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Abstract

We propose a novel utility representation for preferences over risky timed outcomes.
The weighted temporal utility model generalizes many well known utility functions for
intertemporal decision making under risk. A decision maker with a weighted temporal
utility function can have time consistent yet non-stationary preferences or stationary yet
time inconsistent preferences. Thus, our model can explain the empirical evidence in
Halevy (2012) which is at odds with standard models of intertemporal choice that assume
non-linear time perception to be the sole driver of non-stationary and time-inconsistent
behavior. We also propose a non-parametric approach to elicit a weighted temporal utility
function.
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1 Introduction

Virtually any decision we make involves an uncertain outcome at some point in the future.

Not only investments and savings involve such future payoffs, but also daily decisions

about, for instance, what to eat and whether or not to go to the gym. Empirical evidence

shows that many decisions are time-inconsistent in the sense that the mere passage of time

makes people change their plans (Frederick, Loewenstein, and O’Donoghue, 2002). Such

time-inconsistencies can cause under-investment and unhealthy lifestyles, which impose a

large cost on society. A good understanding of the drivers of these time-inconsistencies

can help to provide solutions to overcome them and to reduce the associated costs.

The literature on intertemporal choice has focussed almost exclusively on one potential

driver of time-inconsistencies: non-stationarity. Stationarity holds if a preference between

outcomes to be received at different points in time is unaffected by a common additional

delay of all outcomes. Deviations from stationarity are often thought to be driven by

pure time preference, being the way people weight future points in time, irrespective of

the outcomes received at these points in time. Hyperbolic discount models were proposed

to accommodate such pure time preference (Loewenstein and Prelec, 1992; Harvey, 1986,

1995; Mazur, 1987; and Phelps and Pollak, 1968). These models can be given a psycholog-

ical foundation by construal-level theory (Trope and Liberman, 2010) and the non-linear

manner in which humans perceive temporal distance (Zauberman et al., 2009). To the ex-

tent that these non-linear perceptions of time are irrational, we can view deviations from

stationarity caused by pure time preference as irrational.

Deviations from stationarity can induce time-inconsistencies. Yet, Halevy (2012) pro-

vided empirical evidence that non-stationary behavior can be time-consistent and that

stationary behavior can be time-inconsistent. In his study only two-thirds of the sub-

jects who exhibit time-consistency also exhibit stationarity and half of the subjects whose

choices are time-inconsistent exhibit stationarity. These findings show that deviations from
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stationarity are not the sole drivers of irrationalities and they cast doubt on the extent to

which such deviations are irrational.

This paper proposes an additional driver of non-stationarities, which can explain the

data in Halevy (2012) and which – unlike non-linear time perception – need not be ir-

rational at all. In our model deviations from stationarity are not only caused by pure

time preference, but also by the time-dependence of the utility of an outcome. Such time-

dependence naturally arises whenever the decision maker has some baseline consumption

to which he adds any outcome he receives (cf. Noor, 2009, and Gerber and Rohde, 2010). If

the decision maker expects his baseline consumption to change over time, then the utility

of an outcome depends on its timing irrespective of pure time preference. This dependency,

which can induce non-stationarity, can be viewed as foresight of future utility and, thereby,

is not irrational as long as it is perfect foresight.

We introduce a weighted temporal utility model to account for time-dependent utility.

This model evaluates an outcome to be received at a particular time with a particular

probability as follows. First the time-dependent utility of the outcome is determined.

Then this utility is discounted by a weight, which depends on the probability and the time

at which the outcome is received. Thus, our model requires outcomes and probabilities

to be separable, but allows for interactions between probabilities and time on the one

hand and between outcomes and time on the other hand. Keren and Roelofsma (1995),

Abdellaoui, Diecidue, and Öncüler (2011), and Baucells and Heukamp (2012) provide

empirical evidence for probability and time not being separable. Their results show that the

weight given to a probability depends on the timing of the outcome. The magnitude effect,

which shows that larger outcomes are discounted at a lower rate than smaller outcomes,

suggests that an outcome and its timing are not separable (Frederick, Loewenstein, and

O’Donoghue, 2002).

Our weighted temporal utility model is similar in spirit to the probability time-tradeoff

model of Baucells and Heukamp (2012). Like them, we consider preferences over single

outcomes to be received with a particular probability at a particular point in time. Baucells

and Heukamp (2012) assume that outcome and probability are separable at time 0 and
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make a specific assumption on how time and probability are interacting. We assume

that outcome and probability are separable at every point in time, but do not need any

assumption about the interaction of probability and time. We will show that the weighted

temporal utility model can also accommodate the empirical findings supporting the model

of Baucells and Heukamp (2012). Moreover, our model accommodates rank-dependent

utility, prospect theory, exponential discounting, and hyperbolic discounting as special

cases.

As the timing of an outcome influences both its utility and the weight given to the

probability that it will be received, measuring the weighting and utility functions of the

weighted temporal utility model may seem difficult at first sight. We will show how this can

be accomplished in a non-parametric way. This non-parametric approach does not require

any assumption about the shape of the utility and weighting functions. In particular, it

does not require an assumption of linear utility, which is often used in the literature.

The outline of this paper is as follows. Section 2 introduces the weighted temporal

utility model and provides a characterization result. Section 3 shows how this model can

accommodate all possible combinations of non-stationarity, time-inconsistency and time-

invariance. Section 4 proposes a non-parametric approach to elicit a weighted temporal

utility function and Section 5 concludes.

2 The Model

This paper considers preferences < over risky timed outcomes (x, p, t) which give outcome

x ∈ R+ with probability p ∈ [0, 1] at time t ∈ R+. We assume that < is a continuous weak

order. Strict preference � and indifference ∼ are defined as usual. We further assume that

(x, p, t) ∼ (y, q, s) whenever px = qy = 0.

Impatience holds if for all x, p, s, t with s < t and px > 0 we have (x, p, s) � (x, p, t).

Monotonicity in probabilities holds if for every outcome x > 0, every time t, and all

probabilities p > q we have (x, p, t) � (x, q, t). Monotonicity in outcomes holds if for every

probability p > 0, time t, and outcomes x > y we have (x, p, t) � (y, p, t). Monotonicity
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holds if both monotonicity in probabilities and monotonicity in outcomes holds.

Weighted temporal utility (WTU) holds if < can be represented by

V (x, p, t) = w(p, t)v(x, t),

where w is a weighting function and v is a utility function. Under WTU a decision maker

evaluates a risky timed outcome (x, p, t) by first determining the utility v(x, t) that outcome

x will yield at time t, irrespective of the probability that it will be received, and then

discounting this temporal utility by a weight w(p, t), which can be viewed as a time-

dependent probability weighting function.

WTU captures the two ways in which the time at which a risky outcome is received,

can influence its evaluation. First of all, the instantaneous utility derived from outcome x

may depend on time t. This will be the case, if, for instance, a decision maker expects to

be much wealthier in the future and therefore expects e100 to generate much less utility

in the future than now. Second, as the instantaneous utility is generated in the future

and only with a probability p, it can be viewed as a psychologically distant utility. The

weighting function w(p, t) transforms the two components, p and t, of this psychological

distance into a discount which is applied to the instantaneous utility v(x, t).

In psychology construal level theory (Trope and Liberman, 2010) has been proposed

as a theory which shows how psychological distance resulting from a.o. risk and time,

influences decision making. Prelec and Loewenstein (1991) showed that there are many

parallels between the impact of risk and time on decision making, which supports the

idea that risk and time can be summarized into one variable: psychological distance. Our

model, like the one of Baucells and Heukamp (2012), puts construal level theory into a

(mathematical) weighting function. The weighting function w can be thought of as a

function that first combines probability and delay into psychological distance, and then

gives a weight to this distance. Keren and Roelofsma (1995), Abdellaoui, Diecidue, and

Öncüler (2011), and Baucells and Heukamp (2012) provide empirical evidence for the non-

separability of probability and time. Hence, we do not assume that w(p, t) can be written

as w(p, t) = f(p)g(t) for some functions f and g. Yet, rank-dependent utility, prospect
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theory, exponential discounting, and hyperbolic discounting are special cases of WTU.

WTU is an alternative to the probability and time tradeoff model of Baucells and

Heukamp (2012), which is given by V (x, p, t) = w(pe−rxt)v(x). In their model the tradeoff

between probability p and time t may depend on the outcome x. More precisely, they

provide empirical evidence that the willingness to wait in exchange for a higher probability

to receive a reward increases in the size of the reward. They use the term subendurance

for this behavioral pattern and show that it can be rationalized by a weighting function

w which also depends on the outcome x. In our model the dependency on outcomes of

the tradeoff between probability and time is captured by the temporal utility function v.

Hence, our model clearly separates attitudes towards psychological distance and attitudes

towards outcomes, where the former are captured by the temporal weighting function w

and the latter by the temporal utility function v. The following example shows that our

model is compatible with all the empirical findings that Baucells and Heukamp (2012) use

to justify their model.

Example 2.1 Consider a decision maker with WTU function V (x, p, t) = w(p, t)v(x, t),

where w(p, t) = e−(− ln(p)+0.023t)0.65 for all p, t, v(x, 0) =
√

100 + x −
√

100 for all x, and

v(x, t) =
√

105 + x −
√

105 for all x and t > 0. Let time be denoted in weeks. The

weighted temporal utilities of the prospects in Baucells and Heukamp (2012, Table 1) are

summarized in Table 1. These utility levels yield modal choices as reported in Baucells

and Heukamp (2012). Thus, WTU can account for their empirical findings.

In the remainder of this section we will provide a characterization of WTU and of a

special case of WTU, where the time-dependence of utility is generated by time-dependent

baseline consumption. In addition to impatience and monotonicity two conditions are

necessary and sufficient for WTU to hold.

The hexagon condition at time t holds if for all outcomes x, y, z > 0 and all probabilities
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Prospect A Prospect B V(A) V(B)

1. (e9, 100%, now) (e12, 80%, now ) 0.4403 0.3998

2. (e9, 10%, now) (e12, 8%, now) 0.0789 0.0939

3. (e9, 100%, 3 months) (e12, 80%, 3 months) 0.2789 0.3014

4. (fl.100, 100%, now) (fl.110, 100%, 4 weeks) 2.0603 1.7820

5. (fl.100, 100%, 26 weeks) (fl.110, 100%, 30 weeks) 0.9867 1.0041

6. (fl.100, 50%, now) (fl.110, 50%, 4 weeks) 0.9369 0.9373

7. (e100, 100%, 1 month) (e100, 90%, now) 3.2930 3.2858

8. (e5, 100%, 1 month) (e5, 90%, now) 0.1951 0.1959

Table 1: Prospects and utility values for Example 2.1. V (A) and V (B) denote the weighted

temporal utility of prospect A and B, respectively. Note: Rows 4-6 have outcomes denoted

in Dutch Guilders. We transformed them into Euro by using the conversion rate at the

introduction of the Euro: fl.100 is approximately e45.45 and fl.110 is approximately e50.

We set 1 month equal to 4 weeks and 3 months equal to 12 weeks.

p, q, l > 0 we have that

(y, p, t) ∼ (x, q, t) and (z, p, t) ∼ (y, q, t) and

(y, q, t) ∼ (x, l, t) imply

(z, q, t) ∼ (y, l, t).

The hexagon condition can be interpreted as follows. Assume that the tradeoff between p

and q equals the tradeoff between q and l in the sense that they both offset the tradeoff

between y and x at time t (the upper and lower left indifferences of the definition). If

the tradeoff between p and q also offsets the tradeoff between z and y at time t, then the

hexagon condition implies that the tradeoff between q and l offsets the tradeoff between z

and y at time t as well (the upper and lower right indifferences of the definition). Thus, the

hexagon condition allows us to claim that, at time t, the tradeoff between p and q equals
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the tradeoff between q and l, irrespective of the outcomes. Wakker (1989) showed that the

hexagon condition is weaker than the often used Thomsen condition (Thomsen, 1927).

Probability-independent time-outcome tradeoff holds if for all outcomes x, y, x0, y0 > 0,

all probabilities p, p0, and every time t we have that

(x, 1, t) ∼ (x0, 1, 0) and (x, p, t) ∼ (x0, p0, 0) and

(y, 1, t) ∼ (y0, 1, 0) imply

(y, p, t) ∼ (y0, p0, 0).

Probability-independent time-outcome tradeoff can be interpreted as follows. Assume that

the tradeoff between x for sure and x0 for sure equals the tradeoff between y for sure and

y0 for sure in the sense that they both offset the tradeoff between time t and time 0 (the

upper and lower left indifferences of the definition). Assume that the tradeoff between

x with probability p and x0 with probability p0 also offsets the tradeoff between time t

and time 0. Then probability-independent time-outcome tradeoff implies that the tradeoff

between y with probability p and y0 with probability p0 offsets the tradeoff between time

t and time 0 as well (the upper and lower right indifferences of the definition).

The hexagon condition at time 0 and probability-independent time-outcome tradeoff

imply WTU, as is shown in the following theorem. The proof is in the Appendix.

Theorem 2.2 Under impatience and monotonicity the following statements are equiva-

lent:

(i) Probability-independent time-outcome tradeoff and the hexagon condition at time 0

hold.

(ii) Preferences < can be represented by

V (x, p, t) = w(p, t)v(x, t)

with w(0, t) = v(0, t) = 0 for all t. Moreover, for all x, p, t we have w(p, t) ≥ 0 and

v(x, t) ≥ 0 with w increasing in p and v increasing in x.
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Baseline Consumption

We will now consider a special case of WTU which naturally arises if the decision maker has

a discounted expected utility function and adds any outcome to his baseline consumption

at the time when the outcome is received. If bt is baseline consumption and u is the

decision maker’s von Neumann-Morgenstern utility function, then the utility function over

risky timed outcomes is of the form

V (x, p, t) = pδ(t) (u(bt + x)− u(bt)) , (1)

where δ is the time discount function. The utility generated by receiving outcome x at

time t, thereby, is the extra utility outcome x generates on top of the utility derived from

baseline consumption at time t. Given the empirical evidence against the separability of

probability and time (Keren and Roelofsma, 1995; Abdellaoui, Diecidue, and Öncüler,

2011; Baucells and Heukamp, 2012), we will focus on the following more general version of

(1):

V (x, p, t) = w(p, t) (u(bt + x)− u(bt)) , (2)

where w is the weighting function that we already know from the general WTU model.

The question is, under which conditions the temporal utility function v(x, t) can be written

as a utility difference u(bt + x)− u(bt) for some bt, i.e. under which condition the decision

maker behaves as if he has a baseline consumption and evaluates an outcome by the extra

utility it generates on top of the baseline consumption. It turns out that the following

condition is vital.

Assume that preferences at time 0 can be represented by V (x, p, 0) = w(p)u(x). Baseline
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consumption bt exists at time t > 0 if for all x, y, p, px, py, qx, qy with x, y > 0 we have that

(bt + x, px, 0) ∼ (bt, 1, 0),

(bt + y, py, 0) ∼ (bt, 1, 0),

(bt + x, qx, 0) ∼ (x, p, t), and

(bt + y, qy, 0) ∼ (y, p, t)

imply

w(qx)

1− w(px)
=

w(qy)

1− w(py)

The following theorem provides a characterization of (2). The proof is in the Appendix.

Theorem 2.3 Under impatience, monotonicity, and the hexagon condition at time 0 the

following statements are equivalent:

(i) Baseline consumption bt exists for every t > 0.

(ii) Preferences < can be represented by

V (x, p, t) = w(p, t) (u(bt + x)− u(bt))

with b0 = 0 and w(0, t) = u(0) = 0 for all t.

Moreover, the {bt}t>0 in (i) are the same as in (ii).

3 Stationarity, Time Invariance and Time Consistency

Two points in time are crucial when choosing between risky timed outcomes: consumption

time – the time at which the outcome is received - and decision time – the time at which

the decision is made. So far we have only varied consumption time while the decision time
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was fixed at t = 0. In order to shed light on time inconsistencies this section will also

consider changes in the decision time. Varying the decision time and the consumption

time gives rise to three notions of consistent behavior depending on whether only one or

both of them are varied. We will discuss the three notions of consistent behavior in terms

of our preference model.

This section assumes that for every decision time τ the decision maker has a preference

relation <τ over risky timed outcomes to be received from time τ onwards. By {<τ}τ we

denote the set of preferences for all decision times τ. Strict preference �τ and indifference

∼τ are defined as usual. In line with Halevy (2012) we define stationarity, time invariance

and time consistency as follows.

Definition 3.1 Preferences {<τ}τ are stationary if for every x, y, p, q, τ, s, t, with 0 ≤

τ ≤ s, t, and for every ∆ ≥ 0,

(x, p, t) ∼τ (y, q, s) ⇐⇒ (x, p, t+ ∆) ∼τ (y, q, s+ ∆)

Stationarity means that preferences remain unchanged if the decision time remains un-

changed and all consumption times are delayed by a common time interval.

Definition 3.2 Preferences {<τ}τ are time invariant if for every x, y, p, q, τ, s, t with

0 ≤ τ ≤ s, t, and for every ∆ ≥ 0,

(x, p, t) ∼τ (y, q, s) ⇐⇒ (x, p, t+ ∆) ∼τ+∆ (y, q, s+ ∆)

Time invariance means that preferences remain unchanged if the distance from consump-

tion time to decision time remains unchanged.

Definition 3.3 Preferences {<τ}τ are time consistent if for every x, y, p, q, τ, τ ′, s, t,

with 0 ≤ τ, τ ′ ≤ s, t,

(x, p, t) ∼τ (y, q, s) ⇐⇒ (x, p, t) ∼τ ′ (y, q, s)
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Time consistency means that the preference over a pair of risky timed outcomes is inde-

pendent of the decision time.

It is straightforward to show that any two of the three properties (stationarity, time in-

variance, and time consistency) imply the third and hence either none or at least two of the

properties must be violated. Thus, there are five possible preference types as summarized

in Table 2.

Type Stationary Time Invariant Time Consistent

I Yes Yes Yes

II Yes No No

III No Yes No

IV No No Yes

V No No No

Table 2: The five possible preference types. “Yes” (“No”) means that preferences have (do

not have) the corresponding property.

Halevy (2012) provides experimental evidence for all five preference types in Table 2. In

particular, in his experiment only two-thirds of the subjects who exhibit time consistency

also exhibit stationarity and half of the subjects whose choices are time inconsistent exhibit

stationarity. This shows that non-stationary behavior, e.g. due to decreasing impatience,

is not equivalent to time inconsistency. We will now demonstrate that an extension of our

preference model to arbitrary decision times τ ≥ 0 can account for all five preference types

in Table 2. We summarize these findings in the following theorem which is proved in the

Appendix.
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Theorem 3.4 Assume that time-τ preferences <τ are represented by the utility function

Vτ (x, p, t) = wτ (p, t)vτ (x, t)

for all x, p, t, τ , for some functions wτ and vτ . Then the following specifications of the

functions wτ and vτ yield the preference types in Table 2.

1. Type I If vτ (x, t) = v̄(x) for some function v̄ and if wτ (p, t) = δt−τw(p) for some

function w and some δ > 0, then preferences are stationary, time invariant and time

consistent.

2. Type II If vτ (x, t) = v̄τ (x) for some function v̄τ and if wτ (p, t) = δt−τw(p) for

some function w and some δ > 0, then preferences are stationary, but neither time

invariant nor time consistent unless v̄τ satisfies

v̄τ (x)

v̄τ (y)
=
v̄τ+∆(x)

v̄τ+∆(y)
(3)

for all x, y, τ,∆ ≥ 0.

3. Type III If vτ (x, t) = v̄(x) for some function v̄ and if wτ (p, t) = w(p)[1+α(t−τ)]−1

for some function w and some α > 0, then preferences are time invariant, but neither

stationary nor time consistent.

4. Type IV If vτ (x, t) = v̄(x, t) for some function v̄ and if wτ (p, t) = w(p)δt−τ for

some function w and some δ > 0, then preferences are time consistent, but neither

stationary nor time invariant unless v̄ satisfies

v̄(x, t)

v̄(y, s)
=
v̄(x, t+ ∆)

v̄(y, s+ ∆)
(4)

for all x, y, t, s,∆ ≥ 0.

5. Type V If vτ (x, t) = v̄τ (x) for some function v̄τ and if wτ (p, t) = w(p)[1+α(t−τ)]−1

for some function w and some α > 0, then preferences violate stationarity. Moreover,

preferences are not time invariant unless v̄τ satisfies

v̄τ (x)

v̄τ (y)
=
v̄τ+∆(x)

v̄τ+∆(y)
(5)
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for all x, y, τ,∆ ≥ 0. Finally, preferences are not time consistent unless v̄ satisfies

v̄τ (x)(1 + α(s− τ))

v̄τ (y)(1 + α(t− τ))
=
v̄τ ′(x)(1 + α(s− τ ′))
v̄τ ′(y)(1 + α(t− τ ′))

(6)

for all x, y, τ, τ ′, s, t, with 0 ≤ τ, τ ′ ≤ s, t.

Theorem 3.4 shows that WTU is sufficiently rich to cover all possible preference types

concerning stationarity, time invariance and time consistency. Moreover, it clearly demon-

strates that violations of stationarity are by no means the only source of time inconsistent

behavior. Hence, we have to measure both w and v in order to get a complete picture of how

a decision maker’s preference responds to changes in the decision and in the consumption

time. This is the topic of the following section.

4 Parameter-Free Elicitation of V (x, p, t)

In the following we present a parameter-free method for eliciting the weighting function

w(p, t) and the utility function v(x, t) of WTU for a given continuous preference relation

< over risky timed outcomes which satisfies impatience and monotonicity. We start with

an elicitation of w(p, 0).

Elicitation of w(p, 0)

Fix an arbitrary outcome x > 0, an arbitrary probability p0 with 0 < p0 < 1, and a

parameter κ with 0 < κ < 1. Without loss of generality we can normalize w so that

w(p0, 0) = κ and w(1, 0) = 1.1

Elicit y1 such that

(x, p0, 0) ∼ (y1, 1, 0) (7)

1 Observe that V (x, p, t) = w(p, t)v(x, t) and V ′(x, p, t) = w′(p, t)v′(x, t) both represent < if and only

if there exists α1, α2, β > 0 such that w′(p, t) = (α1w(p, t))
β and v′(x, t) = (α2v(x, t))

β .
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and p1 such that

(x, p1, 0) ∼ (y1, p0, 0). (8)

By monotonicity y1 and p1 are unique and satisfy y1 < x and p1 < p0. Indifference (7) is

equivalent to

κv(x, 0) = v(y1, 0) (9)

and (8) is equivalent to

w(p1, 0)v(x, 0) = κv(y1, 0). (10)

From (9) and (10) it follows that

w(p1, 0) = κ2.

We can continue like this and elicit yi and pi for i = 2, 3, . . . , such that

(x, pi−1, 0) ∼ (yi, 1, 0) (11)

and

(x, pi, 0) ∼ (yi, pi−1, 0). (12)

It follows that

w(pi, 0) = κ2i for all i, (13)

which can be shown as follows. For i = 1 we already verified that (13) holds. Now suppose

that w(pi−1, 0) = κ2i−1
. From indifference (11) we have

w(pi−1, 0)v(x, 0) = v(yi, 0)

From indifference (12) we have

w(pi, 0)v(x, 0) = w(pi−1, 0)v(yi, 0).

It follows that

w(pi, 0) = (κ2i−1

)2 = κ2i .

By choosing the starting point p0 arbitrarily close to 1 we can make the grid on which we

determine the weighting function w(p, 0) arbitrarily fine. Finally, note that w(0, 0) = 0

since by assumption < satisfies monotonicity and (x, 0, 0) ∼ (0, p, 0) for all x > 0 and for

all p > 0.
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Elicitation of v(x, 0)

Given w(p, 0) with w(1, 0) = 1 it is straightforward to elicit v(x, 0). Fix an arbitrary

outcome x > 0. Without loss of generality we can normalize v so that

v(x, 0) = 1.2

Then, for any outcome y with y < x elicit p such that

(y, 1, 0) ∼ (x, p, 0).

Then we have v(y, 0) = w(p, 0). Similarly, for any outcome y with y > x elicit q such that

(x, 1, 0) ∼ (y, q, 0).

It follows that v(y, 0) = 1
w(q,0)

.

Elicitation of w(p, t) and v(x, t) for t > 0

In order to elicit w(p, t) and v(x, t) for t > 0 we use the method in the proof of Theorem

2.2. First observe that w(0, t) = v(0, t) = 0 for all t > 0 since by assumption < satisfies

monotonicity and (x, 0, t) ∼ (0, p, t) for all x > 0 and for all p > 0. For every x > 0 elicit

x0(x, t) such that

(x, 1, t) ∼ (x0(x, t), 1, 0)

and define

v(x, t) = v(x0(x, t), 0).

Fix x > 0. For every p > 0 elicit p0(p, t) such that

(x, p, t) ∼ (x0(x, t), p0(p, t), 0)

and define

w(p, t) = w(p0(p, t), 0).

2See Footnote 1.

15



If for every t > 0 there exists a baseline consumption bt, we can elicit w(p, 0) and

v(x, 0) as above and then follow the constructive proof of Theorem 2.3 in order to get the

utility representation (2). Define b0 = 0 and u(x) = v(x, 0) for all outcomes x. For all

x > 0, p ≥ 0, t > 0, let π(x, t) solve

(bt + x, π(x, t), 0) ∼ (bt, 1, 0)

and let π′(x, p, t) solve

(x, p, t) ∼ (bt + x, π′(x, p, t), 0).

Define

w(p, t) =
w0(π′(x, p, t))

1− w0(π(x, t))
.

and observe that w(p, t) is well-defined by the definition of baseline consumption bt.

5 Conclusion

We introduced the weighted temporal utility model, which evaluates risky timed outcomes

by the product of a time-dependent utility generated by this outcome and a time-dependent

probability weight. The model is consistent with empirical findings suggesting that prob-

ability and time as well as outcome and time are not separable. For single outcomes to

be received with a specific probability at a single point in time weighted temporal utility

covers rank-dependent utility, prospect theory, exponential discounting, and hyperbolic

discounting as special cases.

Another special case of weighted temporal utility arises when the decision maker eval-

uates an outcome at a specific point in time by the extra utility it generates on top of the

utility derived from baseline consumption. If baseline consumption is expected to change

over time, then the utility generated by an outcome is indeed time-dependent.

We showed that the time-dependency of the utility generated by an outcome can give

rise to non-stationarities even if probabilities are weighted linearly and time is discounted

exponentially. We also showed that this type of non-stationarity does not necessarily induce

time-inconsistent behavior. Our model can therefore explain the findings of Halevy (2012).
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It is important to note that the deviations from stationarity which are induced by the

time-dependence of utilities, are not necessarily irrational. If one, for instance, considers

the special case with baseline consumption, then a perfect foresight of changes in base-

line consumption induces deviations from stationarity. Yet these deviations are driven by

perfect foresight, and, thereby, perfectly rational.
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Appendix

Lemma 1 Under monotonicity the following statements are equivalent:

(i) The hexagon condition at time 0 holds.

(ii) Preferences at time 0 can be represented by

V (x, p, 0) = w0(p)u0(x).

with w0(p) ≥ 0 and u0(x) ≥ 0 for all x, p, and w0(0) = u0(0) = 0. Moreover, w0 and u0

are increasing.

Proof of Lemma 1: The fact that (ii) implies (i) can easily be shown and also follows

directly from Theorem III.4.1 in Wakker (1989).

Now assume that (i) holds. Then Theorem III.4.1 in Wakker (1989) shows that we

have a representation

V (x, p, 0) = w0(p)u0(x)

for all positive outcomes and positive probabilities. Moreover, w0(p) > 0 for all p > 0

and u0(x) > 0 for all x > 0. We will first show that w0(p) goes to zero as p goes to zero.

Suppose that this were not the case and that w0(p) would go to a positive number W as

p goes to zero. Now consider any two outcomes y > x > 0 and a very small probability

ε > 0. Then

(y, ε, 0) � (x, ε, 0) � (0, ε, 0) ∼ (y, 0, 0)

By continuity there must be a probability κ > 0 with

(x, ε, 0) ∼ (y, κ, 0),

which implies

w0(ε)u0(x) = w0(κ)u0(y).
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Note that κ < ε. Yet, when ε is small enough, we have that w0(ε)
w0(κ)

≈ W
W

= 1, which

contradicts the fact that we can find such a κ with w0(ε)u0(x) = w0(κ)u0(y) for all outcomes

y > x. Thus, it must be the case that w0(p) goes to zero as p goes to zero. A similar

argument shows that u0(x) goes to zero as x goes to zero.

Define u0(0) = 0 and w0(0) = 0. Consider (x, p, 0) < (y, q, 0). If x, y, p, and q are all

positive then we have that

w0(p)u0(x) ≥ w0(q)u0(y).

If x = 0 or p = 0 then we must have y = 0 or q = 0, which implies that w0(p)u0(x) ≥

w0(q)u0(y). If y = 0 or q = 0 and x > 0 and p > 0, then w0(p)u0(x) ≥ w0(q)u0(y) follows as

well. This shows that preferences at time 0 can be represented by V (x, p, 0) = w0(p)u0(x).

Since < satisfies monotonicity and w0(p) > 0 for all p > 0 and u0(x) > 0 for all x > 0 it is

straightforward to show that w0 and u0 are increasing. This proves the Lemma. 2

Proof of Theorem 2.2

We first prove that (i) implies (ii). Assume that probability-independent time-outcome

tradeoff and the hexagon condition at time 0 hold. By Lemma 1 preferences at time 0

can be represented by V (x, p, 0) = w0(p)u0(x). For every outcome x ≥ 0 and time t define

the outcome x0(x, t) by (x, 1, t) ∼ (x0(x, t), 1, 0). By impatience and continuity x0(x, t) is

always well-defined. For every x > 0 and every p, t define the probability p0(x, p, t) by

(x, p, t) ∼ (x0(x, t), p0(x, p, t), 0). By impatience, monotonicity, and continuity p0(x, p, t)

is always defined for x > 0. Probability-independent time-outcome tradeoff implies that

p0(x, p, t) = p0(y, p, t) for all x, y > 0. Thus, we define p0(p, t) = p0(x, p, t).

Now we define

v(x, t) = u0(x0(x, t))

for all x, t with x > 0 and set v(0, t) = 0. Further we define

w(p, t) = w0(p0(p, t))
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for all p, t. Then we have for x, y > 0

(x, p, t) < (y, q, s)

⇐⇒ (x0(x, t), p0(p, t), 0) < (x0(y, s), p0(q, s), 0)

⇐⇒ w0(p0(p, t))u0(x0(x, t)) ≥ w0(p0(q, s))u0(x0(y, s))

⇐⇒ w(p, t)v(x, t) ≥ w(q, s)v(y, s).

If x = 0 or y = 0 then (x, p, t) < (y, q, s) implies w(p, t)v(x, t) ≥ w(q, s)v(y, s) as well.

Thus, V (x, p, t) = w(p, t)v(x, t) represents < .

Now we need to prove that (ii) implies (i). Assume that preferences < can be represented

by

V (x, p, t) = w(p, t)v(x, t).

The hexagon condition at time 0 follows from Lemma 1. Assume that x, y > 0 and

(x, 1, t) ∼ (x0, 1, 0), (x, p, t) ∼ (x0, p0, 0), and (y, 1, t) ∼ (y0, 1, 0). Then

v(x, t)

v(x0, 0)
=

v(y, t)

v(y0, 0)

and
v(x, t)

v(x0, 0)
=
w(p0, 0)

w(p, t)
.

It follows that
v(y, t)

v(y0, 0)
=
w(p0, 0)

w(p, t)
.

Thus, (y, p, t) ∼ (y0, p0, 0). 2

Proof of Theorem 2.3

We first prove that (i) implies (ii). Under the assumptions of the theorem preferences

at time 0 can be represented by w0(p)u0(x), with w0(0) = u0(0) = 0, which follows from

Lemma 1. Without loss of generality we can set w0(1) = 1. Define b0 = 0 and u(x) =

u0(x) for all outcomes x. For all x > 0 and t > 0 define π(x, t) by the indifference (bt +
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x, π(x, t), 0) ∼ (bt, 1, 0). By monotonicity and continuity π(x, t) is well defined. Note that

this means that

w0(π(x, t))u(bt + x) = u(bt).

For all x > 0, t > 0, and p ≥ 0 define π′(x, p, t) by the indifference (x, p, t) ∼ (bt +

x, π′(x, p, t), 0). By monotonicity, impatience and continuity π′(x, p, t) is well defined. For

all t > 0, x > 0, and p ≥ 0 define

w(x, p, t) =
w0(π′(x, p, t))

1− w0(π(x, t))
.

By the definition of baseline consumption bt we have that

w0(π′(x, p, t))

1− w0(π(x, t))
=

w0(π′(y, p, t))

1− w0(π(y, t))

for all x, y > 0. It follows that w(x, p, t) is independent of x. Thus, we define w(p, t) =

w(x, p, t) for all t > 0 and all p, and w(p, 0) = w0(p) for all p.

Now we need to prove that w(p, t) (u(bt + x)− u(bt)) represents < . For x, y > 0 we

have that

(x, p, t) < (y, q, s)

⇐⇒ (bt + x, π′(x, p, t), 0) < (bs + y, π′(y, q, s), 0)

⇐⇒ w(π′(x, p, t), 0)u(bt + x) ≥ w(π′(y, q, s), 0)u(bs + y)

⇐⇒ w(p, t)(1− w0(π(x, t)))u(bt + x) ≥ w(q, s)(1− w0(π(y, s)))u(bs + y)

⇐⇒ w(p, t) (u(bt + x)− u(bt)) ≥ w(q, s) (u(bs + y)− u(bs)) .

For x = 0 we have (x, p, t) < (y, q, s) if and only if y = 0 or q = 0, which implies

w(p, t) (u(bt + x)− u(bt)) ≥ w(q, s) (u(bs + y)− u(bs)) ,

as π′(z, 0, s) = 0 for z > 0 implies w(0, s) = 0. Similarly, for y = 0 we have that (x, p, t) <

(y, q, s) implies

w(p, t) (u(bt + x)− u(bt)) ≥ w(q, s) (u(bs + y)− u(bs)) .
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This proves our result.

Now we need to prove that (ii) implies (i). Assume that preferences < can be repre-

sented by

V (x, p, t) = w(p, t) (u(bt + x)− u(bt))

where b0 = 0, u(0) = w(0, t) = 0 for all t. Assume that for x, y > 0, and t > 0

(bt + x, px, 0) ∼ (bt, 1, 0), (14)

(bt + y, py, 0) ∼ (bt, 1, 0), (15)

(bt + x, qx, 0) ∼ (x, p, t), and (16)

(bt + y, qy, 0) ∼ (y, p, t). (17)

Then (14) implies that

w(px, 0)u(bt + x) = u(bt)

and (15) implies that

w(py, 0)u(bt + y) = u(bt).

It follows that

u(bt + x)− u(bt) = (1− w(px, 0))u(bt + x)

and

u(bt + y)− u(bt) = (1− w(py, 0))u(bt + y).

(16) implies that

w(qx, 0)u(bt + x) = w(p, t) (u(bt + x)− u(bt)) = w(p, t) (1− w(px, 0))u(bt + x)

Thus,
w(qx, 0)

1− w(px, 0)
= w(p, t).

Similarly, (17) implies that
w(qy, 0)

1− w(py, 0)
= w(p, t).

The result follows. 2
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Proof of Theorem 3.4

1. Let Vτ (x, p, t) = δt−τw(p)v̄(x). Then for every x, y, p, q, τ, s, t, with 0 ≤ τ ≤ s, t, and

for every ∆ ≥ 0,

(x, p, t) ∼τ (y, q, s)

⇐⇒ δt−s
w(p)

w(q)
=

v̄(y)

v̄(x)

⇐⇒ (x, p, t+ ∆) ∼τ (y, q, s+ ∆)

Hence, preferences are stationary. Moreover, for every x, y, p, q, τ, s, t with 0 ≤ τ ≤

s, t, and for every ∆ ≥ 0,

(x, p, t) ∼τ (y, q, s)

⇐⇒ δt−s
w(p)

w(q)
=

v̄(y)

v̄(x)

⇐⇒ (x, p, t+ ∆) ∼τ+∆ (y, q, s+ ∆)

Thus, preferences are time invariant. From stationarity and time invariance it then

follows that preferences are also time consistent.

2. Let Vτ (x, p, t) = δt−τw(p)v̄τ (x). Then for every x, y, p, q, τ, s, t, with 0 ≤ τ ≤ s, t, and

for every ∆ ≥ 0,

(x, p, t) ∼τ (y, q, s)

⇐⇒ δt−s
w(p)

w(q)
=

v̄τ (y)

v̄τ (x)

⇐⇒ (x, p, t+ ∆) ∼τ (y, q, s+ ∆)

Hence, preferences are stationary. To see that preferences are not time-invariant in

general, observe that

(x, p, t) ∼τ (y, q, s)

⇐⇒ δt−s
w(p)

w(q)
=

v̄τ (y)

v̄τ (x)
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and

(x, p, t+ ∆) ∼τ+∆ (y, q, s+ ∆)

⇐⇒ δt−s
w(p)

w(q)
=

v̄τ+∆(y)

v̄τ+∆(x)

Therefore, preferences are time invariant if and only if for every x, y, τ,∆ ≥ 0, (3)

holds. If (3) is violated, then preferences are also not time consistent because other-

wise, stationarity and time consistency would imply time invariance.

3. Let Vτ (x, p, t) = w(p)[1 + α(t − τ)]−1v̄(x). Then for every x, y, p, q, τ, s, t with 0 ≤

τ ≤ s, t, and for every ∆ ≥ 0,

(x, p, t) ∼τ (y, q, s)

⇐⇒ w(p)v̄(x)

w(q)v̄(y)
=

1 + α(t− τ)

1 + α(s− τ)

⇐⇒ (x, p, t+ ∆) ∼τ+∆ (y, q, s+ ∆)

Hence, preferences are time invariant. To see that preferences are not stationary,

observe that

(x, p, t) ∼τ (y, q, s)

⇐⇒ w(p)v̄(x)

w(q)v̄(y)
=

1 + α(t− τ)

1 + α(s− τ)

and

(x, p, t+ ∆) ∼τ (y, q, s+ ∆)

⇐⇒ w(p)v̄(x)

w(q)v̄(y)
=

1 + α(t+ ∆− τ)

1 + α(s+ ∆− τ)

Since 1+α(t−τ)
1+α(s−τ)

6= 1+α(t+∆−τ)
1+α(s+∆−τ)

for ∆ > 0, preferences are not stationary. Hence, pref-

erences are also not time consistent, because time invariance and time consistency

implies stationarity.
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4. Let Vτ (x, p, t) = δt−τw(p)v̄(x, t). Then for every x, y, p, q, τ, τ ′, s, t, with 0 ≤ τ, τ ′ ≤

s, t,

(x, p, t) ∼τ (y, q, s)

⇐⇒ δt−s
w(p)

w(q)
=

v̄(y, s)

v̄(x, t)

⇐⇒ (x, p, t) ∼τ ′ (y, q, s)

Hence, preferences are time consistent. To see that preferences are not stationary in

general, observe that

(x, p, t) ∼τ (y, q, s)

⇐⇒ δt−s
w(p)

w(q)
=

v̄(y, s)

v̄(x, t)

and

(x, p, t+ ∆) ∼τ (y, q, s+ ∆)

⇐⇒ δt−s
w(p)

w(q)
=

v̄(y, s+ ∆)

v̄(x, t+ ∆)

Therefore, preferences are stationary if and only if for every x, y, s, t,∆ ≥ 0, (4) holds.

If (4) is violated, then preferences are also not time invariant because otherwise, time

consistency and time invariance would imply stationarity.

5. Let Vτ (x, p, t) = w(p)[1+α(t−τ)]−1v̄τ (x). To see that preferences are not stationary,

observe that

(x, p, t) ∼τ (y, q, s)

⇐⇒ w(p)v̄τ (x)

w(q)v̄τ (y)
=

1 + α(t− τ)

1 + α(s− τ)
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and

(x, p, t+ ∆) ∼τ (y, q, s+ ∆)

⇐⇒ w(p)v̄τ (x)

w(q)v̄τ (y)
=

1 + α(t+ ∆− τ)

1 + α(s+ ∆− τ)

Since 1+α(t−τ)
1+α(s−τ)

6= 1+α(t+∆−τ)
1+α(s+∆−τ)

for ∆ > 0, preferences are not stationary. To see that

preferences are not necessarily time invariant, observe that

(x, p, t) ∼τ (y, q, s)

⇐⇒ w(p)(1 + α(s− τ))

w(q)(1 + α(t− τ))
=

v̄τ (y)

v̄τ (x)

and

(x, p, t+ ∆) ∼τ+∆ (y, q, s+ ∆)

⇐⇒ w(p)(1 + α(s− τ))

w(q)(1 + α(t− τ))
=

v̄τ+∆(y)

v̄τ+∆(x)

Therefore, preferences are time invariant if and only if for every x, y, s, t,∆ ≥ 0, (5)

holds. To see that preferences are not necessarily time consistent, observe that

(x, p, t) ∼τ (y, q, s)

⇐⇒ v̄τ (x)(1 + α(s− τ))

v̄τ (y)(1 + α(t− τ))
=

w(q)

w(p)

and

(x, p, t) ∼τ ′ (y, q, s)

⇐⇒ v̄τ ′(x)(1 + α(s− τ ′))
v̄τ ′(y)(1 + α(t− τ ′))

=
w(q)

w(p)

Therefore, preferences are time consistent if and only if for every x, y, s, t, τ, τ ′, with

0 ≤ τ, τ ′ ≤ s, t, (6) holds.

2
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