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Abstract

Quantiles play an important role in modelling quality of service in the service industry and in
modelling risk in the financial industry. Recently, Hong showed in his breakthrough papers [25, 26]
that efficient simulation based estimators can be obtained for quantile sensitivities by means of sam-
ple path differentiation. This has led to an intensive search for sample-path differentiation based
estimators for quantile sensitivities. In this paper we present a novel approach to quantile sensitiv-
ity estimation. Our approach elaborates on the concept of measure-valued differentiation (MVD).
Thereby, we overcome the main obstacle of the sample path approach which is the requirement that
the sample cost have to be Lipschitz continuous with respect to the parameter of interest. Specifically,
we perform a sensitivity analysis of the quantile of the value of a multi-asset option and a portfolio.
In addition, we discuss application of our sensitivity estimator to the Variance-Gamma process and
to queueing networks.

1 Introduction

Let Z have distribution function F . The quantile of Z (resp. F ) at a level α ∈ (0, 1), denoted by qα, is
defined as the largest value y such that the probability of obtaining a value y ≤ Z is less than or equal
to α:

qα = sup
{
y : F

(
y
)
≤ α

}
.

Throughout this paper we will assume that F is continuous, so that Z possess a density function (pdf),
denoted by f , and the quantile can be written more simply since F is now a bijection:

qα = sup
{
y : F

(
y
)
= α

}
= F−1

(
α
)
. (1)

Quantiles and quantile related performance measures are common in modelling quality of service
(QoS). Indeed, in the call center industry, QoS is typically measured by the fraction of customer inter-
actions that meet a predefined service level, for instance, the fraction of customers that could be helped
within a pre-specified time (e.g. 90 % of customers can contact an agent in less than 10 seconds). In
public transportation networks, QoS is measured by the achieved punctuality (e.g. 95 % of trains are no
more delayed than 2 minutes). In risk analysis, value at risk and conditional value at risk are defined
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through quantiles. Finally, note that the 6-σ quality control approach in business management is another
example, here it is the goal to guarantee that 99.9996 % of produced parts are with a pre-specified range
of boundary values.

To improve or optimize the quantile related performance of a system, sensitivity analysis of quantiles
with respect to changes in the parameters of the underlying model are essential. In this paper we
are interested in estimating quantile sensitivities with the help of simulation. In Section 2 we discuss
our approach and present the estimators. The contribution of the paper will be highlighted and the
further analysis will be motivated. In Section 3 we provide a detailed discussion of the literature. The
mathematical analysis of the estimator(s) is provided in Section 4 and Section 5. Applications are
discussed in Section 6 and Section 7.

2 Quantile Sensitivity Analysis

Let Z = (Zi : 1 ≤ i ≤ n) be a sequence of independent and identically distributed copies of Z. For
l = 1, . . . , n, the order statistic Zl:n is the lth smallest random variable from the collection Z. The
order-statistic vector is given by

Z1:n < Z2:n < . . . < Zl:n < . . . < Zn:n.

Note that the order statistic is well-defined with probability one as the distribution of Z is assumed to be
continuous. The order statistic Zl:n is the standard statistical estimator for the quantile. The relationship
between quantiles and order statistics was first determined by [2] for i.i.d. random variables by showing
that

lim
n→∞

Z⌈αn⌉:n = qα, (2)

with probability one. The requirement of independence in the result has been weakened progressively,
for instance, by Sen, [39], for m-dependent random variables1; and, [40], for ϕ-mixing random variables
in which the random variables are asymptotically independent. The greatest technical weakening was
introduced in [17], where an almost sure result was proved for particular classes of linear stationary
processes. Apart from (2) we will use the following results from the theory of spacings of order statistics
of i.i.d. data:

n
(
Z⌈αn⌉:n − Z⌈αn⌉−1:n

)
d
→

E
f(qα)

, (3)

as n → ∞, where d
→ denotes convergence in distribution and E is an Exponential random variable with

mean one; see [36].
In this paper we assume that the distribution of Z depends on some controllable distributional pa-

rameter θ, where we assume for sake of simplicity that θ ∈ Θ = (a, b) ⊂ R. We express the dependency
of the distribution of Z on θ through writing Fθ for the cumulative distribution function (cdf.) and fθ for
the probability density function (pdf.). Since Z is a continuous random variable, F−1

θ (x) is differentiable
w.r.t. to its argument x, and if Fθ is differentiable w.r.t θ, so is F−1

θ (y). By definition, see (1),

α = Fθ

(
qα(θ)

)
and we obtain an expression for the quantile sensitivity by differentiating the previous w.r.t θ

0 = ∂θFθ

(
qα(θ)

)
+ fθ

(
qα(θ)

)
∂θqα(θ),

or

∂θqα(θ) = −
∂θFθ

(
qα(θ)

)
fθ
(
qα(θ)

) , (4)

1A sequence {Xn} of random variables are called m-dependent if Xn and Xn+k are independent for any n provided that
k ≥ m.
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where ∂θ is a typographic shorthand for ∂
∂θ , which we will frequently use. Combining the order statistic

limit in (2) with the limit of spacings in (3) suggests the following result

lim
m→∞

Eθ[−m
(
Z⌈αm⌉:m − Z⌈αm⌉−1:m

)
F ′
θ(Z⌈αm⌉:m)] = q′α(θ). (5)

The paper is devoted to the analysis of (5), which has two main aspects: the statistical and the distribu-
tional differentiation aspect. For the statistical analysis we will first provide sufficient conditions for the
above limit to hold, which already yields an asymptotically unbiased estimator for q′α(θ). Provided that
(5) holds, taking averages over i.i.d. realizations of

−m
(
Z⌈αm⌉:m − Z⌈αm⌉−1:m

)
F ′
θ(Z⌈αm⌉:m), (6)

then yields a strongly consistent estimator for q′α(θ). As we will show in this paper, confidence intervals
for q′α(θ) can be established as well. The other aspect in (5) (resp. (6)) is that on how to deal with the
distributional derivative F ′

θ(Z⌈αm⌉:m). In other words, efficient simulation of F ′
θ(qα) has to be addressed.

In this paper we will apply measure-valued differentiation (MVD) to operationalize F ′
θ(Z⌈αm⌉:m) for

estimation. In particular, if F ′
θ exists then it can under rather weak conditions be written as F ′

θ =
cθ(F

+
θ −F−

θ ), with cθ a constant and F±
θ distribution functions. Inserting the above difference expression

for F ′
θ into (5), we arrive at the estimator

−mcθ
(
Z⌈αm⌉:m − Z⌈αm⌉−1:m

)(
F+
θ (Z⌈αm⌉:m)− F−

θ (Z⌈αm⌉:m)
)
. (7)

Note that the above estimator is a single-run estimator as no additional simulations apart of sampling
the order statistics is required.

Denote by Dm,k the sample average over k realizations of one of the estimators in (6) and (7). Let n
denote the computational budget, i.e., n is total number of realizations of Z that can be used for estimating
∂θqα(θ). While taking m = n (and k = 1) for the estimator yields the most accurate point estimation for
∂θqα(θ), no statistical assessment on the quality of the estimator can be made. Therefore, one typically
splits the overall budget into parts, namely n = mk, where m is the number of realizations of Z assigned
to the estimator and k is the number of independent replications of the estimator. Letting m and k
tends to infinity simultaneously, the limit with respect to m yields that ∂θqα(θ) will be approximated
arbitrarily close and the limit with respect to k allows for constructing confidence intervals for ∂θqα(θ).
Details will be provided in the statistical analysis part of the paper.

Now suppose that Fθ is not known or computationally intractable. In this case we will split the
estimation process into two parts. The first part will use i.i.d. replications of the spacing variable on
the LHS of (3), which by Pyke’s result yields a strongly consistent estimator for the value of the inverse
density at the quantile, i.e., 1/fθ(qα). Alongside with estimating the inverse of the density we use
Z⌈αn⌉:n as estimator for qα, see (2). In the second part of the procedure, we will use an MVD estimator
for estimating F ′

θ(qα). Typically, the distribution of Z is analytically intractable as it is distribution of
some measurable mapping h of a collection of random variables Xi, 1 ≤ i ≤ I, i.e., Z = h(X1, . . . , XI).
In this case, we will resort to the product rule of weak differentiation [20] for deriving unbiased derivative
estimator(s) for F ′

θ at qα. Generally speaking, if θ is a parameter of the distribution of X1, denoted by
F1,θ, and h as well as X2 to XI are independent of θ, then, provided that F1,θ is weakly differentiable
with weak derivative (cθ, F

+
1,θ, F

−
1,θ), it holds under fairly general conditions that

F ′
θ(z) = cθEθ[1{h(X+

1 , X2, . . . , XI) ≤ z} − 1{h(X−
1 , X2, . . . , XI) ≤ z}],

where X±
1 are distributed according to F±

1,θ, and 1{A} denotes the indicator mapping on the set A, which

equals one if the condition defining set A is true and is zero otherwise. Let Z± = h(X±
1 , X2, . . . , XI).

The overall estimator is build on the statistical data available for the nominal random variable Z = (Zi :
1 ≤ i ≤ m) and weak derivative Z±, and it is given as follows

lim
m→∞

cθEθ

[
−m

(
Z⌈αm⌉:m − Z⌈αm⌉−1:m

)(
1{Z+ ≤ Z⌈αm⌉:m} − 1{Z− ≤ Z⌈αm⌉:m}

)]
= q′α(θ), (8)
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or, alternatively,

lim
m→∞

cθEθ[−m
(
Z⌈αm⌉:m − Z⌈αm⌉−1:m

)]
× Eθ[1{Z+ ≤ Z⌈αm⌉:m} − 1{Z− ≤ Z⌈αm⌉:m}] = q′α(θ). (9)

The analysis of the estimators in (8) and (9) involves splitting the simulation budget. More specifically,
m×k observations are used for obtaining k i.i.d. replications yielding the spacing estimator for inverse of
the density together with a quantile estimator, and l i.i.d. samples of Z± for estimating the distributional
derivative. We will first provide a full analysis of the case that F ′

θ is analytically tractable in Section 4.
The estimator incorporating the derivative estimation part on F ′

θ will be discussed in Section 5, where
also a more detailed description of the concept of measure-valued differentiation is provided. Applications
to queues are discussed in Section 6 and applications to finance are presented in Section 7. A detailed
literature review is provided in Section 3.

The main contributions of the paper are the following:

• We provide a quantile sensitivity estimator that is applicable for non-smooth cost functions. The
estimator is independent of the particular cost function and requires no conditioning. For the most
general variant of our estimator, it is only required that h is measurable.

• Our estimator is derived by measure-valued differentiation. In general, MVD has the often lamented
drawback that it requires simulating different versions of the model in order to estimate the sen-
sitivity. As we show for the case of quantile sensitivities, in case that F is analytically tractable,
MVD leads to a single-run estimator. This is a novelty in the literature.

• In case that F ′
θ fails to be obtainable, we will apply MVD to estimate F ′

θ empirically via simulation.
This can be done in a natural way as F ′

θ is already a distributional derivative and can thus be
easily evaluated in a simulation by means of MVD. Thereby, we extended the results known in the
literature so far on sensitivity analysis of quantiles

• We provide a first application to sensitivity analysis of the cash-flow of multi-asset options and of
options defined on the Variance-Gamma process.

3 Discussion of the Literature

Sensitivity analysis of stochastic models has been an area of active research since the advent of sample-
path approaches such as infinitesimal perturbation analysis and the score function method. As of today
there are three main approaches to sensitivity analysis: infinitesimal perturbation analysis [24, 11] (IPA)
(together with it’s variations such as smoothed perturbation analysis (SPA) [6] and realization proba-
bilities [4]); the score function method [38], and measure valued differentiation [37, 22, 20]. Sensitivity
analysis is well developed for performance characteristics that can be obtained as an expected value of
an appropriate random variable, and the above methods are now belonging to the mainstream in applied
probability and operations research, see [7, 29]. Quantiles do not fall into this category and sensitivity
analysis of quantiles has been a long standing problem. The breakthrough papers by Hong [26, 25] were
the first results on sensitivity analysis for quantiles. The basic idea of Hong’s approach is the following.
Suppose Zi(θ) are path-wise monotone with respect to θ. For example, if θ is a location or scale parameter
of the distribution of Zi(θ), then sampling Zi(θ) by means of the inverse cdf. yields a path-wise monotone
representation. Then, the order indices l : n are independent of θ. In other words, if Zi(θ) is entry l : n
of the order statistic for some realization ω, then Zi(θ) is entry l : n of the order statistic for all values of
θ for this particular realization ω. If Zi(θ) is differentiable, then

d

dθ
Z⌈αn⌉:n(θ)

is a natural estimator for the quantile sensitivity. Hong provides in [26, 25] sufficient conditions for
the above estimator to be asymptotically unbiased and, provided that sample averages are taken over k
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replications of the above estimator and k is chosen well in connection with n, strong consistency of the
resulting estimator is established as well. The main assumption imposed in these papers is that Zi(θ) is
Lipschitz continuous with respect to θ. Specifically, provided that Z(θ) = h(X(θ)), the condition requires
that (i) X(θ) is almost surely differentiable, (ii) h(x) is (piece-wise) differentiable with respect to x, and
that (iii) |h(X(θ2)) − h(X(θ1))| ≤ k(X)|θ2 − θ1|, with E[k(X)] < ∞. Under these conditions it can be
shown that

d

dθ
Zi(θ) = h′(X(θ))

d

dθ
X(θ) and

d

dθ
E[Zi(θ)] = E

[
h′(X(θ))

d

dθ
X(θ)

]
,

where h′(x) denote the derivative of h(x) with respect to x. The main challenge for this approach is that
Lipschitz continuity often fails to hold or is hard to check. See, for example, the portfolio credit risk
model in [9], where an SPA-like conditioning approach is proposed in order to come up with a weaker
set of assumption with respect to Lipschitz continuity. While this approach allows to deal with non-
Lipschitz continuous mappings h, it requires a careful analysis of the model conditioned on each of the
discontinuities of h. Apart from the fact that this becomes infeasible for complex models, it requires in
mathematical terms that h is invertible. A simple example were h fails to be invertible is provided in
[27].

An alternative line of research originates from attempting to directly estimate qα(θ) via (4). Indeed,
again provided that conditions (i) to (iii) hold, it can be shown that

q′α(θ) = E
[

d

dθ
h(X(θ))

∣∣∣∣h(X(θ)) = qα(θ)

]
.

Unfortunately, the above expression requires conditioning on an event of probability zero. In [30], kernel
estimators are used to smooth out the conditioning on qα(θ). While kernel estimators introduce bias into
the estimator, it has been shown in [18] that this bias is negligible in applications, which renders the
kernel estimator a very interesting alternative for sensitivity analysis of quantiles. However, it requires
an IPA estimator to exist with known convergence properties. This is not always the case for models in
applications. Think, for example, of the stationary waiting time in a (non)-exponential queueing network,
where, except in special cases, path-wise differentiation of the stationary waiting time is not applicable (a
general result is [13], which provides an IPA estimator based on regenerative analysis). Or, as a second
example, consider the maintenance problem studied in [21]. No IPA estimator exists for this model and
the corresponding SPA estimator suffers from computational complexity that makes it impractical even
for small system size. Finally, it is worth mentioning that the application of IPA to the Variance Gamma
process is still an open question. Fu proposed in [8] IPA estimators but without proof of unbiasedness. It
is worth noting that kernel estimators can also be applied to smooth out discontinuities of h. An analysis
of this approach has been provided in [31]. For an alternative approach to deal with discontinuities for
sample path derivatives we refer to [32].

To summarize, the key obstacle in applying the sample path differentiation approach is the requirement
that h(x) is (piece-wise) differentiable with respect to x, and that h(X(θ)) is Lipschitz continuous in the
above sense. The approach proposed in this paper requires neither assumption.

4 Statistical Analysis

In this section we provide the analysis of the statistical properties of our estimator. We will first provide
an analysis for the estimator in (5) in Section 4.1. In Section 4.2 we discuss possible extensions.

4.1 Main Analysis

The main assumptions required for our analysis are the following:

(A1) Z = (Zi)
m
i=1 is a sequence of i.i.d. continuous random variables taking values in S ⊂ R with density

function fθ, cumulative distribution function (cdf.) Fθ, and finite second moment.
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(A2) There exists an open neighborhood B(α) of qα(θ), such that

– the density fθ(x) is continuous and strictly positive within this neighborhood, i.e.,

inf
x∈B(α)

fθ(x) > 0,

– the derivative of the density fθ(x) with respect to x is bounded on B(α), i.e.,

sup
x∈B(α)

∣∣∣∣ ∂∂xfθ(x)
∣∣∣∣ < ∞ .

(A3) The cdf. Fθ(x) is differentiable with respect to θ, and the derivative is continuous as a mapping of
x.

Before we can prove the main result on uniform convergence of spacings, we state a preliminary
technical result, which provides a bound on the difference between the quantile and an associated order
statistic.

Lemma 4.1 (Serfling, [41], pp.97) Let α ∈ (0, 1) and suppose that (A1) and (A2) hold. Let ln be a
sequence of positive integers (with 1 ≤ ln ≤ n) such that

ln
n

= α+ o
(
(ln(n))δn− 1

2

)
for some δ ≥ 1/2. Then with probability one

∣∣Zln:n − qα(θ)
∣∣ ≤ 2

fθ
(
qα(θ)

) (ln(n))δ
n

1
2

, (10)

for all n sufficiently large.

We will now turn to the proof of uniform integrability of spacings.

Lemma 4.2 (Uniform Integrability of Spacings) Suppose that (A1) and (A2) hold, then

(i) The spacing sequences m(Z⌈αm⌉:m − Z⌈αm⌉−1:m) and m2(Z⌈αm⌉:m − Z⌈αm⌉−1:m)2 are uniformly
integrable;

(ii) The sequence ma(Z⌈αm⌉:m − Z⌈αm⌉−1:m)b tends to 0 a.s. as m → ∞ for a = 1, 2 and b > a.

Proof: To simplify the notation, let

Y1,m = Z⌈αm⌉−1:m, Y2,m = Z⌈αm⌉:m.

Note that
Y2,m − Y1,m = F−1

θ (T2,m)− F−1
θ (T1,m),

where T1,m = U⌈αm⌉−1:m, T2,m = U⌈αm⌉:m are taken from uniform-[0,1] order statistics. Since Fθ is
differentiable and monotone, there exist, for almost all realizations, ξ ∈ (Y1,m, Y2,m), such that by the
Mean Value Theorem,

Y2,m − Y1,m = ∂xF
−1
θ (ξ)(T2,m − T1,m) =

1

fθ(F
−1
θ (ξ))

(T2,m − T1,m). (11)

Let

rm =
2

fθ
(
qα(θ)

) ( ln(m)

m

) 1
2

.

6



Note that letting δ = 1/2 in Lemma 4.1, implies

|qα(θ)− Y2,m| ≤ rm, |qα(θ)− Y1,m| ≤ rm,

for all but finitely many m, which gives

|Y2,m − Y1,m| ≤ |qα(θ)− Y2,m|+ |qα(θ)− Y1,m| ≤ 2rm.

By (A2), fθ(x) > 0 within a neighbourhood B(α) of qα(θ). Letting Brm(qα(θ)) be the open ball
centred at x = qα(θ) with radius rm, it then holds for m sufficiently large that Brm(qα(θ)) ⊂ B(α), which
implies the constants

cm = inf
y∈Brm (qα(θ))

fθ(y), Cm = sup
y∈Brm (qα(θ))

fθ(y)

are finite. Inserting these constants into (11) we arrive at

1

C2
m

E[(T2,m − T1,m)2] ≤ Eθ[(Y2,m − Y1,m)2] ≤ 1

c2m
E[(T2,m − T1,m)2]. (12)

Note that by construction, it holds that

lim
m→∞

cm = lim
m→∞

Cm =
1

fθ(qα(θ))
. (13)

Hence, taking the limit in (12) as m tends to infinity, it follows from the limit in (13) together with the
fact that

E[(T2,m − T1,m)2] =
2

m(m+ 1)

for all m, that

lim
m→∞

Eθ[m
2(Y2,m − Y1,m)2] =

2

f2
θ (qα(θ))

. (14)

Noting that

E[T2,m − T1,m] =
1

m+ 1
,

it follows from the same line of arguments that

lim
m→∞

Eθ[m(Y2,m − Y1,m)] =
1

fθ(qα(θ))
. (15)

We now turn to the proof of uniform convergence. From (A1) together with [36] it follows that

m(Y2,m − Y1,m) d
→

E
fθ
(
qα(θ)

) , (16)

where E is an exponential random variable with mean one. Applying the mapping g(x) = x2 to m(Y2,m−
Y1,m), the Continuity Limit Theorem yields

m2(Y2,m − Y1,m)2 d
→ V :=

E2

f2
θ

(
qα(θ)

) , (17)

with

E[V ] =
2

f2
θ

(
qα(θ)

) . (18)

A sufficient condition for uniform integrability of a sequence {Xn} is that (Xn)n≥1
d
→X and limn≥1 E|Xn| =

E|X| < ∞, see [41]. Hence, from (15) together with (16) follows uniform integrability of m(Y2,m −Y1,m),
and from (14) together with (17) and (18) follows uniform integrability of m2(Y2,m − Y1,m)2.
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We now turn to the proof of part (ii) . For b > a, the sequence, (ma(Y2,m − Y1,m)b)m≥1 is positive
with probability one with mean bounded above by

Eθ[m
a(Y2,m − Y1,m)b] ≤ 2

(
ln(m)

m

)(1/2)(b−a)
(

2

fθ
(
qα(θ)

))b−a

Eθ[m
a(Y2,m − Y1,m)a],

which follows from Lemma 4.1. Since for a = 1, 2, with Eθ[m
a(Y2,m − Y1,m)a] = O(1), this means

Eθ[m
a(Y2,m − Y1,m)b] → 0 as m → ∞. Combining these results with Property H in [42], p. 185, we

arrive at
ma(Y2,m − Y1,m)b a.s.

→ 0,

which concludes the proof for part (ii) of Lemma 4.2. �
The first statistical property of our estimator we derive is asymptotic unbiasdeness. For the proof we

use the fact that uniform convergence together with convergence in distribution implies convergence in
the mean. For the proof we need the following property of the derivative of the cdf.:

(A4) It holds that
sup
x∈S

|F ′
θ(x)| < ∞.

As will show in Lemma 5.1 in the section on distributional differentiation, condition (A4) holds under
rather weak conditions on Fθ. We now state the main theorem.

Theorem 4.1 Let (A1) to (A4) hold, then

lim
m→∞

E[−m
(
Z⌈αm⌉:m − Z⌈αm⌉−1:m

)
F ′
θ(Z(⌈αm⌉):m)] = q′α(θ).

Proof: By (A3) it follows that

E
[
m2
(
Z⌈αm⌉:m − Z⌈αm⌉−1:m

)2(
F ′
θ(Z⌈αm⌉:m)

)2]
is well defined. Using the fact that

(
F ′
θ(Z⌈αm⌉:m)

)2
is bounded (which follows from by (A4)), we may,

by (A1) together with (A2), argue like in the proof of Lemma 4.2 to show that

sup
m

∣∣∣E[m2
(
Z⌈αm⌉:m − Z⌈αm⌉−1:m

)2(
F ′
θ(Z⌈αm⌉:m)

)2]∣∣∣ < ∞.

This implies uniform integrability of the sequence (m
(
Z⌈αm⌉:m − Z⌈αm⌉−1:m

)
F ′
θ(Z⌈αm⌉:m)). By (A1),

F ′
θ(Z⌈αm⌉:m) converges almost surely towards the deterministic value F ′

θ(qα(θ)). From Slutsky’s theorem

it then follows that m
(
Z⌈αm⌉:m −Z⌈αm⌉−1:m

)
F ′
θ(Z⌈αm⌉:m) converges weakly. This together with the fact

that this sequence is uniformly integrable, establishes convergence in the mean. �
Let

dm = −m
(
Z⌈αm⌉:m − Z⌈αm⌉−1:m

)
F ′
θ(Z⌈αm⌉:m)

and denote by dm(i), for 1 ≤ i ≤ k, a realization of dm. Then dm is the estimator for q′α(θ) introduced in
(5), and we denote by Dα

m,k the sample average over k realizations dm(i), 1 ≤ i ≤ k, based on a sample
of Z (i.e., m i.i.d. samples of Z):

Dα
m,k =

1

k

k∑
i=1

dm(i).

The previous result on asymptotic unbiasedness, Theorem 4.1, together with the i.i.d. assumption of our
samples implies that Dα

m,k
a.s.
→ q′α(θ) as k,m → ∞ via the Strong Law of Large Numbers, [42]. This is

strong consistency of our estimator.
We can delve further in our asymptotic result and determine the extent of biasedness for finite samples

between our estimator and the mean value. This result is also needed for our Central Limit Theorem
result, which will be provided in Theorem 4.3 later on.
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Theorem 4.2 Under assumptions (A1) to (A3) it holds that

|Eθ[D
α
k.m − q′α(θ)]| = O

(
m−1

)
.

Proof: To simplify the notation, let Y1,m = Z⌈αm⌉−1:m, Y2,m = Z⌈αm⌉:m, and

W1,m = Y2,m − Y1,m and W2,m = F+
θ (Y2,m)− F−

θ (Y2,m).

With this notation, our estimator reads

Eθ[D
α
k,m] = Eθ[−mcθW1,mW2,m]. (19)

Now we expand W1,m, W2,m via a Taylor polynomial approximation, heeding the method in [5], pp. 84.
We first deal with W1,m. We have assumed that (A1) and (A2) hold, and we may take sm =

2(ln(m)/m)1/2 in Lemma 4.1, so that for m sufficiently large there exists a neighbourhood Bsm(α) of
qα(θ) such that Bsm(α) ⊂ B(α) and the bound in (10) applies. By means of the mapping Fθ(x), a set
B ⊂ S corresponds to a pre-image B−1 on the unit interval, and we define

B−1 = {Fθ(x) : x ∈ B} ⊂ [0, 1].

By Assumption (A2) it now holds that

c1,m := sup
x∈(Bsm (α))−1

∣∣∣∣ ∂2

∂x2
F−1
θ (x)

∣∣∣∣ = sup
x∈Bsm (α)

∣∣∣∣−f−3
θ (x)

∂

∂x
fθ(x)

∣∣∣∣ < ∞,

where we have used the fact that ∂xF
−1
θ (x) = 1/fθ(F

−1
θ (x)), which follows from the fact that Fθ(x) is

monotone and continuous. Letting (Ul:m : 1 ≤ l ≤ m) be the order statistic of i.i.d. uniform [0,1] random
variables. Writing Yi,m = F−1

θ (Ti,m), for i = 1, 2, where T1,m = U⌈αm⌉−1:m, T2,m = U⌈αm⌉:m, we can
expand Yi,m around α as follows

Yi,m = F−1
θ (α) +

∂

∂x
F−1
θ (α)

(
Ti,m − α

)
+

1

2

∂2

∂x2
F−1
θ (ξi)

(
Ti,m − α

)2
,

with ξi ∈ (Bsm(α))−1, for i = 1, 2. Note that (Bsm(α))−1 is a decreasing sequence of sets with limit {α}
as m tends to ∞, which implies that

lim
m→∞

c1,m =

∣∣∣∣−f−3
θ (α)

∂

∂x
fθ(α)

∣∣∣∣ .
Hence, for m sufficiently large

W1,m ≈
(
F−1
θ (α) + ∂xF

−1
θ (α)

(
T2,m − α

)
+ c1,m

(
T2 − α

)2)
−
(
F−1
θ (α) + ∂xF

−1
θ (α)

(
T1,m − α

)
+ c1,m

(
T1 − α

)2)
=

∂

∂x
F−1
θ (α)

(
T2,m − T1,m

)
+ c1,m

(
T2,m − T1,m

)(
T2,m + T1,m − 2α

)
.

We now turn to the term W2,m. We use a linear Taylor expansion with a Lagrangian remainder around
x = qα(θ), providing

F+
θ (Y2,m) = F+

θ (qα(θ)) +
∂

∂x
F+
θ (η1)

(
Y2,m − qα(θ)

)
= F+

θ (qα(θ)) + f+
θ (η1)

(
Y2,m − qα(θ)

)
,

for η1 ∈ Bsm(α), and f+
θ (x) denoting the density of F+

θ (x). In the same vein

F−
θ (Y2,m) = F−

θ (qα(θ)) + f−
θ (η2)

(
Y2,m − qα(θ)

)
,
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for η2 ∈ Bsm(α), and f−
θ (x) denoting the density of F−

θ (x). Letting

c2,m = sup
x∈Bsm (α)

max(f+
θ (x), f−

θ (x)) < ∞,

it follows from the fact that Bsm(α) is a decreasing sequence with limit {qα(θ)}, that c2,m converges to
max(f+

θ (qα(θ)), f
−
θ (qα(θ))). Hence, for m sufficiently large it holds that

W2,m ≈ F+
θ (qα(θ))− F−

θ (qα(θ)) + c2,m
(
Y2,m − α

)
.

Now let

c3,m = sup
x∈(Bsm (α))−1

∣∣∂xF−1
θ (x)

∣∣ = sup
x∈(Bsm (α))−1

∣∣∣∣ 1

fθ(F
−1
θ (x))

∣∣∣∣ ,
where we have used the fact that ∂xF

−1
θ (x) = 1/fθ(F

−1
θ (x)), which follows from the fact that Fθ(x)

is monotone and continuous, and note that, again by a Taylor series approximation, it holds for m
sufficiently large that

Y2,m − qα(θ) ≈ c3,m(T2,m − α).

Note that by (A2) it holds that c2,m, c3,m < ∞. Inserting the above approximation for Y2,m− qα(θ) into
the approximation for W2 we arrive at

W2,m ≈ F+
θ (qα(θ))− F−

θ (qα(θ)) + c2,mc3,m
(
T2,m − α

)
,

for m sufficiently large. The constants are only important in the sense that they have a finite limit, which
they do by the Continuity Limit Theorem. From the definition for the sensitivity of the quantile, see
Equation (4), it follows with ∂θFθ(qα(θ)) = cθ(F

+
θ (qα(θ))− F−

θ (qα(θ))) that

q′α(θ) = cθ(F
+
θ (qα(θ))− F−

θ (qα(θ)))
∂

∂x
F−1
θ (α),

where we make use of the fact that ∂F−1
θ (α)/∂x = fθ(F

−1
θ (α)). Collecting the above approximations

and inserting them into Equation (19) yields

Eθ[D
α
m,k] ≈ mq′α(θ)E[T2,m − T1,m]

−m
(
∂θFθ

(
qα(θ)

))
c1,mE

[(
T2,m − T1,m

)(
T2,m + T1,m − 2α

)]
−mcθ

(
∂xF

−1
θ (α)

)
c2,mc3,mE

[(
T2,m − T1,m

)(
T2,m − α

)]
−mcθc1,mc2,mc3,mE

[(
T2,m − T1,m

)(
T2,m − α

)(
T2,m + T1,m − 2α

)]
.

Since E[T2,m − T1,m] = 1/(m+ 1), it holds that

mq′α(θ)E[T2,m − T1,m] ≈ q′α(θ),

for m sufficiently large, which yields

Eθ[D
α
m,k]− q′α(θ) ≈ −m

(
∂θFθ

(
qα(θ)

))
c1,mE[

(
T2,m − T1,m

)(
T2,m + T1,m − 2α

)
]

−mcθ
(
∂xF

−1
θ (α)

)
c2,mc3,mE

[(
T2,m − T1,m

)
(T2,m − α

)]
−mcθc1,mc2,mc3,mE

[(
T2,m − T1,m

)(
T2,m − α

)(
T2,m + T1,m − 2α

)]
. (20)

Computing the remaining expected values of uniform order statistics, yields

E
[(
T2,m − T1,m

)(
T2,m − α

)]
=

⌈αm⌉ − αm+ 1− α

m(m+ 1)
,
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and for m sufficiently large

E
[(
T2,m − T1,m

)(
T2,m − α

)]
=

2− α

m(m+ 1)
.

Also,

E
[(
T2,m − T1,m

)(
T2,m + T1,m − 2α

)]
=

2(⌈αm⌉ − αm− α)

m(m+ 1)
≈ 2(1− α)

m(m+ 1)
,

and

E
[(
T2 − T1

)(
T2 − α

)(
T2 + T1 − 2α

)]
=

2α(1− α)m+ 2(⌈αm⌉ − αm)2 + 4(1− 2α)(⌈αm⌉ − αm)− 4α(1− α)

m(m+ 1)(m+ 2)

≈ 2α(1− α)

m(m+ 1)
+

2(1− 2α)(3− 2α)

m(m+ 1)(m+ 2)
.

Hence, Eθ[D
α
k,m]− q′α(θ) in (20) behaves for sufficiently large m like a sum of terms that are at most of

order O
(
m−1

)
, which proves the claim. �

Since we have finite second moments, the limiting distribution for the Central Limit Theorem in
Theorem 4.3 is the standard normal distribution. The precise statement is as follows.

Theorem 4.3 (Central Limit Theorem) Suppose that assumptions (A1) to (A4) hold and suppose
that k1/2/m → 0 as k,m → ∞. Then

Dα
m,k − q′α(θ)(

Varθ
(
Dα

m,k

))1/2 d
→ N (0, 1) (21)

as k,m → ∞.

Proof: The left-hand side of (21) can be written as

Dα
m,k − q′α(θ)(

Varθ
(
Dα

m,k

))1/2 =
Dα

m,k − Eθ

[
Dα

m,k

](
Varθ

(
Dα

m,k

))1/2 +
Eθ

[
Dα

m,k

]
− q′α(θ)(

Varθ
(
Dα

m,k

))1/2 . (22)

By construction Dα
m,k is the sample average of i.i.d. replications dm(i). Hence, by the Lévy Central

Limit Theorem the first term on the right hand side of (22) converges in distribution to the standard
normal distribution as m tends to infinity. As for the second term, the variance of the estimator satisfies

Varθ
(
Dα

m,k

)
=

1

k
Varθ

(
dm(1)

)
.

By Theorem 4.2, |Eθ[D
α
m.k]−qα(θ)| = O

(
m−1

)
, which means that |Eθ[D

α
m.k]−qα(θ)| behaves asymp-

totically like L/m for some finite constant L. We obtain an upper bound for the second term∣∣∣∣∣∣Eθ[D
α
m,k]− q′α(θ)(

Varθ(Dα
m,k)

)1/2
∣∣∣∣∣∣ ≤ L(

Varθ(dm(1))
)1/2 k1/2m

. (23)

Given our requirement on the relation between k and m, Equation (23) tends to zero as k,m → ∞.
Slutsky’s Theorem provides the final result. �

In order to construct confidence intervals for q′α(θ), the variance of the estimator Dα
k,m has to be

estimated as well. Let

Sα
m,k =

1

k − 1

{ k∑
i=1

(
dm(i))2 − 1

k

(
k∑

i=1

dm(i)

)2
}

denote our estimator for Varθ(dm(i)). The following lemma provides a sufficient condition for strong
consistency of the above estimator.
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Lemma 4.3 Suppose assumption (A1) holds, then

lim
k→∞

Sα
m,k = Varθ

(
dm(i)

)
.

with probability one.

Proof: The proof is an application of the Strong Law of Large Numbers (SLLN) [42]. We begin with

Sα
m,k =

k

k − 1

{
1

k

k∑
i=1

(
dm(i)

)2 − 1

k2

( k∑
i=1

dm(i)

)2
}
. (24)

From assumption (A1), Eθ[(D
α
m,k)

2] < ∞ for all m. Combining this result, with the SLLN and the

Continuity Limit Theorem, where we use the mapping g(x) = x2, we obtain

lim
k→∞

1

k

k∑
i=1

(
dm(i)

)2
= Eθ[(D

α
m,k)

2]

and

lim
k→∞

1

k2

( k∑
i=1

dm(i)

)2

= E2
θ[D

α
m,k], (25)

with probability one. Combining Equation (25) with Equation (24), and the algebra of limits for almost
sure convergence, see, for example, [16], we obtain

lim
k→∞

Sα
m,k = lim

k→∞

(
Eθ

[(
Dα

m,k

)2]− E2
θ

[
Dα

m,k

])
= Varθ

(
Dα

m,k

)
with probability one. �

With the above statistical analysis we can construct two-sided confidence interval for q′α(θ) as follows,
where we assume that the conditions put forward in Theorem 4.3 hold. Let β denote the confidence level
and let tβ,k denote the (1− β/2) quantile of Student’s t-distribution with k degrees of freedom. Then, it
holds asymptotically that

q′α(θ) ∈
(
Dα

m,k − tβ,k−1

k
Sα
m,k, D

α
m,k +

tβ,k−1

k
Sα
m,k

)
with probability of at least 1− β.

4.2 Extensions

There exists an almost sure version of Pyke’s [36] basic spacing convergence result put forward in (3). The
corresponding density estimator requires the choice of a sequence km such that km tends to infinity as m
tends to infinity and km/m tends to zero as n tends to infinity. Given observation Z = (Zi : 1 ≤ i ≤ m),
and z ∈ R, the density estimator is based on the difference of the order statistic values lying 2km steps
apart and including z. More specifically,

fθ,m(z) =

{
2km

m(Z⌈2km+j⌉−Z⌈1+j⌉)
if z ∈ [Z⌈km+j⌉, Z⌈km+j+1⌉) for j = 0, 1, . . . ,m− 2km;

0 if z < Z⌈km⌉ or z ≥ Z⌈m−km+1⌉ .
(26)

Then it holds that
lim

m→∞
fθ,m(z) = fθ(z), (27)

with probability one, see [44, 43]. Intuitively, the almost sure result is equivalent to a Strong Law of
Large Numbers result where the expression is a sum of spacings which are approximately independent
for large m. Elaborating on (27), a strongly consistent estimator for q′α(θ) can be obtained. The precise
statement is presented in the following lemma.
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Lemma 4.4 Let (A1) to (A4) hold. Let fθ,m be defined as in (26) and assume that

(i) fθ(x) is uniformly continuous as a mapping in x on R,

(ii) the sequence {km} is such that limm→∞ km/m = 0 and,

∞∑
m=1

e−ckm < ∞

for all c > 0, then
lim

m→∞
fθ,m(Z⌈αm⌉:m)F ′

θ(Z(⌈αm⌉):m) = q′α(θ),

with probability one.

Proof: Bahadur [2] showed that for i.i.d. random variables Z⌈αn⌉:n tends towards qα almost surely. This
together with continuity of F ′

θ implies that F ′
θ(Z(⌈αm⌉):m) tends to F ′

θ(qα) as m tends to infinity with
probability one. Note that

lim
m→∞

fθ,m(Z⌈αm⌉:m) = lim
m→∞

fθ,m(qα) + lim
m→∞

(
fθ,m(Z⌈αm⌉:m)− fθ,m(qα)

)
.

Provided that the conditions put forward in the lemma hold, the limit in (27) holds uniformly, that is,
with probability one it holds that

lim
n→∞

sup
z

|fθ,m(z)− fθ(z)| = 0,

see [45]. For m sufficiently large it thus holds that |fθ,m(Z⌈αm⌉:m)−fθ,m(qα)| becomes arbitrarily close to
|fθ(Z⌈αm⌉:m)−fθ(qα)| and, together with Lemma 4.1, we conclude that fθ,m(Z⌈αm⌉:m)−fθ,m(qα) = o(1).
Hence,

lim
m→∞

fθ,m(Z⌈αm⌉:m) = fθ(qα)

which probability one, which concludes the proof. �

Remark 4.1 The optimal rate of convergence is given in [45], [46], and depends on the further require-
ments on the density function fθ. For example, if fθ(x) is Lipschitz continuous as a mapping of x, then
the optimal sequence is km = ⌈m4/7(log(m)3/7⌉.

While on the one side the strongly consistent estimator in Lemma 4.4 is preferable to the estimator in
(6), which is based on the weak limit in (3), there is no result available on the asymptotic bias (compare
with Theorem 4.2), which is a key result for establishing a central limit theorem for the estimator. In
addition, uniform continuity of fθ(x) as a mapping of x is required in Lemma 4.4 is hard to check for
complex models.

5 Distributional Differentiation

For our analysis, we will work within the framework of measure valued differentiation (MVD), and we
refer to [37, 22] for details.

5.1 Basic Definitions

Let µθ be a probability measure and let Fθ(x) = µθ((−∞, x]), for x ∈ R, denote the corresponding
cumulative distribution function, where we denote the probability density function of Fθ by fθ. Let v ≥ 1
be some measurable mapping that is absolutely integrable with respect to µθ for all θ. We denote by Bv

the set of all measurable mappings that are bounded by cv for some finite constant c, i.e., f ∈ Bv if f is

13



measurable and f(x) ≤ c v(x) for all x ∈ R. In addition, we denote by Bb the set of bounded measurable
mappings, i.e., for v̂(x) = 1, x ∈ R, it holds that Bv̂ = Bb.

The measure µθ is called Bv-differentiable if a signed measure µ′
θ exists such that for all h ∈ Bv:

∂

∂θ

∫
R
h(x)µθ(dx) =

∫
R
h(x)µ′

θ(dx),

for examples we refer to [22]. The measure µ′
θ is called the Bv-derivative of µθ.

Provided that the set of bounded and continuous mappings is a subset of Bv, the derivative measure
µ′
θ is uniquely defined. The derivative measure can be written in a non-unique way as the difference of

two probability measures µ+
θ and µ−

θ with pre-factor cθ > 0:

∂

∂θ

∫
R
h(x)µθ(dx) =

∫
R
h(x)µ′

θ(dx) = cθ

∫
R
h(x)

(
µ+
θ (dx)− µ−

θ (dx)
)
, (28)

for all h ∈ Bv, and we can write a measure-valued derivative of µθ as the triple (cθ, µ
+
θ , µ

−
θ ). In the same

vein, we will call (cθ, F
+
θ , F−

θ ) a Bv-derivative of Fθ if F±
θ is the cumulative distribution function of µ±

θ .
Since Bb ⊂ Bv, it holds that if µθ (resp. Fθ) is Bv-differentiable, then µθ (resp. Fθ) is also Bb-differentiable
and the derivatives coincide.

Let X be distributed according to µθ, and let X± follow distribution µ±
θ , then Bv-differentiability of

µθ (resp. of X) implies for all h ∈ Bv that

∂

∂θ
Eθ

[
h(X)

]
= cθ

(
Eθ

[
h(X+)

]
− Eθ

[
h(X−)

])
and we call (cθ, X

+, X−) a Bv-derivative of X. Note that provided that X is Bv-differentiable with
differentiable density fθ, it holds that

∂

∂θ
Fθ(x) =

∫ x

−∞
1S(x)

∂

∂θ
fθ(x) dx, (29)

where S denotes the support of X independent of θ.
For the statistical analysis we required in Theorem 4.1 that F ′

θ(x) is bounded as a mapping of x. As
the following lemma shows this conditions is always satisfied provided the corresponding random variable
(resp. distribution) is Bv-differentiable.

Lemma 5.1 Let X have distribution µθ. If X (resp. µθ) is Bb-differentiable with cdf. Fθ(x) for v ≥ 1,
then F ′

θ exits and
sup
x∈S

∣∣F ′
θ(x)

∣∣ < ∞.

Moreover, F ′
θ(x) is continuous as a mapping in x.

Proof: Let X have distribution µθ with Bb-derivative (cθ, µ
+
θ , µ

−
θ ). Note Bb contains all indicator

mappings. From (28) it then follows that

F ′
θ(x) =

∫
S

1(−∞,x]µ
′
θ(dx)

= cθ

(∫
S

1(−∞,x]µ
+
θ (dx)−

∫
S

1(−∞,x]µ
−
θ (dx)

)
= cθ(F

+
θ (x)− F−

θ (x)),

and the proof follows from the fact that F+
θ (x)−F−

θ (x) ≤ 1 for any x. The fact that F ′
θ(x) is continuous

as a mapping of x stems from the fact that Fθ(x) is Bb-differentiable, which implies strong differentiability
of Fθ and thereby implies continuity of F ′

θ; see [20]. �
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Since the set of bounded continuous mappings is a subset of Bv, there exists a unique triple represen-
tation of µθ (resp. X) in the sense of minimal total variation, given by the Hahn-Jordan decomposition,
see [28]. For measure valued differentiation this implies that our two probability measures have support
on disjoint sets. While for independent random variables the Hahn-Jordan decomposition provides the
minimal variance estimator, sampling (X+, X−) may be difficult.

Example 5.1 Let Fθ denote the cdf. of an exponentially distributed random variable with rate θ, i.e.,
Fθ(x) = 1− e−θx, for x ≥ 0. Let v(x) = (1 + x)p, for p ∈ N. Then it holds that the Bv-derivative of Fθ,
denoted by F ′

θ, is given by
F ′
θ(x) = xe−θx, x ≥ 0,

for any p ∈ N. For details, see [22]. Denote the cdf. of Erlang-(2, θ)-distribution by E2,θ(x), then it holds
that

F ′
θ(x) =

1

θ
(Fθ(x)− E2,θ(x)).

Example 5.2 Let N (µ, σ) denote the normal distribution with mean µ and standard deviation σ and
write N (µ, σ)(x) for the cdf. of N (µ, σ). The density of N (µ, σ)(x) is given by

ϕµ,σ(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 , x ∈ R.

Then N (µ, σ) is Bv-differentiable with respect to µ and σ, for v(x) = (1+x)p, with p ∈ N; for details, see
[22]. Denote the Bv-derivative of N (µ, σ) with respect to µ by Nµ(µ, σ) and the Bv-derivative of N (µ, σ)
with respect to σ by Nσ(µ, σ). Differentiating ϕµ,σ(x) with respect to θ yields

∂

∂µ
ϕµ,σ(x) =

1

σ3
√
2π

(x− µ)e−
(x−µ)2

2σ2 , x ∈ R.

Integrating the above derivative of the density out yields

Nµ(µ, σ)(x) = − 1

σ
√
2π

e−
(x−µ)2

2σ2 , x ∈ R,

see (29). Alternatively, we can write

∂

∂µ
ϕµ,σ(x) =

1

σ
√
2π

(
(x− µ)

σ2
e−

(x−µ)2

2σ2 1x≥µ − (µ− x)

σ2
e−

(x−µ)2

2σ2 1x≤µ

)
, x ∈ R.

Note that xe−
x2

2σ2 /σ2, for x ≥ 0 is the density of the Rayleigh distribution the cdf. of which is given by

Rσ(x) = 1− e−
x2

2σ2 , for x ≥ 0. Hence,

Nµ(µ, σ)(x) =
1

σ
√
2π

(Rσ(x− µ)1x≥µ −Rσ(|x− µ|)1x≤µ) ,

with Rσ(x − µ) being the Rayleigh distribution shifted by µ. Note that a sample from Rσ(x − µ) can be
obtained from µ + σ

√
−2 ln(1− U), for U ∈ [0, 1], and that a sample from Rσ(|x − µ|) can be obtained

from µ− σ
√
−2 ln(1− U).

We now turn to the derivative with respect to σ. It can be shown that

Nσ(µ, σ)(x) =
1

σ
(DM(µ, σ)(x)−N (µ, σ)(x)) ,

for x ∈ R, where DM(µ, σ) denotes the cdf. of the double-sided distribution with mean µ and shape
parameter σ. Sampling from the Double-Maxwell distribution is discussed in [23]. In terms of minimizing
the variance of the estimator it is of interest that the Double-Maxwell distribution and normal distribution
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can be coupled in a simple way. If the random variable M has cdf. M ∼ DM(µ, σ)(x), then UM , with
U being uniformly distributed in [0, 1] and independent of everything else, has cdf. N (µ, σ)(x). See, [23]
for details. The normal distribution and the Double-Maxwell distribution can be computed by means of
the error function. Fortunately, the expression for Nσ(µ, σ)(x) is the difference between the two cdf.’s
and the corresponding error function terms cancel out. Specifically, it holds

Nσ(µ, σ)(x) = − 1√
2πσ

x− µ

σ
e−

(x−µ)2

2σ2 , x ∈ R.

Suppose that µ and σ are mappings of a common parameter θ, i.e., µ = µ(θ) and σ = σ(θ). Provided
that µ(θ) and σ(θ) are differentiable with respect to θ, applying the chain rule of differentiation yields for
the Bv-derivative of N (µ, σ)(x) with respect to θ, denoted by ∂N (µ, σ)(x)/∂θ

∂

∂θ
N (µ, σ)(x) =

d

dθ
µ(θ)Nµ(µ, σ)(x) +

d

dθ
σ(θ)Nσ(µ, σ)(x), (30)

for x ∈ R.

Remark 5.1 It is worth noting that our estimators can be interpreted (up to some limitations) in terms of
the Score Function Method. It is well known that the score function estimator has typically larger variance
than an MVD estimator whereas the score function estimator is a single run estimator avoiding the re-
simulation required by standard MVD estimators. However, the advantage of the single-run representation
of the Score Function Method usually does not compensate for its (typically much) larger variance and,
in general, an MVD estimator is more efficient than a Score Function Method estimator.

5.2 The Inverse-Transformation Approach and Extensions to Finite Product
Measures

Weak differentiation of X carries over to that of h(X). The precise statement is provided in the following
lemma, which will be useful for establishing (A3) in applications.

Lemma 5.2 Assume that X is Bb-differentiable with weak derivative (c,X+, X−). Let h be a real-valued
measurable mapping defined on the state space of X. Then Z = h(X) is Bb-differentiable with weak
derivative (c, Z+, Z−), with Z+ = h(X+) and Z− = h−(X). In addition the cdf. of Z is Bb-differentiable.

Proof: For any g ∈ Bb it holds that g ◦ h, with (g ◦ h)(x) = g(h(x)) belongs to Bb. By computation, it
holds for any g ∈ Bb that

d

dθ
E[g(Z)] =

d

dθ
E[(g ◦ h)(X)] = c(E[(g ◦ h)(X+)]− E[(g ◦ h)(X−)])

= c(E[g(h(X+))]− E[g(h(X−))]),

which shows that (c, h(X+), h(X−)) is an instance of an Bb-derivative of Z = h(X). Differentiability of
the cdf. of Z follows from Lemma 5.1, which concludes the proof. �

Often the stochastic model under consideration has not a single random variable as input but a
collection X = (X1, . . . , XJ) of independent real-valued random variables. The aggregated model is then
given by Z = h(X1, . . . , XJ), with h being some measurable mapping from RJ onto R. Let F denote the
cdf. of the aggregate random variable Z and let Fi denote the cdf. of Xi and let µi denote the associate
measure, for 1 ≤ i ≤ J , i.e., µi((−∞, z]) = Fi(z) for z ∈ R. In what follows we assume without loss of
generality 2 that cdf.s are defined on R. Applying the product rule of weak differentiation leads to an
unbiased sensitivity estimator in this case. The precise statement is provided in the following lemma.

2If a cdf. F (resp. measure µ) has support [0,∞), then we extend F (resp. µ) to R in the obvious way be setting F (z) = 0,
z ≤ 0 (resp. µ(A) = µ(A ∩ [0,∞)).
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Lemma 5.3 For 1 ≤ i ≤ J , suppose that Xi are Bb-differentiable w.r.t. θ and let (ci, X
+
i , X−

i ) denote a
version of the Bb-derivative. Let h be a measurable mapping from RJ onto R. Then Z = h(X1, . . . , XJ )
is Bb-differentiable with Bb-derivative (c, Z+, Z−), which is given by

Z+ = h(X1, . . . , Xρ−1, X
+
ρ , Xρ+1, . . . , XJ), Z− = h(X1, . . . , Xρ−1, X

−
ρ , Xρ+1, . . . , XJ ),

where ρ is uniformly distributed on {1, . . . , J} independent of everything else, and c = Jcρ.

Proof: Applying Theorem 6.1 in [20] is readily follows that Z is Bb-differentiable. The particular form
of the weak derivative stems from the randomization principle, see Corollary 4 in [19]. �

The estimator in Lemma 5.3 requires re-simulation, which might render the estimator inefficient.
In the following we will show that in case that h is invertible, then we can rewrite these estimator in
single run form by elaborating on the distributional derivatives. More specifically, for 1 ≤ j ≤ J , let
X1 = x1, . . . , Xj−1 = xj−1, ·, Xj+1 = xj+1, . . . , XJ = xJ be given, and define the inverse image of
h(x1, . . . , xj−1, ·, xj+1, . . . , xJ) as follows

{x ∈ R : h(x1, . . . , xj−1, x, xj+1, . . . , xJ) ≤ z} = hI,j
(x1,...,xj−1,xj+1,...,xJ )

(z).

Hence, for j = 1,

P(Z ≤ z|X2 = x2, . . . , Xj = xJ ) = P
(
X1 ∈ hI,1

(x2,...,xJ )
(z)
∣∣∣X2 = x2, . . . , Xj = xJ

)
= E

[
µ1(h

I,1
(x2,...,xJ )

(z))
∣∣∣X2 = x2, . . . , Xj = xJ

]
.

We call the inverse image simple if hI,i(x1, . . . , xi−1, xi+1, . . . , xJ)(z) yields sets of type (−∞, x] for any
value of z and x1, . . . , xi−1, xi+1, . . . , xJ . Note that this implies that hI,i is measurable. If the inverse im-
age is simple, we let h−1,i(x1, . . . , xi−1, xi+1, . . . , xJ )(z) = x if (−∞, x] = hI,i(x1, . . . , xi−1, xi+1, . . . , xJ)(z),
and the above RHS can be written as

= E
[
F1

(
h−1,1
(x2,...,xJ )

(z)
)∣∣∣X2 = x2, . . . , Xj = xJ

]
. (31)

As has been noted in [27], the inverse of h may not be available in closed form or the evaluation of it
may be numerically infeasible, see the portfolio example in [27].

In the next lemma we will present the single run version of the estimator in Lemma 5.3.

Lemma 5.4 Let Fi,θ denote the cdf. of Xi, for 1 ≤ j ≤ J . If h is simple, then it holds under the
conditions put forward in Lemma 5.3 that

∂θF (z) = JEθ

[
∂θFρ,θ

(
h−1,ρ
(X1,...,Xρ−1,Xρ+1,...,XJ )

(z)

)]
,

for ρ being uniformly distributed on {1, . . . , J} independent of everything else.

Proof: By Lemma 5.3 it holds that

∂θFθ(z) = JcρE
[
1h(X1,...,Xρ−1,X

+
ρ ,Xρ+1,...,XJ )≤z − 1h(X1,...,Xρ−1,X

−
ρ ,Xρ+1,...,XJ )≤z

]
= JcρE

[
E
[
1h−1,ρ

(X1,...,Xρ−1,Xρ+1,...,XJ )
(z) − 1h−1,ρ

(X1,...,Xρ−1,Xρ+1,...,XJ )
(z)

∣∣∣∣X1, . . . , Xρ−1, Xρ+1, . . . , XJ

]]
= JE

[
∂θFρ,θ(h

−1,ρ
(X1,...,Xρ−1,Xρ+1,...,XJ )

(z))
]
,

which proves the claim. �

Remark 5.2 The Finite Difference method is a general propose approach to gradient estimation. While
easy to use it has the main drawback of producing biased estimates. Finding satisfying settings for the
Finite Difference method in practice is often rather difficult and Finite Differences is not considered as a
competitive method in the gradient estimation literature. For a detailed discussion on the Finite Difference
method and some analytical results available on this method we refer to Section 1 of Chapter VII of [1].
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5.3 Incorporating Distributional Derivative Estimators

If F ′
θ is not available in a closed form, we resort to estimating F ′

θ through re-simulation. We first address
the estimator put forward in (8). Let

distrαl (z) =
1

l

l∑
i=1

(
1{Z+(i) ≤ z} − 1{Z−(i) ≤ z}

)
,

be the unbiased estimator of F ′
θ(z) based on l i.i.d. replications of Z±(i), see Lemma 5.3. Furthermore,

for m, k let

densαm,k = −m

k

k∑
i=1

(
Z⌈αm⌉:m(i)− Z⌈αm⌉−1:m(i)

)
be an unbiased estimator for 1/fθ(qα(θ)). The following lemma provides by means of re-simulation an
extension of Theorem 4.2 to the case that F ′

θ is not obtainable in a closed-form.

Lemma 5.5 Under assumptions (A1) to (A3) it holds that∣∣∣∣Eθ

[
densαm − 1

fθ(qα(θ))

]∣∣∣∣ = O
(
m−1

)
.

Proof: Replacing F ′
θ by one in the proof of Theorem 4.2, the result readily follows. �

Lemma 5.6 Under assumptions (A1) to (A3) it holds that∣∣Eθ[dens
α
m × distrαl (Z⌈αm⌉:m)− q′α(θ)]

∣∣ = O
(
m−1

)
.

Proof: By definition,

Eθ[D
α
m,k − q′α(θ)] = Eθ[dens

α
m × F ′

θ(Z⌈αm⌉:m)− q′α(θ)]

= Eθ[dens
α
m × distrαl (Z⌈αm⌉:m) + densαm × (F ′

θ(Z⌈αm⌉:m)− distrαl (Z⌈αm⌉:m))− q′α(θ)]

= Eθ[dens
α
m × distrαl (Z⌈αm⌉:m)− q′α(θ)]

+ Eθ[dens
α
m × (F ′

θ(Z⌈αm⌉:m)− distrαl (Z⌈αm⌉:m))].

Hence, ∣∣Eθ[dens
α
m × distrαl (Z⌈αm⌉:m)− q′α(θ)]

∣∣
≤
∣∣Eθ[D

α
m,k − q′α(θ)]

∣∣+ ∣∣Eθ[dens
α
m × (F ′

θ(Z⌈αm⌉:m)− distrαl (Z⌈αm⌉:m))]
∣∣ .

We have computed the rate of convergence of Eθ[D
α
m,k−q′α(θ)] in Theorem 4.2. Since distrαl (z) is an un-

biased estimator for F ′
θ(z), there is no bias introduced by switching from F ′

θ(Z⌈αm⌉:m) to distrαl (Z⌈αm⌉:m),
i.e., Eθ[dens

α
m × (F ′

θ(Z⌈αm⌉:m)− distrαl (Z⌈αm⌉:m))] = 0. �
Following the same line of argument as for the proof of the CLT for estimator Dα

m,k, see Theorem 4.3,
we arrive at the following result:

Lemma 5.7 (Central Limit Theorem) Suppose that Assumptions (A1) to (A4) hold and suppose
that k1/2/m → 0 as k,m → ∞. If Z± have finite second moments, then

densαm × distrαl (Z⌈αm⌉:m)− q′α(θ)(
Varθ

(
densαm × distrαl (Z⌈αm⌉:m)

))1/2 d
→ N (0, 1)

as k,m, l → ∞.
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Assuming that Z = h(X1, . . . , XJ ), where Xi has cdf. Fi,θ, we can alternatively estimate the distri-
butional derivative term through

J

l

l∑
i=1

F ′
ρ,θ

(
h−1
(X1(i),...,Xρ−1(i),Xρ+1(l),...,XJ (i))

(z)
)

see (31) and Lemma 5.4, where (X1(i), . . . , XJ(i)), for 1 ≤ i ≤ l, are i.i.d. copies of (X1, . . . , XJ ).
We conclude this section with a discussion of the estimator in (9). For this estimator, a confidence

interval can be obtained by choosing α1, α2, such that α = 1 − (1 − α1)(1 − α2), where α denotes the
level of the overall confidence interval, and estimating confidence intervals for E[densαm] of level α1 and
for E[distrαl (Z⌈αm⌉:m)] of level α2, separately.

It is worth noting that in estimating a quantile sensitivity one has to balance bias with variance. As k
and m are related through k1/2/m → 0 as k,m → ∞, see Lemma 5.7, the choice is between n = km and
l. Increasing n will reduce bias (and to some extent variance) and increasing l will only reduce variance.
As argued in Section 6 of Chapter III in [1], the relation between n and l should be such that the standard
deviation dominates the bias. As the standard deviation is of order 1/

√
kl and bias of order 1/m, one

should therefore choose k, l such that m >
√
kl.

Remark 5.3 For the estimator put forward in Lemma 4.4, let

densαm =
2km

m(Z⌈αm⌉+km:m − Z⌈αm⌉−km+1:m)

be the estimator for fθ(Z⌈αm⌉:m) as provided in (27). Then the overall estimator becomes densαmdistrαl (Z⌈αm⌉:m),
where the bias is reduced by letting m tend to infinity and variance is reduced by letting l tend to infinity.
Unfortunately, no analytical results are available on the rate the bias is reduced through the choice of m,
so no guidelines for choosing m in relation to l are available.

6 Application to Queues

Consider a tandem queue with Poisson λ arrival stream consisting of two queues with infinite buffer
capacity. Jobs arrive from the outside to server 1 and are being served with exponential service rate µ1.
From server 1 they continue to server 2 where they are served with exponential service rate µ2. The jobs
leave the system once the service at station 2 is completed. For the sake of simplicity, we let µ = µ1 = µ2,
and we assume that the tandem queue is stable, i.e., λ < µ. By Burke’s theorem [3], it is known that
the departure process at the first server is a Poisson λ process and with this result it can be shown that
the distribution of the sojourn time of a job, i.e., the total time elapsed between entering and leaving the
system, is the convolution of two exponential distributions with rate µ − λ, i.e., an Erlang distribution
with shape 2 and rate µ− λ.

Let qα denote the α-quantile of the stationary sojourn time. In the following we apply our estimator
to estimate the sensitivity of qα with respect to, for example, µ. Note that, even though the distribution
of the stationary sojourn time can be obtained in a closed form, the α-quantile cannot be expressed in
a closed form and has to be solved numerically. Let FD denote the cdf. of the stationary sojourn time,
denoted by Z, and since this distribution is of Erlang type it can be obtained in a closed for as follows

FD(z) = 1− e−(µ−λ)z − (µ− λ)ze−(µ−λ)z, z ≥ 0. (32)

Following the line of thought of Example 5.1, it follows that Z is Bb-differentiable and that

∂

∂µ
FD(z) = (µ− λ)2ze−(µ−λ)z, z ≥ 0.

Inserting the above expression into (6) yields

−m(µ− λ)2(Z⌈αm⌉:m − Z⌈αm⌉−1:m)Z⌈αm⌉:me−(µ−λ)Z⌈αm⌉:m
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as an estimator, where the order statistic is obtained from Z being an i.i.d. sample of m stationary sojourn
times.

Next, consider the excess sojourn time D1D≥d for some fixed value d. For example, in service systems
waiting is often only considered to be relevant if it exceeds some pre-specified threshold value d. We are
again interested in the sensitivity with regard to the common service time parameter µ. Let h(x) = x1x≥d

and note that h(x) = y implies x = y for y > d. Hence, under the reasonable assumption that qα > d,
we can apply estimator (6), which yields

−m(µ− λ)2(Z⌈αm⌉:m − Z⌈αm⌉−1:m)Z⌈αm⌉:me−(µ−λ)Z⌈αm⌉:m1Z⌈αm⌉:m>d

as an estimator, where the order statistic is obtained from Z being an i.i.d. sample of m stationary sojourn
times. Note that h(x) fails to be Lipschitz continuous and, therefore, IPA cannot be applied.

In the following we show that assumptions (A1) to (A4) hold for the above examples. Since the
distribution of the stationary sojourn time in the tandem queue is explicitly known and has finite second
moment, sampling Z from this distribution is feasible and condition (A1) is thus satisfied. We now turn
to assumption (A2). Since the support of the sojourn time distribution is R+, fθ(x) > 0 on every ball
B(α), and the first part of (A2) is satisfied. Let fD(x) denote the density of the stationary sojourn time,
which is given by

fD(x) = (µ− λ)2xe−(µ−λ)x,

for x ≥ 0. The remaining conditions for (A2) follow from

∂

∂µ
fD(x) =

(
2(µ− λ)x− (µ− λ)2x2

)
e−(µ−λ)x (33)

which is bounded since x2e−(µ−λ)x is bounded on R+.
We have already argued that the stationary waiting is Bb-differentiable. Therefore, (A3) and (A4)

follow from applying Lemma 5.1. For the excess waiting time, we resort to Lemma 5.2 for showing that
h(Z) = ZZ≥d is Bb-differentiable.

It is worth noting that the above line of argument can be extended to more general feed forward
exponential queueing networks.

7 Application to Option Pricing

In this section we will discuss sensitivities of financial options. Section 7.1 provides the basic stock price
models. Plain vanilla options are analyzed in Section 7.2. Section 7.3 is devoted to rainbow options.
Eventually, we discuss sensitivity analysis of the value at risk of a portfolio in Section 7.4.

7.1 The Underlying Financial Models

In the following we will introduce the Black-Scholes-Merton model and Variance Gamma process model
for a stock price.

7.1.1 The Black-Scholes-Merton Model

The famous Black-Scholes-Merton (BSM) Model, [35], is a simplified model of a financial market. The
BSM model is composed of one stock, having value S(t) at time t ≥ 0, that pays no dividends and a
bond, having value ert at time t ≥ 0, where r ≥ 0. The BSM model is complete which means that every
contingent claim can be replicated. For hedging purposes the price of the stock is determined under the
risk-neutral or equivalent martingale measure, and the value of the stock price becomes

S(t) = S(0)e

(
r−σ2

2

)
t+σ

√
tW

,
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with W being a standard normal random variable. Alternatively, let Xa(t),b(t) denote a normal random
variable with mean

a(t) = ln(S(0)) +

(
r − σ2

2

)
t

and standard deviation

b(t) = σ
√
t,

then
S(t) = eXa(t),b(t) ,

for t ≥ 0. Note that the above presentation is a simplified version of the actual BSM model. Indeed,
the standard approach for obtaining S(t) is to model the time evolution of the stock price by means of
a stochastic differential equation, the solution of which is given by a geometric Brownian motion, say,
{Ŝ(t) : t ≥ 0}. Specifically, {Ŝ(t) : t ≥ 0} is constructed in such a way that {e−rtŜ(t) : t ≥ 0} becomes a
martingale. The above definition of S(t) is such that the marginal distribution of {Ŝ(t) : t ≥ 0} at time
t is equal to the distribution of S(t).

While the BSM model is widely used, it fails to represent the market properly and more accurate
models that build on the BSM model have been developed in the literature. In the subsequent section
we will discuss one of these extensions which is the Variance-Gamma (VG) process, [33], [34]. The VG
process is obtained from substituting the time parameter of a Brownian motion with a Gamma process
as subordinator. In other words, the value of a VG-process at time t is obtained by evaluating the
value of a Brownian motion at time τ(t), where τ(t) is a Gamma process, i.e., the increments of τ(t) are
independently Gamma distributed. The VG process has been introduced, though not a complete model,
as it better mimics the return of an actual stock as it allows for skewness, leptokurticity, and its sample
path appears as a series of jumps, which reflects the change in stock value due to successive trades on
the stock.

7.1.2 The Variance-Gamma Process

In defining the VG process, we first give a precise definition of the subordinator process {τ(t) : t ≥ 0}.
Let γ(a, b) denote the Gamma distribution with shape parameter a and scale parameter b. Recall that
for a ∈ N, γ(a, b) represents the distribution of the sum of a independent exponential mean b random
variables. Let ν denote the variance-rate of the gamma time change, then τ(t)−τ(s) = τ(t−s), 0 ≤ s < t,
is γ(t/ν, 1/ν) distributed, i.e., the mean value of τ(t) is t and the variance of τ(t) is given by νt.

The VG-process is determined through choosing appropriate values for its parameters (r, σ, ν, κ),
where r is, like in the BSM model, the interest rate on a risk free bond, σ denotes in analogy with the
BSM model the implied volatility, ν is the parameter determining the Gamma process and models the
kurtosis of the stock price process, and κ is an artificial parameter that allows to introduce asymmetry in
the model. With mean E[τ(t)] = t, the Gamma process represents a business ’time’ of which each event
represents a ’trade’ during the trading time of the stock. The Gamma process is composed of a countable
number of very small positive jumps over any given time interval. More specifically, τ(t) < t represents
trading of the stock in a market that is relatively quiet, and τ(t) > t represents trading of the stock in a
market that is relatively active.

As the VG-process has more parameters than the BSM model it encompasses more features of the
stock price process. It is worth noting that efficient statistical estimators for determining the actual
values of (r, σ, ν, κ) exist in the literature, which makes the VG-process interesting from a practical point
of view. Like for the BSM model we may simplify the presentation of the VG process as we are only
interested in the marginal distribution of the process at some time point t. The following construction
of the VG-process follows [8].

Let {W (t) : t ≥ 0} denote the Wiener process, then

X(t) = κτ(t) + σW (τ(t))
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yields a VG-process. The price of the asset at time t in the VG-model is given by

S(t) = S(0)e(r+ω)t+X(t),

where

ω =
1

ν
ln

(
1− κν − σ2ν

2

)
, (34)

is chosen such {S(t) : t ≥ 0} becomes a martingale, i.e., E[e−rtS(t)|S(0)] = S(0). Like for the BSM
model we are only interested in the marginal distribution of {S(t) : t ≥ 0} at time t. Therefore, we fix t
and set

α(y) := αt(y) = ln(S(0)) + (r + ω)t+ κy and β(y) := βt(y) = σ
√
y

and we let Y (y) be a normal random variable with mean α(y) and standard deviation β(y). Then, the
price of the asset at time t in the VG-model is in distribution equal to

S(t) = eY (τ(t)).

In the following we will derive the quantile sensitivity with respect to the initial price S(0) and the
implied volatility σ. Note that these parameters are only present in the normal distribution and do not
affect the gamma process. We can write the density function of S(t) in the VG model at time t > 0,
denoted by ϕVG(·, t), as

ϕVG(x, t) =

∫ ∞

0

ϕα(y),β(y)(x)
y

t
ν −1e−

y
ν

Γ
(
t
ν

)
ν

t
ν

dy

where ϕµ,σ(x) denotes the density function of the normal distribution with mean µ and standard deviation
σ. By Fubini’s Theorem, the cdf. of S(t) in the VG-model at time t > 0 is obtained as

VG(x, t) =
∫ ∞

0

N (α(y), β(y))(x)
y

t
ν −1e−

y
ν

Γ
(
t
ν

)
ν

t
ν

dy.

For a parameter θ present either in the mean or the standard deviation of the normal cdf., the Measure
Valued Derivative of the VG model can be written as follows

∂

∂θ
VG(x, t) =

∫ ∞

0

(
d

dθ
α(y)Nµ(α(y), β(y))(x) +

d

dθ
β(y)Nσ(α(y), β(y))(x)

)
y

t
ν −1e−

y
ν

Γ
(
t
ν

)
ν

t
ν

dy, (35)

where Nµ(·, ·) denotes the weak derivative of the normal distribution with respect to the mean and
Nσ(·, ·) denotes the weak derivative of the normal distribution with respect to the standard deviation,
see Example 5.2 for details. Note that interchanging of derivative and integral in (35) is permitted as the
density function of a gamma distribution is Bv differentiable with v(x) = 1, since the normal distribution
is a bounded function.

7.2 A Plain Vanilla Option

In this section we determine quantile sensitivities of a vanilla call option with respect to the initial price
as well as to the implied volatility.

Let r denote the interest rate, then the value of a call option at time t is given by

H1(S(t)) = e−rt max(S(t)−K, 0) = h1(Xa(t),b(t)),

with
h1(x) = e−rt max(ex −K, 0), (36)

where K > 0 denotes the strike price, i.e., the price at which the stock can be purchased within the
contract. The pay-off mapping H1(x) is continuous throughout R and differentiable on R \ {K}. As
S(t) ̸= K with probability one, the conditions for IPA are met and the IPA quantile estimator is appli-
cable.
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7.2.1 The α-quantile Delta

Suppose now that we are interested in the sensitivity of the α-quantile of H1(S(t)) with respect to
the initial stock price S(0), and consider first the Black-Scholes-Merton model. In other words, we are
interested in the “α-quantile Delta.” To simplify the notation, we suppress the argument “t” in a(t) and
b(t). In light of the representation H1(S(t)) = h1(Xa,b), the main task in applying our estimator is to
compute the derivative of the cdf. of Xa,b with respect to S(0). We apply (30) in Example 5.2 to θ = S(0),
which yields

∂

∂S(0)
N (a, b)(x) = − 1

S(0)

1√
2πb

e−
(x−a)2

2b2 ,

for x ∈ R. Note that the inverse of h1(x) for h1(x) > 0 is given by

h−1
1 (x) = ln(xert +K), x > 0.

Inserting the expression for ∂N (a, b)(x)/∂S(0) for F ′
θ into the estimator (6) yields

m
(
Z(⌈αm⌉):m − Z(⌈αm⌉)−1:m

) 1

S(0)

1√
2πb

e−
(h

−1
1 (Z⌈αm⌉:m)−a)2

2b2 .

For the VG-model, using integral result 3.471.9 in Gradshteyn & Rhyzik, [15], the partial derivative w.r.t.
S(0) has the form

∂

∂S(0)
VG(x, t) = − 1

S(0)

∫ ∞

0

1√
2πβ(y)

e
− (x−α(y))2

2(β(y))2
y

t
ν −1e−

y
ν

Γ
(
t
ν

)
v

t
ν

dy

= − 2√
2πσS(0)Γ( t

ν )ν
t
ν

e
κ
σ2 η(x)

(
η2(x)

κ2 + 2σ2

ν

) t
2ν − 1

4

K t
ν − 1

2

(
1

σ2

√
η2(x)

(
κ2 +

2σ2

ν

))
,

with
η(x) = x− ln(S(0))− (r + w)t, (37)

where ω is defined in (34), and Kn is the modified Bessel function of the second kind with order n. The
consequent estimator in the form of Equation (6) is

2√
2πσS(0)Γ( t

ν )v
t
ν

m
(
Z(⌈αm⌉):m − Z(⌈αm⌉)−1:m

)
· e

κ
σ2 η(h−1

1 (Z⌈αm⌉:m))

(
η2(h−1

1 (Z⌈αm⌉:m))

κ2 + 2σ2

ν

) t
2ν − 1

4

K t
ν − 1

2

(
1

σ2

√
η2(h−1

1 (Z⌈αm⌉:m))

(
κ2 +

2σ2

ν

))
.

Provided that conditions (A1) to (A4) hold, we have strongly consistent estimator for ∂qα/∂S(0) and
a CLT, where the order statistic is obtained from Z which is a sample of m i.i.d. copies of H1(S(t)) =
h1(Xa(t),b(t)), respectively h1(Yα(t),β(t)).

In the following we show that the conditions for applying our quantile sensitivity estimator to the
call option for both pricing models are satisfied. For assumption (A1), the moment generating function
(mgf) is finite for the normal distribution and sampling Z as an i.i.d. vector satisfies (A1). For the
VG-model, a similar line of argument holds for S(t), though we require the more stringent constraint
2(κν+σ2ν) < 1 for the second moment to be finite. The proof that (A2) is satisfied for the BSM and the
VG-process is postponed to the Appendix. We now turn to (A3) and (A4). As h1 is a measurable map-
ping, Bb-differentiability of normal and variance gamma distribution carries over to Bb-differentiability
of the option value. Hence, (A3) and (A4) then follow from applying Lemma 5.1. This assumption also
holds for the VG-process for the same reason.
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7.2.2 The α-quantile Vega

Let us consider the same situation but with the parameter being the implied volatility, σ. In parlance,
this is considered the α-quantile Vega. Letting θ = σ, for the BSM model (where we simplify the notation
by suppressing the argument “t” in a(t) and b(t)), it follows from Example 5.2 that

∂

∂σ
N (a, b)(x) = −σtNµ(a, b)(x) +

√
tNσ(a, b)(x)

=
√
t

(
1− (x− a)

b2

)
1√
2π

e−
(x−a)2

2b2 , (38)

for x ∈ R. Letting F ′
θ(x) = ∂N (a, b)(x)/∂σ, as provided in (38), would then yield the estimator in (6).

We will however not choose (6) as our estimator but we rather will illustrate the application of the general
estimator put forward in (8). Inserting the representation for the derivatives obtained in Example 5.2
into (38) yields

∂

∂σ
N (a, b)(x) = − t

b
√
2π

(Rb(x− a)1x≥a −Rb(|x− a|)1x≤a)

+

√
t

b
(DM(a, b)(x)−N (a, b)(x))

= (c1 + c2)

(
c1

c1 + c2
Rb(|x− a|)1x≤a +

c2
c1 + c2

DM(a, b)(x)

− c1
c1 + c2

Rb(x− a)1x≥a −
c2

c1 + c2
N (a, b)(x)

)
for x ∈ R, where

c1 =
t√
2π

and c2 =
√
t.

We now denote R1 ∼ Rb(|x− a|)1x≥a, R2 ∼ Rb(|x− a|)1x≤a, being the random variables associated with
the Rayleigh cumulative distribution functions and M ∼ DM(a, b)(x) being the Double-Maxwell random
variable. We denote X+ according to

X+ =
c1

c1 + c2
R2 +

c2
c1 + c2

M

i.e., with probability c1/(c1 + c2) let X
+ be distributed according to a shifted Rayleigh distribution and

with probability c2/(c1 + c2) let X
+ follow a Double-Maxwell distribution. In the same vein, let X− be

defined as

X− =
c1

c1 + c2
R1 +

c2
c1 + c2

X

i.e., with probability c1/(c1 + c2) let X+ be distributed according to a shifted negative Rayleigh distri-
bution and with probability c2/(c1 + c2) let X− follow a normal distribution. With this in mind, the
estimator in Equation (8) becomes

−m(c1 + c2)
(
Z⌈αm⌉:m − Z⌈αm⌉−1:m

)(
1h2(X+)≤Z⌈αm⌉:m − 1h2(X−)≤Z⌈αm⌉:m

)
.

For the VG-model, the estimator via Equation (6) is analogous where the measure-valued derivative
random variables are also mean-variance mixtures with a Gamma distributed mixing distribution. There
is also the additional complication with the pre-factor depending on τ . This will be discussed shortly.
We can obtain a closed form expression for ∂VG(x)/∂σ following Equation (35) with η(x) defined as in
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(37). After some calculation, with the result of the same integral, 3.471.9 in Gradshteyn & Rhyzik, [15],
we get

∂

∂σ
VG(x, t) =

∫ ∞

0

1√
2πβ(y)
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σt

1− κν − σ2

2 ν
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√
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2 y
t
ν −1e−

y
ν

Γ
(
t
ν

)
ν

t
ν

dy

=
2e

κ
σ2 η(x)

√
2πσΓ

(
t
ν

)
ν

t
ν

(σte−νω − η(x)

σ
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η2(x)

κ2 + 2σ2

ν
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2ν − 1

4

K t
ν − 1

2

(
1

σ2

√
η2(x)

(
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2σ2

ν
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+
κ

σ

(
η2(x)
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ν

) t
2ν + 1

4

K t
ν + 1

2

(
1

σ2

√
η2(x)

(
κ2 +

2σ2

ν

)) .

The resulting estimator from Equation (6), where h−1
1 (x) for x > 0 defined previously, has the formula

− 2√
2πσΓ

(
t
ν

)
ν

t
ν

m
(
Z(⌈αm⌉):m − Z(⌈αm⌉)−1:m

)
·

(σte−νω −
η(h−1

1 (Z⌈αm⌉:m))

σ

)(
η2(h−1
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4
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2

(
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σ2

√
η2(h−1

1 (Z⌈αm⌉:m))

(
κ2 +

2σ2

ν
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+
κ

σ

(
η2(h−1

1 (Z⌈αm⌉:m))

κ2 + 2σ2

ν

) t
2ν + 1

4

K t
ν + 1

2

(
1

σ2

√
η2(h−1

1 (Z⌈αm⌉:m))

(
κ2 +

2σ2

ν

)) .

As for the BSM model, for the general estimator, differentiation w.r.t. σ of VG(·, t) is split up in
relation to the mean and standard deviation obtaining similar conditional MVD distributions. By (35),

Nσ(α(y), β(y))(x) = − σt

1− κν − σ2

2 ν
Nµ(α(y), β(y))(x) +

√
yNσ(α(y), β(y))(x)

=
σt√

2πβ(y)
e−νω

(
Rβ(y)(|x− α(y)|)1x≤α(y) −Rβ(y)(x− α(y))1x≥α(y)

)
+

1

σ
(DM(α(y), β(y))(x)−N (α(y), β(y))(x))

= (d1(y) + d2)

(
d1(y)

d1(y) + d2
Rβ(y)(|x− α(y)|)1x≤α(y) +

d2
d1(y) + d2

DM(α(y), β(y))(x)

− d1(y)

d1 + d2(y)
Rβ(y)(x− α(y))1x≥α(y) −

d2
d1(y) + d2

N (α(y), β(y))(x)

)
for x ∈ R, where

d1(y) =
σt√

2πβ(y)

1

1− κν − σ2ν
2

and d2 =
1

σ
,

which is a Gamma random variable dependent pre-factor. Consequently,

∂

∂σ
VG(x, t) =

∫ ∞

0

Nσ(α(y), β(y))(x)
y

t
ν −1e−

y
ν

Γ
(
t
ν

)
ν

t
ν

dy.

We denote τ ∼ γ(t/ν, 1/ν) as the mixing random variable, and S1 ∼ R1(x)1x>0, S2 ∼ R1(|x|)1x<0, and
L ∼ DM(0, 1)(x) as the standardized Rayleigh and Double-Maxwell random variables. We now denote
R1 = α(τ)+β(τ)S1, R2 = α(τ)+β(τ)S2 as the Rayleigh mean-variance mixtures and M = α(τ)+β(τ)L
respectively as the Double-Maxwell variant. As for the BSM model, we define Y + as

Y + =
d1(τ)

d1(τ) + d2
R2 +

d2
d1 + d2

M (39)
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that is with probability d1(τ)/(d1(τ) + d2), depending on the Gamma distributed random variable, Y +

is a shifted Rayleigh distribution on the negative half-line and with probability d2(τ)/(d1 + d2(τ)), Y
+

is distributed with as Double-Maxwell distribution. In addition, Y − is defined via

Y − =
d1(τ)

d1(τ) + d2
R1 +

d2
d1(τ) + d2

X, (40)

i.e. as a shifted Rayleigh distribution on the postive half-line with contingent probability d1(τ)/(d1(τ) +
d2), and as a normal random variable with probability d2/(d1(τ) + d2), the general estimator, Equation
(8), has the expression

−m(d1(τ(t)) + d2)
(
Z⌈αm⌉:m − Z⌈αm⌉−1:m

) (
1h1(Y +)≤Z⌈αm⌉:m − 1h1(Y −)≤Z⌈αm⌉:m

)
.

The order statistic within both estimators are obtained from Z which is a sample of m i.i.d. copies of
either H1(S(t)) = h1(Xa(t),b(t)) or H1(S(t)) = h1(Yα(t),β(t)), which shows that (A1) holds. Assumptions
(A3) to (A4) are identical from Section 7.2, where we use the fact that h1(·) is an element of B1+ex .
For (A2) we refer to the Appendix.

Remark 7.1 The above analysis shows that Y + and Y − constructed in (39) and (40) is a weak derivative
of the Variance Gamma process. This is an important result in its own right, as this is the first unbiased
estimator for the derivative of the Variance Gamma process with respect to σ.

7.3 Rainbow Options

Rainbow Options are contingent financial claims that are based on multiple stocks. Let S(t) = (S1(t), S2(t)),
with t ≥ 0, denote the joint price vector of two assets, where the price of an individual stock is depicted
by the Black-Scholes-Merton model

Si(t) = Si(0)e

(
r−σ2

i
2

)
t+σi

√
tXi

:= eXai(t),bi(t) ,

for i = 1, 2, and X = (X1, X2), a standard normal random vector. For the two assets, we define

ai(t) = lnS(0) + (r − σ2
i /2)t and bi(t) = σi

√
t,

following the notation of the BSM model in the previous section. We note here for the normal random
variables

Xai(t),bi(t) = ai(t) + bi(t)Xi,

and for the moment we will just consider the standard random vector X which has the Lebesgue density

ϕ(x,Σ) =
1

2π
√
|Σ|

e−
1
2x

T (Σ)−1x/2, (41)

for x = (x1, x2). The covariance matrix Σ is given via

Σ =

(
1 ρ
ρ 1

)
,

with ρ ∈ [−1, 1] being the correlation of X1 and X2. Specifically,

|Σ| = 1− ρ2 and Σ−1 =
1

1− ρ2

(
1 −ρ
−ρ 1

)
.

For x = (x1, x2)
T , it holds

xT (Σ)−1x = (x2
1 − 2ρx1x2 + x2

2)/(1− ρ2),
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and we may therefore write the Lebesgue density in (41) as a product of two univariate normal densities
with X2 conditioned on X1:

ϕ(x,Σ) =
1

2π
√
1− ρ2

e
− 1

2(1−ρ2)
(x2

1−2ρx1x2+x2
2)

=
1

√
2π
√
1− ρ2

e
− 1

2
(x2−ρx1)2

1−ρ2 · 1√
2π

e−
1
2x

2
1 .

In the following we consider the spread option and consider the sensitivity of the quantile w.r.t. the
parameter ρ. Let

H2(S(t)) = max(S2(t)− S1(t)−K, 0),

for K > 0. For x = (x1, x2) we set

h2(x) = max(ex2 − ex1 −K, 0),

then
H2(S(t)) = h2(X1, X2).

Since the parameters ai(t), bi(t), for i = 1, 2, are independent of ρ, the eventual final measure-valued
derivative will just be an affine transformation of X±

2 .

Provided above, the conditional distribution to X2 given X1 = y is N (ρx,
√

1− ρ2). Evoking Exam-
ple 5.2 it follows that

∂

∂ρ
N (ρy,

√
1− ρ2) = yNµ(ρy,

√
1− ρ2)− ρ√

1− ρ2
Nσ(ρy,

√
1− ρ2).

Consider a digital spread option that entitles the holder a profit of S1(t) − S2(t) provided that S1(t) −
S2(t) ≥ K, for some K > 0, and otherwise nothing. Hence, H2(S(t)) = (S1(t) − S2(t))1S2(t)−S1(t)≥K =
h2(X1, X2). Provided thatX1 = y, h2(y, ·) becomes invertible and the conditional version of the estimator
in (6) applies.

In the following we show how to represent the distributional derivatives in terms of random variables
so as to obtain an estimator in the form of Equation (8), respectively (9). Rearranging the positive and
negative parts, we arrive at

∂

∂ρ
N (ρy,

√
1− ρ2)(x) =

y
√
2π
√
1− ρ2

(
R√

1−ρ2(x− ρy)1x≥ρy −R√
1−ρ2(|x− ρy|)1x<ρy

)
= − ρ

1− ρ2

(
DM(ρy,

√
1− ρ2)(x)−N (ρy,

√
1− ρ2)(x)

)
= (c1(y) + c2)

(
c1(y)

c1(y) + c2
R√

1−ρ2(y − ρx)1y≥ρx +
c2

c1(y) + c2
N (ρx,

√
1− ρ2)(y)

− c1(y)

c1(y) + c2
R√

1−ρ2(|y − ρx|)1y<ρx − c2
c1(y) + c2

DM(ρx,
√
1− ρ2)(y)

)
where

c1(y) =
y

√
2π
√
1− ρ2

and c2 =
ρ

1− ρ2
.

Accordingly, we can a define Rayleigh distribution random variables S1 ∼ R√
1−ρ2(x)1x≥0 and S2 ∼

R√
1−ρ2(|x|)1x<0 in which we can write the X1-dependent shift Rayleigh random variables by R1 =

ρX1 + S1 and R2 = ρX1 + S2. Similarly for the conditional Double-Maxwell random variable with
L ∼ DM(0,

√
1− ρ2)(x), M = ρX1 + L. The final form of the positive component X+

2 is

X+
2 =

c1(X1)

c1(X1) + c2
R1 +

c2
c1(X1) + c2

X2
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which is a shifted Rayleigh random variable with normally distributed probability c1(X1)/(c1(X1) + c2)
and the original, conditioned normal random variable with probability c2/(c1(X1)+ c2). For the random
variable X−

2 , its expression is similar

X−
2 =

c1(X1)

c1(X1) + c2
R2 +

c2
c1(X1) + c2

M,

a shifted Rayleigh random variable with normally distributed probability c1(X1)/(c1(X1) + c2) or other-
wise a conditioned Double-Maxwell distributed random variable.

The sampling scheme for the derivative of the joint distribution of (X1, X2) is as follows. First, a
standard normal random variable is sampled, yielding X1 = x. Then, given this value, the positive part
and the negative part of X2, denoted by X+

2 and X−
2 , are sampled according to the above distributions.

Eventually, X±
a2(t),b2(t)

can be obtained from

X±
a2(t),b2(t)

= a2(t) + b2(t)X
±
2 ,

and the general estimator in (8) becomes

−m(c1(X1) + c2)
(
1h2(X1,X

+
2 )≤Z⌈αm⌉:m

− 1h2(X1,X
−
2 )≤Z⌈αm⌉:m

)
,

where Z⌈αm⌉:m is obtained from an independent i.i.d. sample of h3(X1, X2), and the pre-factor gives the
normalizing constant originating from the mixture interpretation of the weak derivative. The fact that
conditions (A1), (A2) and (A4) hold follows readily from arguments provided in Section 7.2. For (A3)
note that we cannot apply the product rule of weak differentiation to (X1, X2) as the components are not
independent. However, since 1h2(x,y)≤z ∈ Bb, it follows from the dominated convergence theorem that

∂ρ

∫ ∫
1h2(x,y)≤zN (ρx,

√
1− ρ2)(dy)N (dx) =

∫ (∫
1h2(x,y)≤z∂ρN (ρx,

√
1− ρ2)(dy)

)
N (dx).

for any z, which implies that h(X1, X2) is Bb-differentiable w.r.t. ρ. Condition (A3) then follows from
Lemma 5.1.

Sampling the derivative information via a conditional distribution may not be the numerically most
efficient way and directly differentiating the multi-variate normal distribution seems more natural. Un-
fortunately, the latter approach leads to rather complex expression for the weak derivatives and efficient
sampling from these expressions is still an open problem.

7.4 The VAR of a Portfolio

We consider a finite set of assets j = 1, . . . , J , which can be any kind of financial assets such as bonds,
stocks, futures, and options. Following the model provided in [10], a portfolio, at a certain time, is given
by a vector x = (x, . . . , xJ) of positions representing the amount of money allocated to each of these
assets. The uncertain value of the financial assets in the next period are given by Yj with c.d.f. Fj,θ,
1 ≤ j ≤ J . In the following we will assume that the portfolio consists of long equity positions, and that
the risk factors relate to the stock prices at the end of the next period. In this case the value of the
portfolio is linear with respect to the portfolio positions as well as with respect to the risk factors, and
we let

V := V (x1, . . . , xJ ;Y1, . . . , YJ) =
J∑

j=1

xjYj

denote the value of the portfolio at the end of the next period, and denote the c.d.f. of V by F . Let
qα(x1, . . . , xJ ) denote the α-quantile of the portfolio value, and let V(x1, . . . , xJ) denote the expected
value of the uncertain portfolio value. Then the value at risk (VAR) of the portfolio is given by

V ∗(x1, . . . , xJ ) = V(x1, . . . , xJ)− qα(x1, . . . , xJ),
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which describes the maximal amount by which the portfolio can fall short of its expected value with
probability α. See [10] for more details.

Assume that θ is a distributional parameter of the underlying stocks. Then, the sensitivity of V ∗ with
respect to θ will allow us to assess the robustness of the VAR with respect to small changes in θ. We will
consider the simpler case that Yj , 1 ≤ j ≤ J , are given by stock prices. We focus on ∂θqα(x1, . . . , xJ). Let
Z = (Zi : 1 ≤ i ≤ n) be an i.i.d. sample of V (x1, . . . , xJ ;Y1, . . . , YJ). Assume that the price Yi is given
by eWi , where Wi represent an appropriate random variable resulting in a BSM or VG-process model of
the stock price; see Section 7.1 for details. Fix x1, . . . , xJ , and let

h(w1, . . . , wJ) =
J∑

j=1

xje
wj .

and, for 1 ≤ j ≤ J , let

h−1
w1,...,wj−1,wj+1,...,wJ

(z) = ln

 1

xj

z −
J∑

i=1,i ̸=j

xie
wi


provided that z ≥

∑J
i=1,i̸=j xie

wi and otherwise zero. Then, by Lemma 5.4 it holds that

∂θP(V ≤ z) = ∂θF (z) = JEθ

[
∂Fρ,θ

(
h−1
W1,...,Wj−1,Wj+1,...,WJ

(z)
)]

.

Importance sampling can be used in order to increase the probability of a non-zero derivative contribution.
Hence, for θ either the initial state S(0) or σ in either the BSM model or the VG-process, the sensitivity
of the quantile of the portfolio can be estimated by combining the above distributional estimator with the
inverse density estimator, see Section 5.3, where the particular form of ∂Fρ,θ can be found in Section 7.1.
The above result can be extended to a portfolio of options in a straightforward way.

Remark 7.2 Let (cθ,W
+
j ,W−

j ) denote the Bb-derivative of Wj, for 1 ≤ j ≤ J . Following Lemma 5.3,
an alternative estimator for ∂θP(V ≤ z) can be obtained from

cθJE

[
1(

xρe
W

+
ρ +

∑J
j=1,j ̸=ρ xje

Wj

)
≤z

− 1(
xρ+eW

−
ρ +

∑J
j=1,j ̸=ρ xje

Wj

)
≤z

]
,

with ρ uniformly distributed on {1, . . . , J} and independent of everything else.

Remark 7.3 Using the product rule of weak differentiation for general spaces (rather than Bb), an un-
biased estimator for V(x1, . . . , xJ ) of the type presented in Lemma 5.3 can be obtained as well.
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Conclusion

In this paper we provided expressions for quantile sensitivities that can be used for gradient estimation
by means of Monte Carlo simulation. The examples illustrate the flexibility of our measure-valued
differentiation and statistical spacing theory based approach. Specifically, multivariate problems and
models containing the Variance-Gamma process can be dealt with as well. Future research will be on the
extension of our approach to time-dependent systems such as queueing networks.
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Appendix

A.1 Condition (A2) for the α-quantile Delta

We now show that (A2) is satisfied for the plain vanilla option in Section 7.2. The support of N (a, b2)
is the entire real line, as well as for VG(·, t) with t > 0. For the normal density function

∂

∂x
ϕa,b(x) = − 1√

2πb

x− a

b2
e−

1
2

(x−a)2

b2 ,

which yields

sup
x∈R

∣∣∣∣ ∂∂xϕa,b(x)

∣∣∣∣ = 1√
2πb2

e−
1
2 .

Also,
∂

∂S(0)
ϕa,b(x) =

1√
2πS(0)b

x− a

b2
e−

1
2

(x−a)2

b2 ,

which yields

sup
x∈R

∣∣∣∣ ∂

∂S(0)
ϕa,b(x)

∣∣∣∣ = 1√
2πS(0)b2

e−
1
2 ,

which establishes (A2) for the BSM model.
For the VG-process, we need to show that the supremum of the derivative of the density over a

neighbourhood B(α) of the quantile is finite for a sufficiently large value of m. Note that for t > 0 it
holds that

∂

∂x
ϕVG(x, t) =

∫ ∞

0

∂

∂x
ϕα(y),β(y)(x)

y
t
ν −1e−

y
ν

Γ
(
t
ν

)
ν

t
ν

dy

=

∫ ∞

0

− 1√
2πβ(y)

x− α(y)

β2(y)
e
− 1

2
(x−α(y))2

β2(y)
y

t
ν −1e−

y
ν

Γ
(
t
ν

)
ν

t
ν

dy

and

∂

∂S(0)
ϕVG(x, t) =

∫ ∞

0

1√
2πβ(y)

x− α(y)

β2(y)S(0)
e
− 1

2
(x−α(y))2

β2(y)
y

t
ν −1e−

y
ν

Γ
(
t
ν

)
ν

t
ν

dy

= − 1

S(0)
ϕVG(x, t).

By determining the supremum by a näıve approach, using Fubini’s theorem and using the global supre-
mum of the normal distribution will leads to the expectation E[τ−1/2] for the Gamma distribution,
γ(t/ν, 1/ν). This only leads to a finite value if ν > t/2 for fixed t.
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For the derivation, since the two derivatives are related, we will only look at the case for the derivative
w.r.t. x. Recall that η(x) = x− lnS(0)− (r + ω)t, see (37), such that for a fixed value of τ(t) = y,

x− α(y) = η(x)− κy, (42)

from which it follows that x − α(y) > 0 is equivalent to y < η(x)/κ. The region in which we determine
the local supremum of ϕVG(x, t) is Brm(qα) ⊂ B(α) as defined in Lemma 4.2. For m sufficiently large, it
holds that

qα − rm ≤ x ≤ qα + rm.

Subtracting ln(S(0)) + (r + ω)t from the above row of inequalities leads to

η(qα)− rm ≤ η(x) ≤ η(qα) + rm. (43)

Before turning to the actual proof, we define, for notational convenience,

ζξ(x) = e
κ
σ2 η(x)

(
η2(x)

κ2 + 2σ2

ν

) ξ
2

Kξ

(
1

σ2

√
η2(x)

(
κ2 +

2σ2

ν

))

and for the derivation, given parameters ν, β > 0, γ > 0, we require the integral result 3.471.9 in [15],
given below ∫ ∞

0

xν−1e−
β
x−γx dx = 2

(
β

γ

) ν
2

Kν(2
√

βγ). (44)

Now we can provide the suprema. Writing gν as the Lebesgue density for the gamma function, noting
x− α(y) = η(x)− κy, see (42), it follows that∣∣∣∣ ∂∂xϕVG(x)

∣∣∣∣ ≤ ∫ ∞

0

1√
2πβ(y)

|x− αy|
β2(y)

e
− 1

2
(x−α(y))2

β2(y) gν(y) dy

≤ 1√
2πσ3Γ

(
t
ν

)
ν

t
ν

∫ ∞

0

|η(x)− κy|e−
1
2

(η(x)−κy)2

σ2y e−
y
ν dy. (45)

A crucial step for computing the expression in (45) is the computation of bounds for

|η(x)− κy| and e
− 1

2
(η(x)−κy)2

σ2y ,

where we distinguish between the cases when both η(qα) > 0 and κ > 0 are positive or negative; when one
of η(qα) and κ is positive and the other negative, and κ = 0. We will also require for m to be sufficiently
large such that if

η(qα)− κy > 0 this implies η(qα)− rm − κy > 0,

and if

η(qα)− κy < 0 this implies η(qα) + rm − κy < 0.

First, we consider the case η(qα) > 0, and κ > 0. When both parameters are negative, the upper
bound is similar. Within the region Brm(qα) it holds that

η(x) + κy ≤ η(qα) + rm + κy,

see (43). To maximize the exponential term, we need to split up the integral into the regions η(qα)−κy < 0
and η(qα) − κy > 0 . In the first interval, η(x) − κy ≤ η(qα) + rm − κy, and, for m sufficiently large,
η(qα) − κy < 0 implies η(qα) + rm − κy < 0, from which it follows (η(x) − κy)2 > (η(qα) + rm − κy)2.
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For the case η(qα)− κy > 0 we obtain by similar arguments (η(x)− κy)2 > (η(qα)− rm − κy)2. We now
obtain

sup
x∈Brm (qα)

∣∣∣∣ ∂∂xϕVG(x)

∣∣∣∣
≤ 1√

2πσ3Γ
(
t
ν

)
ν

t
ν

(∫ η(qα)
κ

0

(η(qα) + rm + κy)e
− 1

2
(η(qα)−rm−κy)2

σ2y e−
y
ν dy

+

∫ ∞

η(qα)
κ

(η(qα) + rm + κy)e
− 1

2
(η(qα)+rm−κy)2

σ2y e−
y
ν dy

)

≤ 1√
2πσ3Γ

(
t
ν

)
ν

t
ν

(
η(qα + rm)

(
e

κ
σ2 η(qα+rm)

∫ ∞

0

y
t
ν − 5

2 e
− 1

2
η(qα+rm))

σ2y e
−
(

1
2

κ2

σ2 + 1
ν

)
y
dy

+ e
κ
σ2 η(qα−rm)

∫ ∞

0

y
t
ν − 5

2 e
− 1

2
η(qα−rm)

σ2y e
−
(

1
2

κ2

σ2 + 1
ν

)
y
dy

)
+ κ

(
e

κ
σ2 η(qα+rm)

∫ ∞

0

y
t
ν − 3

2 e
− 1

2
η(qα+rm)

σ2y e
−
(

1
2

κ2

σ2 + 1
ν

)
y
dy + e

κ
σ2 η(qα−rm)

∫ ∞

0

y
t
ν − 3

2 e
− 1

2
η(qα−rm)

σ2y e
−
(

1
2

κ2

σ2 + 1
ν

)
y
dy

))
=

2√
2πσ3Γ

(
t
ν

)
ν

t
ν

(
η(qα + rm)

(
ζ t

ν − 3
2
(qα + rm) + ζ t

ν − 3
2
(qα − rm)

)
+ κ

(
ζ t

ν − 1
2
(qα + rm) + ζ t

ν − 1
2
(qα − rm)

))
.

Next, we discuss the case η(qα) < 0 and κ > 0, i.e., the case that η(qα) − κy < 0 for all y > 0.
For m sufficiently large, η(qα) − κy < 0 implies that η(x) − κy < 0 for all y > 0, see (43). As a
result η(x) − κy ≤ κy − η(x) < κy + |η(qα)| + rm within Brm(qα). Additionally, for the exponent,
(η(x)− κy)2 > (η(qα) + rm − κy)2. Putting this altogether, we have the supremum

sup
x∈Brm (qα)

∣∣∣∣ ∂∂xϕVG(x)

∣∣∣∣ ≤ 1√
2πσ3Γ

(
t
ν

)
ν

t
ν

∫ ∞

0

y
t
ν − 5

2 (κy + |η(qα)|+ rm)e
− 1

2
(η(qα)+rm−κy)2

σ2y e−
y
ν dy

=
e

κ
σ2 η(qα+rm)

√
2πσ3Γ

(
t
ν

)
ν

t
ν

(
(|η(qα)|+ rm)

∫ ∞

0

y
t
ν − 5

2 e−
1
2

η2(qα+rm)

σ2
1
y e

−
(

1
2

κ2

σ2 + 1
ν

)
y
dy

+ κ

∫ ∞

0

y
t
ν − 3

2 e−
1
2

η2(qα+rm)

σ2
1
y e

−
(

1
2

κ2

σ2 + 1
ν

)
y
dy

)
and we arrive at

sup
x∈Brm (qα)

∣∣∣∣ ∂∂xϕV G
α(t),β(t)(x)

∣∣∣∣ = 2√
2πσ3Γ

(
t
ν

)
ν

t
ν

(
(|η(qα)|+ rm)ζ t

ν − 3
2
(qα + rm) + κζ t

ν − 1
2
(qα + rm)

)
.

Finally, we discuss that case κ = 0. When κ = 0, we obtain a simpler expression. We note that within
the open ball Brm(qα), accounting for the sign of η(qα), η(x) ≤ |η(qα)|+rm and for the exponential term,
η2(x) ≥ (|η(qα)| − rm)2. We again have made the assumption that if η(qα) > 0, m is chosen sufficiently
large such that η(qα)− rm > 0. A like assumption holds if η(qα) < 0. The supremum now has the form:

sup
x∈Brm (qα)

∣∣∣∣ ∂∂xϕVG(x)

∣∣∣∣ ≤ |η(qα)|+ rm√
2πσ3Γ

(
t
ν

)
ν

t
ν

∫ ∞

0

y
t
ν − 5

2 e−
1
2

(|η(qα)|−rm)2

σ2
1
y e−

y
ν dy

and after some rearrangement of the constants and the use of the same integral expression

=
2

5
4 (|η(qα)|+ rm)

σ
3
2Γ
(
t
ν

)
(2νσ2)

t
2ν

(|η(qα)| − rm)
t
ν K t

ν − 3
2

(√
2

ν

|η(qα)| − rm
σ

)
.

Note that while η(qα) = 0 is possible this event has probability zero. The case κ = 0, corresponds to
the symmetric Variance Gamma process.
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A.2 Condition (A2) for the α-quantile Vega

As for the α-quantile vega, determining the supremum of the derivative is standard. Ensuring that each
term in the normal derivative is positive, we have the expression∣∣∣∣ ∂∂σϕVG(x)

∣∣∣∣ = ∫ ∞

0

1√
2πσβ(y)

(
(x− α(y))2

β2(y)
+ 1

)
e
− 1

2
(x−α(y))2

β2(y) gν(y) dy

+

∫ ∞

0

1√
2πβ(y)

|η(x)− κy|
β2(y)

σte−νωe
− 1

2
(x−α(y))2

β2(y) gν(y) dy

where e−νω = (1 − κν − σ2ν/2)−1. Though the techniques to determine a bound for the supremum are
of the same type as in the previous example, the process is more involved. We will only consider here
the more difficult case η(qα)/κ > 0 where both quantities are positive. The supremum for the partial
derivative w.r.t σ has the form

sup
x∈Brm (qα)

∣∣∣∣ ∂∂σϕVG(x)

∣∣∣∣
=

2√
2πσ2Γ

(
t
ν

)
ν

t
ν

(
(η(qα) + rm)

(
η(qα + rm)

σ2
+ te−νω

)(
ζ t

ν − 3
2
(qα + rm) + ζ t

ν − 3
2
(qα − rm)

)
+

(
2κη(qα + rm)

σ2
+ 1

)
ζ t

ν − 1
2
(qα + rm) + ζ t

ν − 1
2
(qα − rm) +

κ2

σ2

(
ζ t

ν + 1
2
(qα + rm) + ζ t

ν + 1
2
(qα − rm)

))
.

In the following we provide some details on how to obtain the above bound. For the derivation, within
the integrand, as before |η(x)− κy| ≤ η(qα) + rm + κy in the interval Brm(qα). We do also need to split
both integrals into the regions η(qα)− κy > 0 and η(qα)− κy < 0. For the first region, in Brm(qα)

(η(qα)− rm − κy)2 ≤ (η(x)− κy)2 ≤ (η(qα) + rm − κy)2.

The lower bound is for the exponent and the upper bound is for the quadratic term. For η(qα)− κy < 0

(η(qα) + rm − κy)2 ≤ (η(x)− κy)2 ≤ (η(qα)− rm − κy)2.

Inserting these bounds into the expression | ∂
∂σϕ

VG(x)|, we get our first bound of the supremum

sup
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≤
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.

For the third integral, knowing η(qα)− κy > 0,

(η(qα) + rm − κy)2 ≤ η2(qα + rm) + κ2y2
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since η(qα) + rm > 0, where we use the fact that η(x + y) = η(x) + y, see (37). For the fourth integral,
where η(qα)− κy < 0, η(qα)− rm may be a negative value and so

(η(qα)− rm − κy)2 < (η(qα) + rm + κy)2 = η2(qα + rm) + 2κη(qα + rm)y + κ2y2,

separating the components. Extending the intervals for each of the integrals to [0,∞), and rearranging
the integrals, we bound above again by
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t
ν

(
η(qα + rm)

(
η(qα + rm)

σ2
+ te−νω

)(
e

κ
σ2 η(qα+rm)

∫ ∞

0

y
t
ν − 5

2 e−
1
2

η2(qα+rm)

σ2
1
y e

−
(

1
2

κ2

σ2 + 1
ν

)
y
dy

+ e
κ
σ2 η(qα−rm)

∫ ∞

0
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t
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2 e−
1
2
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σ2
1
y e

−
(

1
2

κ2

σ2 + 1
ν

)
y
dy

)
+

(
2κη(qα + rm)

σ2
+ 1

)
e

κ
σ2 η(qα+rm)

∫ ∞

0

y
t
ν − 3

2 e−
1
2

η2(qα+rm)

σ2
1
y e

−
(

1
2

κ2

σ2 + 1
ν

)
y
dy

+ e
κ
σ2 η(qα−rm)

∫ ∞

0

y
t
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2 e−
1
2
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σ2
1
y e

−
(

1
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)
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+
κ2

σ2

(
e

κ
σ2 η(qα+rm)

∫ ∞

0
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t
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2 e−
1
2

η2(qα+rm)

σ2
1
y e

−
(

1
2
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)
y
dy

+ e
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∫ ∞
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2 e−
1
2

η2(qα−rm)

σ2
1
y e

−
(

1
2

κ2

σ2 + 1
ν

)
y
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))
.

From Equation (44) and the definition of ζ(·), the final result is obtained.
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