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Abstract

In imperfectly competitive credit markets, banks can face a tradeoff between ex-

ploiting their market power and enforcing hard budget constraints. As market power

rises, banks eventually find it too costly to discipline underperforming borrowers by

stopping their projects. Lending relationships become “too cozy”, interest rates rise,

and loan performance deteriorates.
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1 Introduction

A central issue in finance pertains to the efficient industrial organization of banking. As in

other industries, market power in the banking sector can give rise to price distortions and

as such impair allocative efficiency. High loan rates can depress real investment,1 stifle the

incentives of borrowers to add value to their projects, and induce them to engage in reckless

risk–taking (e.g., Boyd and De Nicolo 2005). Furthermore, market power can impair X–

efficiency, albeit not necessarily so (e.g., Schmidt 1997). Lastly, there is a large literature

arguing that the degree of banking competition matters for financial stability.2

Our aim in this article is to examine an issue that has been largely overlooked by the

literature: the impact of market power on banks’ commitment to maintain discipline in

corporate lending. We argue that loan market power, to the extent that it is exploited, can

give rise to a “soft budget constraint” problem: as banks hold larger stakes in borrowers’

projects, they become less committed to penalize underperforming borrowers by exercising

foreclosure threats and stopping their projects. This can have negative implications for

borrower incentives ex ante. Thus, when operating in imperfectly competitive loan markets,

banks can face a tradeoff between exploiting their market power and enforcing hard budget

constraints. We develop a simple model to analyze this tradeoff.

The key finding is that small changes in loan market power, while having little effect

on a lender’s profit, can have a dramatic impact upon loan rates, loan performance, and

economic efficiency. Specifically, we show that, to the extent that foreclosure threats are

credible in perfectly competitive loan markets, there is a critical level of loan market power

such that lenders enforce hard budgets constraints if and only if loan market power is below

this threshold. As loan market power rises above the threshold, it becomes too costly for

1However, it also has been argued that market power can improve credit availability by enhancing banks’

incentive to invest in relationship building (cf., Petersen and Rajan 1995).
2For recent contributions to the theory literature, see, among others, Boyd and De Nicolo (2005),

Martinez–Miera and Repullo (2010), Wagner (2010), and Hakenes and Schnabel (2011). On the empir-

ical front, see, e.g., Berger et al. (2009), Schaeck et al. (2009), and Beck et al. (2012).
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lenders to stay committed to stop underperforming borrowers’ projects. Lending relation-

ships become overly cozy, interest rates rise sharply, and loan performance deteriorates.

The thrust of the soft budget constraint problem has to do with the adverse effect of

the ex post continuation of underperforming projects on incentives ex ante. It has been

analyzed by, among others, Dewatripont and Maskin (1995), and it is central to a large

corporate finance literature on intervention threats and multiple lenders (see, among others,

Berglöf and von Thadden 1994, Dewatripont and Tirole 1994, Bolton and Scharfstein 1996,

and, closest related to our setting, Repullo and Suarez 1998).3 The tradeoff between rent

extraction and discipline in lending (hard budget constraints) proposed in our paper is

novel to this literature. This article also relates to recent work by Loranth and Morrison

(2012) who examine tying of lending to investment banking by universal banks. In their

model, tying may alleviate credit constraints by assuring the lender of a larger share of

the surplus, but it may also create a soft budget constraint problem in that it undermines

the lender’s commitment to stop poorly performing projects. Interestingly, they show that

when investment banking is uncompetitive, the former effect dominates and there is too

little tying, whereas when investment banking is competitive, there is too much tying.

The remainder of this article is organized as follows. The next section presents the

model. Sections 3 and 4 analyze the model and derive the loan market equilibrium. Section

5 concludes and provides a brief discussion of the model’s empirical implications.

2 Model

There is universal risk–neutrality and no discounting. We consider an entrepreneur who

is endowed with a project. At date 0, the project requires a start–up investment of $1.

If continued until maturity (date 2), the project will either succeed and generate a return

Π > 0, or it will fail and yield a return of zero. Conversely, if the project is not continued

3The soft budget constraint problem and it variants are also at the heart of recent debates concerning

the moral hazard implications of bank or country bailouts.
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until maturity, then it is terminated at date 1 for liquidation value L < 1.4 The probability

of project success at maturity depends upon the entrepreneur’s non–contractible effort,

which is to be exerted right after the project is undertaken: if the entrepreneur exerts effort

e ∈ [0, 1] then the probability of success is equal to e.5 The entrepreneur incurs a private

effort cost ψ(e), which is increasing and strictly convex, and satisfies the following standard

regularity conditions: ψ(0) = ψ′(0) = 0, ψ′(1) ≤ Π, and ψ′′′(e) ≥ 0. We assume that,

conditional on the entrepreneur exerting efficient effort and the project being continued

until maturity, project NPV is positive:

max
e
{eΠ− ψ(e)} > 1 (1)

For later reference, let eFB denote the efficient effort level.

The entrepreneur has personal funds w < 1 (e.g., from family sources); she thus needs to

borrow 1−w. There are two types of lenders in our setting: an “incumbent” lender and many

“non–incumbent” lenders. The entrepreneur has an intrinsic preference to undertake her

project with the incumbent lender. This could stem from, e.g., prior business relationships,

spatial product differentiation, or geographical proximity. Formally, we assume that if the

entrepreneur borrows funds from a lender other than the incumbent she incurs a private

transaction (or “switching”) cost s > 0. No such cost is incurred if she undertakes her

project with the incumbent lender. Non–incumbent lenders compete à la Bertrand and are

willing to provide funds as long as they can expect to break even.

The initial loan contracting stage is as follows. The incumbent lender first makes a

loan contract offer to the entrepreneur, which the entrepreneur accepts or rejects. If the

entrepreneur rejects she seeks funding from a non–incumbent lender. As non–incumbent

lenders compete à la Bertrand, they quote competitive loan rates. The downside of securing

4The date 2 liquidation value is normalized to zero.
5An alternative setup, which would be closer in spirit to the soft budget constraint literature (e.g., De-

watripont and Maskin 1995), is as follows: just before date 2 the project requires a continuation investment

K ≈ Π with probability 1 − e and zero with probability e. If continued until date 2 and not liquidated at

date 1 for value L the project yields a cash flow Π. This setup is equivalent to the model considered here.
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funding elsewhere is that the entrepreneur incurs the transaction cost s. Thus, the higher

is s, the stronger is the incumbent lender’s loan pricing power.

While effort is non–contractible, it is assumed to be privately observable to the en-

trepreneur’s lender (e.g., because of routine due diligence). Non–contractibility of effort

gives rise a standard moral hazard problem (as is standard, the entrepreneur is protected by

limited liability). Observability of effort has the advantage that the lender can potentially

improve the entrepreneur’s incentive to exert effort by threatening to terminate the project

at the interim stage should she underprovide effort. To allow for this possibility, we consider

financial contracts under which the lender is given the right to terminate the project at date

1 (it will become clear below that doing so is always optimal in our setting). One can think

of this as the loan contract containing a loosely defined material adverse change clause that

gives the lender discretion to force default and liquidation at date 1. A financial contract

then specifies a repayment R ≤ Π due at date 2 and the lender’s share R0 ≤ L of the

liquidation proceeds in the event of project termination at date 1.

For the sake of simplicity, we do not allow for contract renegotiation, but we do discuss

below that our results are robust to the possibility of renegotiation.

3 The entrepreneur’s outside option

We start with deriving the equilibrium under the entrepreneur’s outside option. Suppose

the entrepreneur rejects the incumbent lender’s loan contract offer and seeks funding from

a non–incumbent. As non–incumbent lenders compete à la Bertrand, the optimal loan

contract with a non–incumbent lender maximizes the entrepreneur’s payoff

max
(e∗,R,R0≤L)

U(e∗) = e∗(Π−R)− ψ(e∗)

s.t.

e∗R = 1− w (IR)

e∗R ≥ R0 (CO)
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e∗ = arg max
e
U(e) (IC)

where e∗ denotes the (candidate) equilibrium effort level, (IR) is the lender’s binding break

even constraint, (CO) ensures that in equilibrium the lender has to incentive to terminate

the project (which cannot be an equilibrium outcome, since L < 1), and (IC) is the en-

trepreneur’s incentive constraint. To derive the entrepreneur’s payoff U(e) from exerting

effort e, notice that the lender will continue the project if and only if eR ≥ R0. Thus,

U(e) =

{
e (Π−R)− ψ(e) for e ≥ R0/R

L−R0 − ψ(e) for e < R0/R

Notice that the entrepreneur’s payoff function entails a discontinuity at the critical effort

level where the lender is just indifferent between project termination and continuation. We

have the following result:

Lemma 1 Suppose the entrepreneur rejects the incumbent lender’s loan contract offer and

seeks funding from a non–incumbent (at private cost s). Then:

(i) For L ≥ 1− w, the first best can be achieved. An optimal contract is R0 = 1− w and

R = (1− w)/eFB. In equilibrium, the entrepreneur exerts efficient effort eFB and the

project is continued.

(ii) For L < 1−w, the first best cannot be achieved. If investment is feasible and optimal,

equilibrium effort eout is given by the largest solution of

Π− 1− w
e∗

= ψ′(e∗)

and is strictly inferior to eFB. An optimal contract is R = (1− w)/eout and R0 = L.

Proof. See Appendix. �

The first part of the lemma shows how the threat of termination, if credible, resolves the

entrepreneur’s moral hazard problem. To see the mechanism, notice that under the optimal

contract the lender is just indifferent between project continuation and termination if and

6



only if the entrepreneur exerts efficient effort. For e < eFB, the lender would exercise the

foreclosure threat and terminate the project. Faced with this treat, the entrepreneur has no

incentive to underperform.6 The second part of the lemma shows what can be implemented

when the asset liquidation value is such that the lender cannot recoup his investment outlay

by terminating the project and foreclosing assets. In this case, the lender necessarily strictly

prefers to continue the project in equilibrium, i.e., (CO) holds with strict inequality. As

the lender strictly prefers to continue the project in equilibrium, there is a constant ε > 0

such that the project will be continued for any e ≥ e∗ − ε. In other words, some out–

of–equilibrium deviations from equilibrium effort would not be penalized: the threat of

termination lacks credibility. Thus, the entrepreneur’s payoff from exerting effort e ≥ e∗− ε

is U(e) = e(Π−R)− ψ(e), and hence incentive–compatibility requires

U ′(e∗) = Π−R− ψ′(e∗) = 0

This is merely the incentive constraint in the absence of termination threats, which shows

that the threat of termination is no longer relevant for incentives.

Our aim below is to show that loan market power may impair the incumbent lender’s

commitment to discipline shirking. Thus, to make the analysis interesting, we assume in

what follows that in perfectly competitive financial markets foreclosure threats are credible.

Specifically, we assume L > 1 − w. Thus, under her outside option the entrepreneur will

exert efficient effort eFB and, by (1), derive a payoff of

V = eFBΠ− (1− w)− ψ(eFB) > w

6This result is robust to the possibility of renegotiation. If renegotiation were feasible, the project would

not be terminated for all e < eFB . However, the entrepreneur would have to fully compensate the lender

for the cost of shirking. This would ensure that the entrepreneur has no incentive to shirk.
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4 Loan market equilibrium

We now turn to the contracting problem between the entrepreneur and the incumbent lender.

The incumbent lender’s optimization problem is to maximize his profit

max
(e∗,R,R0≤L)

e∗R− (1− w)

s.t.

U(e∗) = e∗(Π−R)− ψ(e∗) ≥ V − s (IR)

e∗R ≥ R0 (CO)

e∗ = arg max
e
U(e) =

{
e(Π−R)− ψ(e) for e ≥ R0/R

L−R0 − ψ(e) for e < R0/R
(IC)

where (IR) now denotes the entrepreneur’s participation constraint. Here, we assume

s ≤ V − w so that the threat to secure funding elsewhere is credible. As above, (CO)

ensures that in equilibrium the lender has no incentive to terminate the project, and (IC) is

the entrepreneur’s incentive constraint. In what follows, we say that the lender imposes a

hard budget constraint if and only if he designs the contract such that in equilibrium he just

indifferent between project continuation and termination, e∗R = R0. Notice that this is a

matter of choice for the incumbent lender as he could always offer the competitive loan con-

tract. This contract would be accepted by the entrepreneur, it would induce efficient effort,

and it would ensure that the incumbent lender breaks even on his investment. However, as

we shall see now, the incumbent lender will do better with another contract.

Lemma 2 Suppose the incumbent lender imposes a hard budget constraint. Then the opti-

mal contract entails

R0 = min [1− w + s, L] and R = R0/e
FB

In equilibrium, the entrepreneur exerts efficient effort eFB and the project is continued.

Proof. Suppose (CO) holds with equality, i.e., R = R0/e
∗, and let us assume and verify

later that (IC) is slack. The incumbent lender’s problem reduces to

max
(e∗,R0)

R0 − (1− w)
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s.t.

R0 ≤ e∗Π− ψ(e∗)−
(
eFBΠ− ψ(eFB)

)
+ 1− w + s (IR’)

R0 ≤ L

where (IR’) is the reduced form participation constraint. This problem is obviously solved for

e∗ = eFB and the contract stated in the lemma. To show that (IC) is slack, notice that U(e)

is maximized at eFB since U ′(eFB)|e≥eFB < 0 and U(eFB)|e≥eFB = eFBΠ − R0 − ψ(eFB) >

maxe L−R0 − ψ(e) = L−R0 by (1) and L < 1. �

Clearly, for s ≤ L − (1 − w), the lender cannot do better with another contract: the

entrepreneur’s rent is fully extracted (her participation constraint holds with equality) and

efficient effort is implemented; thus, the lender achieved the first best for himself. The

lender’s profit is R0 − (1 − w) = s. However, for s > L − (1 − w), the lender would leave

the entrepreneur a strictly positive rent if he imposed a hard budget constraint. The lender

may then prefer to not impose a hard budget constraint and charge a higher interest rate.

We now investigate this tradeoff. Let s > L− (1− w) and suppose the lender does not

enforce a hard budget constraint, i.e., e∗R > R0. Hence, incentive–compatibility requires

Π−R = ψ′(e∗) (IC’)

We show in the Appendix that (IC’) is sufficient for incentive–compatibility. The incumbent

lender’s problem reduces to

max
e∗

e∗ (Π− ψ′(e∗))− (1− w)

s.t.

e∗ψ′(e∗)− ψ(e∗) ≥ V − s (IR”)

where we substituted for R = Π− ψ′(e∗). Let eM denote the solution of the unconstrained

problem, i.e., the unique solution of the first order condition

Π− ψ′(e∗)− e∗ψ′′(e∗) = 0 (2)
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Let eSB(s) denote the unique solution of (IR”). Notice that eSB(s) is strictly decreasing in

s and that (IR”) is slack if and only if eSB(s) ≤ eM . Let us assume eSB(V − w) < eM so

that (IR”) is slack for some s < V −w (recall that s = V −w is the highest level of market

power). There thus is a threshold š < V − w such that (IR”) is slack if and only if s ≥ š.

In summary, if the lender does not enforce a hard budget constraint his profit is

eM
(
Π− ψ′(eM)

)
− (1− w)

or lower (since (IR”) is binding for s < š). The lender’s profit from imposing a hard budget

constraint is L− (1−w). Therefore, if eM
(
Π− ψ′(eM)

)
− (1−w) ≤ L− (1−w) the lender

will always impose a hard budget constraint, regardless of his loan pricing power. To make

the analysis interesting, let us assume

eM
(
Π− ψ′(eM)

)
> L (3)

Thus, if (IR”) is slack the lender does not enforce a hard budget constraint. Conversely, if

(IR”) is binding, the lender faces a tradeoff between discipline (hard budget constraint) and

rent extraction. The following result shows how this tradeoff is resolved:

Proposition 1 Suppose (3) holds. Then there is a loan market power threshold ŝ > L −

(1− w) such that

(i) For s ≤ ŝ, the incumbent lender imposes a hard budget constraint and elicits efficient

effort eFB. The optimal contract entails R = min[L, 1− w + s]/eFB.

(ii) For s > ŝ, the incumbent lender does not impose a hard budget constraint and elicits

effort max[eSB(s), eM ] < eFB, where eSB(s) solves (IR”) with equality and eSB(ŝ) >

eM . The optimal contract entails R = Π− ψ′
(
max[eSB(s), eM ]

)
.

Furthermore, lims→ŝ e
SB(s)R = L, i.e., the lender’s profit is continuous in s.

Proof. See Appendix. �
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Figure 1 provides an illustration. As long as the incumbent lender’s loan market power

is low, s ≤ ŝ, he imposes a hard budget constraint and elicits efficient effort. As the

lender’s market power increases, it eventually becomes too costly for the lender to impose

a hard budget constraint. At the critical threshold level ŝ, the lender gives up on enforcing

hard budget constraints. Foreclosure threats are no longer credible.7 The loan rate jumps

upwards and loan performance (effort) jumps downwards. Thus, small changes in loan

market power, while having little impact on the lender’s profit, can have a dramatic impact

on efficiency: a small increase in loan market power from ŝ − ε to ŝ + ε results in much

higher loan rates and at the same time much lower loan performance.

As loan market power increases further, the equilibrium outcome is determined by the

usual tradeoff between pricing power exploitation and incentives. The entrepreneur’s par-

ticipation constraint is first binding, and hence the loan rate is strictly increasing and effort

is strictly decreasing in s. At some critical level š, it becomes too costly for the lender to

further increase the loan rate as doing so would have a too adverse impact on incentives.

Overall, we have two regimes: a hard budget constraint regime and a soft budget con-

straint regime. In the first regime, the lender is committed to discipline underperformance,

loan performance is strong, and loan rates are low. The second regime, which prevails in

relatively uncompetitive loan markets, is characterized by overly cozy lending relationships,

substantially higher loan rates, poor incentives, and deteriorated loan performance.

Table 1 reports loan performance, loan rates, the incumbent lender’s profit, and the

entrepreneur’s payoff for various levels of loan market power (let s′ = L− (1−w)). Within

the hard budget constraint regime (s ≤ ŝ), the loan rate is first increasing in loan market

7From the literature on multiple lenders (see the references mentioned in the Introduction), it is well

known that financing a project with multiple investors and allocating liquidation control and cash flow

rights to one lender can have positive implications for the credibility of foreclosure threats. This solution,

however, does not work in our setting to the extent that the entrepreneur would incur the transaction cost

if she secured funding not only from the incumbent lender but also elsewhere. She could then straightaway

secure funding from non–incumbent lenders. More generally, dispersed debt structures and unsecured debt

financing may simply be infeasible or too costly, in particular for firms that rely on bank funding.
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eFB

eSB(ŝ)
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Figure 1: Loan Market Power and Loan Performance
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Market power Effort R Lender’s profit Entrepreneur’s payoff

s ≤ s′ eFB (1− w + s)/eFB s V − s
s ∈ (s′, ŝ] eFB L/eFB s′ = L− (1− w) V − s′

s ∈ (ŝ, š] eSB(s) Π− ψ′(eSB(s)) eSB(s)Π− ψ(eSB(s))− (V − s)− (1− w) V − s
s > š eSB(š) Π− ψ′(eSB(š)) eSB(š)Π− ψ(eSB(š))− (V − š)− (1− w) V − š

Table 1: Equilibrium outcomes

power and then flat. Notice that the increase in the loan rate does not have an adverse

impact upon incentives. This is because the credible threat of foreclosure ensures that the

entrepreneur’s incentive to exert effort is aligned with the lender’s interests. For s > ŝ,

foreclosures threats are no longer credible. The loan rate is again first increasing in loan

market power and then flat. Thus, as market power increases from zero, the entrepreneur’s

participation constraint is first binding, then slack, then binding, and finally again slack.

5 Conclusion

We have presented a simple model to illustrate how market power in banking can threaten

discipline in lending. The key insight is that a small increase in loan market power, while

having little effect on a lender’s profit, can have a deleterious impact upon incentives,

delinquency rates, and economic welfare.

The analysis yields a testable empirical implication: measures aimed at enhancing bank

competition (such as removing barriers to entry) are most likely to yield large efficiency

gains when the degree of loan market competition is at intermediate levels. Taken at face

value, the model predicts that if loan market competition is already intense, a further in-

crease in competition should have no real effects.8 Likewise, if the intensity of competition

is very low the benefits of competition–enhancing measures may be relatively small. Con-

versely, if the degree of competition is at intermediate levels, then there is the potential that

8However, while an increase in the loan rate has no effect on effort in the hard budget constraint regime,

it could have an adverse effect on ex ante incentives to innovate and discover positive NPV projects.
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competition–enhancing regulatory reforms move the equilibrium from the soft budget con-

straint regime to the hard budget constraint regime. The corresponding real efficiency gains

would be substantial. Thus, in a cross–country empirical setting where measures of corpo-

rate performance gains (such as changes in return on assets, as in, e.g., Bertrand, Schoar,

and Thesmar 2007) following competition–enhancing regulatory reforms are regressed on

measures of banking competition prior to the reforms, the model would predict an inversely

U–shaped relationship between the two measures.
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Appendix

Proof of Lemma 1

To complete the proof of part (i) of the lemma it suffices to show that eFB is incentive compatible.

Given the contract stated in the lemma, the entrepreneur’s payoff function is

U(e) =

{
e
(
Π− (1− w)/eFB

)
− ψ(e) for e ≥ eFB

L− (1− w)− ψ(e) for e < eFB

This is maximized at eFB since U ′(eFB)|e≥eFB < 0 and U(eFB)|e≥eFB = eFBΠ−(1−w)−ψ(eFB) >

maxe L− (1− w)− ψ(e) = L− (1− w) by (1) and L < 1.

To prove part (ii) of the lemma, notice that if L < 1 − w we must have e∗R > L; otherwise,

the lender could not possibly break even. Let then R0 = L. The entrepreneur’s payoff function is

U(e) =

{
e (Π− (1− w)/e∗)− ψ(e) for e ≥ e′ = e∗L/(1− w) > e∗

−ψ(e) for e < e′

where R = (1− w)/e∗ is the lender’s claim. Thus, e∗ is incentive compatible if and only if

ϕ(e∗) = Π− (1− w)/e∗ − ψ′(e∗) = 0 (4)

and U(e∗) = e∗Π − (1 − w) − ψ(e∗) > 0. Yet, e∗Π − (1 − w) − ψ(e∗) ≥ w > 0; otherwise, the

project would not have been undertaken in the first place. Thus, (4) is necessary and sufficient for

incentive–compatibility. Notice that ϕ(0) < 0, ϕ(1) < 0, and that ϕ(e∗) is strictly concave. Thus,

(4) has at most two solutions. Since any such solution is inferior to the unconstrained optimum

eFB, the optimum is given by the largest solution. Investment is feasible and optimal if and only if

(4) has a solution and project NPV is non–negative at the largest solution of (4). Both conditions

will be satisfied for Π sufficiently large.

Proof of Proposition 1

We know from the text that for s ≤ L− (1− w) the lender will impose a hard budget constraint.

Thus, let s > L − (1 − w) ≡ s′ and, w.l.o.g., R0 = L, and suppose the lender does not impose a

hard budget constraint (i.e., in equilibrium the lender strictly prefers to continue, e∗R > L). The

entrepreneur’s payoff function is

U(e) =

{
e (Π−R)− ψ(e) for e ≥ e′ = L/R > e∗

−ψ(e) for e < e′
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Thus, e∗ is incentive compatible if and only if

Π−R− ψ′(e∗) = 0 (5)

and U(e∗) = e∗(Π−R)−ψ(e∗) ≥ maxe−ψ(e) = 0, which holds with strict inequality by (IR) and

V − s ≥ w > 0. Thus, (5) is necessary and sufficient for incentive–compatibility. The lender’s

problem reduces to

max
e∗

e∗
(
Π− ψ′(e∗)

)
− (1− w)

s.t.

e∗ψ′(e∗)− ψ(e∗) ≥ V − s = eFBΠ− ψ(eFB)− (1− w + s) (IR”)

Recall that eM denotes the solution of the unconstrained problem, i.e., the unique solution of (2),

and eSB(s) denotes the unique solution of (IR”). At s = s′, (IR”) must be binding. If it were

slack, we would have e∗ = eM . Yet,

eMψ′(eM )− ψ(eM ) = eM (Π−R)− ψ(eM ) < eMΠ− ψ(eM )− L < V − s′ = eFBΠ− ψ(eFB)− L

by eMR > L and eM < eFB, and hence (IR”) would be violated. There thus is a threshold š > s′

such that (IR”) is slack if and only if s ≥ š. We assume š < V − w. Let then P (s) denote the

lender’s profit when (IR”) is binding,

P (s) = eSB(s)Π− ψ(eSB)−
(
eFBΠ− ψ(eFB)

)
+ s

Notice that P (s′) < L− (1− w) by eSB(s) < eFB. Furthermore,

P ′(s) =
deSB(s)

ds

(
Π− ψ′(eSB(s))

)
+ 1 = − 1

eSB(s)ψ′′(eSB(s))

(
Π− ψ′(eSB(s))

)
+ 1 > 0

by (2) and eSB(s) > eM for s < š (hence, Π−ψ′(eSB(s))−eSB(s)ψ′′(eSB(s)) < 0). In other words,

P (s) is strictly increasing in s. Thus, since P (s′) < L − (1 − w) and P (š) = eM
(
Π− ψ′(eM )

)
−

(1 − w) > L − (1 − w) by (3), there is a threshold ŝ ∈ (s′, š) where P (ŝ) = L − (1 − w), i.e., the

lender impose a hard budget constraint if and only if s ≤ ŝ.
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