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Abstract

This paper provides an example of a linear regression model with predetermined stochas-

tic regressors for which the sufficient condition for strong consistency of the ordinary least

squares estimator by Lai & Wei (1982, Annals of Statistics) is not met. Nevertheless, the

estimator is strongly consistent, as shown in a companion paper, cf. Christopeit & Massmann

(2013b). This is intriguing because the Lai & Wei condition is the best currently available

and is referred to as “in some sense the weakest possible”. Moreover, the example discussed

in this paper arises naturally in a class of macroeconomic models with adaptive learning, the

estimation of which has recently gained popularity amongst researchers and policy makers.
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Motivation and result

Consider the general linear regression model

yt = θ′zt + εt, t = 1, 2, . . . , (1)

where the εt are unobservable errors, θ = (θ1, . . . , θK)′ is a vector of unknown parameters and

yt is the observed response to the inputs zt = (zt1, . . . , ztK)′. For serially uncorrelated εt, the

parameter vector θ is usually estimated by the ordinary least squares (OLS) estimator

θ̂T =
(
Z ′TZT

)−1
Z ′T y(T )

based on the observations y(T ) = (y1, . . . , yT )
′ and ZT = (ztk)1≤t≤T,1≤k≤K . For deterministic

regressors ztk, there exists a well established theory for strong consistency (i.e. convergence with

probability one) of the OLS estimator, cf. Anderson & Taylor (1976), Drygas (1976), Lai &

Robbins (1977) and Lai, Robbins & Wei (1978, 1979), providing both sufficient and necessary

conditions. For stochastic regressors, the situation is more delicate. The best result obtained so

far is by Lai & Wei (1982a, 1982b) and draws on two assumptions:

(A1) (εT ) is a martingale difference sequence with respect to some basic filtration (FT ) .

(A2) (zT ) is a predetermined sequence with respect to (FT ) , i.e. zT is FT−1-measurable for

each T.

Denote the sample second moment matrix of the regressors by

MT = Z ′TZT ,

and let λmax (T ) and λmin (T ) be the maximal and the minimal eigenvalue of MT , respectively.

Lai & Wei (1982a) then prove the following.

Theorem (Lai & Wei, 1982a) If the disturbances satisfy the condition supT E
(
ε2T |FT−1

)
<∞

a.s., a sufficient condition for strong consistency of the OLS estimators of θ is the following:

λmin (T )→∞ and [log λmax (T )]
1+ρ = o (λmin (T )) a.s. (2)

for some ρ > 0. If, in addition, supT E
(
ε2+ηT |FT−1

)
< ∞ for some η > 0, then it suffices to

require (2) for ρ = 0.

Lai & Wei (1982a) refer to the condition in (2) as “in some sense the weakest possible” (p.

155), since even a marginal violation of it can lead to inconsistency. For ρ = 0, they give an

example to that effect. The purpose of this Note is to provide a different example, see Result
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below, which may be considered as a converse of that in Lai & Wei (1982a) in the sense that,

despite a marginal violation of (2), the strong consistency of θ̂T continues to hold. This example

arises in a typical macroeconomic model in which agents are not assumed to be fully rational

but to form expectations by means of an adaptive learning algorithm. Estimation of models in

this model class have recently gained popularity amongst researchers and policy makers; see for

instance the New Keynesian Phillips curve models estimated by Milani (2007) and Chevillon,

Massmann & Mavroeidis (2010), the European Central Bank’s New Multi-Country Model by

Dieppe, González Pandiella, Hall & Willman (2011), and the inflation model by Malmedier &

Nagel (2012).

Specifically, consider the simple linear regression model

yt = δ + βat−1 + εt, (3)

where εt is an i.i.d. Gaussian disturbance with mean 0 and variance σ2, where the regressor at

is determined by the recursion

at = at−1 + γt (yt − at−1) , (4)

a0 = 0, and where

γt =
γ

t
(5)

is a weighting, or gain, sequence. It is assumed throughout that γ > 0 and β < 1. This

model is derived from the more general specification yt = δwt+ βyet|t−1 + εt where yet|t−1 denotes

agents’ expectations of yt given the information set Ft−1 = σ (ys, s ≤ t− 1;ws, s ≤ t), see for

instance the classical cobweb model in Bray & Savin (1986) or the Lucas (1973) aggregate

supply model. Importantly, in the present setting, agents would no longer possess sufficient

knowledge to form rational expectations yet|t−1 = E (yt|Ft−1) but, instead, are assumed to know

only the structure of the rational expectations equilibrium yt = αwt + εt and to estimate the

unknown parameter α recursively by means of a stochastic approximation algorithm such that

their forecast is yet|t−1 = at−1wt. Assuming for analytical tractability that wt is constant and,

then, setting w = 1 without loss of generality, the model in (3)-(4) obtains. The weighting

sequence in (5) makes of the updating mechanism in (4) an instance of a so-called decreasing-

gain recursion, since γt → 0. The asymptotic properties of this system are analysed in detail in

two companion papers, viz. Christopeit & Massmann (2013a, 2013b). The properties turn out

to depend crucially on c = γ (1− β) . In particular, Christopeit & Massmann (2013b) prove that

the OLS estimators of δ and β are strongly consistent for c > 1/2. Nevertheless, the following

result shows that Lai & Wei’s condition (2) is violated; the proof is presented in the following

section.
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Result For the model in (3)-(5), the two eigenvalues of the sample second moment matrix MT

are given by

λmin =
AT +O(1)

α2 + 1 + o(1)
(1 + o(1))

λmax = T
[
α2 + 1 + o(1)

]
(1 + o(1))

where

AT =

T∑
t=1

(at − aT )2 .

When c > 1/2, although λmin (T )→∞ it turns out that

plim
T→∞

log λmax (T )

λmin (T )
= σ2

α2 + 1

2c− 1
.

Consequently, Lai & Wei’s condition (2) is violated for c > 1/2.

It will also be seen below that condition (2) does hold when c < 1/2; accordingly, the

estimators in this case are strongly consistent, cf. Christopeit & Massmann (2013a). Investigation

of the boundary case c = 1/2 is left to future research.

Proof and discussion

Calculating the eigenvalues

Model (3) is a special bivariate case of (1) with θ = (δ, β)′ and zt = (1, xt)
′ , where xt = at−1.

The sample second moment matrix is, then,

MT = T

 1 pT

pT rT


where

pT = xT = aT −
1

T
aT , (6)

rT = x2T = a2T −
1

T
a2T . (7)

We adopt the usual notation xT = 1
T

∑T
t=1 xt and x

2
T = 1

T

∑T
t=1 x

2
t . Recall also that a0 = 0. For

ease of notation, we suppress the subscript T of pT and rT for a moment. Simple calculation

shows that the eigenvalues of MT are given by

λ± =
T

2

[
r + 1±

√
(r + 1)2 − 4 (r − p2)

]
=

T

2

[
r + 1±

√
(r − 1)2 + 4p2

]
.
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Therefore λmax ≥ T |p| . To obtain the exact rate, consider the expansion

λmax =
T

2

[
r + 1 +

√
(r + 1)2 − 4 (r − p2)

]
=

T (r + 1)

2

[
1 +

√
1− 4

r − p2

(r + 1)2

]

=
T (r + 1)

2
[1 + (1− 2d− 2R(d))]

= T (r + 1) [1− d−R(d)] , (8)

where we have put

d = dT =
r − p2

(r + 1)2
(9)

and where R(d) is the residual in the Taylor expansion of the square root function about one:

√
1− 4d = 1− 2d− 2d2

(1− 4θd)3/2
= 1− 2d− 2R(d),

with 0 < θ < 1. Similarly, for λmin,

λmin =
T

2

[
r + 1−

√
(r + 1)2 − 4 (r − p2)

]
=

T (r + 1)

2

[
1−

√
1− 4

r − p2

(r + 1)2

]

=
T (r + 1)

2
[1− (1− 2d− 2R(d))]

= T (r + 1) [d+R(d)] , (10)

for the same d and R(d) as above. Note that

R (d) = O
(
d2
)
as d→ 0. (11)

Asymptotics of eigenvalues

It is shown in Christopeit & Massmann (2013a) that aT → α with probability one. Therefore,

pT and rT in (6)-(7) satisfy, with probability one,

pT = aT +O(T−1)

rT = a2T +O(T−1)

as well as

rT − p2T = a2T − a
2
T +O(T−1). (12)

Due to the convergence of aT it follows that pT = α + o (1) and rT = α2 + o (1) such that dT

and R (dT ) in (9) and (11) satisfy, almost surely,

dT = o (1) ,

R(dT ) = o(1)
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and

TR(dT ) = TdT ·O(dT ) = TdT · o(1).

To ascertain the convergence rate of dT , introduce

AT =
T∑
t=1

(at − aT )2 = T
[
a2T − a

2
T

]
.

This is the quantity whose behaviour turns out crucial for the consistency of the OLS estimator

of δ and β, see Christopeit & Massmann (2013a). By virtue of (12),

rT − p2T =
1

T
AT +O(T−1),

such that TdT may be written as

TdT =
AT +O(1)

(rT + 1)2
=

AT +O(1)

(α2 + 1 + o(1))2
=

AT

(α2 + 1)2
[
1 +O

(
A−1T

)
+ o(1)

]
.

Therefore, by (10),

λmin = (rT + 1)T [dT +R(dT )]

= (rT + 1)TdT [1 + o(1)]

=
[
α2 + 1 + o(1)

] AT

(α2 + 1)2
[
1 +O

(
A−1T

)
+ o(1)

]
=

AT
α2 + 1

[
1 +O

(
A−1T

)
+ o(1)

]
and by (8),

λmax = T (rT + 1) [1− dT −R(dT )]

= T
[
α2 + 1 + o(1)

]
(1 + o(1)) .

As a consequence,
log λmax (T )

λmin (T )
=
(
α2 + 1

) log T +O(1)

AT
[
1 +O

(
A−1T

)
+ o(1)

] . (13)

It is shown in Christopeit & Massmann (2013a, equation (B.14)) that, for c > 1/2,

AT
log T

P→ γ2σ2

2c− 1
. (14)

Since AT is monotone increasing, this implies that limT→∞AT =∞ a.s.. It is not known whether

(14) also holds with probability one. As a consequence of (14),

plim
T→∞

log λmax (T )

λmin (T )
= (α2 + 1)

2c− 1

γ2σ2
.

In other words, Lai & Wei’s condition (2) is violated for c > 1/2, as claimed in Result. Nev-

ertheless, Christopeit & Massmann (2013b) prove that strong consistency of the OLS estimator

for δ and β does hold for c > 1/2.
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Remark 1 For c < 1/2, it is shown in Christopeit & Massmann (2013a, equation (B.22)) that

the exact divergence rate of AT is

AT =
γ2v2

1− 2c
T 1−2c(1 + o(1)) a.s.,

where v is a random variable which is nonzero with probability one. Hence, from (13),

lim
T→∞

log λmax (T )

λmin (T )
= 0 a.s.

such that Lai & Wei’s condition (2) is satisfied for c < 1/2.

Remark 2 The divergence rate of AT for the boundary case c = 1/2 is not known. Hence the

question of whether or not Lai & Wei’s condition (2) is satisfied is left to future research.

Remark 3 For the bivariate case of simple regression models like (3), a somewhat weaker con-

dition for strong consistency of the slope estimator is given in Lai & Wei (1982a), namely,

AT
log T

→∞ a.s.. (15)

In view of (14), (15) is not satisfied for c > 1/2. For c < 1/2, it is since (15) is implied by (2).
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