are the players that are necessary and sufficient to make the

value generating set σlD(E) of E active.

Now, we call a set E locally feasible in D if αlD(E) = E. We denote the set of all

locally feasible sets in D by ΨD. So,

ΨD = {E ⊆ N | αD(E) = E}.

Let the authorizing set of E be given by αlD(E) = E ∪ PD(E), being the set of players

in E together with all their predecessors. This is the set of players that is necessary and

sufficient to make the players in E active. It is clear that for any coalition E, αlD(E) is

locally feasible.

Example 4.5 Consider the permission structure D of Example 4.2 and coalition {2, 3}.
We already saw that its value generating set is {3}. Its active set is αlD({2, 3}) = {2, 3}
since permission of 2 is necessary and sufficient to make its value generating set {3} active.

Its authorizing set is αlD({2, 3}) = {1, 2, 3} since player 1 is necessary to make player 2

active who is not value generating in {2, 3} but is still necessary to give permission to

player 3. In this case, Φc
D = {{1}, {1, 2}, {1, 2, 3}} and ΨD = Φc

D ∪ {{2, 3}}.

Again, the active sets and authorizing sets show the separation between value generation

and permission which coincide in the standard conjunctive approach.5

5For the conjunctive approach, Gilles, Owen and van den Brink (1992) introduce the authorizing set of

E as αcD(E) = E ∪ P̂D(E) which is the smallest conjunctive feasible set containing E.
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Proposition 4.6 Consider permission structure D ∈ DN . Then

(i) ∅ ∈ ΨD,

(ii) N ∈ ΨD,

(iii) If E,F ∈ ΨD then E ∪ F ∈ ΨD.

Proof

(i), (ii) By definition of the local permission structure, αlD(∅) = ∅ and αlD(N) = N , and

therefore {∅, N} ⊆ ΨD.

(iii) If E ∈ ΨD then E = αlD(E), and thus for any player i ∈ E it holds that either

i ∈ σlD(E) or i ∈ PD(j) for some j ∈ σlD(E). The same holds for F . Therefore,

for any player i ∈ E ∪ F it holds that either i ∈ σlD(E ∪ F ) or i ∈ PD(j) for some

j ∈ σlD(E ∪ F ), and thus E ∪ F ∈ ΨD.

2

Part (iii) shows that ΨD is union closed. The basis elements of ΨD are the sets {PD(i) ∪
{i} | i ∈ N}. The other elements of ΨD can be written as the union of two or more

basis elements. However, unlike the conjunctive sovereign parts of two conjunctive feasible

coalitions, for two coalitions E,F ∈ ΨD it does not necessarily hold that E ∩ F ∈ ΨD.

Example 4.7 Consider the permission structure D of Example 4.2. Both coalitions E =

{1, 2} and F = {2, 3} belong to ΨD. However, E ∩ F = {2} does not belong to ΨD since

player 2 needs permission from 1 to generate its own worth, or cooperate with player 3 to

generate the worth of 3.

Next, we state some properties of value generating sets and authorizing sets, similar to

properties that hold for the sets of conjunctive feasible coalitions in Gilles, Owen and van

den Brink (1992, Proposition 3.5). The proof is similar to their result, but using SD(i) and

PD(i) instead of ŜD(i) and P̂D(i) respectively, and is therefore omitted.

Proposition 4.8 Consider D ∈ DN and E,F ⊆ N . Then

(i) σlD(E) ∪ σlD(F ) ⊆ σlD(E ∪ F );

(ii) σlD(E) ∩ σlD(F ) = σlD(E ∩ F );

(iii) αlD(E) ∪ αlD(F ) = σlD(E ∪ F );

(iv) αlD(E ∩ F ) ⊆ αlD(E) ∩ σlD(F ).
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The following result is similar to another result in Gilles, Owen and van den Brink (1992,

Theorem 4.2), but while their proof uses the fact that σcD(E) = E for every E ∈ Φc
D, for

local restrictions we have seen that σlD(E) need not be equal to E for E ∈ ΨD.

Theorem 4.9 For E ⊆ N,E 6= ∅ and D ∈ DN , it holds that rluE ,D = uαlD(E).

Proof

By definition of the locally restricted game, we have rluE ,D(T ) = uE(σlD(T )) = 1 if E ⊆
σlD(T ), and rluE ,D(T ) = 0 otherwise. Since for E ⊆ T we have [E ⊆ σlD(T )]⇔ [E∪PD(E) ⊆
T ]⇔ [αlD(E) ⊆ T ], this implies that rluE ,D = uαlD(E).

2

Since ΨD is the set of coalitions E for which there is an F ⊆ N with αlD(F ) = E, as a

corollary (similar as Corollary 4.3 in Gilles, Owen and van den Brink (1992)), any locally

restricted game can be described as a linear combination of the unanimity games of its

locally feasible sets.

Corollary 4.10 Let (v,D) ∈ GN ×DN . Then rlv,D =
∑

E∈ΨD
[
∑

F⊆N
αlD(F )=E

∆v(F )]uE

Similar inheritance properties as for the conjunctive restriction hold for the locally re-

stricted game.

Proposition 4.11 Let (v,D) ∈ GN ×DN .

(i) If v is monotone then rlv,D is monotone. Moreover, if v is also balanced, then rlv,D is

balanced as well.

(ii) If v is superadditive, then rlv,D is superadditive.

(iii) If v is convex, then rlv,D is convex.

The proof is similar to the proof of Theorem 4.6 in Gilles, Owen and van den Brink (1992)

and is therefore omitted. Part (iv) of their result states that the existence of a player

i0 such that Ŝ(i0) = N \ {i0} is sufficient for the restriction of a monotone game to be

superadditive and balanced. That is not true for locally restricted games.

Example 4.12 Consider the permission structure D of Example 4.2 and game v ∈ GN

given by v(E) = 1 for all E ⊆ N , E 6= ∅. Then Ŝ(1) = N \ {1} and v is monotone, but

rlv,D({2}) = rlv,D({3}) = 0 and rlv,D(E) = 1 otherwise, and thus rlv,D is not superadditive

(since rlv,D({1}) + rlv,D({2, 3}) = 2 > 1 = rlv,D({1, 2, 3})) nor balanced (since rlv,D({1}) =

rlv,D({2, 3}) = rlv,D({1, 2, 3}) = 1.
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Next we argue that the locally restricted approach to games with a permission structure

generalizes the conjunctive approach as well as digraph games.6

The conjunctive restricted game of a game with a permission structure equals the

locally restricted game of that game on the transitive closure of the permission structure. A

weighted digraph game equals the locally restricted game of the additive game determined

by the weights and the digraph as permission structure.

Proposition 4.13 (i) For every (v,D) ∈ GN × DN , it holds that rcv,D = rlv,tr(D). In

particular, if D ∈ DN is transitive then rcv,D = rlv,D.

(ii) For every weighted digraph (δ,D) it holds that vδ,D = rl
wδ,D

.

Proof

(i) For every D ∈ DN it holds that P̂D(i) = Ptr(D)(i) for all i ∈ N . So, σcD(E) = {i ∈ E |
P̂D(i) ⊆ E} = {i ∈ E | Ptr(D)(i) ⊆ E} = σltr(D)(E), and thus rcv,D(E) = v(σcD(E)) =

v(σltr(D)(E)) = rlv,tr(D)(E) for all E ⊆ N .

(ii) This follows straightforward since vδ,D(E) =
∑

i∈E
PD(i)⊆E

δi =
∑

i∈E
PD(i)⊆E

wδ(i) = wδ({i ∈

E | PD(i) ⊆ E}) = wδ(σlD(E)) = rl
wδ,D

(E) for all E ⊆ N .

2

We end this section with an example illustrating some of the relations between the classes

of games described above.

Example 4.14 Consider the digraph D = {(1, 3), (2, 3), (3, 5), (4, 5)} on N = {1, 2, 3, 4, 5}.
If v = u{5} then v is additive and, clearly rlv,D = u{3,4,5} = vδ,D with δ = (0, 0, 0, 0, 1). The

corresponding local permission value is ϕl(v,D) = (0, 0, 1
3
, 1

3
, 1

3
). Note that the conjunctive

restriction rcv,D = u{1,2,3,4,5} = rlv,tr(D), and ϕc(v,D) = ϕl(v, tr(D)) = (1
5
, 1

5
, 1

5
, 1

5
, 1

5
).

If v = u{1,5} then rlv,D = u{1,3,4,5}. This cannot be the weighted digraph game of any δ ∈ IRN
+

on D since v(E) = 0 for all E ⊆ N such that E = PD(i) ∪ {i} for some i ∈ N , implying

that all weights must be zero, but then vδ,D must be the zero game assigning worth zero to

every coalition.

The game rlv,D = u{1,3,4,5} also cannot be the conjunctive restriction of some game v ∈ GN

on D since then rlv,D(E) must be equal to rlv,D(σcD(E)) for all E ⊆ N , but u{1,3,4,5}({1, 3, 4, 5}) =

1 while u{1,3,4,5}(σ
c
D({1, 3, 4, 5}) = u{1,3,4,5}({1, 4}) = 0.

6We want to remark that the generalization of games with a permission structure to games with a local

permission structure is different from the generalization to games on antimatroids (see Algaba, Bilbao, van

den Brink and Jiménez-Losada (2003, 2004a, 2004b)) which considers cooperative games with restricted

coalition formation where the set of feasible coalitions is an antimatroid. The set of locally feasible

coalitions is not an antimatroid.
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5 The local permission value

The local (conjunctive) permission value ϕl is the solution that assigns to every game with

a permission structure the Shapley value of the locally restricted game, i.e.

ϕl(v,D) = Sh(rlv,D).

We provide an axiomatization of the local permission value using axioms similar to those

used by van den Brink and Gilles (1996) for the conjunctive permission value. Player i ∈ N
is inessential in game with permission structure (v,D) if i and all its subordinates are null

players in v, i.e., if v(E) = v(E \ {j}) for all E ⊆ N and j ∈ ŜD(i) ∪ {i}. Player i ∈ N is

called necessary in game v if v(E) = 0 for all E ⊆ N \{i}. A characteristic function v ∈ GN

is monotone if v(E) ≤ v(F ) for all E ⊆ F ⊆ N . The class of all monotone characteristic

functions on N is denoted by GNM .

Efficiency For every (v,D) ∈ GN ×DN , it holds that
∑

i∈N fi(v,D) = v(N).

Additivity For every v, w ∈ GN and D ∈ DN , it holds that f(v + w,D) = f(v,D) +

f(w,D), where (v + w) ∈ GN is given by (v + w)(E) = v(E) + w(E) for all E ⊆ N .

Inessential player property For every (v,D) ∈ GN × DN , if i ∈ N is an inessential

player in (v,D) then fi(v,D) = 0.

Necessary player property For every (v,D) ∈ GNM ×DN , if i ∈ N is a necessary player

in v then fi(v,D) ≥ fj(v,D) for all j ∈ N .

These four axioms are satisfied by the conjunctive permission value ϕc as well as the local

permission value ϕl. The next axiom is not satisfied by the local permission value.

Structural monotonicity For every (v,D) ∈ GNM × DN , if i ∈ N and j ∈ SD(i) then

fi(v,D) ≥ fj(v,D).

Theorem 5.1 [van den Brink and Gilles (1996)] A solution is equal to the conjunctive

permission value ϕc if and only if it satisfies efficiency, additivity, the inessential player

property, the necessary player property and structural monotonicity.

The local permission value does not satisfy structural monotonicity, as can be seen from

the following example.

Example 5.2 Consider the game with permission structures (v,D) on N = {1, 2, 3} given

by D = {(1, 2), (2, 3)} and v = u{3}. Then ϕl(v,D) = (0, 1
2
, 1

2
), and thus player 2 earns

more than player 1, although 2 is a successor of 1 and the game is monotone.
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The local permission value satisfies a weaker version requiring the payoff of a player to be

at least equal to the payoff of any of its successors in a monotone game if at least one of

its successors is a necessary player.

Local structural monotonicity For every (v,D) ∈ GNM × DN , if i ∈ N and j ∈ SD(i)

are such that there exists at least one h ∈ SD(i) who is a necessary player in v, then

fi(v,D) ≥ fj(v,D).

As mentioned above, the local permission value does satisfy the inessential player property.

It even satisfies a stronger version of the inessential player property, requiring the payoff of a

null player to be zero as soon as all its successors, but not necessarily all its subordinates,

are null players in the game. We say that player i ∈ N is locally inessential in game

with permission structure (v,D) if i and all its successors are null players in v, i.e., if

v(E) = v(E \ {j}) for all E ⊆ N and j ∈ SD(i) ∪ {i}.

Local inessential player property For every (v,D) ∈ GN × DN , if i ∈ N is a locally

inessential player in (v,D) then fi(v,D) = 0.

It turns out that strengthening the inessential player property in this way and weakening

structural monotonicity as done above characterizes the local permission value.

Theorem 5.3 A solution is equal to the local permission value ϕl if and only if it satisfies

efficiency, additivity, the necessary player property, the local inessential player property,

and local structural monotonicity.

Proof

It is straightforward to verify that the local permission value satisfies the five axioms.

The proof of uniqueness follows similar steps as the uniqueness proof for the conjunctive

permission value in van den Brink and Gilles (1996). Suppose that solution f satisfies

the five axioms. Let v0 be the null game given by v0(E) = 0 for all E ⊆ N . The local

inessential player property then implies that fi(v0, D) = 0 for all i ∈ N .

Now, consider a scaled unanimity game (wT , D) with wT = cTuT for some cT > 0 and

∅ 6= T ⊆ N . We distinguish the following three cases with respect to i ∈ N :

1. If i ∈ T then the necessary player property implies that there exists a c∗ ∈ IR such

that fi(wT , D) = c∗ for all i ∈ T , and fi(wT , D) ≤ c∗ for all i ∈ N \ T .

2. If i ∈ N \ T and T ∩ SD(i) 6= ∅ then local structural monotonicity implies that

fi(wT , D) ≥ fj(wT , D) for every j ∈ T ∩SD(i), and thus with case 1 that fi(wT , D) =

c∗.
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3. If i ∈ N \T and T ∩SD(i) = ∅ then the local inessential player property implies that

fi(wT , D) = 0.

From 1 and 2 follows that fi(wT , D) = c∗ for i ∈ T ∪ PD(T ). Efficiency and 3 then

imply that
∑

i∈N fi(wT , D) = |T ∪ PD(T )|c∗ = cT , implying that c∗ = cT
|T∪PD(T )| , and thus

f(wT , D), is uniquely determined.

Next, consider (wT , D) with wT = cTuT for some cT < 0 (and thus we cannot apply the

necessary player property and local structural monotonicity since wT is not monotone).

Since −wT = −cTuT with −cT > 0, and v0 = wT + (−wT ), it follows from additivity of

f that f(wT , D) = f(v0, D) − f(−wT , D) = −f(−wT , D) is uniquely determined because

−wT is monotone.

Finally, since every characteristic function v ∈ GN can be written as a linear combination

of unanimity games v =
∑

T⊆N ∆v(T )uT (with ∆v(T ) the Harsanyi dividend of coalition

T , see Harsanyi (1959)), additivity uniquely determines f(v,D) =
∑

T⊆N f(∆v(T )uT , D)

for any (v,D) ∈ GN ×DN . 2

Instead of using local structural monotonicity, we can strengthen the necessary player

property by saying that a player earns at least as much as any other player if this player

is necessary or has at least one necessary successor in a monotone game.

Strong necessary player property For every (v,D) ∈ GNM ×DN , if at least one of the

players in SD(i)∪{i} is a necessary player in v then fi(v,D) ≥ fj(v,D) for all j ∈ N .

Theorem 5.4 A solution is equal to the local permission value ϕl if and only if it satisfies

efficiency, additivity, the strong necessary player property and the local inessential player

property.

The proof is similar to that of Theorem 5.3, except that in case 2 the strong necessary

player property is used instead of local structural monotonicity.

Another interesting difference between the conjunctive and local permission value is the

following. Suppose that a player is going to veto one of its successors in the sense that in

the original game the successor is not active without that player. So, for players i ∈ N

and j ∈ SD(i) we consider the game vij(E) = v(E \ {j}) if E ⊆ N \ {i}, and vij = v(E) if

i ∈ E.7

7This game is similar to one of the ‘collusion’ games in Haller, the proxy agreement game vij∗ , where

vij∗ (E) = v(E \ {j}) if E ⊆ N \ {i}, and vij∗ = v(E ∪ {j}) if i ∈ E. So, the difference is that in vij∗ player j

is active if player i is present even when j itslef is not.
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Veto monotonicity For every (v,D) ∈ GNM × DN and i, j ∈ N such that j ∈ SD(i), it

holds that fi(v
ij, D) ≥ fi(v,D).

Proposition 5.5 The conjunctive permission value ϕc satisfies veto monotonicity.

As the following example shows the local permission value does not satisfy veto monotonic-

ity.

Example 5.6 Consider the game with permission structure (v,D) on N = {1, 2, 3} given

by D = {(1, 2), (2, 3)} and v = u{3}. Then v23 = u{2,3}, and ϕl(v,D) = (0, 1
2
, 1

2
) while

ϕl(v23, D) = (1
3
, 1

3
, 1

3
). So, in (v,D) player 2 earns more than in (v23, D).

The reason why the local permission value does not satisfy veto monotonicity is clear from

the example above. A player who is necessary but also has a necessary successor will share

the payoff resulting from its own necessity with its predecessor. So, in case at least one

of the successors of a player is necessary it is better for that player not to be neccessary

since then it will still have its share in the payoff because it needs to give permission to a

necessary successor, but because the player itself is not necessary it does not have to share

with its own predecessors.

Applied to hierarchically structured firms this would imply that a manager is better

off by having important (necessary) successors but not being necessary in the production

process itself. In this way the manager will keep more influence because, when it would

do a necessary task itself, it would have to ask permission from its predecessor to do this

task. It is better for the manager to delegate this task to a successor, creating a situation

that the execution of this necessary task is ‘invisible’ for its own predecessors. Another

example are criminals who sometimes ‘give’ their property to others in order that for the

tax office or prosecutor it looks as if they have no property. Of course, this works only

if the authority relations within the criminal network are strong enough so that the top

criminal can be sure that it has access to ‘its’ property when he or she wants.

6 Concluding remarks

In this paper we discussed a conjunctive approach to games with a local permission struc-

ture. As an alternative for the conjunctive approach, Gilles and Owen (1994) and van den

Brink (1997) consider the disjunctive approach to games with an acyclic permission struc-

ture where it is assumed that a player needs permission of at least one of its predecessors

(if it has any) in order to cooperate with other players. Therefore a coalition is feasible if

and only if for every player in the coalition at least one of its predecessors (it it has any) is
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also in the coalition. So, for permission structure D the set of disjunctive feasible coalitions

is given by Φd
D = {E ⊆ N |PD(i) ∩ E 6= ∅ for all i ∈ E with PD(i) 6= ∅}.

For any E ⊆ N , let σdD(E) =
⋃
{F ∈ Φd

D | F ⊆ E} be the largest disjunctive

feasible subset of E in the collection Φd
D.8 The induced disjunctive restricted game of the

pair (v,D) in the disjunctive approach is the game rdv,D: 2N → R, given by rdv,D(E) =

v(σdD(E)) for all E ⊆ N , i.e., the restricted game rdv,D assigns to each coalition E ⊆ N the

worth of its largest disjunctive feasible subset. Then the disjunctive permission value ϕd

is the solution that assigns to every game with a permission structure the Shapley value

of the restricted game, thus ϕd(v,D) = Sh(rdv,D).

Applying a disjunctive approach to games with a local (acyclic) permission structure,

we can assume that every coalition can earn the worth that can be generated by those

players in the coalition who have at least one predecessor in the coalition. A special case

would be a new class of digraph games, where the weight of a player is earned by any

coalition containing this player and any of its direct predecessors. Applying solutions

such as the Shapley value then yield new power measures for digraphs. These disjunctive

digraph games have a similarity with apex power games where, besides every coalition

containing the apex player and at least one of its direct predecessors, additionally also the

coalition of all direct predecessors earns the weight of a player, see van den Brink (2002) who

defines power measures for digraphs using apex games. Whereas it seems that a disjunctive

approach to games with a local permission structure can be done straightforward, it is less

obvious how this generalizes the (standard) disjunctive games with a permission structure.
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Algaba E, Bilbao JM, Borm P, López JJ (2001), “The Myerson value for union

stable structures”, Mathematical Methods of Operations Research, 54, 359-371.

Algaba, E., J.M. Bilbao, R. van den Brink, and A. Jiménez-Losada (2003),

“Axiomatizations of the Shapley value for cooperative games on antimatroids,”, Math-

ematical Methods of Operations Research, 57, 49-65.

Algaba, E., J.M. Bilbao, R. van den Brink, and A. Jiménez-Losada (2004a),
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