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Mobile Phone Data and Urban Analysis:
An Exploratory Space-Time Study

Emmanouil Tranos, John Steenbruggen and Peter Nijkamp*, Dept. of Spatial Economics, VU University
Amsterdam

* Tinbergen Institute, The Netherlands.

1. Introduction

This contribution discusses the value that data from mobile phone providers can bring into urban
analysis. The novel argument used in this chapter is that the pervasiveness of mobile phone telephony
has transformed mobile phones from a communications device to a tool for socio-spatial research. Put
simply, mobile phone providers can potentially gather relevant data on a very refined spatio-temporal
scale for every 85 out of 100 inhabitants in the world (International Telecommunication Union 2012).
Such data can include basic information about personal communication patterns, interactions and
mobility which can enable researchers to better understand spatial human behavior, the predictability
of which is well documented (Song et al. 2010). These advances that have mostly taken place in the
complexity science domain, which largely focuses on individual behavioural patterns, can also result in
applications in the spatial analysis domain.

The present chapter has, therefore, two aims. Firstly, we critically discuss the existing state of the art of
urban analysis based on big data from mobile phone operators. Based on this review, the chapter takes
a methodological turn to present some preliminary urban analysis results using data from a mobile
phone operator in Amsterdam, The Netherlands. The structure of the chapter is as follows. Section 2
provides a brief review on how data from mobile phone providers has been utilized up to now in the
urban analysis literature, while in Section 3 a more critical perspective on how such research is related
to urban theory and planning is presented. Some empirical results, which are based on panel data
regressions on Amsterdam, are presented in Section 4. The chapter ends with some concluding remarks
and ideas for future research.

2. Urban dynamics!
The widespread deployment of mobile communications, supported by personal handheld electronics, is
having a significant impact on urban life. People are changing their social and working habits because of
this new technology (Rheingold 2002). Activities that once required a fixed location and connection can
now be achieved with higher flexibility, resulting in the users’ ability to act and move more freely. As a
consequence, human mobility becomes more complex and volatile. Understanding the dynamics of
citizens’ daily mobility patterns is essential for the planning and management of urban facilities and

! Section 2 and 3 draw from Steenbruggen et al. (forthcoming)



services. Given the long research history in the fields of urban geography and urban modelling, new
sources of spatial data such as data from mobile phone operators offer the potential to significantly and
structurally improve the analysis and modeling of urban dynamics (Batty 1989; Knox 1994). The
combination of new data sources and methods opens new possibilities in modeling urban dynamics.
Over the past few years a number of innovative approaches have emerged to satisfy a growing demand
for precise, timely and accurate spatio-temporal information, especially on urban dynamics and spatial
mechanisms (see Becker et al. 2011). Dynamic spatial urban models enable also the assessment of
future growth and planning scenarios (Kaiser et al. 1995; Klostermann 1999). The increased interest in
such urban models is driven among other factors, by the availability of new datasets of high spatio-
temporal resolution and new geographic information systems for their processing (Clarke et al. 2002).

Innovative ways for assessing urban dynamics in real time with the use of digital data sources have
recently been explored. For instance, the concept of pervasive computing depicts the capability to
obtain information from the embedded environment to build dynamic and large computational models
(Lyytinen and Yoo 2002). Individual based urban dynamics can be monitored and assessed by a variety
of geospatial technologies such as Global Positioning System GPS receivers, remote sensing technology
(Herold et al. 2003; Blaschke et al. 2011), in-situ sensor networks (Hart and Martinez 2006), social media
data (Girardin et al. 2008a, 2008b; Frias-Martinez et al. 2012) and data derived from mobile telephone
networks. Since 2005, case studies of several cities have been found to be important means of gaining
insight into complex and rapidly changing spatial urban phenomena.

One of the first implementations to monitor urban mobility in order to study locations and intensities of
urban activities based on the use of location and traffic data derived from telecom base stations was
done by the MIT SENSEable City Lab®. The main incentive was the realization that, despite the booming
of mobile communications, data from cell phones had scarcely been used and could become a powerful
tool for urban analysis (Ratti et al. 2006).

Various different case studies have subsequently been derived based on this work. Urban research using
mobile phone data has, for example, taken place in Graz and Milan (Ratti et al. 2007). This novel
approach to urban studies was an effort to understand the increasing complexity of human settlements
by investigating the human dynamics in these cities and not focusing on their physical shapes. The above
study aimed to investigate human dynamics by revealing the locations and intensities of urban activities
and to analyze spatial mobility patterns. They used Erlang® data with one-hour time intervals to create
thermography maps, highlighting the intensity of urban-social activities and their evolution in space and
time. This provided a spatio-temperal signature showing the intensity of telecom traffic at a specific
position in time and space in the city.

Different statistical methods can be found in research focused on Rome. Spatial signatures based on a K-
means clustering technique were applied to conceptualize the city’s complex human dynamics as a real-

> MIT SENSEable City Lab.: http://senseable.mit.edu

® A measure of network bandwidth usage. For more details see Section 4 in this chapter.



time system (Calabrese and Ratti 2006; Reades et al. 2007, 2009; Calabrese et al. 2011). Other authors
take similar approaches such as the calculation of digital footprints (Girardin et al. 2008a), digital
signatures (Calabrese et al. 2010) and spatio-temporal signature (Girardin et al. 2008b). These signatures
can be a basic approach for anomaly detection. This is strongly related to concepts such as ‘chronotype’
(Bertolini and Dijst 2003) and ‘space-time typologies’ (Zandvliet and Dijst 2006) as a way to understand
how place works in Castells’ network society (Castells 1996).

Furthermore, Jiang et al. (2012) used data from a mobile phone operator to discover the spatial and
temporal dimension of human activity patterns in Chicago. Similarly, Toole et al. (2012) used such data
to discover urban land uses, while Kang et al. (2012) explored the correlation between mobile phone
activity and resident population. A critical view on these concepts can be found in Resch et al. (2012).

It seems plausible that cities in the future will exhibit a complex dichotomy between their material-
physical appearance and their digital, cyber-based functioning. The mobile phone is just an early
predecessor to a much more comprehensive and spatially interwoven constellation of visual and virtual
dimensions of the urban space. This megatrend will most likely exert far reaching impacts on the
evolution and governance of cities.

3. From analytics to urban theory and planning
There is great discussion in the literature regarding the impact of Information and Communications
Technologies (ICTs) on cities. From the seminal work of Graham and Marvin (1996, 2001) on ‘Splintering
Urbanism’ to Batty’s (1997) ideas on ‘Virtual Geography’ and Castells’ (1996) ‘Space of Flows,’ there is a
consensus on one thing: ‘the city itself is turning into a constellation of computers’ (Batty 1995, p. 155).
One of the outcomes of this transformation is that individual interaction can be monitored in (almost)
real time in a detailed spatial resolution, providing data that would have been unheard of a decade ago.

Nonetheless, the importance of urban analytics based on mobile phone data is not limited to revealing
urban signatures at a very fine-grained scale. The usability of such data goes even further, as it can
provide novel support to urban planning. At an aggregated level, the changes that mobile telephony
introduced to cities can be illustrated as a new faster pace of urban lifestyle. The latter refers to a real-
time city which acts and is monitored instantaneously (Townsend 2000). This new characteristic of
increased action in time and space from the urban user stand-point, and reaction in terms of
monitoring, creates a new exiting opportunity for urban planners and urban governing. Graham (1997,
p. 117) highlights this new real-time dimension:

“The traditional concepts of urban and regional planning are today outmoded. The harmonious
development of areas towards equilibrium, the correct sharing out of resources, providing support to
complementary developments within the city . . . these ideas have given way to the impression that
spaces are fragmented, atomized and strongly competitive . . . the insertion of telecommunications
into the city makes the development of spaces more complex and introduces today a third dimension
into urban and regional planning [after space and time]: this is the factor of real-time’ (ADUML 1991,

p. 4)".



Critical approaches can be employed to further highlight the value of real-time urban analytics, such as
those based on mobile phone data, in urban theory. The basis of such an approach is the widely
accepted argument that the pervasive character of ICTs across different economic sectors and urban
environments supports the operation of the capitalist system at a global level (e.g. Sassen 1991). In such
a framework, critical geography would argue that space has been de-humanized and objectified
(Graham 1997). Soja (1989) highlights how planning and geography have understood space as a dead,
fixed, immobile and undialectic entity, which is based on passive measurements instead of actions and
meanings. These ideas pass judgment on Newtonian-influenced approaches towards space and time.
Massey (1992, p. 71) criticizes this strand of research by highlighting that space and time are
conceptualized in classical physics as independent objects: ‘Space is a passive arena, the setting for
objects and their interaction.” Nonetheless, post-modern urban theory argues that there is little gain by
separating space and time, as there is only the joint effect of space-time (Thrift 1996). Thus, similarly to
the non-linearity and multiplicity of time, places are non-contiguous, dissimilar, overlapping and
dynamic entities (Graham and Healey 1997).

Urban analysis based on mobile phone data could be an answer to the above criticism against positivistic
approaches to urban theory. The use of mobile phone-based urban analytics enables the research
community to analyze and model the pulse of the city (Batty 2010). Such measures do not focus on the
physical form, but rather on human activity per se and its projection on cities. And, most importantly,
the underlying assumption is not a static canvas of urban zones, but instead a dynamic understanding of
urban environment as illustrated by numerous and diverse individual urban lifestyles. Space is not
separated by time as the domain of such urban analytics is space-time from an (almost) real-time
perspective.

Despite the importance of such exercises, mobile phone-based urban analytics are not an end on their
own. The applicability of such analytics in supporting urban planning could provide new opportunities
for urban management and development. Ahas and Mark (2005) predict that geolocated data from
mobile phone operators will be utilized in three areas of urban planning: (1) as a means to monitor the
usage of transport infrastructure and especially that dedicated to commuting between city and
suburban areas; (2) to study, understand and quantify the temporal dimensions and the dynamics of
urban space; and (3) to model, plan and design transportation and transport infrastructure. Moreover,
they also suggest the use of such data and analytics in marketing (2005). Despite the relatively recent
character of mobile phone-based urban analytics, the previous section presented examples of studies,
the results of which can benefit urban planning with direct knowledge feedback.

In addition, more examples of the applicability of mobile phone-based urban analytics in urban planning
can be found in the recent literature. The notion of ‘swarm’ is among them. The latter has its roots in
the military field and refers to the spreading of commands among autonomous units, allowing an enemy
attack from different directions (Arquilla and Ronfeldt 2000). Drawing upon this, it can be argued that
the effectiveness of a study of how people and groups interact in space is based on the understanding of
swarming behaviors (Evans-Cowley 2010). Swarm behavior can be studied at an aggregated — urban —
level with the use of mobile phone data. This can result in a new understanding of cities as systems of



interacting individuals contrary to the traditional unitary approach according to which cities are
approached as compact individual units (Evans-Cowley 2010; Townsend 2000; Kostakos et al. 2008).

The above discussion is limited to top—down approaches. Nonetheless, due to the pervasiveness of
mobile phones, urban planning can also benefit from bottom—up initiatives. Bisker et al. (2010) suggest
that, apart from the benefits arising from top—down urban computing and sensing, which is mostly the
responsibility of urban planners, citizen-based initiatives can further reinforce developments in urban
planning. For instance, advances in emergency situations management can be made utilizing the wide
spread use of mobile phone data, volunteer participation and existing technology. A well-discussed
example in the literature is hurricane Katrina and the heavily affected city of New Orleans (Evans-Cowley
2010). Citizens using their mobile phones created a detailed photographic record of properties before
they were demolished, a task which could not have been undertaken by the overwhelmed city
authorities (Gadbois 2008). In a different example, the collective contribution of data from mobile
phone users can be used as the basis for average speed maps and other traffic information that can
influence travel choices (Evans-Cowley 2010). In total such data can lead to the coordination of
transportation in real time (Townsend 2000).

After presenting the state of the art of urban analysis with the use of high resolution, spatio-temporal
data from mobile operators and placing such analysis in a wider urban planning framework, the next
section presents some empirical results in this domain.

4. Empirical application
In this section, the main modeling exercise takes place. The aim is to identify how mobile phone usage
varies across space and time. In order to do so, the high spatio-temporal resolution of the mobile phone
data is utilized in a regression analysis framework, which will enable us to extract conclusions on a very
fine-grained scale.

Before presenting our analysis, a short description of the mobile phone dataset is presented. The main
dataset used for this chapter has been derived by KPN, one of the main mobile phone operators in The
Netherlands. The dataset includes aggregated telecommunication counts at the level of the GSM (Global
System for Mobile Communications) cell on an hourly basis. Figure 1 presents the study area, which is
the city of Amsterdam, and the different GSM zones. In total 520 such zones are included in the analysis.
Various telecommunications counts are included in the data, such as the number of new calls that took
place in a specific zone during the course of an hour, the number of SMS (short message service) sent
from a specific zone, the average call length and so forth. In the analysis presented in this section, two
variables are utilized: the Erlang, which is an aggregation of all telecommunication activity’, and the
number of new calls initiated in a GSM zone during a one-hour period. The data concerns all the phone
activity in the study area during the month of April, 2010. Figure 1 also presents the average number of

* Two phone calls of five minute duration each result in the same amount of Erlang as one phone call of a ten minute duration.



Erlangs for each zone for the study period during different times of the day as an average of the study

period.

molonways
GSM zones
Erlangs at 7am Erlangs at 12pm

[ Jooo-0s6e 0.14-5.80

GSM zones

B o7o-142 B 5811147

B 143247 I 11482021

I 2cs-a03 0 12525 5km I 0223980 0 125 25 5km
[ | [ A

Erlangs at 7am Erlangs at 12pm

1 Uy
Fes

)
b V™

Saif's
 °

motorways

motorways
GSM zones GSM zones

Erlangs at 5pm erlangs at 8pm
[ Jo13-618 005-3.75

I 6.17- 1261 75838

Il 262-21.91 B 50 1521

I 21524540 0 125 25 5 km I 522280 0 12525 5km
Erlangs at 5pm Erlangs at 8pm

Figure 1: Amsterdam area, GSM zones and average Erlangs during different times of the day (April
2010)

The key focus in this analysis is the relation between mobile phone usage and urban space given the
temporal variability, which is illustrated in Figure 1. Urban space is represented here by the different
land use types and the spatial unit of our analysis is the GSM cell areas. The temporal dimension varies
from day-to-day to hourly resolution. A few introductory words need to be said regarding the land use
classification. The initial land use data comes from the Central Bureau for Statics in The Netherlands
(CBS 2008) and consists of various very detailed land use types. Because the main focus of the analysis is



not to produce an exhaustive land use model, but instead to understand how mobile phone usage varies
across urban space, an aggregation of the initial land use types takes place.

Equation (1) presents the first model we estimate. According to this general model, mobile phone
activity (mob;;) in area i and time t is affected by a vector X; of land use types, a vector T; of time variant
variables and a vector of control variables control.. Such a model exploits the panel data nature of the
mobile phone data. In other words, we consider the dual dimension of our dataset: space and time.

mob;; = B1X; + B,T; + a,control; + ag + &, (1)

Table 1 presents the estimation of this model. Two different mobile phone variables are used here as
dependent variables: the natural logarithm of erlang (column 1) and the natural logarithm of new calls
(column 2). Seven different land use type variables are utilized here: business areas, residential, traffic,
recreation, inland water, nature, and other. The above land use types are inserted in the models as the
percentage of the land use type in the cell’s overall area. Moreover, four time-variant variables are also
used here as dummy variables: working hours (working), rush hours (rush), weekends (weekend) and
holidays (holiday). Finally, two control variables are used in order to address the size of the different
cells: area represents the natural logarithm of the area of each cell in hectares and volume represents
the natural logarithm of the built volume of each cell (i.e. height x area) following the work of Koomen
et al. (2009). The role of both of these control variables is to address potential size effects of the GSM
zones.

With regard to the model estimation, panel data regressions have been utilized. In more detail, a
generalized least squares (GLS) estimator is used to estimate (1) as a random effect panel model. Most
importantly, because first order serial autocorrelation can be a source of bias in our data, the xtregar
module of Stata software is used here to address this issue. Serial autocorrelation in our case reflects
the dependence of the mobile phone intensity in cell i in time t on time t-1.

The main observation is the lack of significant impact of most of the land use variables on mobile phone
intensity. The only exception is residential land use types, which has a significant positive impact on
mobile phone intensity. This is surprising as these first results indicate no spatial variation of mobile
phone usage. On the other hand, time variant variables are highly significant. Their impact is always
positive across the different specifications. This does not apply to the weekend variable, which has a
positive impact on the number of new calls (natural logarithm) but a negative one on the total traffic
activity (erlang). The intuition of the above could be that people tend to make more but shorter calls
during the weekends.

In order to further analyze the temporal relation between mobile phone intensity and land use types,
the initial mode (1) is enriched with interaction terms:

mob;; = B1X; * T'y + a;control; + ag + &, (2)

In this case, the dummy variable T’; distinguishes between working and non-working days. Model (2) is
estimated as model (1), using both the natural logarithm of Erlang and new calls as the dependent



variable. The results are presented in Table 2. It seems that even the interaction effects of working and
non-working days with the different land use types are not able to depict the spatio-temporal variation
of mobile phone intensity in the city of Amsterdam. Indeed, the only significant variables are the
interactions between working and non-working days with residential land use types. A positive effect of
the same magnitude is observed for both of them. The results are only slightly different when the
number of new calls is used as the dependent variable. In this case the positive effect of business and
traffic land use types during the working days is also illustrated by the regression.

Table 1: Estimation of model (1)

erlang (In) new calls (In)

Traffic 0.004 0.008
(0.004) (0.006)

Residential 0.022 0.029
(0.003)** (0.005)**

Business 0.001 0.006
(0.003) (0.005)

Recreation 0.001 -0.001
(0.003) (0.005)

Nature 0.006 0.008
(0.014) (0.023)

Inland 0.002 -0.002
(0.003) (0.005)

Other 0.008 0.005
(0.005) (0.008)

Working 1.29 1.777
(0.008)** (0.013)**

Rush 0.986 1.3
(0.006)** (0.010)**

Weekend -0.038 0.303
(0.017)*** (0.018)**

Holiday 0.137 0.507
(0.025)** (0.025)**

Area 0.333 0.479
(0.038)** (0.060)**

Volume -0.005 -0.031
(0.015) (0.023)

Constant -4.891 -3.9
(0.512)** (0.812)**

N 371,981 371,981

**% 1 < 0.05; ** p <0.01
Land use types: (%) of the GSM zone



Table 2: Estimation of model (2)
erlang (In) new calls (In)

Traffic x work 0.005 0.012
(0.003) (0.005)***

Residential x work 0.02 0.029
(0.002)** (0.004)**

Business x work 0.001 0.009
(0.003) (0.004)***

Recreation x work 0 0
(0.002) (0.004)

Nature x work 0.01 0.015
(0.015) (0.023)

Traffic x non-work -0.004 0.003
(0.003) (0.005)

Residential x non-work 0.019 0.03
(0.002)** (0.004)**

Business x non-work -0.005 0
(0.003) (0.004)

Recreation x non-work -0.004 -0.001
(0.003) (0.004)

Nature x non-work -0.008 0
(0.015) (0.023)

Area 0.331 0.48
(0.039)** (0.061)**

Volume 0 -0.031
(0.014) (0.023)

Constant -4.468 -3.411
(0.495)** (0.782)**

N 371,981 371,981

*** p <0.05; ** p<0.01
Land use types: (%) of the GSM zone
work and non-work: working and non-working days

While the above models attempted to address the day-to-day variability across the different land use
types, we still need to exploit the very detailed temporal resolution of the mobile phone data in order to
better understand how mobile phone usage changes over time and space. In order to do so, three-way
interaction terms are introduced in model (3):

mob;; = B1X; * T'y * H + aycontrol; + ag + €, (3)

While T’ distinguishes between working and non-working days, H introduces hour-to-hour variability.
The estimation of this model is presented in Table 3 (see Annex). Across the top are the different land
use types on working and non-working days and in the first column the different times of the day are
presented. In order to make the table more readable, green reflects positive and significant impact



while red reflects negative and significant impact. Overall, this regression represents the heartbeat of
Amsterdam. For instance, we can see that the impact of traffic land use type becomes positive earlier on
working days than on non-working days. Similarly, there is a 2—3 hour difference before the impact of
residential, business, recreation and nature land use types becomes positive. In addition, we can see
that the magnitude of the impact is higher on working days for traffic land use and its variation during
these days is also higher. The difference between working and non-working days is marginal for
residential areas, but this is not the case for business areas, where the impact is more than double that
of working days. Finally, more analysis needs to be done for the recreation and nature land use types, as
the magnitude of impact is higher than the expected one. Nonetheless, the estimated signs of the
relations come as no surprise as they reflect the heartbeat of Amsterdam. The exact same pattern could
be observed if the natural logarithm of new calls was used as the dependent variable (the results can be
provided upon request).

5. Concluding remarks
The digital world is no longer a dream, but a rapidly evolving reality. This chapter critically discussed
some applications of new, digital, data derived by mobile operators in urban analysis. Despite the
existence of some first implementations in the urban analysis field, there is still a great potential for new
applications in this research domain, especially in understanding cities from a spatio-temporal
perspective. Our empirical application, although still under development, is a step towards this
direction.

In a nutshell, our results indicate that mobile phone data can be used to understand how urban space is
used over time. Mobile phone usage represents, to a certain extent, population concentration. Thus our
modeling results indicate how an urban population uses different places in the city of Amsterdam during
the course of a day and across different days. The results presented here can provide the basis of a more
concrete urban analysis where the spatio-temporal variation of mobile phone usage could be used as a
proxy for population concretion and related economic and social activities.

To sum up, data from mobile phone providers can provide a new pool of knowledge for urban scientists.
And this is where the caveat lies. Despite the breadth of information in these millions of lines of mobile
phone data, we, as the scientific community, face the challenge of generating new knowledge for the
way our cities function and evolve. After proving the value of such new data sources, it is the time to
move on from the analytics domain and create new knowledge in the domain of urban geography and
urban economics by utilizing this new data source, which in the end will provide valuable insights in to
urban planning.
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Table 3: Estimation of model (3); dependent variable: erlang (In)

Traffic_work Traffic_non-work Residential work Residential non-work Business work Business_non-work Recreation_work Recreation_non-work Nature_work Nature non-work

L.U. type -0.014 -0.012 0.017 0.018 -0.012 -0.008 -0.011 -0.009 -0.027 -0.025
(0.003)** (0.003)** (0.002)** (0.002)** (0.002)** (0.002)** (0.002)** (0.002)** -0.014 -0.014
00 BASE BASE BASE BASE BASE BASE BASE BASE BASE BASE
01 -0.012 -0.012 -0.01 -0.006 -0.008 -0.006 -0.011 -0.007 -0.035 -0.021
(0.000)** (0.001)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)**  (0.002)** (0.003)**
02 -0.02 -0.022 -0.019 -0.012 -0.015 -0.011 -0.021 -0.015 -0.067 -0.04
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.001)**  (0.003)** (0.004)**
03 -0.023 -0.024 -0.026 -0.016 -0.019 -0.014 -0.028 -0.021 -0.084 -0.059
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.001)**  (0.003)** (0.005)**
04 -0.022 -0.021 -0.031 -0.02 -0.023 -0.017 -0.031 -0.027 -0.088 -0.07
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.001)**  (0.004)** (0.005)**
05 -0.003 -0.014 -0.034 -0.025 -0.022 -0.02 -0.025 -0.027 -0.063 -0.085
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)**  (0.004)** (0.005)**
06 0.016 -0.004 -0.026 -0.029 -0.009 -0.021 -0.009 -0.024 -0.007 -0.077
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.004) (0.005)**
07 0.03 0.004 -0.01 -0.024 0.011 -0.017 0.008 -0.015 0.045 -0.038
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)**  (0.004)** (0.005)**
08 0.045 0.011 0.002 -0.013 0.025 -0.008 0.021 -0.004 0.077 -0.003
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)**  (0.004)** (0.005)
09 0.048 0.017 0.008 -0.002 0.032 0.001 0.026 0.006 0.086 0.025
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001) (0.001)** (0.001)**  (0.004)** (0.005)**
10 0.045 0.021 0.011 0.005 0.036 0.007 0.026 0.012 0.088 0.047
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)**  (0.004)** (0.006)**
11 0.045 0.023 0.012 0.008 0.037 0.012 0.027 0.016 0.089 0.054
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)**  (0.004)** (0.006)**
12 0.045 0.024 0.012 0.01 0.038 0.014 0.027 0.017 0.088 0.054
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)**  (0.004)** (0.006)**
13 0.045 0.023 0.012 0.009 0.038 0.015 0.027 0.017 0.088 0.057
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)**  (0.004)** (0.006)**
14 0.045 0.022 0.012 0.009 0.039 0.015 0.028 0.017 0.088 0.055
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)**  (0.004)** (0.006)**
15 0.046 0.021 0.012 0.008 0.038 0.015 0.029 0.016 0.089 0.052
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)**  (0.004)** (0.006)**
16 0.048 0.02 0.013 0.008 0.037 0.015 0.031 0.016 0.091 0.05
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)**  (0.004)** (0.006)**
14 0.048 0.02 0.014 0.008 0.035 0.014 0.032 0.016 0.092 0.051
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)**  (0.004)** (0.006)**
18 0.044 0.02 0.014 0.008 0.03 0.011 0.03 0.014 0.084 0.047
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)**  (0.004)** (0.006)**
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19 0.036 0.02 0.013 0.008 0.024 0.01 0.024 0.012 0.071 0.045
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)**  (0.004)** (0.006)**
20 0.03 0.02 0.014 0.009 0.021 0.009 0.022 0.013 0.07 0.051
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)**  (0.004)** (0.006)**
21 0.026 0.016 0.015 0.009 0.019 0.009 0.021 0.013 0.068 0.049
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)** (0.004)** (0.006)**
22 0.02 0.012 0.013 0.007 0.015 0.006 0.018 0.01 0.056 0.038
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)**  (0.004)** (0.006)**
23 0.012 0.005 0.008 0.003 0.01 0.003 0.011 0.006 0.035 0.02
(0.001)** (0.001)** (0.000)** (0.000)** (0.000)** (0.001)** (0.001)** (0.001)** (0.004)** (0.006)**
area (In) 0.34 sumvolume (In) -0.006 constant -4.406 N 371,981
(0.036)** (0.013) (0.464)**

*¥** p<0.05; ** p<0.01; L.U.: land use types expressed as (%) of the GSM zone; work and non-work: working and non-working days
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