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Abstract

Using data on the age, sex, ethnicity and criminal involvement of 14.3 million resi-

dents aged 10–89 residing in 4,007 neighborhoods in the Netherlands, this article

tests whether an individual’s decision whether or not to be involved in crime is

affected by the number of criminals in the neighborhood. Controlling for unobserved

neighborhood heterogeneity and endogeneity of this decision, a small positive effect

is found on violent crime, but not on property crime. The results suggest that

individual characteristics and other neighborhood characteristics play a much greater

role in an individual’s decision to be involved in crime.
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1. Introduction

The geographic variability of crime is a longstanding puzzle that was already studied

in the early 19th century by statisticians Quetelet (see Beirne, 1987) and Guerry (see

Friendly, 2007). A seminal paper on the topic (Glaeser et al., 1996, GSS hereafter)

analyzes data on 658 cities in the United States and 70 precincts in New York City.

Their findings demonstrate that for a variety of crime types, the variability in crime rates

cannot be explained by economic, social or legal differences between cities or precincts.

The authors conclude that the remaining variability should be attributed to ‘social

interactions’, a term that encompasses a variety of different nonmarket mechanisms but

is seldom explicitly defined (Manski, 2000). A common theme is the proposition that the

optimal choice of an individual depends on the choices of others, in particular others with

whom the individual interacts directly or vicariously. If people interact predominantly

with others who are geographically nearby, these interactions may provide an alternative

explanation for the geographical variability of crime.1

The present paper builds on the argumentation of GSS, but utilizes data that are better

suited to gauge the effect of social interactions on an individual’s criminal behavior in

three important ways. First, our analysis utilizes data measured at a much smaller

spatial scale. Whereas GSS apply their model to cities and to precincts as spatial units of

analysis, we use Dutch neighborhoods that have an average population of 4,000 residents

and an average surface of 10 square kilometer (approximately 4 square miles). The

detailed spatial scale is not only important for statistical reasons (e.g., it assures less

heterogeneity within and more heterogeneity between observations) but also from a

substantive point of view. In order for the choices of individuals to be affected by the

1See, for instance, Case and Katz (1991), Freeman et al. (1996) and Zenou (2003) and the references
cited in these papers for further empirical evidence, Ballester et al. (2010) for a theoretical analysis of
delinquent networks in the tradition of Becker (1968) and Calvo-Armengol and Zenou (2004) for the
presence of multiple equilibriums.
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choices of others in their environment, they must be aware of these choices. Given the

limited spatial awareness of individuals, they are much more likely to be aware of the

behaviors of the residents in their own neighborhood than of the behaviors of residents

in remote parts of their city or region.

Second, our analysis directly applies to individual choices. GSS have only access to

crime rates, i.e. annual numbers of crimes per capita committed within the geographic

boundaries of cities or precincts. This requires them to make assumptions on the numbers

of crimes committed per criminal. Our data apply to individual neighborhood residents,

which allows us to analyze offender rates (percentages of neighborhood residents suspected

of being involved in crime in a given year) rather than crime rates. This allows us to

separate crimes from offenders, i.e. choices from agents.

The third advantage of our study is the inclusion of individual characteristics (sex, age

and ethnic origin) that are strongly correlated with criminal involvement. In contrast to

GSS, who rely on aggregate population characteristics, we analyze individual data that

are both comprehensive and detailed. This allows us to take into account stylized facts

about individual determinants of criminal conduct, such as the overrepresentation of

males, adolescents and non-native residents among the criminal population. Our analysis

includes the age (16 categories), sex (male versus female), ethnic origin (native versus

foreign), neighborhood of residence (4,000 neighborhoods) and criminal record of the

complete registered 2006 population aged 10–89 of The Netherlands. The sample totals

14.3 million residents of whom just over 21,300 were registered for being suspected by

the police of having committed a crime in 2006. As far as we know no prior study has

been based on such a large dataset of individual records.

Our empirical work is based on a binomial choice model of the individual’s choice of

whether or not to be a criminal. Explanatory variables include individual as well as

neighborhood characteristics. The fraction of criminals in the neighborhood is included
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in the latter group. Identification of endogenous social interactions is complicated by the

‘reflection problem’ Manski (1993). Brock and Durlauf (2001) provide a set of conditions

under which such social interactions are identified in binomial discrete choice models. To

address unobserved heterogeneity, which could bias the measurement of social interactions,

we employ the methodology of Berry et al. (1995). In addition, we tackle the endogeneity

of a possible social interaction effect with an artificial instrumental variable.

The remainder of this paper is structured as follows. The next section discusses the

economic and criminological literature on crime and social interactions. Section 3

addresses the model and the estimation methodology. Section 4 extensively describes the

data used. Section 5 presents the findings, after which the final section concludes and

provides suggestions for future research.

2. Literature

As GSS argue, high geographic variability of crime rates implies that the behavior of

two people living in the same geographic area is on average more similar than the

behavior of two people living in different geographic areas. Manski (1993) distinguishes

between three mechanisms that can create behavioral similarity in groups. The first

mechanism is endogenous interaction, in which the propensity of an individual to behave

in some way (e.g., commit crime) varies with the behavior of the group (e.g., the

proportion of group members that are criminals). The second mechanism is exogeneous

or contextual interaction, in which the propensity of an individual to behave in some

way varies with exogenous characteristics of the group members (e.g., age and gender

composition). The third mechanism is correlated effects, in which individuals in the

same group behave similarly only because they have similar unobserved individual

characteristics or face similar unobserved constraints (in our case these are unobserved
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neighborhood characteristics influencing crime rates). Correlated effects represent a

non-causal mechanism, even if group membership (e.g., living in the same neighborhood)

is caused by self-selection on exogenous characteristics (e.g. affluence or race).

In contrast to correlated effects, endogenous and contextual interactions are causal effects.

Manski notes that interest in both types of interactions marks a disciplinary divide:

whereas sociology has emphasized contextual interactions, the interest of economics

has been primarily in the behavioral interdependence and feedback loops implied by

endogenous interactions. Endogenous interaction generates a multiplier effect on the

impact of other explanatory variables on the probability of choosing to be a criminal.

This multiplier effect is at the heart of the necessity of introducing social interactions to

explain the geographical variation of crime rates.

In criminological research, it has long been observed that peer delinquency and individual

delinquency are correlated, i.e. that those who break the law tend to associate with

others who also break the law, although empirically the proposition is tested almost

exclusively amongst juveniles, not adults. Two mechanisms have been hypothesized to

underlie that correlation. The first mechanism is social learning (Sutherland, 1947; Akers,

1985), according to which criminal behavior is learned from delinquent peers. People are

more likely to commit crime if peers also commit crime and learning includes being taught

the tangible techniques of committing crime, but also learning cognitive techniques of

neutralization to overcome moral concerns (Sykes and Matza, 1957). This mechanism is

an example of both contextual interaction with regard to learning specific skills, but also

endogenous interaction because it implies behavioral interdependence.

The second mechanism is group selection. According to this argument, criminality itself

is caused by other factors (such as weak social bonds or low self-control, see Gottfredson

and Hirschi, 1990), and the propensity of an individual to be a criminal is not caused by

the company of criminal friends. Instead, causality runs the other way: criminals tend to
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seek the company of other criminals. Because association is also based on geographical

proximity (Festinger et al., 1950), peer group or neighborhood selection induces behavioral

similarity in criminality. This mechanism is an example of correlated effects, and not

driven by behavioral independence with respect to the decision to become a criminal.

The correlation between peer delinquency and individual delinquency is thus hypothesized

to be affected by processes of selection and influence in social interactions between peers.

In one of the first criminological studies to employ longitudinal network analyses to

study the causal ordering of selection and influence, Weerman (2011) shows that only

the average delinquency level of someone’s friends in the school network has a significant,

although relatively small, effect on individual delinquent behavior. Patacchini and Zenou

(2012) also study delinquency in peer networks and find a ‘conformism’ effect of peers’

delinquency for all crimes but especially for petty crimes.

Social influence thus seems to be most important to explain the correlation between peer

delinquency and individual delinquency. Measuring the full extent of social networks

to identify and estimate social interactions may, however, be unnecessary restrictive,

because social interactions are likely to play a role not only in networks of strong ties,

but also in networks of weak ties. Social interactions include mechanisms that do not

rely on the identification of other individuals. For example, an individual’s decision to

commit crime may be affected by merely observing the behavior of unknown others, or

even by just observing the outcomes of it (e.g., vandalism), and inferring the behavior.

In this paper, we focus on the endogenous interactions between neighborhood residents,

and test the hypothesis that, all other things being equal, an individual’s decision to

be a criminal positively depends on the proportion of neighborhood residents that are

criminals. Thus, we expect that one’s behavior is influenced by observing or learning

about the behavior of other neighborhood residents. Relevant examples for the purposes

of this paper are (i) see crime take place, (ii) hear about crime taking place from offenders
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and/or victims in one’s peer group, (iii) see the results of crime, and (iv) become a victim

of crime.

A focus on the neighborhood as the presumed unit of analysis where individuals interact

with each other seems logical, given the wealth of published research on neighborhood

effects (for an overview of outcomes unrelated to crime, see Sampson et al., 2002). As Shaw

and McKay (1969) pointed out in their highly influential work: “Heavy concentration of

delinquency in certain areas means [. . . ] that boys living in these areas are in contact

not only with individuals who engage in proscribed activity but also with groups which

sanction such behavior and exert pressure upon their members to conform to group

standards” (p. 174). The neighborhood is an important context for studying the role of

social interactions in crime, not only for adolescent boys, as the above quote suggests,

but for neighborhood residents of both sexes and all ages.

We analyse property crime and violent crime separately as well as jointly in an overall

measure that includes both types of crime. The rationale is that if criminal social

interactions exist, they may be crime type specific. This would imply that an individual’s

decision to become involved in property crime depends on the proportion of property

offenders (but not on the proportion of offenders of a different type of crime) in his or her

environment, and that the probability to become involved in violent crime depends on

the proportion of violent offenders (but not on the proportion of other types of offenders)

in the area. Violent crime includes offences like assault, domestic violence and robbery.

Property crime includes offences like burglary, shoplifting and fraud. Because violent

crime has a strong reciprocal nature (assault often takes place for reasons of revenge, and

the perpetrators of assault are often identified while those of property crime often are

not), we hypothesize that the social interaction effect for violent crime is larger than for

property crime.
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3. The Model

This section presents the model and the method of estimation. We use a binomial logit

model for the choice whether or not to be a criminal. This choice is determined by

personal characteristics as well as neighborhood characteristics. Idiosyncratic differences

in individual choice behavior are captured by the conventional logit error term. We

also address unobserved neighborhood effects, by introducing elements of the approach

pioneered by Berry et al. (1995) along the lines of Walker et al. (2011) in their model

of social interactions in travel mode choice. Subsequently, we deal with the issue of

correct identification of the social interaction effect, and we address the endogeneity of

the social interaction effect. The final subsection discusses an implication of our model:

the existence of multiple neighborhood crime rate equilibriums.

3.1. The choice of whether or not to be a criminal

The model we use focuses on the an individual’s choice of whether or not to be a

criminal. An individual decides to either be a criminal or not. The choice depends on

personal and neighborhood characteristics, not all of which are observed. Let Cij be a

zero-one variable that indicates whether individual i in neighborhood j is a criminal.

The probability that Cij equals 1 (indicating that person i is a criminal) depends on

personal characteristics Xi, and on neighborhood characteristics Zj . A social interaction

effect is present if the expected value of the variable Cj in neighborhood j has an impact

on the probability that a particular individual i chooses to be a criminal. Since we are

not informed about all the relevant characteristics, we introduce two random variables

representing unobserved characteristics: εi for unobserved personal characteristics and ξj

for unobserved neighborhood characteristics. We now define a latent variable yij that is
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linear in these characteristics:

yij = αXij + βZj + γE(Cj) + ξj + εij . (1)

When this latent variable takes on a positive value, Cij = 1, otherwise Cij = 0.

If we assume the random variable εi to be extreme value type I distributed the probability

that Cij = 1 is given by the logit expression:

Pr(Cij = 1) = eαXi+βZj+γE(Cj)+ξj

1 + eαXi+βZj+γE(Cj)+ξj
. (2)

Without the social interaction and unobserved neighborhood effects (i.e., γ = ξj = 0), this

is a standard binomial logit model. When there is social interaction, but no unobserved

heterogeneity (ξj = 0), this is the logit version of the binomial model of Brock and

Durlauf (2001).

The unobserved heterogeneity term ξj captures neighbourhood characteristics that may

have an impact on an individual’s probability to become a criminal, but are unobserved by

the analyst. The importance of such unobserved heterogeneity in discrete choice models

is analyzed thoroughly by Berry et al. (1995) in their seminal study of the automobile

market. Their approach is used in other fields as well. For instance, Walker et al. (2011)

apply a model like (2), but without neighborhood variables Z, to study the effect of

social interactions on travel mode choice.
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3.2. Identification

Berry et al. (1995) suggest a two-stage procedure. In the first step the neighborhood-

specific terms are taken together in a single neighborhood constant δj .

Pr(Cij = 1) = eαXi+δj

1 + eαXi+δj
, (3)

and this model is estimated in the usual way. In the second stage the alternative specific

constants are analyzed further by writing them again as:

δj = βZj + γE(Cj) + ξj . (4)

The unobserved heterogeneity terms ξj are now the residuals of the linear regression

equation. A complication is that OLS cannot be used, since E(Cj) is expected to be

correlated with ξj . The reason is that a high value of ξj makes it more likely that any

individual in the neighborhood is a criminal, which tends to increase E(Cj). Hence the

error term is not independent of the explanatory variables. In the next subsection we

will propose a solution to this problem using an instrumental variable approach.

Manski (1993) studies identification of a linear model with social interactions in which

there are endogenous interaction effects as well as contextual effects. In our model the

variable E(Cj) embodies an endogenous social interaction effect, while contextual effects

may be included in the vector Zj when it contains variables like the average age of

neighborhood inhabitants. In Manski’s model, the two effects cannot be distinguished.

Brock and Durlauf (2001) show that the nonlinearity that occurs in a discrete choice

model like (2) has identifying power. They develop a set of conditions under which all

the remaining parameters are identified. These conditions apply to the model (2) when

the term referring to unobserved heterogeneity is absent.
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The model (2) is identified if the parameters α and δ in (3) are identified and if the

parameters β and γ in (4) are identified. Manski (1988) shows that the multinomial

logit model is identified, so the first requirement is not a problem. Nor is the second.

In Manski’s linear model Cij is on the left-hand side of the linear equation of interest,

whereas in (4) it is the estimated neighborhood-specific constant δj . This is the reason

why Manski’s reflection problem does not occur in the present context.

However, there is another problem that has to be faced: the term ξj , which represents

unobserved heterogeneity, has an impact on all Cij ’s and therefore also on E(Cj). The

implication is that E(Cj) is potentially correlated with ξj . In the next subsection we will

propose an instrumental variable strategy to solve this problem.

3.3. Endogeneity

As an instrument we need additional variables that have no direct impact on δj , and

are correlated with E(Cj), but not with ξj . Walker et al. (2011) propose two types of

instruments: a spatial reference group, or the average social interaction effect of the

adjacent postal codes; a social reference group, variables that indicate whether inhabitants

of a neighborhood share similar socio-economic characteristics.

The intuition behind this approach is straightforward. E(Cj) is defined as the expected

number of criminals within a neighborhood. This can also be seen as the probability to

encounter a criminal within neighborhood j. Note that one of the main assumptions of

our model is that social interactions take place within a neighborhood. Thus, spatially

lagged encounter probabilities WE(Cj) are not correlated with the neighborhood specific

effect, but might contain information about E(Cj). Similarly, the social distance in the

neighborhood to other groups should be correlated with E(Cj) (it contains information

about the strength of the network and thus the intensity of the social interactions)
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and the correlation with the unobserved neighborhood characteristics is expected to be

rather weak. For instance, it can be argued that it is unlikely that a neighborhood’s age

structure correlates with the propensity of becoming a criminal other than via group

interactions.

However, these approaches are easy to criticize. It is not difficult to imagine social

interactions that cross the often somewhat arbitrary boundaries of zip code areas, which

would violate the exclusion restriction. It is also quite conceivable that the demographic

composition of a neighborhood has a direct impact on the probability that some of its

inhabitants become criminals. Given this criticism, it is advantageous that Bayer et al.

(2004) developed a procedure for constructing an instrument in the context of a model

for neighborhood sorting. We follow their suggestion here.

Start by observing that, according to the model, the expected crime rate is:

E(Cj) =

∑
i∈j

eαXi+βZj+γE(Cj)+ξj

1 + eαXi+βZj+γE(Cj)+ξj

 /Bj , (5)

where the summation is over all individuals living in neighborhood j and Bj is the

total number of these individuals. This equation must necessarily hold if the model is

consistent and can be interpreted as an equilibrium condition in our model of social

interaction. It is easy to verify that in (5) there is a positive correlation between the

unobserved neighborhood characteristics and the crime rate.

If we know the true values of the coefficients α,β,γ and the unobserved neighborhood

characteristics ξj we would be able to compute counterfactual choice probabilities, denoted

as IE(Cj)’s, for the situation in which unobserved neighborhood effects were absent,

that is for a situation in which all ξj ’s are equal to 0. The IE(Cj)’s are, by construction,

uncorrelated with the ξj ’s and in all probability highly correlated with the E(Cj)’s. Since

the exclusion restriction is also clearly satisfied, this constructed variable could serve as
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an instrument.

The instrument is thus computed by deleting the unobserved heterogeneity terms ξ from

(5) and computing the expected crime rate implied by the resulting equation:

IE(Cj) =

∑
i∈j

eαXi+βZj+γIE(Cj)

1 + eαXi+βZj+γIE(Cj)

 /Bj . (6)

A complication associated with implementing the suggested procedure is that (6) uses

the estimated coefficients of the model, which can only be obtained through the use of

the instrument. Bayer et al. (2004) and Bayer and Timmins (2007) therefore propose an

iterative procedure in which one starts with an informed guess of the instrument values,2

then computes the coefficient estimates and use them to re-compute the instrument, until

convergence is achieved.

3.4. Social interaction and multiple equilibriums

The implications of the presence of social interaction in our choice model at the neighbor-

hood level can be investigated on the basis of (5). We can interpret the right-hand side

of this equation as a mapping of E(Cj). To focus on essentials, we assume a population

with individuals that are identical (apart from the idiosyncratic term in the logit model)

and simplify (5) as:

E(Cj) = eφj+γE(Cj)

1 + eφj+γE(Cj) (7)

It is not difficult to verify that:

dE(Cj)
dφj

= 1
1 − γE(Cj)(1 − E(Cj)

E(Cj)(1 − E(Cj)) (8)

2One can, for instance, use OLS estimation of (4).

14



The first term on the right-hand side is a multiplier that equals 1 if there is no social

interaction (γ = 0) and is larger than 1 whenever there is positive social interaction

(γ > 0). As noted above, this multiplier could be responsible for spatial variation in

crime rates that is much larger than one would expect on the basis of a model without

endogenous social interactions.
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Figure 1 – Possible equilibria for multiple forms of crime based on φj = −4 and various γ’s.

Brock and Durlauf (2001) provide an analysis of the equilibriums in this model. They

show that for positive values of γ there may exist three equilibria. Figure 2 illustrates this

situation for φj = −4 and various values of γ. For γ = 0.1 and γ = 0.15 there are indeed

three equilibriums. The high and stable equilibrium refers to a situation in which almost

everybody is involved in criminal activities. In the other two equilibriums criminals are a

minority, but the size of the minority differs significantly. The proportion of criminals

equals either 1.5% or, depending on γ, 15%/33%, where the former equilibrium is stable

and the latter is not. This example therefore suggests that the model can be consistent

with the presence of a different proportion of criminals in neighborhoods that are similar
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in all characteristics. Although the exact location of the equilibriums depends on the

values of the parameters, our numerical experiments suggest that the crime rate at the

stable equilibrium with the highest crime rate is unrealistically high.

4. Data

Criminal behavior is notoriously difficult to measure. Because it is morally objectionable

and legally sanctioned, many people are unwilling to confess their involvement in crime,

to law enforcement as well as to researchers. Although quite a few surveys ask adolescent

subjects to report their involvement in criminal conduct (a few examples include Elliott

et al., 1985; Farrington et al., 1996; Wikström et al., 2012) crime self-report surveys are

rare among adult populations (but see Morselli and Tremblay, 2004).

To measure criminal behavior we therefore used anonymized national population data

from the Dutch National Police. The police information system from which the data

were extracted contains data on all individuals that have been arrested by the Dutch

police as criminal suspects in a particular year. It is estimated that more than 90 percent

are subsequently either convicted in court or imposed a fine or community service by the

public prosecutor’s office in lieu of prosecution (this often happens in the case of relatively

minor crimes) (Blom et al., 2005). The data contain some personal characteristics (sex,

age, country of birth, parents’ countries of birth, postal code of residential address) and

also contain details about all crimes of which the individual has been suspected (including

the dates and the types of crime). In the analysis in this paper we use being a suspect of

any crime(s) in the year 2006 as the dependent variable as well as separate indicators

for being suspected of (i) violent and (ii) property crime (of course the two types do

not exclude each other, so that a single person can be suspected of both crimes types

within the same year). Because the police information system is used for investigative
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purposes, it is updated continuously, and updates include changes of address as well as

removal of individuals after an expiration period, the length of which depends on the

seriousness of their criminal record. The database used in this analysis was an archival

copy of the information system, and included crimes already removed from the real

‘living’ information system. Data from special investigative services are excluded, so

that tax and other economic crimes, social security fraud, and environmental crimes are

underrepresented.

There are also some (well-documented) disadvantages to using police records to measure

criminality. First, a substantial percentage of crimes never comes to the attention of the

police, either because there is not an individual victim to report it (e.g., drug dealing) or

because the victim does not report the crime to the police (Goudriaan et al., 2004). Second,

in most jurisdictions the police solve only approximately 20 percent of all crimes (Dodd

et al., 2004). As a consequence, any estimate of criminality based on police data must be

a severe underrepresentation. Third, specific surveillance or investigative strategies used

by the police may result in some areas being more intensely supervised and investigated

than others, resulting in an overrepresentation of these areas in the data. Fourth, police

records have data on suspects, but some of these people may be unjustly suspected and

will not be convicted subsequently in court. Notwithstanding these limitations police

records are the best available large-scale measures of criminality available, and have been

used extensively in previous studies in The Netherlands and abroad.

To obtain a full population dataset on criminal involvement in 2006 in The Netherlands,

we used population data from Statistics Netherlands per January 1st, 2006, which cross-

tabulates neighborhood of residence (4,028 neighborhoods) with age (20 categories, each

5 years width), sex (male versus female), and ethnicity (native versus non-native). As

the police records contain these four variables as well, both sources can be combined

to create a national dataset containing approximately 16 million individuals with the
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following five variables:

1. neighborhood of residence (4,028 neighborhoods);

2. sex (male or female);

3. non-native Dutch (individual or their parent(s) born in a non-western country, or

not)

4. age (20 categories: 0-4 years, 5–9 years, 10–14 years, 15–19 years, etc. );

5. suspected of one or more violent/property crimes in 2006 (yes or no).

Because in The Netherlands only individuals of age 12 and older can be prosecuted, age

categories 0–4 years and 5–9 years were removed from the analysis. Persons aged 10 or

11 are included because the population data are available only in 5-years age categories.

Because no individuals above age 89 were prosecuted in 2006, ages 90 and above were

also removed from the analysis. The remaining dataset contains 14,301,005 individuals

aged 10–89 in 2006.

For this population, Figure 2 displays the number of individuals who were suspected

of criminal involvement during the year 2006, per 1,000 residents of the same sex, age

category and ethnic origin.3 The figure confirms three stylized facts about criminality:

the arrest rates of men are five times larger than those of women (Steffensmeier and

Allan, 1996; Mears et al., 1998), the arrest rates of residents with foreign origin are more

than 3 times larger than those of native Dutch residents (Blokland et al., 2010), and

arrest rates of all groups peak during adolescence and early adulthood at ages 15–24

(Blokland et al., 2005). On average, 1.5 percent of the 10–89 population became a crime

suspect in 2006. For boys in the age category 15–24 years, the percentage is more than

3The data underlying Figure 2 are included in Table A.1 in the Appendix.
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Figure 2 – Number of criminal suspects in 2006 per 1,000 individuals, by age, sex, and
ethnic origin.

four times larger than the average.

The police records include the six-digit postal codes of the residential addresses of

the individuals. Throughout the Netherlands there are about 435,000 six-digit postal

code areas. In non-rural areas they are roughly the size of a football field and contain

approximately 20 residential properties and 40 residents. As they were created with

pedestrian postal delivery services in mind, single codes are nearly always on the same

street, apply to adjacent properties, and are not subdivided by physical barriers that

impede pedestrian or car transportation. The focus of our investigation is the proportion

of neighborhood residents involved in crime.4 In line with definitions of ‘neighborhood’

as a locus of social interaction elsewhere in the literature, our analysis uses the four-digit

4When the peer group is located in the neighborhood, the chance of interaction with a criminal is
affected not only by the relative number of criminals, but also by the size of the area. Thus, the
social interaction effect can alternatively be defined as the percentage of residents per square mile
exhibiting a given behavior.
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Dutch postal code number as the spatial unit of analysis, i.e. a spatial aggregation of the

six-digit postal code. Following Walker et al. (2011), we assume that“these postal code

boundaries delineate spatial peers and that individuals within a postal code are more

similar, exerting a stronger influence than individuals who live outside of one’s postal

code” (p. 368). Many other studies in The Netherlands have used the four-digit postal

code as a neighborhood delineation criterion (Wilsem et al., 2006; Nieuwbeerta et al.,

2008; Bernasco and Kooistra, 2010).

Substantive arguments for neighborhood as a valid spatial reference group were already

given in the literature overview. There are also several methodological arguments in

favor of the neighborhood (instead of a larger or smaller areal unit). First and foremost,

larger areas such as cities ensconce within-city heterogeneity (and therefore between-

neighborhood differences) in criminality. Secondly, smaller areas than neighborhoods,

such as streets, result in very skewed crime distributions that are more difficult to model

properly. Thirdly, no or very little areal data are available at smaller spatial scales than

neighborhoods. Because previous scholars (e.g., GSS) have used cities as units of analysis,

we bolster our argument for smaller areal units by presenting the percentage of criminal

suspects graphically for both municipalities and neighborhoods in The Netherlands in

Figure 3. Figure 4 provides a view of neighborhoods in Amsterdam, the capital of The

Netherlands. These figures show that the percentage of criminal suspects per municipality

disguises large within-municipality differences. For example, whereas on average 2.2% of

the population of Amsterdam was suspected of a crime in 2006 (and 1.8% and 1.2% for

violent crime and property crime, respectively), the percentage of suspected criminals

per neighborhood ranges from 0% to about 5% (0%–4% and 0%–3% for violent crime

and property crime, respectively). Geographically, the Netherlands is a small country

with a total land surface of 41,526 square kilometers. The total country consists of 4,028

four-digit postal code areas with an average surface of 10.31 square kilometer and an

average population of 4,073 inhabitants. Similar to US census tracts, the sizes of these
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Figure 3 – Percentage of criminal suspects in 2006 per municipality and neighborhood.

‘neighborhoods’ depend on population density. In urban areas where population densities

are high, the surfaces of neighborhoods tend to be relatively small, whereas they are

larger in rural areas where population densities are low.

To account for possible spurious findings, we control for several ubiquitous variables in

criminological research about neighborhood differences in crime. Classic and contemporary

criminological studies have consistently found that high population turnover, ethnic

heterogeneity, low socio-economic status and the presence of one-parent households

correlate with higher crime rates (see Sampson and Groves, 1989; Bursik Jr. And

Grasmick, 1993; Sampson et al., 1997; Glaeser and Sacerdote, 1999). These neighborhood

characteristics are hypothesized to affect crime in two distinct ways: (i) by decreasing

social cohesion and (expectations of) social control; (ii) by impeding proper socialization

by parents and other neighborhood residents of youth. We therefore merge our dataset
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Figure 4 – Percentage of criminal suspects in 2006 Amsterdam neighborhoods.

with two additional neighborhood datasets. The first is the neighborhood data from the

Dutch Central Bureau of Statistics from which we extract address density, percentage

single person households, average household size, number of shops, percentage owner-

occupied housing, school density and percentage single parent households. The second

is the Geomarketing data from WDM Netherlands, which is in itself composed out of

several (marketing) databases. This database gives us information about neighborhood

mobility (in- and outmigration), average level of education, a measure for the average

social class and the number of double income households within a neighborhood.

Finally, it is well conceivable that the impact of social interaction differs with residential

density. Namely, denser neighborhoods might lead to more residential interaction because

meeting probabilities are simply larger. To control for this effect we incorporate an

interaction effect between social interaction and residential density.
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5. Results

Table 1 presents the estimation results of equation (3), omitting the neighborhood specific

constants δj . The socio-demographic variables included are a sex indicator (0 for males, 1

for females), an ethnicity indicator (0 for native Dutch or born in a western country, 1 for

people or one of their parents born in a non-western country), age (measured categorically

as 10–14=-1, 15–19=0, 20–24=1,. . . , 85–89=14, i.e. centered on the peak of the age-crime

curve) and age squared. Of the 4,007 neighborhoods there were 401 in which not a

single resident offended in 2006, making it impossible to estimate a neighborhood specific

constant term for the general model. In 409 neighborhoods not a single violent act of

crime took place and property crime was absent in 802 neighborhoods.5 The estimation

Table 1 – Choice models (log-odds of being suspect of crime in 2006).

All crime Violent crime Property crime

Parameter Estimation S.E. Estimation S.E. Estimation S.E.

Female −1.637 0.0059 −1.885 0.0069 −1.509 0.0085
Non-native 0.783 0.0059 0.743 0.0063 0.957 0.0081
Age 0.070 0.0019 0.109 0.0021 −0.110 0.0030
Age2 −0.026 0.0002 −0.030 0.0003 −0.034 0.0004

# Observations 14,191,721 14,189,082 13,966,926
# Parameters 4 + 3,610 constants (δ) 4 + 3,602 constants (δ) 4 + 3,209 constants (δ)
Log-likelihood −961, 220.0 −855, 499.9 −491, 169.2

results confirm the descriptive statistics visualized in Figure 2. Males and non-natives are

much more likely to become involved in crime than females and native Dutch residents,

and crime involvement first quickly increases with age and then gradually decreases.

While the estimated parameters for violent crime are similar to the estimates for general

crime, the property crime estimates indicate that the age-crime curve for property crime

5Usually, only the smallest neighborhoods with few of no criminals fall out of the estimation, which
might invoke a selection bias. Note, however, that the number of observations decreases much slower
than the number of neighborhoods.
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peaks at younger ages.

A higher value of the neighborhood-specific constant δj means that inhabitants of the

neighborhood are more likely to be involved in crime. Because the first-stage model

only imposes a structure on the effects of individual characteristics, it is silent about the

mechanisms underlying between-neighborhood variation: these have to be sorted out in

the second stage. The kernel density estimates of the shape of the δj distributions are

presented in Figure 5. All three density functions are single peaked and almost symmetric.

The kernel density function of violent crime is similar to that of crime in general, whereas

the kernel density function of property crime clearly has a higher mean and standard

error. Tables A.2 and A.3 in the Appendix report the results of the first stage regression
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Figure 5 – Kernel density estimates of the distribution of δ.

on our social interaction variable (% involved in crime) and interaction effect (% involved
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in crime × # Addresses per hectare/1000 ). Table 2 reports the second stage results

of the regression on the δj ’s. As instruments of % involved in crime and % involved in

crime times # Addresses per hectare/1000 we have used the counterfactual crime rate,

(IE(Cj)), as defined in eqn. (6), and the interaction effect of the counterfactual crime

times the density, (IE(Cj) × Addresses per hectare/1000).

As Tables A.2 and A.3 in the Appendix clearly show, the instruments we use are relevant.

The counterfactual crime rate is very significant and shows a positive correlation with %

involved in crime as expected. The counterfactual crime rate times the density is very

significant as well and shows a positive relation with % involved in crime × # Addresses

per hectare/1000. By construction, the counterfactual crime rate is uncorrelated with

the error term ξ. The results of the second stage estimation are reported in Table 2.

The main conclusion to be taken from the estimates in Table 2 is that the hypothesized

social interaction effect (i.e., the effect of the neighborhood percentage of other residents

involved in crime) is only significantly positive for violent crime, although its substantive

impact is limited. For property crime and for overall crime the effects are completely

insignificant. Thus, whereas it was hypothesized that a social interaction mechanism

would apply to all types of crime but that its role in violent crime would be larger than

its role in property crime, the findings demonstrate that the social interaction only plays

a role in violent crime.

The estimates of the remainder of the variables in the second stage of the 2SLS estimation

are in line with studies on neighborhood level correlates on crime and delinquency, which

generally show that indicators of social and economic disadvantages (low education, low

income, high neighborhood mobility and high proportions of single person and single

parent households) are associated with more crime.6 The large and highly significant

6Our results are robust over years (for the years 2007 and 2008 we get similar results) and to the
specification used. Only if we omit single parent households we get somewhat higher social interaction
effects (up to γ = 0.13–0.15). Using different instruments, in particular the spatial lags of surrounding
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coefficient on the share of single parent households is in line with earlier analyses (notably

Glaeser and Sacerdote, 1999).
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Figure 6 – Possible equilibriums for multiple forms of crime based on parameter estimates.

Figure 6 illustrates the equilibriums as implied by the parameter estimates for the various

forms of crime (regardless of the significance of the coefficients), based on the individual

and neighborhood means. In this case, even the statistical significant coefficient for violent

crime is not high enough to create multiple equilibriums. All estimated equilibriums are

low and around the 1%.

Figure 7 illustrates that multiple equilibriums are possible for different values of neigh-

borhood and individual variables. In this case, Figure 7 shows that the impact of the

social interaction effects differs significantly over the whole range of empirical values of

single parent density. For the empirical maximum of one-parent density (55%), multiple

neighborhoods, does, however, significantly increase the social interaction effect (to more than γ =
0.4, which leads to completely criminal neighborhoods, a highly implausible outcome).
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Figure 7 – Possible equilibriums for various values of single parent density.

equilibriums are (just) possible.

6. Discussion

In a critique of the empirical literature on social interactions, Manski (2000) claims

that their analysis would benefit from the performance of well-designed experiments in

controlled environments and from careful elicitation of persons’ subjective perceptions of

the interactions in which they participate. Falk et al. (2010) adopt the first suggestion

and demonstrate social interactions in an experiment on behavior in a public goods game.

However, ethical considerations and IRB regulations prohibit experimental studies of

criminal behavior of the type and severity that we study. Therefore, in the present paper

we chose the second-best alternative, and estimated a structural discrete model using
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state-of-the-art techniques to tease out social interactions with an exceptionally rich and

comprehensive dataset.

On the basis of previous literature it was hypothesized that positive social interactions

play a role in all crime, in particular in violent crime. The results of our analysis partially

confirm this expectation. They indicate a positive and significant, but small, social

interaction effect for violent crime only, but not for property crime or general crime.

Apparently, social interaction is less influential in generating crime than was expected

on the basis of prior research. We suggest that prior research may have overestimated

endogenous social interaction effects by lack of individual data at a detailed spatial

scale. In particular, we demonstrated that there exist huge individual differences in crime

involvement by sex, age and ethnic background, which have hardly been accounted for in

prior research on social endogenous interactions and crime.

Nevertheless, we did find a positive social interaction effect for violent crime. Apart from

violent crime’s reciprocal nature, another interpretation might be that social interactions

apply to violent crime because violent crimes are overt predatory contact crimes that

presume an interaction between the offenders and their victims. In neighborhoods where

individuals live amongst others who are prone to violence, the risk of violent victimization

is relatively high and might be lowered by gaining a reputation of ‘toughness’. Thus,

being a violent offender may deter violent predators and thereby prevent future violent

victimization (Silverman, 2004; Fagan and Meares, 2008; Dur and Weele, 2012). The

large majority of property crimes (larceny, burglary, etc.) are covert crimes that are

perpetrated without any contact between the perpetrator and the victim, and without

the victim being able to identify the perpetrator (and often also vice versa). For this

reason, property offending does not yield any reputation to the perpetrator. Social

interaction effects are therefore unlikely in the case of (covert) property crimes. Note that

one should expect a social interaction effect on robbery, because although its purpose is
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illegal property transfer, unlike other property crimes it involves direct contact between

the perpetrator and the victim.

We conclude by noting some issues for future research. We found the share of single parent

households to be an extremely important variable. We were, however, unable to test the

hypothesis suggested by this finding, viz. that criminals often belong to such households.

Another limitation of our study is that we have assumed that the social interaction effect

is identical for all households whereas it is conceivable that some individuals (young

adolescents, for instance) are more sensitive to such interactions than others. A third

issue that has not been elaborated in this paper is that crime is notoriously difficult to

measure. Some crimes are not reported to the police (more than 50 percent according to

conservative estimates (Goudriaan et al., 2004), and that the police solve only 20 percent

of the recorded crimes (Dodd et al., 2004). The annual percentage of the population

involved in crime is thus an underestimate, and it implies there is some misclassification

in the dependent variable of our analysis. Starting from the other side, there also exists a

small risk of misclassification, namely when the police attributes a crime to an individual

that actually did not perpetrate it. Given the fact that the police will only attribute

it to a person if substantial evidence has been collected (enough for the suspect to be

prosecuted), the likelihood of a ‘false positive’ is quite small. In future research, such

misclassification issues might be dealt with. Lewbel (2000) has shown that binary discrete

choice models with misclassification are non-parametrically identified and Hausman et al.

(1989) provides techniques for estimating this model.
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Table 2 – 2SLS estimation on δ—second stage

All crime Violent crime Property crime

Parameter Estimation S.E. Estimation S.E. Estimation S.E.

% Involved in crime 0.038 0.032 0.068∗ 0.033 −0.098 0.087
% Involved in crime ×
# Addresses per ha./1000 −0.104 0.464 −0.186 0.547 −0.005 1.264

# Addresses per hectare/1000 −0.243 1.201 −0.218 1.240 0.470 1.808
% Single person households −0.168 0.114 −0.261∗ 0.111 −0.084 0.178
% Single parent households 3.246∗∗∗ 0.397 0.589∗∗∗ 0.363 6.239∗∗∗ 0.641
# Persons per household −0.217∗∗∗ 0.046 −0.203∗∗∗ 0.046 −0.583∗∗∗ 0.076

Education1 −0.252∗∗∗ 0.028 −0.239∗∗∗ 0.028 −0.440∗∗∗ 0.044
Social class2 0.059∗∗∗ 0.015 0.067∗∗∗ 0.015 0.056∗ 0.024
Double income households3 −0.062∗∗∗ 0.010 −0.067∗∗∗ 0.010 −0.050∗∗ 0.016
% Out migration4 0.003∗ 0.001 0.003∗ 0.001 0.004∗ 0.002
% In migration5 0.006∗∗∗ 0.001 0.005∗∗∗ 0.001 0.010∗∗∗ 0.002
School density −0.001 0.001 −0.001 0.001 −0.002 0.002
% Homeowners/1000 0.705 0.597 0.929 0.597 1.097 0.970
# Shops/1000 0.122∗ 0.054 0.131∗ 0.055 0.055 0.084
Intercept 0.694∗∗∗ 0.144 0.668∗∗∗ 0.145 1.779∗∗∗ 0.238

# Observations 3,606 3,598 3,206
R2 0.433 0.432 0.353

Significance levels : ∗ : 5% ∗∗ : 1% ∗ ∗ ∗ : 0.1%
1 Education: average education within neighborhood (defined as: 1 is low education; 2 is medium
education; 3 is high education
2 Social class of neighborhood: running from high to low (4 categories: A, B1, B2 and C. For example A
is high income; high education; own house)
3 Double income households in neighborhood: average number of double income households, 9 categories
running from low to high.
4 Out migration: Total number of households that moved house from the neighborhood in the last five
years relative to the total number of neighborhood households (in 10 classes from low to high).
5 In migration: Total number of households that moved house to the neighborhood in the last five years
relative to the total number of neighborhood households (in 10 classes from low to high).
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A. Appendix: Tables

Table A.1 – Number of criminal suspects in 2006 per 1,000 individuals, by age, sex and
ethnic origin.

Male Female Total male and female

Total Total Total Total Grand
Age Native Foreign male Native Foreign female native foreign total

10–14 0.71 2.73 1.02 0.25 0.72 0.32 0.48 1.75 0.68
15–19 4.95 13.46 6.27 1.07 2.63 1.31 3.05 8.20 3.84
20–24 5.15 11.55 6.21 0.86 2.07 1.06 3.03 6.80 3.67
25–29 3.27 8.98 4.17 0.63 1.52 0.78 1.96 5.12 2.47
30–34 2.52 7.62 3.23 0.51 1.37 0.64 1.52 4.40 1.94
35–39 2.31 6.49 2.82 0.54 1.41 0.64 1.43 4.00 1.74
40–44 2.09 5.80 2.50 0.52 1.18 0.59 1.31 3.61 1.56
45–49 1.72 5.16 2.02 0.44 1.11 0.50 1.08 3.18 1.27
50–54 1.36 4.04 1.53 0.32 0.83 0.36 0.84 2.41 0.95
55–59 1.05 2.57 1.13 0.24 0.52 0.26 0.65 1.54 0.70
60–64 0.81 1.86 0.86 0.19 0.29 0.19 0.50 1.13 0.53
65–69 0.60 1.04 0.62 0.12 0.20 0.12 0.35 0.67 0.36
70–74 0.40 0.78 0.41 0.08 0.27 0.09 0.23 0.53 0.24
75–79 0.28 0.65 0.28 0.07 0.25 0.07 0.15 0.42 0.16
80–84 0.20 0.43 0.20 0.04 0.00 0.04 0.09 0.15 0.10
85–89 0.18 0.27 0.18 0.02 0.00 0.02 0.07 0.08 0.07

Total 1.99 7.00 2.49 0.41 1.36 0.50 1.19 4.21 1.49

Source: Statistics Netherlands and Netherlands National Police Services (KLPD)
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Table A.2 – 2SLS estimation on δ—first stage regression on % Involved in crime

All crime Violent crime Property crime

Parameter Estimation S.E. Estimation S.E. Estimation S.E.

IE(Cj) 0.819∗∗∗ 0.046 0.925∗∗∗ 0.051 0.737∗∗∗ 0.065
IE(Cj)× # Addresses
per hectare/1000 0.002∗∗ 0.001 0.001 0.001 0.004∗∗∗ 0.001

# Addresses per ha./1000 −2.374 1.802 −0.423 1.713 3.992∗∗ 1.383
% Single person households −0.215 0.202 0.038 0.174 −0.235 0.185
% Single parent households −0.689 0.719 −1.103 0.611 −0.639 0.659
# Persons per household −0.203∗ 0.081 −0.106 0.073 −0.200∗∗ 0.074

Education1 −0.162∗∗∗ 0.045 −0.108∗ 0.041 −0.064 0.040
Social class2 0.002 0.026 −0.001 0.023 0.014 0.023
Double income households3 0.005 0.017 0.002 0.016 0.005 0.015
% Out migration4 0.001 0.002 0.001 0.002 0.001 0.002
% In migration5 0.001 0.002 0.000 0.002 0.001 0.002
School density −0.002 0.002 −0.002∗ 0.002 −0.004∗ 0.002
% Homeowners/1000 0.741 1.022 0.891 0.931 −1.451 0.910
# Shops/1000 −0.127 0.094 −0.145 0.085 −0.058 0.079
Intercept 0.114∗∗∗ 0.242 0.668∗∗∗ 0.145 0.944∗∗∗ 0.220

# Observations 3,606 3,598 3,206
R2 0.564 0.519 0.445
Test of excluded instruments 310.14∗∗∗ 303.20∗∗∗ 155.37∗∗∗

Significance levels : ∗ : 5% ∗∗ : 1% ∗ ∗ ∗ : 0.1%
1 Education: average education within neighborhood (defined as: 1 is low education; 2 is medium
education; 3 is high education
2 Social class of neighborhood: running from high to low (4 categories: A, B1, B2 and C. For example A
is high income; high education; own house)
3 Double income households in neighborhood: average number of double income households, 9 categories
running from low to high.
4 Out migration: Total number of households that moved house from the neighborhood in the last five
years relative to the total number of neighborhood households (in 10 classes from low to high).
5 In migration: Total number of households that moved house to the neighborhood in the last five years
relative to the total number of neighborhood households (in 10 classes from low to high).
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Table A.3 – 2SLS estimation on δ—first stage regression on % Involved in crime × #
Addresses per hectare/1000

All crime Violent crime Property crime

Parameter Estimation S.E. Estimation S.E. Estimation S.E.

IE(Cj) −3.480∗∗ 1.260 −4.144∗∗ 1.397 −3.904∗ 1.706
IE(Cj)× # Addresses
per hectare/1000 0.967∗∗∗ 0.019 0.970∗∗∗ 0.022 0.957∗∗∗ 0.025

# Addresses per ha./1000 287.93∗∗∗ 49.100 279.66∗∗∗ 47.160 180.14∗∗∗ 16.423
% Single person households 8.773 5.511 8.797 4.785 18.138∗∗∗ 4.861
% Single parent households 41.576∗ 19.592 36.816∗ 16.818 20.231 17.367
# Persons per household −3.005 2.214 −2.125 2.009 2.088 1.946

Education1 −6.269∗∗∗ 1.230 −5.525∗∗∗ 1.140 −3.499∗∗ 1.065
Social class2 1.937∗∗ 0.699 1.791∗∗ 0.643 0.787 0.600
Double income households3 2.237∗∗∗ 0.472 1.856∗∗∗ 0.434 1.356∗∗ 0.406
% Out migration4 −0.065 0.054 0.068 0.050 −0.102∗ 0.046
% In migration5 0.032 0.049 0.033 0.044 0.033 0.042
School density −0.073 0.057 −0.055 0.053 −0.036 0.054
% Homeowners/1000 129.91∗∗∗ 27.848 122.59∗∗∗ 25.638 33.215 23.990
# Shops/1000 4.125∗∗ 2.549 4.295 2.353 6.485∗∗ 2.090
Intercept −6.147 6.608 −6.634 6.108 −13.041∗ 5.802

# Observations 3,606 3,598 3,206
R2 0.919 0.907 0.857
Test of excluded instruments 1927.88∗∗∗ 1499.38∗∗∗ 1065.50∗∗∗

Significance levels : ∗ : 5% ∗∗ : 1% ∗ ∗ ∗ : 0.1%
1 Education: average education within neighborhood (defined as: 1 is low education; 2 is medium
education; 3 is high education
2 Social class of neighborhood: running from high to low (4 categories: A, B1, B2 and C. For example A
is high income; high education; own house)
3 Double income households in neighborhood: average number of double income households, 9 categories
running from low to high.
4 Out migration: Total number of households that moved house from the neighborhood in the last five
years relative to the total number of neighborhood households (in 10 classes from low to high).
5 In migration: Total number of households that moved house to the neighborhood in the last five years
relative to the total number of neighborhood households (in 10 classes from low to high).
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