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Abstract

The Cross Entropy method is a well-known adaptive importance sampling

method for rare-event probability estimation, which requires estimating an optimal

importance sampling density within a parametric class. In this article we estimate

an optimal importance sampling density within a wider semiparametric class of

distributions. We show that this semiparametric version of the Cross Entropy

method frequently yields efficient estimators. We illustrate the excellent practical

performance of the method with numerical experiments and show that for the

problems we consider it typically outperforms alternative schemes by orders of

magnitude.

Keywords: Light-Tailed; Regularly-Varying; Subexponential; Rare-Event Probabil-

ity; Cross Entropy method, Markov Chain Monte Carlo.
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1 Introduction

In this article we consider the problem of estimating rare-event probabilities of the

form

ℓ = P(S(X) > γ), X = (X1, . . . , Xd),

where S(x) = x1+ · · ·+xd and X1, . . . , Xd are (possibly dependent) random variables.

We call these the jump variables. Such estimation problems arise in various contexts,

see, for example, [1, 3, 9]. We describe an adaptive importance sampling algorithm,

which can be viewed as the semiparametric version of the well-known Cross Entropy

(CE) method for estimation of rare-event probabilities [15]. The main ingredients of

the semiparametric CE method are as follows.

First, similar to [5, 6] we use a Markov Chain Monte Carlo (MCMC) algorithm to

obtain random variables distributed according to the minimum variance importance

sampling density. In our context the minimum variance importance sampling density

is simply the density of the vector X conditioned on the rare event S(X) > γ. Second,

with the MCMC sample at hand, we construct a conditional (or a Rao-Blackwell) esti-

mator of each of the marginal densities of the minimum variance importance sampling

density. Finally, we use the product of these (estimated) marginal densities as our

importance sampling density in order to estimate ℓ. Under idealized conditions that

ignore the error arising from the MCMC sampling, we show that the resulting esti-

mator achieves either logarithmic or bounded relative error efficiencies. The strength

of the method is not only that it outperforms the currently recommended estimation

procedures for heavy-tailed probabilities, but that the exact same procedure is efficient

in problems with light-tailed probabilities. For example, we show that unlike any ex-

isting procedures, the method is efficient in the Weibull case for all values of the tail

index α, even in the light-tailed case with α > 1.

Numerical experiments show that, despite the heuristic nature of the MCMC step,

the estimator can in practice be frequently more reliable and efficient than tailor-made

importance sampling schemes. In other words, an advantage of the methodology advo-

cated here is that a single broadly-applicable heuristic algorithm provides satisfactory

practical performance on a range of different estimation problems (both in light- and

heavy-tailed cases) and frequently this performance is superior to estimation schemes

that are specifically designed to a particular rare-event estimation problem.

The rest of the paper is organized as follows. In Section 2 we quickly review the

parametric CE method and introduce its semiparametric version. This is followed by a

number of examples with details about the practical implementation of the estimator.

The examples aims to demonstrate the superior performance of the proposed algorithm

compared to existing estimation algorithms on a number of prototypical examples. In

Section 4 we provide theoretical analysis of the efficiency of a simple version of the

estimator for light- and heavy- tailed random variables. Finally, Section 5 gives some

concluding remarks.
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2 Cross Entropy method

2.1 Parametric Cross Entropy method

In order to introduce the semiparametric version of the CE method, we briefly review

the CE method itself. Let f(x) be the joint density of the vector X = (X1, . . . , Xd)

and suppose that it is part of the parametric family

F =
{
f(·;v) : Rd → R⩾0 :

∫
f(x;v) dx = 1;v ∈ V

}
, (1)

where V ⊂ Rp is the feasible parameter set. The assumption is that f(x) ≡ f(x;u) ∈
F for some u ∈ V . Then, the objective is to find a parameter v ∈ V that yields a

good importance sampling estimator of the form:

ℓ̂CE =
1

m

m∑
i=1

I{S(Yi) > γ}f(Yi;u)

f(Yi;v)
, Y1, . . . ,Ym

iid∼ f(y;v) . (2)

In the CE method the best parameter v∗ ∈ V is the one which minimizes the cross

entropy distance between f(·;v) ∈ F and the zero-variance importance sampling

density

π(x) =
I{S(x) > γ}f(x)
P(S(X) > γ)

.

In other words,

v∗ = argmin
v∈V

∫
π(x) ln

(
π(x)

f(x;v)

)
dx = argmax

v∈V

∫
π(x) ln f(x;v) dx . (3)

In practice the integral
∫
π(x) ln

(
π(x)
f(x;v)

)
dx is estimated from a preliminary simulation

so that we obtain the estimator of v∗:

v̂∗ = argmax
v∈V

n∑
i=1

ln f(Xi,v), (4)

where X1, . . . ,Xn is an approximate sample from π obtained via Markov chain Monte

Carlo (MCMC) sampling over the restricted set Sγ , see [7] and Remark 1 below. In

this way we use MCMC to learn about the optimal (in cross entropy sense) parameter

v∗. In many applications the parametric density f(·;v) is of product form: f(x;v) =∏d
i=1 fi(xi; vi). For the special case where each fi(xi; vi) belongs to a one-parameter

exponential family parametrized by the mean [18, Pages 69-70], the solution of (4) is

given by the maximum-likelihood estimator of the mean vector:

v̂∗i =
1

n

n∑
j=1

Xj,i, i = 1, . . . , d ,

where Xj,i is the i-th coordinate of the j-th sample Xj . We thus use the importance

sampling estimator (2) with v = v̂∗.
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Remark 1 (Generating X1, . . . ,Xn via Gibbs sampling) In our discussion we

assume that the conditional densities π(xi |x−i) are available in closed form. We can

thus use the following Gibbs sampling procedure to obtain X1, . . . ,Xn
approx∼ π.

Algorithm 1 (Gibbs Sampler)

Require: An initial state X0 ∼ f(x) and sample size n.

for t = 0, . . . , n− 1 do

Set Y = Xt.

for i = 1, . . . , d do

Draw Yi ∼ π(yi |Y1, . . . , Yi−1, Xt,i+1, . . . , Xt,d).

Set Xt+1 = Y.

2.2 Semiparametric Importance sampling

Recall that the original CE method aims to find the best importance sampling density

f(·;v∗) ∈ F within the parametric family (1); namely by solving the parametric

optimization program (3). In contrast, in the semiparametric CE method the objective

is to find the optimal importance sampling density amongst a family of densities given

by some common property. Again, the optimality criterion is to minimize the cross-

entropy distance from the the zero-variance density. Denote by G1 the set of all single-

variate probability density functions; that is, g(x) : R → R⩾0 is absolute continuous

with
∫
g(x) dx = 1. Let G be the family of product-form densities on Rd:

G =
{
g(·) : Rd → R⩾0 : g(x) =

d∏
i=1

gi(xi); gi ∈ G1, i = 1, . . . , d
}
.

In this paper we consider G as the target set of importance sampling densities. Hence,

the objective is to solve the functional optimization program ming∈G

∫
π(x) ln

(
π(x)
g(x)

)
dx.

This is equivalent to

g(x) = argmin
g1,...,gd∈G1

∫
π(x) ln

(
π(x)∏d

i=1 gi(xi)

)
dx = argmax

g1,...,gd∈G1

∫
π(x) ln

(
d∏

i=1

gi(xi)

)
dx.

(5)

Lemma 1 Let πi(xi) be the i-th marginal of the zero-variance density π(x). Then the

solution to the semiparametric CE program (5) is gi = πi for all i = 1, . . . , d. In other

words, the optimal importance sampling density within the space of all product-form

densities is the one given by the product of the marginals of π(x).

The proof is given in the Appendix. In practice the marginal densities of π are not

available (just like the exact v∗ in (3) is not available) and need to be estimated from

simulation. Here we use the estimators

π̂i(yi) =
1

n

n∑
k=1

π(yi |Xk,−i), i = 1, . . . , d , (6)

where
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• X1, . . . ,Xn is an approximate sample from π obtained via Gibbs sampling as in

(4) (see also Remark 1);

• the vector Xk,−i is the same as Xk except that the i-th component is removed;

• π(xi |Xk,−i) is the conditional density of xi given all the other components of

Xk.

The estimator (6) is motivated by the simple identity:

Eπ[π̂i(y)] =
1

n

n∑
k=1

Eπ[π(y |Xk,−i)] = Eπ[π(y |X−i)]

= Eπ[π(y |X1, . . . , Xi−1, Xi+1, . . . , Xd)]

=

∫
π(y |x1, . . . , xi−1, xi+1, . . . , xd)π(x) dx

=

∫
π(x1, . . . , xi−1, y, xi+1, . . . , xd)

π(x1, . . . , xi−1, xi+1, . . . , xd)
π(x) dx

=

∫
π(x1, . . . , xi−1, y, xi+1, . . . , xd)

π(x1, . . . , xi−1, xi+1, . . . , xd)
dx−i ×

π(x1,...,xi−1,xi+1,...,xd)︷ ︸︸ ︷∫
π(x1, . . . , xd) dxi

=

∫
π(x1, . . . , xi−1, y, xi+1, . . . , xd) dx−i = πi(y) .

We define the approximation to the optimal semiparametric CE solution by the product

of marginal density estimators (6), that is,

ĝ(y)
def
=

d∏
i=1

π̂i(yi). (7)

Then we estimate ℓ by the importance sampling estimator

ℓ̂ =
1

m

m∑
i=1

I{S(Yi) > γ}f(Yi)

ĝ(Yi)
, Y1, . . . ,Ym

iid∼ ĝ(y) , (8)

Note that, conditional on X1, . . . ,Xn, each π̂i is an equally weighted mixture of

n densities (with k-th component π(yi |Xk,−i)) and hence sampling Yi ∼ π̂i(yi) can

be performed using the composition method [16][Page 53]. In other words, choose

a component of the mixture at random by generating K uniformly from the set of

integers {1, . . . , n}. Then, given K = k, sample Yi from the k-th mixture component

Y ∼ π(yi |Xk,−i). Finally, deliver Yi as a realization from π̂(yi) and (Y1, . . . , Yd) as a

realization from ĝ(y).

Remark 2 (Using exact conditional density) Note that once we have sampled

Y1, . . . , Yd−1 from π̂1, . . . , π̂d−1, respectively, we have the option of sampling the final

Yd from the exact conditional π(yd |Y1, . . . , Yd−1), instead of from the d-th marginal

π̂d. This reduces the cross entropy distance to π even further and yields the alternative

and typically more efficient estimator (8) with ĝ(y) redefined as

ĝ(y)← π̂1(y1)× · · · × π̂d−1(yd−1)× π(yd | y1, . . . , yd−1) .
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3 Examples and Practical Implementation

In this section we consider the prototypical problem of estimating P(X1+· · ·+Xd > γ),

where the jumps X1, X2, . . . may or may not be dependent. In the case of independent

jumps, the proposed importance sampling can yield practical performance surpassing

that of well established alternative estimation procedures such as the Asmussen-Kroese

(AK) estimator [2, 4]. This is in part due to the fact that our estimator incorporates

the ingenious exchangeability and conditioning proposed in [2]. First, recall that the

AK estimator in [2] based on one replication is given by

ℓ̂AK = dF
((

γ −
d−1∑
j=1

Xj

)
∨max

j<d
Xj

)
, X1, . . . , Xd−1

iid∼ F .

The motivation for the estimator is the identity ℓ = dP
(
X1+· · ·+Xd > γ,Xd = Md

)
=

dEF
((

γ−
∑d−1

j=1 Xj

)
∨maxj<dXj

)
, where x∨ y = max{x, y} and Md

def
= maxj⩽dXj .

This conditional estimator enjoys excellent practical performance for the problems we

consider below. For further details we refer to [4, 13], where the authors prove that

the estimator is a vanishing relative error one.

We obtain an estimator that outperforms ℓ̂AK in terms of (estimated) relative time

variance by exploiting the decomposition proposed in [14] and the ex

ℓ = P(Md > γ) + P(S(X) > γ,Md < γ)

= P(Md > γ) + dP(S(X) > γ,Xd = Md < γ), by exchangeability of jumps

= 1− P(Md < γ) + d P(Xd = Md < γ) P(S(X) > γ |Xd = Md < γ)

=

dominant term︷ ︸︸ ︷
1− [F (γ)]d +P(Md < γ)

residual probability︷ ︸︸ ︷
P̃
(
S(X) > γ

)
,

where the new probability measure P̃(·) = P(· |Xd = Md < γ) with corresponding

density

f̃(x) = f(x |Xd = Md < γ) =
d f(x)

[F (γ)]d
I {Md < γ,Xd = Md} .

Estimating the residual probability, we obtain the one replication estimator for ℓ as

ℓ̂ =1− [F (γ)]d +
f̃(Y)

ĝ(Y)
I
{
S(Y) > γ

}
, Y ∼ ĝ(y) , (9)

where ĝ(y)
def
= π̂1(y1) · · · π̂d−1(yd−1) π(yd | y1, . . . , yd−1) is the estimated importance

sampling pdf described in Remark 2.

In the following examples we used the relative time variance product (RTVP) and

the ratio of relative errors as a measure of efficiency:

Ratio
def
=

σ̂AK/ℓ̂AK

σ̂/ℓ̂
, RTVP

def
= Ratio2 × τAK

τ
,
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where σ̂AK and σ̂ are the sample standard deviations of ℓ̂AK and ℓ̂ (all based on

m replications), respectively , and τAK and τ are the CPU times taken to compute

the respective estimators. The quantity τ includes the CPU time needed for the

preliminary MCMC simulations.

Example 1 (Weibull case) Here we wish to estimate P(X1 + · · · + Xd > γ) and

assume that each of the jumps Xi has density αxα−1e−xα
for x > 0 and 0 < α < 1.

Hence, F (x) = e−xα
. In comprehensive simulations studies the proposed estimator

outperformed the Asmussen-Kroese (AK) estimator in terms of relative time variance

for all values of the parameters α and γ. The improvement, however, was not uniform,

see Table 1, where, for example for α = 0.1, we can see savings from as little as 71

times to as large as approximately 6000. The general trend is for large gains for smaller

γ and α > 0.6 or α < 0.3. The AK estimator was strongest in the range α ∈ [0.3, 0.6]

with values for α ̸∈ [0.3, 0.6] rendering it less efficient compared to (9).

Note that the AK estimator is much faster to evaluate than (9), but this speed

is insufficient to offset the substantial gains in squared relative error (given by Ratio

column).

Table 1: Comparison of importance sampling method with the AK estimator. Algo-

rithmic parameters were chosen to be n = 103,m = 106, d = 10. The AK estimator is

based on m = 106 replications.

α = 0.1

γ ℓ̂ Rel. Err. Ratio RTVP

1010 4.54/104 1.7/106 132 71

1011 3.40/105 4.1/107 222 197

1012 1.30/106 6.4/108 722 2071

1013 2.16/108 8/109 592 1429

1015 1.84/1013 1.3/1010 1252 5944

α = 0.2

γ ℓ̂ Rel. Err. Ratio RTVP

104 1.97/102 6.5/105 32 3.7

105 4.64/104 1.8/105 5.62 12

106 1.31/106 3/106 9.22 33

107 1.23/1010 4.3/107 102 42

108 5.13/1017 6.5/108 72 20

α = 0.6

γ ℓ̂ Rel. Err. Ratio RTVP

102 9.47/106 2.6/104 192 130

150 7.83/108 1.5/104 412 550

200 1.34/109 1.5/104 632 1376

500 1.83/1017 1.7/104 5.52 11

103 7.00/1027 9.5/105 62 13

α = 0.9

γ ℓ̂ Rel. Err. Ratio RTVP

30 1.33/104 9/104 132 50

40 6.27/107 9/104 782 1758.7

50 2.25/109 1/103 2542 17746

60 7.01/1012 1/103 5562 87103

100 4.34/1022 1/103 3002 23768

Remark 3 (Efficient evaluation of ĝ) If we define, ck
def
=
(
γ −

∑
j ̸=iXk,j

)+
, then

(6) simplifies to

π̂i(yi) =
1

n

n∑
k=1

π(yi |Xk,−i) =
1

n
αyα−1

i e−yαi

n∑
k=1

I{yi ⩾ ck}/e−ck = f(xi)
1

n

n∑
k=1

I{yi ⩾ c(k)} × ec(k) ,

where the term
∑n

k=1 I{yi ⩾ c(k)}× ec(k) can be evaluated for an arbitrary yi quickly by

first computing and storing in memory the cumulative sums
∑i

k=1 e
c(k) , i = 1, . . . , n

and then using table look-up methods with O(n) time complexity.
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Example 2 (Pareto case) Assume that the jumps Xi have Pareto density and dis-

tribution functions given by f(x) = α/xα+1, F (x) = 1 − 1/xα, x ≥ 1. The following

table shows the results of a comparison with the AK estimator for different values of

α and γ. Again, the efficiency gains with the proposed method can be of the order of

104.

Table 2: Comparison of importance sampling with the AK estimator for Pareto case.

Here n = 103,m = 106, d = 10.

α = 0.5

γ − d ℓ̂ Rel. Err. Ratio RTVP

108 1.00/103 5.6/107 332 209

1010 1.00/104 5.8/108 1072 3007

1011 3.16/105 1.8/108 1762 6270

1012 9.99/106 5.92/109 3642 34271

1015 3.16/107 1.9/1010 5842 82494

α = 1

γ − d ℓ̂ Rel. Err. Ratio RTVP

104 1.00/103 5.1/106 72 11

106 1.00/105 1.0/107 382 330

108 1.00/107 1.4/109 912 1711

1010 1.00/109 2.61/1011 422 322

1013 1.00/1012 3/1014 242 123

α = 5

γ − d ℓ̂ Rel. Err. Ratio RTVP

101 2.58/104 1.5/104 102 66

102 1.06/109 1.2/105 42 11

103 1.00/1014 1.13/106 42 11

104 1.00/1019 1/107 4.42 11

105 1.00/1024 1.2/108 42 11

α = 10

γ − d ℓ̂ Rel. Err. Ratio RTVP

5 1.75/106 2.4/104 302 609

10 1.09/109 9.93/105 62 22

102 1.00/1019 8.8/106 42 13

500 1.02/1026 1.6/106 52 11

1500 1.73/1031 5.5/107 4.42 13

Example 3 (Compound Sum) We are interested in estimating the tail probability

of a compound sum of the form P(X1 + · · · + XR > γ), where the jumps Xi are iid

with Weibull distribution with parameter 0 < α < 1, and (without loss of generality)

R ∼ Geom(ϱ) is a geometric random variable with pdf ϱ(1 − ϱ)r−1, r = 1, 2, . . .. We

have P(SR > γ) = P(X1 + · · ·+XR > γ) =

ϱ

∞∑
r=1

(1− ϱ)r−1P(Sr > γ) = ϱ

∞∑
r=1

(1− ϱ)r−1P(Mr > γ) + ϱ

∞∑
r=2

(1− ϱ)r−1P(Mr < γ, Sr > γ)

=
F (γ)

F (γ) + ϱF (γ)︸ ︷︷ ︸
dominant term

+
ϱ(1− ϱ)(F (γ))2

F (γ) + ϱF (γ)
P̃
(
SR > γ

)
︸ ︷︷ ︸

residual probability

,

where under the new probability measure P̃ we have (R − 1) ∼ Geom(F (γ) + ϱF (γ))

with pdf P̃(R = r) = fR(r), r = 2, 3, . . . and X1, X2, . . .
iid∼ f(x) with pdf given by

the truncated Weibull density f(x) = αxα−1e−xα
/(1 − e−γα

), 0 < x < γ. Hence, we

can again apply our importance sampling estimator to estimate the residual probability

P̃(SR > γ). The minimum variance pdf for the estimation of the residual is

π(y, r) ∝ fR(r)

r∏
j=1

f(yj) I{Sr > γ},
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which can be easily sampled from using the Gibbs sampler in Algorithm 1 by noting

that

π(r |Y) ∝ fR(r) I{r ⩾ r∗(Y)}, r∗(Y)
def
= min{r : Y1 + · · ·+ Yr > γ} .

Table 3 gives the results of a number of numerical experiments. The results of

our proposed method are significantly better in all cases, except α = 0.2 with 1/ϱ ∈
{50, 100}. In the latter case, the variance reduction achieved by the proposed method is

not sufficient to offset the computational cost of simulating compound sums of expected

length of 1/ϱ. Note that for α ⩾ 0.5, the proposed method can be thousands of times

more efficient. Our proposed method is also more efficient than the recently proposed

improved Asmussen-Kroese estimator [12][Table 2]. For example, based on the reported

variances and computing time in [12], in terms of RTVP our estimator is from 8.5 to

45 times more efficient. We must note, however, that the results given in Table 2 of

[12] appear to be incorrect. For example, for ϱ = 0.15, α = 0.75, γ = 63.361 Table 2

reports the estimate 5.23 × 10−4 with relative error of 0.4%. In contrast, we obtained

the estimate 5.38 × 10−4 with relative error 0.03%, which we verified with a Crude

Monte Carlo simulation using 109 repetitions.

Table 3: Compound Weibull sum with expected number of jumps 1/ϱ. Here n =

104,m = 106.

α = 0.2 with γ = 106 fixed

1/ϱ ℓ̂ Rel. Err. Ratio RTVP

5 6.56/107 1.4/105 3.62 9.6

10 1.31/106 3.1/105 2.82 3.5

20 2.65/106 5.1/105 2.22 1.2

50 6.81/106 1.7/104 1.42 0.03

100 1.42/105 1.7/104 22 0.04

α = 0.5 with γ = 500 fixed

1/ϱ ℓ̂ Rel. Err. Ratio RTVP

3 7.34/1010 7.3/104 42 16

5 1.60/109 1/103 4.12 12

10 1.17/108 1.7/103 472 445

20 1.24/105 7.2/104 2462 7300

50 7.9/103 2.1/104 582 110

α = 0.8 with γ = 30/ϱ depending on ϱ

1/ϱ ℓ̂ Rel. Err. Ratio RTVP

3 6.29/1011 1.2/103 3302 46000

5 1.65/1011 6.4/104 9302 200000

10 6.94/1012 3.8/104 25612 780000

20 4.64/1012 2.7/104 36362 34000

50 3.68/1012 2.1/104 14852 27000

α = 0.95 with γ = 30/ϱ depending on ϱ

1/ϱ ℓ̂ Rel. Err. Ratio RTVP

5 2.61/1013 4.8/104 106 > 105

10 2.18/1013 3/104 > 106 > 105

20 2.00/1013 2.2/104 > 106 40000

50 1.91/1013 1.9/104 > 106 > 105

100 1.88/1013 1.7/104 > 106 > 105

4 Robustness Properties of Semiparametric Cross En-

tropy Estimator

In this section we study the robustness properties of the estimator (8) when γ → ∞
in some simplified prototypical settings. Clearly, then ℓ = ℓ(γ) = P(S(X) > γ) → 0.

We are interested in the behavior of the standard error of the estimator in this regime,

specifically, relative to its mean ℓ. Since we take a finite constant sample size, it suffices

9



to analyze the robustness of the single-run estimator of ℓ:

Z = Z(γ) = I{S(X) > γ}f(X)

g(X)
, (10)

where X ∼ g(x) =
∏d

i=1 gi(xi) =
∏d

i=1 πi(xi). For our analysis we assume that the

importance sampling density g is available. In practice we estimate g via ĝ from

MCMC simulation as we discussed in Section 2.2. In this respect, our analysis is

similar in spirit to the one conducted for the parametric Cross Entropy method [8].

The estimator has bounded relative error if lim supγ→∞
√

Var(Z)/ℓ < ∞, which is

equivalent to having bounded relative second moment [17]:

lim sup
γ→∞

EZ2

ℓ2
<∞.

Assumption 1 In this section we assume that the jump variables X1, . . . , Xd are pos-

itive continuous, and that they are independent and identically distributed random

variables with right-unbounded support.

We denote by F (x) the cdf of a jump Xi with associated pdf f1(x). Let F (x) =

1 − F (x) be the tail cdf, F ∗d be the d-fold convolution of F , with F ∗d = 1 − F ∗d.

Note that the rare-event probability of interest is ℓ = P(X1 + · · ·+Xd > γ) = F ∗d(γ).

Furthermore, the i-th marginal πi of the zero-variance pdf can be rewritten as

πi(xi) =

∫
Rd−1
>0

π(x) dx1 · · ·dxi−1dxi+1 · · · dxd

=

∫
Rd−1
>0

I{S(x) > γ} f(x)
ℓ

dx1 · · ·dxi−1dxi+1 · · · dxd

=

∫
Rd−1
>0

I{S(x) > γ}
∏d

j=1 f1(xj)

ℓ
dx1 · · · dxi−1dxi+1 · · · dxd

=
f1(xi)

ℓ

∫
Rd−1
>0

I{x1 + · · ·+ xd > γ}
∏
j ̸=i

f1(xj) dx1 · · · dxi−1dxi+1 · · · dxd

=
f1(xi)

ℓ
P(X1 + · · ·+Xi−1 +Xi+1 + · · ·+Xd > γ − xi) =

f1(xi)F ∗(d−1)(γ − xi)

F ∗d(γ)
.

Note that for xi > γ we clearly have F ∗(d−1)(γ − xi) = 1, and thus πi(xi) = f1(xi)/ℓ.

Hence, the single-run estimator Z can be written as

Z = I{S(X) > γ}f(X)

g(X)
= I{S(X) > γ}

d∏
i=1

f1(Xi)

πi(Xi)
= I{S(X) > γ}

d∏
i=1

F ∗d(γ)

F ∗(d−1)(γ −Xi)

(11)

Finally, using EZ2 = EgZ
2 = EgZf(X)/g(X) = EfZ, we get for the second moment

of estimator Z:

EZ2 = Ef I{S(X) > γ}
d∏

i=1

F ∗d(γ)

F ∗(d−1)(γ −Xi)
. (12)
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Proposition 1 Suppose that the jumps X1, . . . , Xd are i.i.d. with a light-tailed or a

subexponential Weibull or Pareto distribution. Then, the semiparametric importance

sampling estimator (10) is at least logarithmically efficient as γ →∞.

In the subsequent sections we prove this result by considering the heavy- and light-

tailed cases separately.

4.1 Heavy-tailed case

In this section we assume that all jumps Xi are drawn from a subexponential distri-

bution F satisfying (for all integer d)

lim
γ↑∞

F ∗d(γ)

F (γ)
= d. (13)

In the sequel we shall frequently use the trivial property

F ∗d(x) ⩾ F (x), x ≥ 0. (14)

Furthermore, we shall need Kesten’s bound Lemma 1.3.5(c) in [9], which states that

for every ε > 0 there exists a constant c1 such that for all d ⩾ 2

F ∗d(x) ⩽ c1(1 + ε)dF (x), x ≥ 0. (15)

Denoting the maximum Md = maxi⩽dXi, we can decompose the relative second

moment as follows:

EZ2

ℓ2
=

EI{Md > γ}Z2

ℓ2
+

EI{Md ⩽ γ}Z2

ℓ2
. (16)

In Lemma 2 we shall prove that the first term is bounded as γ →∞. Concerning the

second term, we examine its behavior for various common probability models in the

next two sections.

Lemma 2

lim sup
γ→∞

EI{Md > γ}Z2

ℓ2
<∞.

Proof: Since I{S(x) > γ} ⩽ 1, we use (12) to find

EI{Md > γ}Z2 ⩽ Ef I{Md > γ}
d∏

i=1

F ∗d(γ)

F ∗(d−1)(γ −Xi)
(17)

Then observe that, if Md > γ, there exists at least one jump Xj > γ, and, hence, that

there is at least one j for which F ∗(d−1)(γ − Xj) = 1. For all other jumps it holds

11



trivially F ∗(d−1)(γ−Xi) ⩾ F ∗(d−1)(γ), thus it follows that (17) is bounded from above

by

Ef I{Md > γ}
∏d

i=1 F
∗d(γ)∏d

i̸=j F
∗(d−1)(γ −Xi)

⩽ Ef I{Md > γ}
∏d

i=1 F
∗d(γ)∏d

i ̸=j F
∗(d−1)(γ)

= Pf (Md > γ)

(
F ∗d(γ)

)d(
F ∗(d−1)(γ)

)d−1

⩽
(
F ∗d(γ)

)d+1(
F ∗(d−1)(γ)

)d−1
=
(
F ∗d(γ)

)2 ( F ∗d(γ)

F ∗(d−1)(γ)

)d−1
,

where the last inequality follows from Pf (Md > γ) ⩽ Pf (S(X) > γ) = F ∗d(γ). Now

we use the bounds (14) and (15) for( F ∗d(γ)

F ∗(d−1)(γ)

)d−1
⩽
(F ∗d(γ)

F (γ)

)d−1
⩽ cd−1

1 (1 + ε)d(d−1).

Collecting all bounds we obtain

EI{Md > γ}Z2

ℓ2
=

1(
F ∗d(γ)

)2 Ef I{Md > γ}
d∏

i=1

F ∗d(γ)

F ∗(d−1)(γ −Xi)

⩽ cd−1
1 (1 + ε)d(d−1) <∞.

(18)

2

Since we have bounded relative error for the first term in (16), then we can at most

have bounded relative error for estimator (10). For example, if the second term in (16)

vanishes or is bounded, then (10) has bounded relative error.

4.1.1 Weibull distribution

As in Example 1, here we assume that each of the jumps Xi have density αxα−1e−xα

for 0 < α < 1. The purpose is to analyze the second term in (16).

Lemma 3

lim sup
γ→∞

EI{Md < γ}Z2

ℓ2
= 0.

Proof: Denote Sd = S(X). Using (12) and ℓ = F ∗d(γ), we get

EI{Md < γ}Z2

ℓ2
= Ef I{Md < γ, Sd > γ}

∏d−2
i=1 F ∗d(γ)∏d

i=1 F
∗(d−1)(γ −Xi)

.

From the bounds (14) and (15), we obtain that this expression can be bounded above

by

Ef I{Md < γ, Sd > γ}
∏d−2

i=1 c1(1 + ε)d F (γ)∏d
i=1 F (γ −Xi)

= c2Ef I{Md < γ, Sd > γ} exp
(
− (d− 2)γα +

d∑
i=1

(γ −Xi)
α
)
.

12



We now consider the following integral over the region {x : 0 < xi < γ,
∑

i xi > γ}:

Ef I{Md < γ, Sd > γ} exp
(
− (d− 2)γα +

d∑
i=1

(γ −Xi)
α
)

= αd

∫
· · ·
∫ ( d∏

i=1

xα−1
i

)
exp

(
− (d− 2)γα +

d∑
i=1

(
(γ − xi)

α − xαi
))

dx

After the change of variable ui = xi/γ for all i we obtain that this integral is a Laplace-

type integral:

αdγdα
∫
· · ·
∫

D
h(u) e−γαϕ(u) du︸ ︷︷ ︸

Laplace-type

,

where:

D
def
=

{
u : 0 < ui < 1,

∑
i

ui > 1

}

h(u)
def
=

d∏
i=1

uα−1
i

ϕ(u)
def
= d− 2 +

d∑
i=1

(
uαi − (1− ui)

α
)

We now note the following properties of the Laplace integral. First, if D̄ denotes the

closure of the open set D , the function ϕ(u) attains its unique global minimum within

the bounded domain D̄ ⊆ Rd on the boundary at u∗ = (1/d, . . . , 1/d). This can be

seen either by applying the Lagrange constraint optimization method or more simply

by noting that uα − (1 − u)α is monotonically increasing and ϕ(u) is a invariant to

permutations of the components of u. The minimum

ϕ(u∗) = d− 2 + d1−α − d1−α(d− 1)α,

as a function of d is such that for d > 2 we have the strict inequality ϕ(u) ⩾ ϕ(u∗) > 0

for all u ∈ D̄ , see Figure 1. The point u∗ is not a critical point, because ∂ϕ
∂ui

(u) =

α
(
uα−1
i + (1− ui)

α−1
)
> 0 for all i and u ∈ D .

13



1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

7

8

d

f
1
(u

∗
)

α = 0

α = 0.2

α = 0.4

α = 0.6

α = 0.8

α = 1

Figure 1: The behavior of the function d− 2+ d1−α− d1−α(d− 1)α for different values

of the parameter α.

Second, the function h : Rd → R is continuous and the Hessian of the surface

p(u1, . . . , ud−1) = ϕ(u1, u2, . . . , ud−1, 1− u1 − u2 − · · · − ud−1) is

∂2p

∂ui∂uj
= α(α−1)×

(1−
∑

k<d uk)
α−2 − (

∑
k<d uk)

α−2 i ̸= j

uα−2
i − (1− ui)

α−2 + (1−
∑

k<d uk)
α−2 − (

∑
k<d uk)

α−2 i = j
,

which when evaluated at u∗ yields the nondegenerate Hessian matrix

α(α− 1)
(
d2−α − (1− 1/d)α−2

)
×


2 1 1 · · · 1

1 2 1 · · · 1

1 1 2 · · · 1
...

...
. . .

. . .
...

1 1 1 · · · 2

 .

As a result of all these conditions we have the Laplace-type asymptotic expansion [20,

Page 500] at a boundary point, which is not a critical point:∫
· · ·
∫

D
h(u) e−γαϕ(u)du = O(γ−α(d+1)/2 × e−γαϕ(u∗)) ,

where the constant ϕ(u∗) > 0. It follows that

EI{Md < γ}Z2

ℓ2
⩽ c2α

dγdα
∫
· · ·
∫

D
h(u) e−γαϕ(u)du

= O
(
γα(d−1)/2 × e−γαϕ(u∗)

)
= O

(
eα(d−1)/2 ln γ−γαϕ(u∗)

)
→ 0 (γ →∞).

Hence the second term in (16) vanishes as γ →∞. 2
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4.1.2 Sum of Pareto random variables.

As in Example 2, we assume that Xi’s are independent and Pareto distributed random

variables on [1,∞) with common parameter α > 0. The main result is the logarithmic

efficiency of the second term of (16).

Proposition 2 For all ε > 0

lim sup
γ→∞

E[Z2;Md ≤ γ]

ℓ2−ε
= 0.

Proof: The proof will be the result of a number of lemmas. First, similarly as in

Lemma 3 we utilize expression (12) for rewriting the second moment as a product, and

then we apply (14) and (15) to bound the factors. The result is that it is enough to

prove that

lim sup
γ→∞

1

ℓ2−ε
Ef I{Md ≤ γ, Sd > γ}

d∏
i=1

F (γ)

F (γ −Xi)
= 0. (19)

Our approach is to consider a larger set containing {Md ≤ γ, Sd > γ}. For that purpose
we define the we define the quantities

Hn(γ) := Ef

[ n∏
k=1

F (γ)

F (γ −Xk)
;Bn

]
, n ≥ 2.

where

Bn = {Sn−1 ≤ γ, Sn > γ,Mn ≤ γ}, n = 2, 3, . . . .

Observe that {Md ≤ γ, Sd > γ} ⊂
∪d

n=2Bn. Further to this, observing that F (γ)/F (γ−
x) ≤ 1 for all x ≥ 1, we can set

d∏
k=1

F (γ)

F (γ − xk)
≤

n∏
k=1

F (γ)

F (γ − xk)
, n ≤ d.

In this way we arrive at the following inequality

Ef I{Md ≤ γ, Sd > γ}
d∏

i=1

F (γ)

F (γ −Xi)

≤
d∑

n=2

Ef

[ d∏
i=1

F (γ)

F (γ −Xi)
;Bn

]

≤
d∑

n=2

Ef

[ n∏
i=1

F (γ)

F (γ −Xi)
;Bn

]
=

d∑
n=2

Hn(γ).

(20)

Now, the quantities Hn in the sum above can be written in integral form as

Hn(γ) =

∫
Bn

( n∏
k=1

F (γ)

F (γ − xk)

)( n∏
k=1

f(xk)

)
dxn dxn−1 . . . dx2 dx1

=

γ−(n−2)∫
1

γ−x1−(n−3)∫
1

. . .

γ−x1−···−xn−2∫
1

γ∫
(γ−x1−···−xn−1)∨1

n∏
k=1

(
γ − xk

γ

)α α

xα+1
k

dxn dxn−1 . . . dx2 dx1.
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Further, the change of variable yk = xk/γ yields

αn

γnα

1−(n−2)γ−1∫
γ−1

1−y1−(n−3)γ−1∫
γ−1

. . .

1−y1−···−yn−2∫
γ−1

1∫
(1−y1−···−yn−1)∨γ−1

n∏
k=1

L(yk) dyn dyn−1 . . . dy2 dy1,

where

L(y) := (1− y)α y−(α+1), y ∈ (0, 1]. (21)

In particular, it will be useful to write

Hn(γ) = αn γ−nα In(γ, 1), (22)

where the function In(γ, 1) is the multiple integral in the expression above. Moreover,

In(γ, ζ) can be defined recursively for via

In(γ, ζ) :=


∫ 1
ζ∨γ−1 L(y)dy, n = 1,∫ ζ−(n−2)γ−1

γ−1 L(y) In−1(γ, ζ − y) dy, n ≥ 2.
(23)

Next we will prove that for n = 2, 3, . . ., it holds that

lim sup
γ→∞

In(γ, 1)

γα(n−2) ln γ
= 0. (24)

Since both numerator and denominator of (24) have limit +∞, we can apply L’Hopital.

Lemma 5 in the appendix provides a recursive expression for the derivative of the

functions In(γ, ζ):

∂

∂γ
In(γ, ζ) = nL

(
γ−1

)
In−1

(
γ, ζ − γ−1

)
γ−2, n = 2, 3, . . . . (25)

Therefore, we obtain

lim sup
γ→∞

In(γ, 1)

γα(n−2) ln γ
= lim sup

γ→∞

d
dγ In(γ, 1)

d
dγγ

α(n−2) ln γ

= lim sup
γ→∞

nL
(
γ−1

)
In−1

(
γ, 1− γ−1

)
γ−2(

1 + α(n− 2) ln γ
)
γα(n−2)−1

, n = 2, 3, . . . . (26)

• n = 2. The expression in (26) becomes

2L
(
γ−1

)
I1
(
γ, 1− γ−1

)
γ−2

γ−1
=

2L
(
γ−1

)
I1
(
γ, 1− γ−1

)
γ

.

Observe that

L
(
γ−1

)
=
(
1− γ−1

)α
γα+1 = O

(
γα+1

)
, γ →∞;

L
(
1− γ−1

)
= γ−α

(
1− γ−1

)−(α+1)
= O

(
γ−α

)
, γ →∞;

I1
(
γ, 1− γ−1

)
=

∫ 1

1−γ−1

L(y) dy ⩽ γ−1L
(
1− γ−1

)
= O

(
γ−(α+1)

)
, γ →∞,
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where the inequality follows because the function L(y) is decreasing on (0, 1].

Hence,

lim sup
γ→∞

2L
(
γ−1

)
I1
(
γ, 1− γ−1

)
γ

= lim sup
γ→∞

(a constant) × γα+1 γ−(α+1)

γ
= 0.

• n ≥ 2. Assume (24) holds for n. Then reasoning as above and using Lemma 6

for equality (i), we get for n+ 1

lim sup
γ→∞

In+1(γ, 1)

γα(n−1) ln γ

= lim sup
γ→∞

d
dγ In+1(γ, 1)

d
dγγ

α(n−1) ln γ

= lim sup
γ→∞

(n+ 1)L
(
γ−1

)
In
(
γ, 1− γ−1

)
γ−2(

1 + α(n− 1) ln γ
)
γα(n−1)−1

(i)
= lim sup

γ→∞

(n+ 1)L
(
γ−1

) (
In
(
γ, 1
)
+ o(1)

)
γ−2(

1 + α(n− 1) ln γ
)
γα(n−1)−1

= lim sup
γ→∞

(a constant) × γα+1 In
(
γ, 1
)
γ−2 + o(1)

(a constant) × γα(n−1)−1 ln γ

= lim sup
γ→∞

(a constant) ×
In
(
γ, 1
)
+ o(1)

γα(n−2) ln γ
= 0

Putting together these arguments we can complete the proof of the Proposition:

lim sup
γ→∞

EI{Md ≤ γ}Z2

ℓ2−ε

(19)

≤ lim sup
γ→∞

1

ℓ2−ε
Ef I{Md ≤ γ, Sd > γ}

d∏
i=1

F (γ)

F (γ −Xi)

(20)

≤ lim sup
γ→∞

∑d
n=2Hn(γ)

ℓ2−ε

(22)
= lim sup

γ→∞

d∑
n=2

αnIn(γ)

γαn ℓ2−ε

Now notice that

ℓ = F ∗d(γ) ≥ F (γ) = γ−α,

thus, for ε < 1/α (that is, εα < 1)

ℓ2−ε ≥ γ−2α γαε ≥ γ−2α ln γ, γ →∞.

Combining this with above, we get

lim sup
γ→∞

d∑
n=2

αnIn(γ)

γαn ℓ2−ε
≤

d∑
n=2

αn lim sup
γ→∞

In(γ)

γα(n−2) ln γ
= 0
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4.2 Light-tailed case

In this section we consider the case where F belongs to a subfamily of light-tailed

distributions as defined by Embrechts and Goldie [10]. We say that a distribution

F belongs to the Embrechts-Goldie family of distributions indexed by the parameter

θ ≥ 0 and denoted L(θ), if

lim
γ→∞

F (γ + x)

F (γ)
= e−θx. (27)

If θ is strictly larger than 0 then L(θ) contains light-tailed distributions exclusively and

is often referred as the exponential class. This is a very rich class of distributions that

includes several well know light-tailed distributions such as the exponential, gamma

and phase-type. In contrast, if θ = 0, then L(0) corresponds to the class of long-tailed

distributions which is a large subclass of heavy-tailed distributions. In this section

we concentrate on the light-tailed case θ > 0, but in order to derive our efficiency

statements we draw some results for the class of the so called long-tailed functions (cf.

[11, Definition 2.14]). More precisely, h is long-tailed if it is ultimately positive and

lim
γ→∞

h(γ + x)

h(γ)
= 1, ∀x. (28)

Obviously, if F ∈ L(0), then the tail probability F is long tailed. Important properties

for the exponential class (θ > 0) are

• L(θ) is closed under convolutions [10, Theorem 3]. That is, if F ∈ L(θ), then the

d-fold convolution F ∗d ∈ L(θ).

• Define for α > 0 the distribution G(x) = 1−
(
F (x)

)α
. One can easily check that

G ∈ L(αθ) whenever F ∈ L(θ).

• The tail probability can be decomposed into the product of an exponential and

a long tailed function

F (γ) = e−θγh(γ). (29)

Decomposition (29) will be useful for proving efficiency of the proposed estimator, but

it is also interesting on its own. To verify it we define h(γ) := F (γ) eθγ . Since F ∈ L(θ)
it follows that

lim
γ→∞

h(γ + x)

h(γ)
= lim

γ→∞

h(γ + x) e−θ(γ+x)

h(γ) e−θ(γ+x)
= lim

γ→∞

F (γ + x)

F (γ) e−θx
= 1.

The next property states that the asymptotic decay of a long-tailed function is slower

than the exponential rate [11, Lemma 2.17]. More precisely, if h is long tailed, then

lim
γ→∞

h(γ)

e−εγ
=∞, ∀ε > 0. (30)

These properties will be employed to construct an asymptotic upper bound for the

semi-parametric estimator. In particular, the following Lemma shows that the ratio of

two tail convolutions of the same distribution in L(θ) cannot increase/decrease faster

than at exponential rate.
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Lemma 4 Let F ∈ L(θ), θ > 0, and d1, d2 ∈ N. Then F ∗d1(γ)
/
F ∗d2(γ) = o(eεγ), ∀ε >

0.

Proof: Since L(θ) is closed by convolution, then F ∗d1 , F ∗d2 ∈ L(θ) and their tail

distributions have decompositions as in (29) for some long tailed functions h1 and h2.

Therefore
F ∗d1(γ)

F ∗d2(γ)
=

h1(γ)e
−θγ

h2(γ)e−θγ
=

h1(γ)

h2(γ)
.

We first argue that both h1(·)/h2(·) and its reciprocal function are long-tailed. This is

so, because they are ultimately positive, and

h1(γ + x)/h2(γ + x)

h1(γ)/h2(γ)
=

h1(γ + x)

h1(γ)
× h2(γ)

h2(γ + x)
→ 1.

The reciprocal function goes similarly. Thus, h2(·)/h1(·) satisfies condition (30), which

says

lim
γ→∞

h2(γ)/h1(γ)

e−εγ
=∞.

Clearly, this is equivalent to

lim
γ→∞

h1(γ)/h2(γ)

eεγ
= 0.

2

We also have the following.

Assumption A: Let h be a long-tailed function such that h(x) > 0 for all x ≥ 0.

Then G(γ) := sup{h(γ)/h(x) : 0 ≤ x ≤ γ} = o(eεγ) for all ε > 0.

Proposition 3 (Logarithmic efficiency of ℓ̂) If Assumption A holds, the estima-

tor Z = I{S(X) > γ}f(X)
g(X) satisfies

lim
γ↑∞

EZ2

ℓ2−ε(γ)
= 0, ∀ε > 0 .

Proof: Recall

EZ2 = Ef I{S(X) > γ}
d∏

i=1

F ∗d(γ)

F ∗(d−1)(γ −Xi)
.

We write
d∏

i=1

F ∗d(γ)

F ∗(d−1)(γ −Xi)
= H(γ)

d∏
i=1

F ∗(d−1)(γ)

F ∗(d−1)(γ −Xi)
,

where H(γ) :=
[
F ∗d(γ)

/
F ∗(d−1)(γ)

]d
. Since F ∗(d−1) ∈ L(θ) we can use the decompo-

sition (29) to write F ∗(d−1)(γ) = h(γ)e−θγ for some h(·) long tailed function. Hence,

we obtain the following bound

d∏
i=1

F ∗(d−1)(γ)

F ∗(d−1)(γ −Xi)
=

d∏
i=1

h(γ)

h(γ −Xi)

e−θγ

e−θ(γ−Xi)
≤
(

sup
0≤x≤γ

h(γ)

h(γ − x)

)d d∏
i=1

e−θXi =
(
G(γ)

)d
e−θS(X)
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where G(γ) := sup0≤x≤γ

{
h(γ)

/
h(γ − x)

}
. Using these we obtain

EZ2

ℓ2−ε(γ)
≤ H(γ)Gd(γ)

ℓ2−ε(γ)
Ef I{S(X) > γ} e−θS(X),

where θ > 0. Hence,

Ef I{S(X) > γ} e−θS(X) ⩽ e−θγPf (S(X) > γ) = e−θγ ℓ.

Thus we get
EZ2

ℓ2−ε(γ)
⩽ H(γ)Gd(γ)e−θγ

ℓ1−ε(γ)
.

Applying the properties of the exponential class we can write

ℓ1−ε =
(
F ∗d(γ)

)1−ε
= e−θ(1−ε)γhd(γ)

for some long tailed function hd. In consequence,

lim sup
γ→∞

EZ2

ℓ2−ε(γ)
⩽ lim sup

γ→∞

H(γ)Gd(γ)e−θγ

ℓ1−ε(γ)

= lim sup
γ→∞

H(γ)Gd(γ)e−θγ

hd(γ)e−(1−ε)θγ
= lim sup

γ→∞

H(γ)Gd(γ)

hd(γ)
e−εθγ .

Now, property (29) and Lemma 4 and Lemma 4.2 imply that none of the functions H,

G, h−1
d and their product cannot increase at exponential rate, namelyH(γ)Gd(γ)/hd(γ) =

o(eθεγ). Hence, the last limit is 0. 2

5 Conclusions

In this paper we have described a procedure for implementing an optimal cross-entropy

importance sampling density for the purpose of estimating a rare-event probability,

indexed by the rarity parameter γ. The goal is to estimate the optimal importance

sampling density for a finite γ within the class of all densities in product form. This

optimal importance sampling density is typically not available analytically and this is

why in practical simulations we estimate it via MCMC simulation from the minimum

variance pdf. The numerical examples suggest that the resulting estimator can yield

significantly better efficiency compared to many currently recommended estimators.

The same procedure is efficient in both light- and heavy-tailed cases. This is especially

relevant for probabilities involving the Weibull distribution with tail index α < 1, but

close to unity. This setting yields behavior intermediate between the typical heavy-

and light-tailed behavior expected of rare-events. As a result, while existing procedures

are inefficient or fail completely, our method estimates reliably Weibull probabilities

for any values of α, including α > 1.

The practical implementation of the proposed method depends on a preliminary

MCMC step, which is a powerful, but poorly understood heuristic that needs further
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investigation. In this article we have established the efficiency of the method in the

light- and heavy-tailed case, but have done so by ignoring any errors arising from

the preliminary MCMC step. Future work will need to address the impact of the

MCMC approximation on the quality of the estimator. A good starting point for

such an analysis might be to consider the probabilistic relative error efficiency concept

introduced in [19].

6 Appendix

6.1 Proofs. Section 2.2

Proof: [Proof of Lemma 1] First note that for any single-variate function h:∫
Rd

h(x1)π(x) dx =

∫
R
h(x1)

(∫
Rd−1

π(x1, x2, . . . , xd) dx2 · · ·dxd

)
dx1

=

∫
h(x1)π1(x1) dx1.

Next, using the properties of the cross-entropy distance we have that

π1 = argmin
g1∈G1

∫
π1(x1) ln

(
π1(x1)

g1(x1)

)
dx1 = argmax

g1∈G1

∫
π1(x1) ln g1(x1) dx1.

Applying these two observations for any i = 1, . . . , d gives

argmax
g1,...,gd∈G1

∫
π(x) ln

(
d∏

i=1

gi(xi)

)
dx

= argmax
g1,...,gd∈G1

d∑
i=1

∫
π(x) ln gi(xi) dx

= argmax
g1,...,gd∈G1

d∑
i=1

∫
πi(xi) ln gi(xi) dxi =

d∑
i=1

argmax
gi∈G1

∫
πi(xi) ln gi(xi) dxi,

from where we obtain the solution gi = πi for all i = 1, . . . , d. 2

6.2 Proofs. Section 4.1

Lemma 5 Assume ζ ≥ nγ−1. Then

∂

∂γ
In(γ, ζ) = nL

(
γ−1

)
In−1

(
γ, ζ − γ−1

)
γ−2, n = 2, 3, . . . . (31)

Proof: The proof is by induction. Recall the recursive introduction of the In functions:

I1(γ, ζ) =

∫ 1

ζ ∨ γ−1

L(y) dy;

In(γ, ζ) =

∫ ζ−(n−2)γ−1

γ−1

L(y) In−1(γ, ζ − y) dy, n = 2, 3, . . .
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First consider

∂

∂γ
I2(γ, ζ) =

∂

∂γ

∫ ζ−γ−1

γ−1

L(y) I1(γ, ζ − y) dy +
∂

∂γ

∫ ζ

ζ−γ−1

L(y) dy I1(γ, γ
−1)

=

[
L(ζ − γ−1)I1(γ, γ

−1)− L
(
γ−1

)
I1
(
γ, ζ − γ−1

)
− L(ζ − γ−1)I1(γ, γ

−1)− I1(γ, ζ − γ−1)L(γ−1)

]
d

dγ
γ−1

= 2L
(
γ−1

)
I1
(
γ, ζ − γ−1

)
γ−2.

Next, assume that (31) holds for n. Then

∂

∂γ
In+1(γ, ζ) =

∂

∂γ

∫ ζ−(n−1)γ−1

γ−1

L(y) In(γ, ζ − y) dy

= L(ζ − (n− 1)γ−1) In
(
γ, (n− 1)γ−1

) d

dγ

(
ζ − (n− 1)γ−1

)
− L(γ−1) In

(
γ, ζ − γ−1

) d

dγ
γ−1

+

∫ ζ−(n−1)γ−1

γ−1

L(y)
∂

∂γ
In(γ, ζ − y) dy

= 0 + L(γ−1) In
(
γ, ζ − γ−1

)
γ−2 +

∫ ζ−(n−1)γ−1

γ−1

L(y)nL
(
γ−1

)
In−1

(
γ, ζ − γ−1 − y

)
γ−2 dy

= L(γ−1) In
(
γ, ζ − γ−1

)
γ−2 + nL

(
γ−1

) ∫ ζ−γ−1−(n−2)γ−1

γ−1

L(y) In−1

(
γ, ζ − γ−1 − y

)
dy γ−2

= L(γ−1) In
(
γ, ζ − γ−1

)
γ−2 + nL

(
γ−1

)
In
(
γ, ζ − γ−1

)
γ−2

= (n+ 1)L(γ−1) In
(
γ, ζ − γ−1

)
γ−2

2

Lemma 6 For n = 1, 2, . . .:

In
(
γ, ζ − γ−1

)
= In(γ, ζ) + o(1), γ →∞. (32)

Proof: Apply induction and the the recursive definition of In functions.

• n = 1.

I1
(
γ, ζ − γ−1

)
=

∫ 1

ζ−γ−1

L(y) dy

= I1(γ, ζ) +

∫ ζ

ζ−γ−1

L(y) dy

= I1(γ, ζ) + γ−1L(η),

for some η ∈ (ζ − γ−1, ζ) (mean value theorem). Clearly, the second term is o(1) for

γ →∞.

• n ≥ 1. Assume (32) holds. Then

In+1

(
γ, ζ − γ−1

)
=

∫ ζ−nγ−1

γ−1

L(y)In
(
γ, ζ − γ−1 − y

)
dy

=

∫ ζ−(n−1)γ−1

γ−1

L(y)
(
In(γ, ζ − y) + o(1)

)
dy −

∫ ζ−(n−1)γ−1

ζ−nγ−1

L(y)In
(
γ, ζ − γ−1 − y

)
dy

= In+1(γ, ζ) + o(1)

∫ ζ−(n−1)γ−1

γ−1

L(y) dy − γ−1L(η)In
(
γ, ζ − γ−1 − η

)
= In+1(γ, ζ) + o(1), γ →∞.
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