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Abstract 
 
(Spatial) panel data are routinely modelled in discrete time (DT). However, there are 
compelling arguments for continuous time (CT) modelling of (spatial) panel data. 
Particularly, most social processes evolve in CT, so that statistical analysis in DT is an 
oversimplification, gives an incomplete representation of reality and may lead to 
misinterpretation of estimation results. The most compelling reason for a CT approach is 
that, in contrast to DT modelling, it allows adequate modelling of dynamic adjustment 
processes. The paper introduces spatial dependence in a CT modelling framework. We 
propose a nonlinear Structural Equation Model (SEM) with latent variables for estimation 
of the Exact Discrete Model (EDM), which links the CT model parameters to the DT 
observations. The use of a SEM with latent variables makes it possible to take 
measurement errors in the variables into account, leading to a reduction of attenuation 
bias (i.e., disattenuation). The SEM-CT model with spatial dependence developed here is 
the first dynamic structural equation model with spatial dependence. The spatial 
econometric SEM-CT framework is illustrated on the basis of a simple regional labour 
market model for Germany made up of the endogenous state variables unemployment 
change and population change and of the exogenous input variables change in regional 
average wage and change in the structure of the manufacturing sector. 
 
Keywords: continuous-time modelling, structural equation modelling, latent variables, 
spatial dependence, panel data, disattenuation, measurement errors, unemployment 
change, population change, Germany. 
JEL codes: C33, E24, O18, R11. 
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1. Introduction 
 
Socio-economic processes such as the development of prices, unemployment rates, 
investments, migration and political preferences are the outcomes of various decisions 
taken by different actors at different points in time. This basic feature gives rise to 
continuously evolving socio-economic dynamics, rather than to processes that change at 
specific discrete points in time only. The analyst, however, only observes the processes at 
discrete points in time (for example, yearly observations of regional unemployment). The 
typical approach in conventional (that is, discrete) time series modelling and panel data 
analysis is to ignore the continuous nature of the processes underlying discrete time 
observations. Consequently, discrete time series and discrete panel data analysis are 
simplifications of reality and may lead to bias in the mapping of dynamic adjustment 
processes of socio-economic phenomena and to misinterpretation of estimation results. 
Discrete-time (DT) analysis is at best a simplified approximation of real-world processes 
which take place in continuous time (CT) (2008). 

CT econometrics models the continuous nature of social processes by means of systems 
of differential equations. It departs from the assumption that different agents take 
different actions at different points in time. This assumption implies that there is no 
obvious time interval that can serve as a natural unit. This is in contrast to DT models 
(which are made up of systems of difference equations), which are typically formulated 
in relation to the data available (for example yearly or monthly data). 

A DT model estimated on the basis of, for example, monthly data will be different from 
a model estimated on the basis of annual data. CT models, however, are independent of 
the observation interval, and thus provide a common basis for accurate comparison of 
processes (Oud and Jansen 2000). These features enable the analyst to obtain predictions 
and simulations for any time interval, rather than for the time interval inherent to the data, 
as in the case of DT modelling. 

CT modelling is particularly useful for the analysis of dynamic adjustment processes 
(Gandolfo, 1993). Whereas in DT models it may not be possible to obtain an estimate of 
the adjustment speed when the time lags are short compared to the observation period, in 
CT models it is in general possible to obtain an asymptotically unbiased estimate of it. 
Specifically, CT modelling makes it possible to determine at what pace an effect builds 
up over continuously increasing intervals, at or between which observation points the 
maximum impact of an effect occurs, and at what pace it dies out. A CT model therefore 
allows a more satisfactory treatment of distributed-lag processes.  

CT modelling has a long history in the social sciences. In econometrics it was 
pioneered by, amongst others, Bartlett (1946), Koopmans (1950) and Phillips (1959); in 
sociology by Simon (1952) and Coleman (1968). For an overview, see amongst others, 
Bergstrom 1988). To our best knowledge, little attention has been paid to CT modelling 
in spatial econometrics.2

                                                 
2 For interesting applications, see Donaghy and Plotnikova (2003), and Piras et al (2007). Note that in 

spatial analyses the units of observation are usually discrete. There is, however, a growing interest in 
theoretical work on continuous-space modelling (see, for example, Puu 1997). A great challenge in 
spatial modelling and spatial econometrics is to explore the relationships between continuous time and 
continuous space modelling and to integrate both (see, amongst others, Cressie 1993; Wackernagel 1995; 
Donaghy 2001). 

 The reverse also holds: In CT modelling no attention has been 
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paid to spatial dependence nor, more generally, to dependence among units of 
observation (testees). 

In this paper we introduce spatial dependence in a CT modelling framework. Because 
of its relative unfamiliarity in geography and regional science, we also present a brief 
overview of the main characteristics of CT modelling compared to DT modelling and of 
estimation – by means of a Structural Equation Model (SEM) – of the Exact Discrete 
Model (EDM), which links the CT model to observations at discrete time points. We 
illustrate the CT modelling framework by a simple regional unemployment model for 
Germany. The model is made up of the endogenous state variables unemployment and 
population change and of the exogenous input variables change in regional average wage 
and change in the structure of the manufacturing sector. 
 
 
2. Main Characteristics of CT Modelling 

 
As observed above, in CT modelling the parameters estimated are independent of the 
observation intervals which implies that CT modelling makes it possible to ‘fill out’ the 
‘gaps’ between the discrete observation time points by model-based estimates of 
complete autoregressive and cross-lagged effect curves as well as mean trajectories. 
Figure 1, which is taken from Delsing and Oud (2008), illustrates this feature. It presents 
the mean curve E[x(t)], that is, the estimated mean trajectory in the population; an 
individual subject-specific mean curve E[x(t)|κ] (κ the random parameter with the subject 
specific value) and the trajectory E[x(t)|y] for the same individual subject. The latter, the 
conditional mean (conditional on the individual’s data vector y) or state space smoother 
(Durbin & Koopman, 2001), represents the best estimate of the individual’s sample 
trajectory through CT on the basis of the total data vector y.3

Figure 1

 E[x(t)|κ] and E[x(t)|y], 
though both relating to the same individual subject, differ because they exploit different 
kinds of information. E[x(t)|y] is based on all information available for the subject, while 
the subject-specific mean curve E[x(t)|κ] is the model expectation, conditioned on the 
single subject-specific parameter value (Oud & Singer, 2008).  

 shows that for E[x(t)|y] the gaps between the measurements in 1986, 1988, 
1990 and 1992 are filled out by interpolation. Similarly for the prediction interval 1992–
98. Furthermore, uncertainty of the interpolations and predictions is given by confidence 
intervals (dotted lines).4

                                                 
3 Observe that the conditional mean includes error components.  

 The confidence intervals for E[x(t)|y] typically go to zero at the 
observation points 1986, 1988, 1990 and 1992, but increase considerably in the 
prediction period after 1992. The confidence intervals show that the subject’s sample 
trajectory E[x(t)|y] is almost everywhere far above the mean curve E[x(t)], even in the 
prediction period, and for time points close to the measurement points below (for the first 
year) or above the individual’s subject-specific mean curve E[x(t)|κ] as well. However, in 
the prediction period E[x(t)|y] converges to E[x(t)|κ]. 

4 Note that the confidence intervals of E[x(t)|y] have been determined by the Kalman-smoother 
(Commandeur et al. 2010) which accounts for prediction errors and, if present, measurement errors in the 
data, but ignores sampling fluctuations in parameter estimates. Since E[x(t)|κ] and E[x(t)] only depend on 
parameter values and are not conditioned on the data, no Kalman-smoother confidence intervals are 
calculated.                                                                                                                                                                                 
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Both in CT and DT modelling the model parameters are estimated on the basis of 
discrete observations. However, in DT modelling the model parameters are used to 
estimate E[x(t)], E[x(t)|κ] and E[x(t)|y] for the four observation time points (1986, 1988, 
1990, 1992) only, and possibly used for extrapolation for the three prediction time points 
(1994, 1996, 1998). In contrast, CT modelling uses the model estimates to estimate the 
complete curves E[x(t)], E[x(t)|κ] and E[x(t)|y] for the entire interval 1986–98 by 
interpolation, and for the prediction interval 1992–98 by prediction. Clearly, the 
interpolations and predictions in CT are subject to uncertainty. However, the uncertainty 
is quantified in the model by means of confidence intervals.5

 
 

 
 
Figure 1. Estimated mean curve E[x(t)], subject-specific mean curve E[x(t)|κ] and sample 

trajectory curve E[x(t)|y] (for the same subject as in E[x(t)|κ] ) in CT 
(confidence intervals for the sample trajectory curve represented by dotted 
lines) 

 
DT modelling may be misleading in the case of unequal observation intervals within 

the same study, or when comparisons between different studies are made. This is shown 
in Figure 2, where (hypothetical) autoregression functions in CT of two studies, A and B, 
with two different observation intervals (0.50 in study A and 1.00 in study B) are 
depicted. Because CT autoregression function B exceeds autoregression function A 
everywhere, the obvious conclusion is that the autoregression in study A is lower than in 
study B. Nevertheless, in DT, for example at observation interval 0.50 (half-yearly 
observation interval), study A finds the autoregression value of 0.61 which is 

                                                 
5 For statistical details, see Section 4. 
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considerably larger than the value of 0.50 found at the interval 1.00 (yearly observation 
interval) in study B, which might lead to the erroneous conclusion that the autoregression 
in study A is larger than in study B. To obtain the correct answer, CT modelling is 
required, which makes it possible to compare the complete autoregression functions. An 
important corollary is that CT modelling allows combining the data of several studies 
with different observation intervals into one data set, testing whether the underlying CT 
parameters are equal and, if so, presenting one and the same autoregression function 
(Oud 2001). 
 

 
 
Figure 2.Two different autoregression functions in two different studies A and B. 
 
The misleading results of DT modelling in the case of unequal observation intervals may 
perhaps seem irrelevant when there are conventions to conduct surveys at similar 
intervals. However, using equal observation intervals is often no solution to the problems 
inherent to DT modelling. To see this, consider the two (hypothetical) CT reciprocal 
cross-lagged effect functions for x1 and x2 in Figure 3.6

Figure 3

 Unlike autoregression functions, 
which start at value 1, cross-lagged effect functions have starting value 0 (different 
variables cannot have any influence on each other over a time interval of length zero), 
increase until the maximum is reached (in  the maxima 0.250 and 0.240 are 
reached at the time points 1.02 and 1.64, respectively), and next taper off to 0 (in a stable 
model). Figure 3 shows that the two cross-lagged effect functions cross at interval 1.44. 
Both have here the same value 0.239, but are different over all other intervals. 
Particularly, for observation intervals < 1.44, the effect of x1 on x2 is larger than the 
reverse effect, while the opposite holds for intervals > 1.44. Using one and the same 
interval in DT does not resolve the problem. To illustrate this, assume that in DT only the 

                                                 
6 A cross-lagged effect function gives the effect of one variable on another as it develops over time. 
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observation interval 1.44 was used. This would give that the effect of x1 on x2 is equal to 
the effect of x2 on x1. However, the conclusion that both effects are equal everywhere 
would be false. Furthermore, using in DT equal intervals > 1.44 would lead to the finding 
that the effect of x2 on x1 exceeds the effect x1 on x2 . Again, the conclusion that the effect 
of x2 on x1 exceeds the effect of x1 on x2 everywhere would be false. CT analysis, 
particularly estimating the continuous-time effects and displaying the full autoregression 
and cross-lagged effect functions over the entire time axis, would be the way to obtain the 
correct answer. Note that the problems of using equal observation intervals in DT 
modelling, which are explained here for the case of crossing cross-lagged effect functions 
only, would also apply in the case of crossing autoregression functions. 
 

 
 
Figure 3. Cross-lagged effect functions for the reciprocal effects between x1 and x2 
 
 
3. Specification and Estimation of the Spatial-Dependence Continuous-Time Model 
 
Let x(t) be the n-dimensional (endogenous) vector of state variables,7

                                                 
7 In addition to observed state variables, we consider the possibility that the state variables are latent 

variables, that is, variables that cannot be directly observed due to unobservability or measurement error. 
Latent variables are measured by one or more indicators. For instance, the latent variable socioeconomic 
status is usually measured by means of the indicators income, education, and profession. In the present 
paper, we only deal with latent variables that are measured by one indicator, though with error. The 
presence  of latent variables requires the use of a measurement model relating the latent variables to their 
indicators, and a structural model which presents the relationships between the latent variables. For 
details, see Oud and Folmer (2008). 

 u(t) the r-
dimensional vector of (exogenous) fixed input variables, κ the n-dimensional vector of 
subject (region-) specific deviations from the fixed-mean intercept (that is, a vector of 
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‘random subject effects’ or ‘unobserved unit heterogeneity’) and W(t) the standard 
multivariate Wiener process. We consider the following spatial error model for regions 

1,2,...,i N= : 
 

 d ( ) d ( )( ) ( ) ,
d d

t tt t
t t

= + + +
x zAx Buκ
 

 

   (1) 

 d ( ) d ( ) d ( ) ,
d d d

t t t
t t t

= +
z z WR G



 

   (2) 

 
where ( 1) ( )rowvec Nn N n× ×=x X  and ( 1) ( )rowvec Nr N r× ×=u U  row-vectorize the data 
matrices X and U (for each region i there is a row with n values for the n state variables 
and a row with r values for the fixed input variables). Similarly for the random subject 
effects .κ  Furthermore, W  has the same dimension ( 1)Nn ×  as ,x  ,N= ⊗A I A  

,N= ⊗B I B  ,N= ⊗G I G  where the drift matrix A contains the coefficients of the causal 
relationships among the state variables, B the coefficients of the effects of the fixed input 
variables on the state vector, and the lower triangular matrix G transforms the 
uncorrelated standard multivariate Wiener process W(t) with variance t at time t into a 
process with variances possibly ≠ t at time t and correlations between its elements 
possibly ≠ 0.8

Matrix 
 

  is the spatial ( )N N×  connectivity matrix. For the multivariate case we 
specify the ( )Nn Nn×  matrix .n= ⊗ I   Associated with   are the spatial dependence 
parameters. In the general case of a different spatial dependence parameter for each state 
variable, we have the ( )n n×  spatial parameter matrix R, which for the N subjects 
becomes .N= ⊗R I R  In this paper, we assume one and the same spatial dependence 
parameter for the n state variables, that is, ρ .n=R I  This simplification safeguards the 
commutative property and has two advantages: (a) conventional standard procedures can 
be used to solve the stochastic differential equation implied by Equations (1) and (2); and 
(b) standard spatial econometric methods can be applied. Observe that Model (1)–(2) 
includes three parameter matrices to be estimated (A, B, and G) in addition to the spatial 
parameter ρ. 

From Equations (1) and (2), we derive: 
 

 1d ( ) d ( )( ) ( ) ( ) .
d d

t tt t
t t

−= + + + −
x WAx Buκ I R G





   

    (3) 

 
Equation (3) is solved over intervals [ , )t t t− ∆ of length t∆  by: 

                                                 
8 Observe that d ( ) dt tW  is not a stochastic process in the ordinary sense (see for example Arnold 1974) 

nor can 
0

( )d ( )
t

t
s s∫ F W  with possibly time-varying function F(t) be defined as an ordinary Riemann-

Stieltjes integral (Kuo 2006, pp. 9–10). The solution of Equations (1) and (2) nevertheless contains this 
nonstandard type of integral. However, as described in the references in this note, the problems of 
defining and handling the stochastic integral have been completely solved. 
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1

( ) ( ) d ( ) d

( ) d ( ),

t t

t t s t st t t t
t

t st t

t t t s t t s

s

∆ − −−∆ −∆

−
−−∆

= − ∆ + −∆ +

+ −

∫ ∫
∫

x A x A Bu Aκ

I R A G W

  

  

   
 (4) 

 
where ,t N t∆ ∆= ⊗A I A  e ,t

t
∆

∆ = AA  ,t s N t s− −= ⊗A I A  ( )e ,t s
t s

−
− = AA  and where for 

convenience sake, it is assumed that the input ( )tu  can be approximated by constants 
over the relevant intervals [ , )t t t− ∆  (for time-varying inputs, see Oud and Jansen 2000). 
Note that Δt and ( )t s−  are subscripts in t∆A  and t s−A  but multiplied by A in the 
exponents of e t∆A  and ( )e .t s−A  Observe furthermore the important role of the matrix 
exponential )][ (e e ,t t

t
t t ∆ ∆

∆
− −= =A AA  as well as the matrix exponential ( )e ,t s

t s
−

− = AA  
which appears three times inside the integrals. Particularly, e t∆A  gives the effect of 

( )t t− ∆x  on x(t) over the interval Δt. Over this interval input, subject, and noise effects 
enter continuously at time points [ , )s t t t∈ −∆  with effects ( )e t s−A on x(t). These effects 
(from successive time points s to t) must be ‘summed’ (via the integrals) to obtain the 

total effect. For an explicit expression of the integral d
t

t st t
s−−∆∫ A  we refer to Oud and 

Jansen (2000).  
Formula (4) is based on the assumption that the state ( )t t− ∆x  summarizes the entire 

history of the system up to t t−∆  at the single time point ( )t t−∆  (Polderman and 
Willems 1998, pp. 115-149) such that the single matrix exponential e t∆A  adequately 
captures the effects from the past over the interval Δt. The input, subject and noise effects 
after time point ( ),t t−∆  however, are exogenous and thus not captured by ( ).t t−∆x  
Therefore, their effects need to be summed over the interval Δt and separately added to 
the system. 

We write Equation (4) in compact form as follows: 
 

 

1( ) ( ) ( ) ( ) ( ),

where d ,

d ,

and ( ) d ( ).

t t t
t

t t st t
t

t t st t
t

t st t

t t t t t t t

s

s

t t s

−
∆ ∆ ∆

∆ −−∆

∆ −−∆

−−∆

= − ∆ + − ∆ + + − − ∆

=

=

− ∆ =

∫
∫
∫

x A x B u Hκ I R w

B A B

H A

w A G W

   

   

 



  





 (5) 

 
For an explicit expression of the covariance matrix of ( )t t− ∆w we refer to Oud and 
Jansen (2000). 

We now turn to estimation of the CT parameters on the basis of DT observation points 
{ }1,..., .i Tt t t∈  For this purpose, a ‘link’ or ‘tool’ is needed between the CT model (5) and 

the observations at the DT observation points { }1,..., .i Tt t t∈  Several links are available in 
the literature including the Approximate Discrete Model (ADM) and the Exact Discrete 
Model (EDM). In this paper we apply the EDM which is preferable to alternatives like 
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the ADM and several other estimation procedures in the literature that merely 
approximate the CT parameter matrices (Singer 1990). The EDM imposes nonlinear 
restrictions on the DT parameters (which are obtained by solving the differential 
equation) to ensure that the parameters estimated are exactly equal to the parameters of 
the underlying differential equation model. 

The EDM corresponding to Equation (5) reads as follows (Oud and Jansen 2000): 
 

 1( ) .
i i i i i i i i i it t t t t t t t t t

−
∆ −∆ ∆ −∆ ∆ −∆= + + + −x A x B u Hκ I R w   

     (6) 
 

where the parameter matrices are as in Equation (5).  
Equations (5) and (6) look very similar. However, whereas the former is a CT model 

defined for all t, the latter is a DT model defined for the discrete observation points 
1{ ,..., }.i Tt t t∈  The notation in Equation (6) is chosen to make clear that 1{ ,..., }i Tt t t∈  is a 

discrete observation time point in the continuous time interval. Observe that the CT 
parameter matrices in Equation (5) impose nonlinear restrictions on the DT parameter 
matrices in Equation (6) so that the latter exactly satisfy the CT model structure (1)–(2). 
The nonlinearity is apparent from the exponentials e t

t
∆

∆ = AA and ( )e t s
t s

−
− = AA  in (5) and 

(6). Traditional linearly-oriented programs for estimating a Structural Equation Model 
(SEM) such as LISREL (Jöreskog and Sörbom 1996) do not provide the exponential 
function and so cannot be employed. However, EDM (6) and thus the CT parameters in 
(1)–(2) can be estimated by means of a nonlinear SEM (using, for example, the Mx 
software by Neale et al. 2003). We formulate the SEM model by first defining the state, 
input, and error vectors ,x  ,u  and ,w  for successive observation time points ti.9

 
 

 
0 1

0 1

0 0 0 2

' ' '

' ' '

' ' ' ' '

,..., ,

,..., ,

( ), ,..., .

T

T

T

t t

t t

t t t tE

−

−

−

 =  
 =  
 = − 

x x x

u u u

w x x w w



 



 



   

 (7) 

 
Next, we write Equation (6) over all observation time points in comprehensive form as: 
 
 1

uκΓ Γ ( ) ,B −= + + + −x x uκ I R w

 

   





  (8) 
 
where we put all the T – 1 ( )×Nn Nn  matrices ∆



it
A  at the appropriate places in the 

( )×TNn TNn  matrix ,B


 the T – 1 ( )×Nn Nr  matrices ∆


it
B  in the ( )TNn TNr×  matrix 

u ,Γ


 and the T – 1 ( )×Nn Nn  matrices ∆


it
H  in the ( )×TNn Nn  matrix κΓ .



 The block-

diagonal ( )×TNn TNn  matrix T= ⊗I


    has (possibly asymmetric) blocks   on its 

                                                 
9 To our best knowledge there are no dynamic structural equation models with spatial dependence. For a   

cross-sectional spatial structural equation model we refer to e.g. Gebremariam et al. (2010a, b) who apply 
Kelejian and Prucha’s (2004) Feasible Generalized Three-Stage Least Squares Estimator.  
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diagonal. Because of the assumption ρ ,n=R I  we can write 1( )−−I R



  as 1(ρ ) −−I


  
with T blocks 1(ρ ) −−I   on its diagonal.10

Putting Equation (8) in terms of the spatially lagged variables 
 

=x x


 

   and u=u u


   
gives:  

 u uκρ( +Γ ρΓ Γ ,)B B= + − − + +x x I x u uκ w
  

     



 

    (9) 
 
Observe that in the derivation of Equation (9) from Equation (8) we have made use of the 
equality u u u=Γ u Γ u

 
 

    for u .T r= ⊗ ⊗I I


   Moreover, the transformed unobserved 

heterogeneity κ   is related to the original κ  in Equation (6) as follows: ( ) .= −κ I R κ    
Observe also that in the derivation of Equation (9) we have made use of the commutative 
property several times. 

Equation (9) can be specified as a latent variables SEM as follows: 
 

 
' ' ' ' '

u uκ

Γ
for 

, , ,Γ ρ( Γ ρΓ  Γ , )

B

B

= + +

  = = = = − −   

η η ξ ζ

η x ξ x u u κ ζ w I

 



 

 

   

     





  

 (10) 

 
which is conventionally written in variable form (rather than in terms of units of 
observation) as follows: 
 
 Γ .B= + +η η ξ ζ  (11) 

 
Further to Footnote 7 a SEM can contain both latent and observed variables.11

y

 If a SEM 
contains latent variables in the structural model, measurement equations are required 
which specify how the latent variables are measured, that is, how the observed variables 

 are related to the latent variables [ '   '] '.η ξ  If the variables in Equation (11) are latent, 
the measurement equation reads: 

 

 Λ . 
= + 

 

η
yε

ξ
 (12) 

 
Matrix Λ in Equation (12) contains the loadings, whereas the measurement errors are 
given by ε (with covariance matrix Θ). The measurement model parameter matrices Λ 
and Θ are estimated simultaneously with the other parameter matrices of Equation (11). 
For reasons of interpretation and identification, it is customary to specify unifactorial 

                                                 
10 The notation in Equation (8) is a compromise that combines the standard notations in state-space 

modelling and structural-equation modelling. Although it would be possible to introduce a new notation, 
we prefer to apply the combined notation so as to facilitate access to the constituting literatures. 

11 A major advantage of SEM is that measurement errors can be straighforwardly taken into account to 
reduce attenuation bias (Oud and Folmer 2008). 
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observed variables only, which means that each observed variable in y has a loading on 
only one single latent variable in [ '   '] '.η ξ  

The vector y  and its spatially lagged counterpart y  are defined analogously to x  and 
.x  Therefore, we assume that their loading matrices L



 (which are submatrices of the 

matrix Λ in Equation (12)) and measurement intercept vectors d


 are equal for y  and y . 
This gives the following measurement model for x  and .x  

 

 
,

.

= + +

= + +

y Lx d v

y Lx d v

 

  

 

  

  

 (13) 

 
We impose no equality constraints between the measurement error variances of v  and 

,v  since the measurement errors in v  are linear combinations of the measurements 
errors in v  and therefore typically have lower variance. In addition to y  and y  the 
vector of observables includes the input vectors 'u  and ' .u  As they are fixed, their 
measurement model reduces to identity relationships, i.e. they get loadings equal to 1’s in 
Λ and 0’s in ε in (12). 

If there is (as in the present case study) only one observed variable in y  for a given 
latent variable in ,x  as well as one observed variable in y  for a given latent variable in 

,x  then y  and x  as well y and x  are equal, except for the measurement errors in v  

and .v
12 =L I



 In such a case,  and ,=d 0


 so that no loadings or measurement intercepts 
are estimated. This model can be rendered identified by specifying the measurement error 
variances to be equal for the repeated measurements of the same variable in y  as well as 
y .13

Estimation of SEM models basically comes down to minimizing, in some metric, the 
distance between the theoretical covariance or moment matrix of the observed variables 
(as determined by the model specifications) and the corresponding sample matrix. 
Various estimators for SEMs exist, including maximum likelhood (ML). Oud and Folmer 
(2008) show that in the case of ML estimation the standard SEM likelihood function for a 
spatial dependency model needs to be augmented by the Jacobian correction term 

 

lnρ ,−| I |


 where ln denotes the natural logarithm. The size of the Jacobian correction 
depends on the number of dependent variables. In a conventional spatial error model with 
only a single dependent variable and weights matrix ,  the correction is: 

 
 lnρ .−| I |  (14) 
 

                                                 
12 In the full model (13) (including both matrices L



 and measurement intercept vectors d


) more than one 
(unifactorial) indicator per latent variable  may be specified. 

13 Of course, a measurement model would not be needed if there were only observed variables in the model, 
in which case we would have =y x   and .=y x 
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In a model with n dependent variables with equal spatial dependence parameter for the n 
variables with ( )×Nn Nn  matrix ,  the Jacobian correction is: 
 
 lnρ ln ρ .n− = −| I | | I |   (15) 
 
In a longitudinal analysis with n dependent variables and T observations and 



 of order 
( ),TNn TNn×  the correction is: 
 
 lnρ ln ρ .Tn− = −| I | | I |



  (16) 
 
Finally, if each of the n latent dependent variables is measured by m indicators, a 
( )×TNnm TNnm  matrix 



  applies and the correction becomes (Oud and Folmer 2008): 
 
 lnρ ln ρ .Tnm− = −| I | | I |



  (17) 
 
We observe that nonlinear SEM programs like Mx (Neale et al. 2003) can be applied to 

estimate the Equations (11) and (12), including all linear and nonlinear restrictions 
implied by both the CT and the spatial dependence specifications. 

 
 

4. Illustration: Regional Unemployment and Population Change in Germany 
 
The purpose of this section is to illustrate the CT modelling approach by estimating and 
interpreting a simple CT simultaneous equations model relating to the state variables 
regional unemployment change and regional population change, controlling for the 
effects of the input variables change of manufacturing work force and wage change on 
both state variables.14

Population change is explained by the changes in unemployment, wages and 
manufacturing workforce. We expect higher unemployment to have a negative effect on 
population change, particularly because of an induced increase of outmigration. Since 
higher wages will tend to attract individuals towards a region (inmigration), we expect a 
positive wage change coefficient. For the change of manufacturing specialization, we 

 In the first equation, unemployment change is explained by 
population change, average wage change of fulltime workers, and change of 
manufacturing workforce. The expected effect of population change on unemployment 
change is ambiguous, since it has an impact on both labour supply (giving a positive 
impact on unemployment development) and labour demand (giving a negative impact on 
unemployment development). For the input variables, we expect a positive impact of 
wage change, since higher wages represent greater costs to firms (as, for example, in Hall 
(1972) and Layard et al. (1991)). For the change in manufacturing workforce (regional 
specialization), we expect a negative impact because of improved employment 
opportunities. 

                                                 
14 It is possible to endogenize the latter two variables as well. See Oud et al. (2010). 
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expect a positive effect, though weak, on population change because of increased 
inmigration (see, for example, Budd et al. 1987). 

To sum up, the model is made up of: 
 

• The state variables unemployment change and population change. For each state 
variable, we expect an autoregressive effect. Moreover, we hypothesize a positive cross 
effect of population change on unemployment change (because we expect the labour 
supply effect to be stronger than the demand effect), and a negative cross effect from 
unemployment change to population change. 

• The fixed input variables wage change and change of the manufacturing workforce. 
We assume a positive wage change effect and a negative manufacturing workforce 
change effect on unemployment change. For population change we assume positive 
effects of both exogenous variables. 

• A first-order spatial lag for each of the state variables. We assume the spatial 
dependence parameter for the state variables to be equal such that R  in Equation (2) 
contains only a single spatial parameter ρ. 

 
The CT model is presented in Equation (18), where ud(t) is unemployment change, 

pd(t) population change, wd(t) wage change, and md(t) change of the manufacturing 
workforce: 

 

 

1
11 12 11 12 1 1

2
21 22 21 22 2 2

d ( )d ( ) ( ) ( ) ( ) ( )κ ,
d d

d ( )d ( ) ( ) ( ) ( ) ( )κ .
d d

z tud t a ud t a pd t b wd t b md t b
t t

z tpd t a ud t a pd t b wd t b md t b
t t

= + + + + + +

= + + + + + +
 (18) 

 
Coefficients a11 and a22 represent the CT autoregressive effects of ud and pd, a12 and a21 
the cross-effects of pd on ud and of ud on pd, respectively, whereas the effects of the 
input variables wd and md are given by b11 and b12 (on ud) and b21 and b22 (on pd). 
Finally, b1 and b2 are the intercepts, and κ1 and κ2 are the region-specific random 
intercepts. Because the random subject effects κ1 and κ2 represent deviations from the 
fixed intercepts b1 and b2, 1 2E(κ ) E(κ ) 0.= =  The squared deviations show up in the 
model as the variances

1
φκ  and 

2
φ ;κ  their covariance is 

1 2
φ .κ κ  

It should be observed that the CT effects basically are the limits of the corresponding 
effects in DT for the observation interval going to zero. Due to the nonlinear relationship 
between CT and DT effects, the parameter values may considerably differ between CT 
and DT, however. Although the infinitesimal ‘cross-effects’ a12 and a21 in CT can be 
interpreted similarly to the corresponding cross-lagged effects a12Δt and a21Δt in DT, the 
values of a12 and a21 may differ considerably from a12Δt and a21Δt; even the signs may 
change when going from the DT coefficients to the CT coefficients and vice versa. The 
reason is that the CT analysis also accounts for the autoregressive effects during the 
observation interval. In fact, the estimated cross-lagged DT effects are mixtures of the CT 
cross- and autoregressive effects. A variable with a high autoregressive CT effect, 
meaning that there is a strong tendency to sustain its value over time, also tends to retain 
the influence of other variables over a longer time interval than a variable with a low 
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autoregressive effect. So, even a relatively small CT cross-effect can result in a relatively 
high cross-lagged effect in DT, if the variable influenced has a high autoregressive effect. 
But the converse can also be true: a relatively strong CT cross-effect may have only a 
small impact over a DT interval because of a rather low autoregressive effect in the 
dependent variable.  

The CT autoregressive coefficients (direct feedback-effects) a11 and a22 are to be 
interpreted differently from the corresponding DT autoregressive coefficients. Suppose 
the cross-effects are zero, then a CT autoregressive effect of 0 in A (no change) 
corresponds to a DT autoregression of 1 in AΔt, and a CT autoregressive effect of –∞ in A 
(maximum negative feedback) to a DT autoregressive effect of 0 in AΔt. So, for zero 
cross-effects CT autoregressive effects in the range ( ,0)−∞  are transformed to DT 
autoregressive effects in the range (0,1). 

For the error components in Equation (18), Equation (2) applies, with spatial 

dependence parameter ρ and the parameters g11, g22 and g21 in matrix 11

21 22

0
.

g
g g

 
=  
 

G  

This matrix transforms the two independent standard Wiener processes 
 

 

1

2

dW ( )
d ( ) d

dW ( )d
d

t
t t

tt
t

 
 
 =
 
 
 

W  

 
into correlated general Wiener processes for ud and pd. 

Finally, we discuss the parameters relating to the initial time point when the process 
starts. First of all, there are the initial state means 

1 0
μ

tx and 
2 0

μ ,
tx  their variances 

1 0
φ ,

tx  

2 0
φ ,

tx  and covariance 
1 20 0

φ .
t tx x  Because the initial means may differ in regions with 

different levels of wd and md at the initial point, one may regress ud(t0) and pd(t0) on 
wd(t0) and md(t0) (which gives the regression coefficients 11 ,tb

0
 12 ,tb

0
 21tb

0
 and 22tb

0
), and 

subtract the regression means 11 0 12 0[ ( ) ( )]t tb wd t b md t+
0 0

 and 21 0 22 0[ ( ) ( )]t tb wd t b md t+
0 0

 to 
obtain the ‘pure’ initial means. Moreover, conditional on the initial inputs, the initial 
conditional variances and covariance of the state variables can be calculated. Finally, 
since the region specific random effects κ1 and κ2 are assumed to influence the state 
variables before as well as after initial time point t0, the four covariances between the 
initial state variables and the random region specific effects 

1 1 0
κφ ,

tx  
1 2 0

κφ ,
tx  

2 1 0
κφ

tx  and 

2 2 0
κφ

tx  are estimated, since they cannot, in general, be taken to be zero. 
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4.1. Empirical Analysis 
 
The empirical analysis relates to 439 German districts (NUTS-3 level of geographical 
aggregation, shown in Figure 4)15 over the period 2000–03. All observed variables in the 
model (two endogenous (state) variables and two exogenous (input) variables) are 
defined as changes, that is, differences between successive years.16 For convenience we 
divide the changes by 1,000. For instance, unemployment change in region r in 2000 is 
measured as (1/1000) * (unemployed in region r in 2000 – unemployed in region r in 
1999).17

The nonlinear restrictions imposed by Equation (5) on the DT parameters in Equation 
(6) are implemented as follows. The DT parameter matrix 

  

it∆
A  for successive intervals 

1it∆ =  is related to the matrix exponential as follows: 
 

 
11 12 1

21 22 2

0
11 12 01 1

21 22

= e e e e ,
i i

i i i i

i

i i

a a v
t tt t a a vt t

t
t t

a a

a a

   
∆ ∆   ∆ ∆ ∆ ∆ − −   

∆
∆ ∆

 
= = = = 
  

VAA M M M M  (19) 

 
where M is eigenvector matrix and V the diagonal eigenvalue matrix of A. The 
maximum likelihood procedure proceeds by inserting values for the CT parameters 

11 12 21 22, , ,a a a a  in A and for all other CT parameters which via (19) impose restrictions on 
the DT parameter matrix 

it∆
A  and on other DT parameter matrices. The resulting 

theoretical (restricted) moment or covariance matrix is estimated by minimizing the 
distance between the latter and the observed moment or covariance which gives the 
maximum of the likelihood function. The Mx code used to estimate the present labour 
market model can be downloaded from http://www.socsci.kun.nl/~hano/. 
 
 

                                                 
15 For NUTS-3 units, spatial dependence is likely, due to, amongst others, commuting. The data used in this 

application were provided by the German Institute for Employment Research (Institut für Arbeitsmarkt- 
und Berufsforschung, IAB), and include the entire Germany, consisting of 326 districts in the former 
West Germany, and 113 in the former East Germany. They have previously been analysed by, amongst 
others, Patuelli et al. (2010). 

16 The variables in our model are point observations of changes for which the CT framework presented 
above applies. It applies also for mixed stock and flow variables (Bergstrom 1984; Singer 1992).   

17 All variables are of orders of magnitude of thousands. By dividing the changes by 1000 the magnitudes 
of the variances and covariances are reduced which facilitates the calculations without affecting the 
results. 

http://www.socsci.kun.nl/~hano/�
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Figure 4. Map of the 439 German NUTS-3 regions 

 
To illustrate the advantage of SEM in reducing attenuation bias we estimate two model 

types: one without (I), and one with (II) measurement errors for the state variables and 
their spatially lagged counterparts. Compared to Model I, there are four additional 
parameters in Model II: the measurement error variances θν1 and θν12 for the observed 
state variables, and measurement error variances ν1θ


 and ν2θ


 for their spatially lagged 

counterparts (see Equation (13)). 
Both Model I and Model II are estimated by ML. Since T = 4, n = 2 and m = 1 (a single 

indicator per latent variable), the Jacobian correction term added to the likelihood 
function in both models is lnρ ln ρ 8ln ρ .Tnm− = − = −| I | | I | | I |



   
The estimation results are given in Table 1. First of all, we refer to the spatial 

dependence parameter ρ, which is 0.375 in Model I and 0.378 in Model II. In both 
models, ρ is highly significant. Since it is rather restrictive, we relaxed the assumption of 
equal spatial dependence for ud and pd in the SEM model. This relaxation, however, did 
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not lead to any significant improvement in model fit, as measured by the χ2-difference 
test. We conclude that the assumption of the same spatial dependence parameter ρ for 
both ud and pd is not contradicted by the data. 
 
Table 1. ML parameter estimates, associated z-values and (selected) goodness of fit 
statistics for model I (without measurement errors) and model II (with measurement 
errors) 
 
Par. Model I Model II 

Parameter 
estimate 

z Parameter 
estimate 

z 

Spatial parameter     
ρ   0.375   16.30*   0.378   14.00* 
Measurement error variances     
θν1     0.422   16.88* 
θν2     0.081     1.09 

ν1θ


     0.015     0.82 

ν2θ


     0.044     4.04* 

State effects     
a11 –1.664 –11.64* –0.594   –6.83* 
a12 –0.009   –0.17   0.013     0.54 
a21 –0.252   –2.00* –0.498   –4.64* 
a22 –1.363   –6.75* –1.168   –5.01* 
Input effects     
b11   0.016     0.39   0.005     0.19 
b12   0.047     0.98   0.021     0.78 
b21   0.001     0.01   0.017     0.49 
b22   0.033     0.89   0.014     0.34 
Fixed intercepts     
b1   0.633   10.21*   0.463   11.87* 
b2 –0.136   –1.97* –0.101   –1.65 
Random intercept variance     

2κφ    0.679     2.23*   0.439     1.64 

Error parameters     
g11   1.316   23.93*   0.156     1.61 
g22   1.196   19.93*   1.000   16.40* 
g21 –0.010   –0.18 –0.059   –0.31 
Initial (reduced) state means     

1 0
μ

tx  –0.656 –13.39* –0.647 –12.68* 

2 0
μ

tx  –0.146   –2.24* –0.148   –2.24* 

Initial (conditional) state variances and covariance 

1 0
φ

tx    0.419   14.96*   0.052     1.85 
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Par. Model I Model II 
Parameter 
estimate 

z Parameter 
estimate 

z 

2 0
φ

tx    1.270   14.76*   1.202   11.13* 

1 20 0
φ

t tx x  –0.014     0.40   0.015     0.42 

Initial time point regression coefficients     
11tb

0
   0.030     0.86   0.010     0.30 

12tb
0
 –0.057   –1.63 –0.049   –1.44 

21tb
0
   0.021   –0.51 –0.018   –0.42 

22tb
0
   0.029     0.69   0.027     0.63 

Covariances between random intercept and initial states 

2 1 0
κφ

tx  –0.085   –2.24* –0.091   –2.52* 

2 2 0
κφ

tx    0.940     5.25*   0.792     4.10* 

Fit     
χ2 770.2  650.7  
Df 206  202  
RMSEA 0.081  0.071  
* p-value < 0.05 

 
 
From the significance of the measurement error variance of ud (0.422) and of the 

spatially lagged pd (0.044) it follows that Model II is more adequate than Model I. This 
conclusion is supported by the significant improvement of model fit when the assumption 
of no measurement errors is dropped, as shown by the difference test 
( 2

difχ 770.2 650.7 119.5= − =  for df = 206 – 202 = 4). Finally, the RMSEA fit measure of 
Model II (0.071) is smaller than for Model I (0.08), and meets the criterion of a 
‘reasonable’ fit (Jöreskog and Sörbom 1996, p. 124). We conclude that Model II is 
preferable to Model I. Nevertheless, we initially consider both models below to illustrate 
the attenuation bias due to ignoring measurement error. 

Table 2 presents the CT state effect matrices A. To facilitate interpretation we also 
present the effect matrices AΔt for observation interval Δt = 1 derived from the CT state 
effect matrices.18 Moreover, in Table 2 we present both the standardized (by the initial 
standard deviations of ud and pd) and unstandardized effects in A and AΔt (in Table 1, 
only unstandardized effects are presented). Observe that unstandardized and standardized 
autoregression effects are equal, because the standard deviations in numerator and 
denominator are equal.19

 
 

                                                 
18 Observe that for intervals other than 1,t∆ =  the results would be totally different, as shown in Figure 

5a,b. 
19 Standardization prevents the effects from being dependent on the measurement scale unit of the variables 

involved. 
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Table 2. CT state effect matrices A and derived DT state effect matrices AΔt = eAΔt for 
Model I (without measurement errors) and Model II (with measurement errors) for a one-
year interval (Δt = 1), in unstandardized and standardized form 
 
Par. Model I Model II 

A AΔt=1 A AΔt=1 
Unstandardized     
ud 11a  = –1.664* 11 1ta ∆ =  =   0.190 11a  = –0.594* 11 1ta ∆ =  =   0.550 
pd →  ud 12a  = –0.009 12 1ta ∆ =  = –0.002 12a  =   0.013 12 1ta ∆ =  =   0.006 
ud →  pd 21a  = –0.252* 21 1ta ∆ =  = –0.056 21a  = –0.498* 21 1ta ∆ =  = –0.209 
pd 22a  = –1.363* 22 1ta ∆ =  =   0.256 22a  = –1.168* 22 1ta ∆ =  =   0.310 
Standardized     
ud 11a  = –1.664* 11 1ta ∆ =  =   0.190 11a  = –0.594* 11 1ta ∆ =  =   0.550 
pd →  ud 12a  = –0.016 12 1ta ∆ =  = –0.003 12a  =   0.063 12 1ta ∆ =  =   0.027 
ud →  pd 21a  = –0.145* 21 1ta ∆ =  = –0.032 21a  = –0.104* 21 1ta ∆ =  = –0.044 
pd 22a  = –1.363* 22 1ta ∆ =  =   0.256 22a  = –1.168* 22 1ta ∆ =  =   0.310 
* p-value < 0.05 

 
Comparison of Models I and II in Table 2 illustrates the disattenuation effect due to 

explicitly accounting for measurement errors. With the exception of the standardized CT 
effect of unemployment change on population change (ud →  pd) the coefficients in 
Model II are larger than the corresponding coefficients in Model I, indicating that the 
latter are subject to attenuation bias due to measurement errors. Therefore, for the 
remainder we restrict ourselves to Model II. 

From Table 1 and Table 2, it follows that, in accordance with our expectations (see 
Section 3), both ud and pd show substantial autoregressive effects (–0.594 and –1.168 in 
A; 0.550 and 0.310 in ).t∆A  In both models the coefficients 11a and 22a  are negative and 
significant, implying that the models are stable. Moreover, as hypothesized, ud has a 
negative effect on pd (standardized value of –0.104), which is highly significant (see 
Table 1). The cross-effect of pd on ud, however, is not significant. This result is in line 
with the hypothesized dual population effect on unemployment in that supply factors 
(such as a potentially larger workforce) may be counterbalanced by demand factors (such 
as an increased demand for goods). 

Table 1 shows that neither of the two input variables (wage change and change of the 
structure of the manufacturing sector) has a significant effect on either of the two state 
variables. The insignificant effect of wage change on unemployment change is counter-
intuitive. A possible explanation is the rigidity of wage setting in Germany (wages are 
often set nationally rather than regionally or at firm level), such that regional wages 
insufficiently reflect the regional unemployment structure. Its insignificant effect on 
population change may be due to constraints on labour mobility (such as, for example, 
inefficiencies in the housing market). Longer time lags (and hence longer time series) 
might show significant effects. 
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The fixed intercept of ud is positive, substantial (0.463) and highly significant, whereas 
the fixed intercept of pd is negative (–0.101) and not significant at the 5 per cent level. 
The random intercept variance and covariances for κ1 

1 1 1 1 20 0
κ κ κ( , , )

t tx xϕ ϕ ϕ  were not 

significant and have been left out of the final analysis, since they considerably affect the 
estimates of all other model parameters. The covariances of κ2 with the initial state 
variables, 

2 1 0
κφ

tx  and 
2 2 0

κφ ,
tx  are significant which supports a random intercept for pd 

(variance 
2κφ 0.439= ). From these results it follows that regions resemble each other 

much more with regard to unemployment change than population change. Particularly, it 
implies that each region is following its own expected population change curve. For 
unemployment change on the other hand, the data support one single expected curve 
towards which each region in Germany regresses. 

With regard to the error variances of the structural equations, we find that g11 and g21 
are insignificant. However, we do not impose restrictions of the type g11 = 0 and g21 = 0, 
since it is unrealistic to assume that the model explains all the variance in ud and all the 
covariance between ud and pd.  

The initial state variance of ud (0.052) is not significant. This outcome, together with 
the insignificance of its random intercept variance, means that regression for ud is not 
only towards the same expected curve for all regions, but also that the variance of the 
regions around this common expected curve is quite small. The initial state variance of pd 
(1.202), however, is significant meaning that from the start in 2000 the regions show 
clear differences in population change and, because of the random intercept variance, 
keep differences over time. 

The initial means of the state variables over the 439 German local labour markets show 
that both unemployment and population decrease at the beginning of 2000 (–0.64720

11 0 12 0[ ( ) ( )]t tb wd t b md t+
0 0

 and 
–0.148, respectively). The initial mean unemployment change is much larger (in absolute 
value) and has a higher z-value than the initial mean population change (z = –12.68 
versus z = –2.24). It should be noted that these means have been reduced by subtracting 
the (insignificant) regression means  and 

21 0 22 0[ ( ) ( )]t tb wd t b md t+
0 0

 from the initial means. The uncorrected initial means are even 
larger in absolute value (–0.975 for ud and –0.288 for pd). 

 
4.2. Autoregression Functions, Cross-Lagged Effect Functions, and Means Trajectories 

 
The estimates of Model II have been used to depict the autoregression functions of ud 
and pd (Figure 5a), the standardized cross-lagged effect functions of ud →  pd and pd →  
ud (Figure 5b), and the means trajectories of ud and pd (Figure 5c) in CT. Because the 
model is asymptotically stable, both the autoregression functions and the cross-lagged 
effect functions go to zero. 

Figure 5a shows the decay of the autoregressive effects of ud and pd. The decay is 
smaller for pd than for ud. For pd, the decay is approximately 70 per cent and for ud 
approximately 90 per cent after two years. 

                                                 
20 Meaning a mean decrease of 647 unemployed persons per local labour market over the previous year.  
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The standardized cross-lagged effect functions in Figure 5b show the effects in terms of 
standard deviation units21

→

 of the dependent variable from a standard deviation unit 
increase in the explanatory variable. The cross-lagged effect functions start from zero, 
then reach a maximum (pd  ud), and a minimum (ud →  pd), respectively, and finally 
die out towards zero. In both directions (ud →  pd and pd →  ud), the effects are rather 
small and in both cases the extreme values are reached after 1.15 years. Figure 5b shows 
that, at the extremes a standard deviation increase in unemployment change diminishes 
population change by 0.044 standard deviations while a standard deviation increase in 
population change increases employment change by 0.027 standard deviations. Observe 
that the effects die out rather slowly: in both cases, after four years, more than a quarter 
of the maximum impact is left. 

Figure 5c depicts the autonomous developments of the means of ud and pd independent 
from input effects. They are given by (see Oud and Jansen 2000):  

 
 0 0) )1

0
( ([ ( )] e [ ( )] [e ] ,t t t tE t E t− −−= + −A Ax x A I b  (20) 

 
where b includes the fixed intercepts. Equation (20) shows that the mean development is 
driven by two components: the autoregression effect of the initial means 0[ ( )]E tx  and the 
integrated effect of the intercepts b over the entire time period considered. Model II 
estimates are used for the calculation of A, b, and x(t0) in Equation (20). Figure 5c shows 
that over the observation period 2000–03, shortly after 2001, the mean unemployment 
decrease turned into an unemployment increase which starts levelling off after 2003. The 
mean population decrease diminished until shortly before 2001, and then the downward 
trend increased again. Both trajectories tend to a stable equilibrium. This stable 
equilibrium implies for ud a mean unemployment increase of 770.1 per region and, for 
pd, a mean population decrease of 414.4. 

                                                 
21 Standard deviations are over regions. 



 21 

 

(a)

 

pd 

ud 

 

(b)

 

pd→ ud 

ud→ pd 

 

(c)

 

ud 

pd 

 
 
Figure 5. Autoregression functions (a); standardized cross-lagged effect functions (b); 

Means trajectories (c)22

 
 

 
5. Conclusions 
 
In this paper we have incorporated spatial dependence in a continuous-time (CT) 
modelling framework, as introduced in econometrics in the 1950s by, amongst others, 

                                                 
22 All functions based on Model II parameters. 
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Koopmans (1950) and Phillips (1959), and in sociology by Simon (Simon 1952) and 
Coleman (1968). For this purpose we have combined the CT modelling approach 
developed by Oud and Jansen (2000) with the spatial dependence approach by Oud and 
Folmer (2008).  

We have shown that CT modelling, in contrast to discrete-time (DT) modelling, takes 
explicitly into account the continuous nature of (socioeconomic) processes. Whereas DT 
modelling estimates a model made up of difference equations on the basis of observations 
at discrete points in time, CT modelling estimates a model made up of differential 
equations on the basis of the same observations; however, under restrictions derived from 
the underlying CT model. The model thus estimated allows to ‘fill the gaps between 
observation points’ by means of model-based interpolations and extrapolations. The main 
advantages compared to DT modelling are that CT models are independent of the 
observations interval and thus provide a common basis for accurate comparison of 
differently time-spaced models of the same process. Accordingly, predictions and 
simulations can be made for any time interval rather than for the observation points, as in 
DT modelling. This feature is especially relevant for the analysis and comparison of 
dynamic adjustment processes.  

We have estimated the Exact Discrete Model (EDM) that links the CT model to the 
observations at discrete time points in a Structural Equation Model (SEM). A SEM 
allows simultaneous handling of both latent (e.g. socioeconomic status or utility) and 
observable variables (e.g. income) in one model framework. Whereas the latter have 
direct empirical meaning, latent variables can only be observed via observables. The use 
of latent variables does not only allow a closer correspondence between theory (which 
usually contains latent variables) and empirics, but also makes it possible to reduce 
multicollinearity and attenuation bias (Folmer and Oud 2008; Folmer 2009). 

We have extensively illustrated the CT-SEM model framework including spatial 
dependence by means of a data set of 439 German districts (NUTS-3 level of 
geographical aggregation) over the period 2000–03. The simultaneous equation model 
presents the reciprocal effects of regional unemployment change and regional population 
change, taking into account the effects of the input variables change of manufacturing 
workforce and wage change on both state variables. In a follow-up study the CT labour 
market model used here for illustrative purposes will be the core objective, and the model 
will be extended to include longer time periods. Moreover, the exogenous input variables 
wage change and change of economic structure will be made endogenous, in particular to 
test the responsiveness of wages to unemployment.  
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