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Abstract

We characterize the dynamic properties of Generalized Autoregressive Score (GAS)

processes by identifying regions of the parameter space that imply stationarity and

ergodicity. We show how these regions are affected by the choice of parameterization

and scaling, which are key features of GAS models compared to other observation

driven models. The Dudley entropy integral is used to ensure the non-degeneracy

of such regions. Furthermore, we show how to obtain bounds for these regions in

models for time-varying means, variances, or higher-order moments.
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1 Introduction

The distinction between observation driven and parameter driven time series models is

established in Cox (1981). The class of Generalized Autoregressive Score (GAS) models

as introduced by Creal, Koopman, and Lucas (2011, 2012) is a new class of observation

driven time-varying parameter models. It encompasses well-known observation driven

time series models, including the autoregressive conditional heteroskedasticity (ARCH)

model of Engle (1982), the generalized ARCH (GARCH) model of Bollerslev (1986), the

exponential GARCH (EGARCH) model of Nelson (1991), the autoregressive conditional

duration (ACD) model of Engle and Russell (1998), the multiplicative error model (MEM)

of Engle (2002), the autoregressive conditional multinomial (ACM) model of Rydberg and

Shephard (2003), and many related models. In addition, the GAS modeling framework

gives rise to new time-varying parameter models. Examples are the multivariate volatility

and correlation models for skewed and fat-tailed distributions with time-varing, possibly

fractionally-integrated, parameters as specified in Creal, Koopman, and Lucas (2011),

Zhang, Creal, Koopman, and Lucas (2011), and Janus, Koopman, and Lucas (2011).

Other examples are the observation driven mixed measurement dynamic factor models

of Creal, Schwaab, Koopman, and Lucas (2011) and the fat-tailed mixture models for

duration data as proposed in Koopman, Lucas, and Scharth (2012). The latter paper

also demonstrates that in terms of forecasting accuracy, GAS models perform similar to

and sometimes even better than their state space or parameter driven counterparts for a

range of data generating processes.

The flexibility and generality of GAS models make them interesting objects for further

study. Except for some well-known special cases of the GAS class such as the ARCH and

GARCH models, however, little is known about the general stochastic behavior of GAS

processes. In this paper we fill this gap by providing explicit conditions for stationarity

and ergodicity for a large class of GAS processes. In particular, we give a characterization

of the region of the parameter space that renders the process stationary and ergodic.

Establishing stationarity and ergodicity is important, as one of the main advantages of

observation driven models such as GAS models is the availability of an analytic expression

for the likelihood function. The likelihood can be obtained in closed form using a standard

prediction error decomposition. The consistency and asymptotic normality of the resulting

maximum likelihood (ML) estimator typically depend on the stationarity and ergodicity

of the underlying time series process. This is the focal point of the current paper.
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Our approach builds on the stationarity and ergodicity (SE) conditions as formulated

in Straumann and Mikosch (2006) for general stochastic recurrence equations. We first

show that GAS models can be cast in this form. We then derive sufficient conditions

for the supremum Lipschitz constants of the (stochastic) recurrence relations that need

to be bounded in expectation. A complication is provided by the generality of the GAS

framework, which allows one to select the distribution of the data, the parameterization

of the time-varying parameter, and the scaling of the score function that governs the

dynamic processes of the parameters. Each of these choices yields a different model and

is directly relevant for the SE properties of the dynamic parameter. In particular, these

choices determine also the region of the parameter space that renders the process strictly

stationary and ergodic. We call this the SE region of the parameter space.

In our main result we use the Dudley (1967) integral to characterize the non-degeneracy

of the SE region of the parameter space. Dudley (1967) has pioneered the use of entropy

conditions to obtain maximal inequalities. These conditions have proved instrumental in

non-parametric statistics and have played a fundamental role in the theory of empirical

processes. In econometrics, Andrews (1997) and Chen (2007) provide thorough reviews

of the relevant literature. Our characterization of SE regions using the Dudley integral

is valid even in the presence of complex nonlinear dynamics. The Dudley integral reveals

the existence of a trade-off between the complexity of the function space of derivatives

for the dynamic equations associated with the time-varying parameters on the one hand,

and the size of the SE region on the other hand. In particular, function spaces of lower

empirical entropy allow for larger SE regions. We apply our results to a range of interesting

GAS models for which SE regions have not been characterized before. They include for

example volatility and duration models with different distributions, parameterizations,

and scalings. The applications reveal how the conditions for stationarity and ergodicity

as derived here can be validated in practice.

The remainder of this paper is organised as follows. In Section 2 we introduce the GAS

model, its parameterization, and its scaling. In Section 3 we derive our characterization

of stationarity and ergodicity regions and provide some generic examples. In Section 4 we

provide a range of concrete GAS models for time-varying means, variances, and higher-

order moments to show how the results from Section 3 can actually be applied. Section 5

concludes. The Appendix gathers the proofs.
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2 The Generalized Autoregressive Score Model

Consider a real-valued stochastic sequence of observations {yt, t ∈ Z} with conditional

probability density,

py(yt|h(ft);λ), (1)

for all t ∈ Z, where ft represents a scalar time-varying parameter, h : R → R is a link

function, and λ ∈ Λ is a vector of time-invariant parameters. This specification includes

models with a time-varying mean or a time-varying volatility via the appropriate choice of

ft and h. For example, in a time-varying volatility model for a Student’s t distribution, λ

contains the degrees of freedom parameter, while h(ft) denotes the time-varying variance.

The model can be extended to allow for exogenous variables, lagged endogenous variables,

and lagged values of ft in the conditioning set; see Creal, Koopman, and Lucas (2011,

2012).

The Generalized Autoregressive Score (GAS) model specifies a dynamic process for

the parameter ft and is given by

ft+1 = ω + αst(ft;λ) + βft, (2)

st(ft;λ) = S(ft;λ) · ∇t(ft;λ), (3)

∇t(ft;λ) = ∂ log py(yt|f ;λ)/ ∂f |f=ft
, (4)

where ω, α, and β are time-invariant parameters, S(ft;λ) is a univariate scaling factor

for the score ∇t(ft;λ) of the conditional density of the observations (1), and log denotes

the natural logarithm. The current GAS model specification has one lag of st(ft;λ) and

one lag of ft in the right-hand side of (2). The inclusion of more lags for ft or st(ft;λ) is

straightforward; see Creal, Koopman, and Lucas (2012) for more details. We define the

parameter vector θ ∈ Θ as θ = (ω, α, β, λ′)′, with Θ denoting the parameter space.

The key element in (2) is the definition of st(ft;λ) as the scaled score of the con-

ditional density of the observations (1) with respect to the time-varying parameter ft.

The intuition for this is straightforward: at time t we improve the local fit of the model

as measured by the log density log py(yt|ft;λ). We do so by taking a scaled step in the

steepest ascent direction of the model’s fit at time t as measured by the log conditional

density. Since st(ft;λ) is a function of past data and parameters alone, the GAS model

can be classified as an observation driven model which is defined by Cox (1981). The

equations (1) to (4) encompass a large set of familiar time series models. For example, if
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py is the normal density, ft is the time-varying variance, and h is the identity function, we

obtain the standard GARCH model; see also the discussion and references in Section 1.

For other choices, the GAS framework gives rise to entirely new time-varying parameter

models, the dynamic properties of which have not been studied before.

Each choice for the scaling function S = S(ft;λ) in (3) gives rise to a new GAS model.

Intuitive choices for S may be related to the local curvature of the score as measured by

the inverse information matrix, for example

S(ft;λ) = (It(ft;λ))
−a, (5)

where

It(ft;λ) = Et−1[∇t(ft;λ)∇t(ft;λ)
′],

and where a is typically taken as 0, 1, or 1/2. Other choices of S are possible as well.

Similarly, the choice of a link function h provides another degree of freedom for model

specification. For example, in a time-varying variance setting, we can choose to model the

variance directly by setting h(ft) = ft with ft representing the variance. Alternatively,

we can opt for modelling the log variance instead by setting h(ft) = exp(ft) with ft

representing the log variance. The latter specification can have the advantage that the

variance itself is always positive by construction, even if ft becomes negative.

To provide further structure to the probability density function in (1) we let it be

implicitly defined by the following observation equation,

yt = gλ (h(ft), ut) ∀ t ∈ Z, (6)

where for all λ ∈ Λ, gλ : R×R → R is a function and {ut} is an independently identically

distributed sequence with ut ∼ pu,λ(ut). This structure covers many cases of empirical

interest. For example, a time-varying volatility model is obtained by setting yt = f
1/2
t ·

ut, with ft denoting the time-varying variance and ut being, for example, normally or

Student’s t distributed. Many other models are contained in (6) as well by letting gλ

be the inverse distribution function corresponding to (1), and by letting ut be a uniform

random variable on [0, 1]. For example, a model for a Student’s t distribution with time-

varying degrees of freedom parameter is captured by taking ut as a uniform, h as the

identity function, and gλ as the inverse Student’s t distribution function with ft degrees

of freedom.
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The stochastic properties of {yt} are now fully determined by (i) the parameterization

h, (ii) the family of densities pu = {pu,λ}λ∈Λ, (iii) the family of transformation functions

g = {gλ}λ∈Λ, (iv) the scaling function S, and (v) the parameter value θ ∈ Θ. In other

words, a probability measure for {yt} is defined whenever a point

(h, pu, g, S, θ) ∈ H × Pu × G × S ×Θ

is selected, whereH denotes the space of link functions, Pu the space of families of densities

pu for ut, G the space of families of transformation functions g, and S the space of scaling

functions. For this general modelling framework with the notation as established, we can

start characterizing stationarity and ergodicity regions for GAS processes.

3 Stationarity and Ergodicity

3.1 Stochastic recurrence equations

To characterize the dynamic properties of GAS processes, we use the stationarity and

ergodicity conditions formulated by Straumann and Mikosch (2006) for general stochastic

recurrence equations; see also Diaconis and Freedman (1999) and Wu and Shao (2004).

In particular, we define subsets of H× Pu × G × S × Θ that render {yt} stationary and

ergodic (SE). Throughout, we assume st(f ;λ) to be almost surely (a.s.) continuously

differentiable in f . Measurability of the relevant maps is implied by explicit assumptions

about continuity of the relevant maps and by letting the relevant domain and image

spaces be measurable sets equipped with Borel σ-algebras generated by the topology of

each respective set.

A stochastic recurrence equation for ft takes the form

ft+1 = φt(ft; θ) ∀ t ∈ Z, (7)

where φt is a random function. This clearly embeds the GAS model in (2) by setting

φt(ft; θ) = ω + αst(ft;λ) + βft, (8)

with every yt in the expression for st(ft;λ) replaced by yt = gλ(h(ft), ut) from equation (6).

Sufficient conditions for the existence of an SE sequence {ft} are given by the following
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assumptions, where F ⊆ R denotes the domain of ft.

Assumption 1. For every θ ∈ Θ, {φt(·; θ)}t∈Z is a stationary and ergodic (SE) sequence

of Lipschitz maps φt(·; θ) : R → R satisfying E
[

log+ ‖φ0(f ; θ)− f‖
]

< ∞ for some f ∈ F .

Assumption 2. For every θ ∈ Θ, the sequence {φt(·; θ)} satisfies

E log

[

sup
(f,f ′)∈F×F : f 6=f ′

‖φ0(f ; θ)− φ0(f
′; θ)‖

‖f − f ′‖

]

< ∞, (9)

and

E log

[

sup
(f,f ′)∈F×F : f 6=f ′

‖φ(r)
0 (f ; θ)− φ

(r)
0 (f ′; θ)‖

‖f − f ′‖

]

< 0, (10)

for some r ≥ 1 with φ
(r)
0 = φ0 ◦ · · · ◦ φ−r+1.

The proof of the following lemma can be found in Straumann and Mikosch (2006).1

Lemma 1. Let Assumptions 1 and 2 hold and let {ft} be generated by (7). Then for

every θ ∈ Θ, {ft} is an SE random sequence.

The SE properties for {yt} follow directly from those of {ft} given the model’s structure

in (6). This is stated in the following assumption and proposition.

Assumption 3. The sequence {ut}t∈Z in (6) consists of independently identically dis-

tributed random variables and the function gλ is continuous for every λ ∈ Λ.

Proposition 1. Let Assumptions 1–3 hold and let {ft} be generated by (7). Let the link

function h : R → R be continuous. Then {yt} is an SE random sequence for every θ ∈ Θ.

The proposition can also be obtained under much weaker conditions on the sequence

ut, such as stationarity and ergodicity, but for our current expositional purposes the

assumption of an independently identically distributed ut suffices.

Numerical evaluation of condition (10) in Assumption 2 is complicated by the fact

that we have to take the expectation of the supremum of a possibly highly non-linear

function. Mistakes can then easily be made if the numerical algorithm for computing

the supremum fails to find the global supremum for every θ ∈ Θ and every ut ∈ R. To

1The condition in (10) is used to ensure stationarity and ergodicity of a sequence in N that starts at
t = 0, while the relevant stochastic sequence in (7) is for t ∈ Z. We therefore need to show that the
sequence in N approximates the sequence in Z and hence that both have the same properties. We refer
to Straumann and Mikosch (2006) for a formal proof.
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prevent such potential mistakes, we provide a further analytical characterization of the

conditions under which the SE region can be proven to be non-degenerate. The following

proposition is helpful in this respect.

Proposition 2. Condition (10) in Assumption 2 is implied by,

E sup
f∗∈F

∣

∣

∣

∣

β + α
∂st(f

∗;λ)

∂f

∣

∣

∣

∣

< 1, (11)

which in turn is implied by

E sup
f∗∈F

∣

∣

∣

∣

∂st(f
∗;λ)

∂f

∣

∣

∣

∣

<
1− |β|
|α| . (12)

In applications, both conditions (11) and (12) play important roles to characterize the

SE region; we illustrate their roles in Section 4.

From condition (12) it follows directly that the SE region:

(i) is unbounded in the dimension of ω;

(ii) consists at most of the interval (−1, 1) in the direction of β; and

(iii) consists of an interval (α−, α+) with α− ≤ 0 ≤ α+ in the direction of α.

Given (i), we focus our discussion entirely on the size of the SE region in the (α, β)-plane.

For a given value of λ, we obtain the maximum SE region if

E sup
f∗∈F

|∂st(f ∗;λ)/∂f | = 0.

In this case, only condition (ii) above is binding, while α− = −∞, and α+ = ∞, such that

condition (iii) becomes irrelevant. The SE region for given λ then becomes a rectangle of

infinite length in the (α, β)-plane as characterized by |β| < 1, irrespective of the value of

α and ω. If, on the other hand,

E sup
f∗∈F

|∂st(f ∗;λ)/∂f | = ∞,

we obtain the degenerate SE region in the (α, β)-plane which we can characterize by

{(α, β) | |β| < 1, α = 0}. The intermediate cases are characterized by the condition

0 < E sup
f∗∈F

|∂st(f ∗;λ)/∂f | < ∞.
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In such an intermediate case, we obtain a non-degenerate, bounded SE region in (α, β)

for every given λ ∈ Λ. Given the structure of equation (12), such a region takes the form

of a composition of triangles.

In all cases the actual SE region can be larger due to the fact that (12) only provides

sufficient conditions for SE. We come back to this in the concrete examples in Section 4.

The current set of conditions, however, already provides considerable insight into the type

of SE regions that can be obtained for various types of GAS models.

The conditions simplify for the special case where st(·;λ) is a linear function of ft.

This includes a number of GAS models for time-varying volatilities and means. These

GAS models behave substantially different from their GARCH counterparts; see Creal,

Koopman, and Lucas (2011). In particular, their SE properties and conditions have as yet

not been fully investigated. The results for an st(·;λ) that is affine in ft are summarized

in the following corollary.

Corollary 1. Let st(ft;λ) = ζ1,t(λ) · ft + ζ2,t(λ), where ζ1,t(λ) and ζ2,t(λ) are real-valued

random variables. A sufficient condition for SE is then given by E|ζ1,t(λ)| < (1−|β|)/|α|.

The corollary makes clear that if st is affine in ft, the maximal SE region is obtained if

ζ1,t(λ) ≡ 0. A non-degenerate SE region is obtained whenever E|ζ1,t(λ)| < ∞. A smaller

value for this expectation ensures a larger SE region in the (α, β)-plane. If E|ζ1,t(λ)| is
unbounded, we obtain the degenerate SE region.

3.2 Non-Degeneracy and bounds for SE regions

The two steps in analyzing the dynamic properties of GAS models are (i) to ensure that the

SE region is non-degenerate; and (ii) to determine the SE region’s actual size and shape.

As shown in Section 3.1, the existence and size of a non-degenerate SE region both depend

on the value of E supf∗∈F |∂st(f ∗;λ)/∂f |. In what follows, we obtain meaningful upper

bounds for this expectation given the link function h, family of distributions pu, and scale

function S.

In Proposition 2, the variable f takes the role of a parameter. As a result, ∂st(f
∗;λ)/∂f

in Assumption 3 is a random variable only due to its dependence on ut. Define the function

ξ : R× F × Λ → R as

ξ(ut, f ;λ) ≡ ξf(ut;λ) ≡ ξf,λ(ut) ≡
∂st(f ;λ)

∂f
.
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For every (f, λ) ∈ F × Λ, the function ξf,λ : R → R is then a real-valued function, while

ξf,λ(ut) is a real-valued random variable. In what follows, we focus on the stochastic

process Xξf,λ , where

{ξf,λ(ut)}f∈F ≡ {ξf,λ(ut)}ξf,λ∈Ξλ
≡

{

Xξf,λ

}

ξf,λ∈Ξλ
,

and the process is indexed by the functions ξf,λ ∈ Ξλ with

Ξλ ≡ {ξf,λ | f ∈ F} ,

for fixed λ ∈ Λ. Our main quantity of interest then becomes

E sup
ξf,λ∈Ξλ

|Xξf,λ | = E sup
f∈F

|ξf,λ(ut)|. (13)

The switch in notation from the right-hand side of (13) to the left-hand side may

at first seem unnecessarily complicated. This switch, however, allows us to make direct

use of the Dudley integral (Dudley (1967)), which provides a maximal inequality for

separable sub-Gaussian stochastic processes. The Dudley integral relates the upper bound

on E supξf,λ
|Xξf,λ | to the entropy of the set that indexes the stochastic process under an

appropriate pseudo-metric2; see, amongst others, van der Vaart andWellner (1996, Section

2.2) and Korosok (2009, Chapters 2 and 3). Interestingly, while the index set F = R has

infinite entropy under pseudo-metrics of interest, the index set Ξλ can easily have finite

entropy as long as appropriate conditions hold for the functions ξf,λ of ut generated by

F . Concrete examples are given in Section 4.

Definition 1. A stochastic process {Xξf,λ}ξf,λ∈Ξλ
is separable with respect to (w.r.t.) a

countable dense subset Ξ∗
λ ⊆ Ξλ if its sample paths are a.s. Ξ∗

λ-separable.
3

Definition 2. A stochastic process {Xξf,λ}ξf,λ∈Ξλ
is said to be sub-Gaussian w.r.t. the

pseudo-metric dΞλ
: Ξλ × Ξλ → R

+
0 on its index set if and only if

P(|Xξf,λ −Xξf ′,λ
| > x) ≤ 2e

− 1

2
x2/d2

Ξλ
(ξf,λ,ξf ′,λ),

2A pseudo-metric dΞλ
satisfies all the usual properties of a metric except that dΞλ

(ξf,λ, ξf ′,λ) = 0 6⇒
ξf,λ = ξf ′,λ for ξf,λ, ξf ′,λ ∈ Ξλ. A typical example of a pseudo-metric is the standard deviation of the
difference between two random variables.

3A function ι on Ξλ is Ξ∗
λ-separable if ∀ ξf,λ ∈ Ξλ ∃ {ξ∗f,λ,i}i∈N ∈ Ξ∗

λ such that ξ∗f,λ,i → ξf,λ as i → ∞
and ι(ξ∗f,λ,i) → ι(ξf,λ). Separability is not restrictive (possibly under compactification of R) since every
process taking values on a compact metric space with a separable metric index space admits a separable
modification (it admits a separable version with the same finite-dimensional distributions).
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for every (ξf,λ, ξf ′,λ) ∈ Ξλ × Ξλ.
4

Definition 3. Let (Ξλ, dΞλ
) be a pseudo-metric space. Given ε > 0, ξf1,λ, ..., ξfn,λ ∈ Ξλ

are ε-separated if dΞλ
(ξfi,λ, ξfj ,λ) > ε for any i 6= j. The ε-packing number of (Ξλ, dΞλ

),

denoted by D(ε,Ξλ, dΞλ
), is the maximal cardinality of an ε-separated set. The ε-packing-

entropy of (Ξλ, dΞλ
) is given by ED(ε,Ξλ, dΞλ

) = logD(ε,Ξλ, dΞλ
).

As functions of ε, the numbers D(ε,Ξλ, dΞλ
) diverge as ε → 0. Dudley (1967) controls

the complexity of Ξλ through an integrability condition which ensures that D(ε,Ξλ, dΞλ
)

diverges at an appropriate rate as ε → 0.

Lemma 2. Let {Xξf,λ , ξf,λ ∈ Ξλ} be a separable sub-Gaussian stochastic process w.r.t.

the pseudo-metric dΞλ
on Ξλ. Then, ∃K > 0 such that for any given ξf0,λ ∈ Ξλ,

E sup
ξf,λ

|Xξf,λ | ≤ E|Xξf0,λ
|+K

∫ ν

0

√

ED(ε,Ξλ, dΞλ
) dε,

where ν = diam(Ξλ) denotes the diameter of Ξλ.

A finite value for E supξf,λ
|Xξf,λ | is thus obtained whenever

∫ ν

0

√

ED(ε,Ξλ, dΞλ
) dε is

bounded and E|Xξf0,λ
| is bounded for some ξf0,λ ∈ Ξλ. Classes of functions satisfying

these bounds can be very general and are well known in Empirical Process Theory and

include monotone function classes and square integrable function classes; see, for example,

Lemma 3 in the Appendix.

The Dudley integral and Lemma 3 in the Appendix show that under the structure of

Assumption 3 every GAS model as defined in Section 2 and characterized by (h, pu, S) has

a non-degenerate SE region as long as there exists a pseudo-metric dΞλ
on Ξλ for which

the derivative ∂st(f ;λ)/∂f is sub-Gaussian and square integrable (with dΞλ
. ‖ · ‖pu,λ2 ).

A particularly useful case that characterizes the SE region for a wide class of empirically

relevant GAS models is given by the following assumption and proposition.

Assumption 4. The partial derivative ∂st(f ;λ)/∂f = ξ(ut, f ;λ) is a.s. continuous and

|ξ(ut, f ;λ)| ≤ |η(f ;λ)ζ1(ut;λ) + ζ2(ut;λ)| , (14)

|ξ(ut, f ;λ)− ξ(ut, f
′;λ)| ≤ |η∗(f, f ′;λ)ζ∗(ut;λ)| , (15)

4Any Gaussian process is sub-Gaussian for the standard-deviation pseudo-metric on Ξλ given by
dΞλ

(ξf,λ, ξf ′,λ) = stdev(Xξf,λ −Xξf′,λ
).
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for all (f, f ′) ∈ F×F where η(·;λ) and η∗(·, ·;λ) are bounded, ζ1(·;λ), ζ2(·;λ) and ζ∗(·;λ)
are L2(pu(ut;λ)) maps, and ζ∗(ut;λ) satisfies an exponential tail bound P[|ζ∗(ut;λ)| >
x] ≤ k1 exp(−k2x

2) for some (k1, k2) ∈ R
+
0 × R

+
0 .

Proposition 3. Let λ ∈ Λ be such that Assumption 4 holds. Furthermore, let dΞλ
be

a pseudo-metric satisfying dΞλ
. ‖ · ‖pu,λ2 and dΞλ

(ξf,λ, ξf ′,λ) ≥ |η∗(f, f ′;λ)| for every

(f, f ′) ∈ F × F . Then, E supf∗ |∂st(f ∗;λ)/∂f | < ∞, w.r.t. dΞλ
.

The proposition follows directly from Dudley’s integral and the complexity of the class

of square integrable functions. The boundedness of η and the L2(pu(ut;λ)) integrability

of ζ1 and ζ2 in Assumption 4 ensure the square integrabilty of ξf,λ for all f ∈ F . The

sub-Gaussianity of the stochastic process {Xξf,λ}ξf,λ∈Ξλ
= {ξf,λ(ut)}f∈F follows from the

separable bound on the derivative’s difference in (15) and the exponential tail bound on

the random variable ζ∗(ut;λ).

It is important to note that the exponential tail bound in Assumption 4 may appear

more strict than it actually is. For example, it may seem that we exclude time-varying

parameter models for fat-tailed observations. This is not the case. We show in Section 4

that the exponential tail bound is easily satisfied for a wide range of GAS models for

time-varying volatility or duration and fat-tailed distributions. The key to this result is

the observation that the exponential tail bound need not hold for the density itself, but

for differences in the derivative of the score of the density. For example, for the GAS

time-varying volatility model considered in Section 4, the score is linear in f even for a

highly leptokurtic Student’s t distribution. Given this linearity, we have Xξf,λ −Xξf ′,λ
= 0

for fixed ut and hence the exponential tail bound is trivially satisfied. The result holds

for more general cases: due to the consideration of differences of derivatives of scores in

Proposition 3, the exponential tail bound on Xξf,λ is satisfied for a large class of GAS

models, including models for fat-tailed densities.

In some cases, the entropy results from Lemma 2 allow us to take one further step

and establish not only the existence of a non-degenerate SE region, but also bounds on

its size. For example, Lemma 3 in the Appendix reveals that the region satisfying (12)

becomes larger if the L2 envelope of the relevant function becomes smaller.

12



3.3 Maximal SE regions

We can show that a large class of GAS models exhibits a maximal SE region. Note that

st(ft;λ) = S(ft;λ) · ∇t(ft;λ) and rewrite (11) and (12) of Proposition 2 as

E log sup
f∗∈F

∣

∣

∣

∣

β + α

(

S(f ∗;λ)
∂∇t(f

∗;λ)

∂f
+

∂S(f ∗;λ)

∂f
· ∇t(f

∗;λ)

)
∣

∣

∣

∣

< 0, (16)

and

E sup
f∗∈F

∣

∣

∣

∣

S(f ∗;λ)
∂∇t(f

∗;λ)

∂f
+

∂S(f ∗;λ)

∂f
· ∇t(f

∗;λ)

∣

∣

∣

∣

<
1− |β|
|α| . (17)

Condition (17) is intuitive and reveals two interesting cases. If a constant scaling is used,

S(ft;λ) ≡ S̄, a maximal SE region is obtained if the parameterization h is such that

∇t(ft;λ) = ζ1(ut;λ) does not depend on ft. The condition then reduces to |β| < 1 as

both partial derivatives in (17) are equal to zero. Similarly, the SE region is maximal

if the parameterization h yields a separable score ∇t(f ;λ) = η(f ;λ)ζ1(ut;λ) and the

scaling function is S(f) = 1/η(f ;λ). In this case, st(ft;λ) does not depend on ft and

the condition also reduces to |β| < 1. The examples in Section 4 reveal that these simple

conditions with maximal SE regions already cover a wide range of empirically relevant

GAS models.

4 Examples

To illustrate how the conditions formulated in Section 3 can be implemented for relevant

empirical models, we consider a number of examples for time-varying mean, time-varying

volatility, and time-varying tail index. The results in this section establish SE properties

for a range of volatility and point process GAS models suggested in earlier work, for which

the dynamic properties have so far not been characterized.

4.1 Example 1: mean dynamics

Consider a model for the time-varying mean,

yt = h(ft) + ut, ft+1 = ω + αst(ft;λ) + βft, (18)

where {ut} is an independently identically distributed random variable with ut ∼ pu(·;λ) =
pu,λ, such that E[ut] = 0. We assume that h is a continuous, smooth function of the time-

13



varying parameter ft. Given the assumption on the pdf of ut, the pdf of yt takes the form

py(yt|ft) = pu(yt − h(ft)), such that

∂

∂f
log py(yt|ft) = −h′(ft)

∂

∂ut

log pu,λ(ut). (19)

As a result, we obtain the following specification for the GAS step st,

st(ft;λ) = −S(ft;λ) · h′(ft) · ∇pu,λ(ut), (20)

with
∂st(ft;λ)

∂f
= − [h′′(ft)S(ft;λ) + h′(ft)S

′(ft;λ)] · ∇pu,λ(ut), (21)

where h′(ft) and h′′(ft) denote the first and second order derivatives of h, respectively,

evaluated at ft, S
′(ft;λ) denotes the derivative of the scale function S(·;λ), evaluated

at ft, and ∇pu,λ(ut) denotes the score of the error density w.r.t. ut, that is ∇pu,λ(ut) =

∂ log pu,λ(ut)/∂ut. The score function ∇pu,λ(ut) depends on the static parameter λ, but

not on the dynamic parameter ft.

4.1.1 Non-degeneracy of SE region

Since Assumptions 1 and 3 hold, the non-degeneracy of the SE region of this GAS model

for a time-varying mean can be established by bounding E supf∗∈F |∂st(f ∗;λ)/∂f | and by

appealing to Lemma 1 and Propositions 1 and 2.5 The bound on E supf∗∈F |∂st(f ∗;λ)/∂f |
can in turn be obtained first by ensuring that Assumption 4 holds and second by appealing

to Proposition 3.

For the current GAS model with only a time-varying mean, st(f ;λ) fits the conditions

in Assumption 4 by setting ζ2(ut;λ) = 0. It follows that

η(ft;λ) = h′′(ft)S(ft;λ) + h′(ft)S
′(ft;λ), ζ1(ut;λ) = ζ∗(ut;λ) = −∇pu,λ(ut),

η∗(f, f ′;λ) = [h′′(f)S(f ;λ) + h′(f)S ′(f ;λ)]− [h′′(f ′)S(f ′;λ) + h′(f ′)S ′(f ′;λ)] . (22)

Hence we need to show that h′′ · S + h′ · S ′ is bounded, −∇pu,λ is L2(pu,λ), and ∇pu,λ(ut)

satisfies the exponential tail bound P(|∇pu,λ(ut)| > x) ≤ k1 exp(−k2x
2) for some (k1, k2) ∈

5For Assumption 1 we have that {ω + βf + st(f ;λ), t ∈ Z} is a stationary and ergodic (SE) sequence
of Lipschitz maps due to the assumption of an independently identically distributed sequence {ut} and
the subsequent conditions imposed on h and the distribution pu,λ.
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R
+
0 × R

+
0 . By Propositions 2 and 3, the boundedness of E supf∗∈F |∂st(f ∗;λ)/∂f | < ∞

and the non-degeneracy of the SE region follow under any pseudo-metric dΞλ
that satisfies

dΞλ
. ‖ · ‖pu,λ2 and

dΞλ
(ξf,λ, ξf ′,λ) ≥ |η∗(f, f ′;λ)| ∀ (f, f ′) ∈ F × F ,

with η∗ as defined in (22).

For example, when we consider the case of unit scaling, S(ft;λ) = 1 with independently

identically distributed Gaussian errors ut ∼ N(0, σ2), it follows that λ = σ2. In this case

we obtain st(ft;λ) = h′(ft)σ
−2ut, and

∂st(ft; σ
2)

∂f
= h′′(ft)σ

−2ut.

The non-degeneracy of the SE region is then obtained by bounding

E sup
f∗∈F

∣

∣

∣

∣

∂st(f
∗; σ2)

∂f

∣

∣

∣

∣

= E sup
f∗∈F

∣

∣h′′(f ∗)σ−2ut

∣

∣ .

In the context of Assumption 4, set ζ2(ut; σ
2) = 0, η(f ; σ2) = h′′(f), ζ1(ut; σ

2) =

ζ∗(ut; σ
2) = σ−2ut, and η∗(f, f ′;λ) = h′′(f) − h′′(f ′). Given the normality assumption,

σ−2ut naturally satisfies the exponential tail bound.6 The remaining conditions are thus

satisfied if h′′(f) is bounded and σ2 < ∞ is such that σ−2ut is L2(pu,λ). Finally, by

Proposition 3, the boundedness of E supf∗∈F |h′′(f ∗)σ−2ut| holds w.r.t. to the standard

deviation pseudo-metric dΞλ
, since dΞλ

. ‖ · ‖pu,λ2 and

dΞλ
(ξf,λ, ξf ′,λ) = stdev(Xξf,λ −Xξf ′,λ

) = stdev
(

h′′(f)σ−2ut − h′′(f ′)σ−2ut

)

= |h′′(f)− h′′(f ′)|σ−1 ≥ |h′′(f)− h′′(f ′)| ∀ (f, f ′) ∈ F × F .

If a more elaborate scaling function S is used, then non-degeneracy is available for a

larger class of nonlinear link functions h. In particular, by Assumption 4 and Proposition

3 the results can be extended to unbounded link functions h with unbounded second

derivatives, since the relevant boundedness condition on η(f ; σ2) must hold for η(f ; σ2) =

h′′(f)S(f ;λ) + h′(f)S ′(f ;λ) instead.

6When ut is fat-tailed, the definition of st(ft;λ) changes and the exponential tail bound may still be
satistfied. For example, this is the case for the Student’s t distribution where the score is bounded in ut

for finite degrees of freedom.
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4.1.2 SE region bounds

To provide bounds on the SE region, we use Proposition 2, which in this case reduces to

considering

E sup
f∗∈F

∣

∣β + ασ−2uth
′′(f ∗)

∣

∣ . (23)

First consider the case α, β > 0 and ut > 0. In that case, we can compute the supremum

as

β + ασ−2ut sup
f∗∈F

|h′′(f ∗)|. (24)

Using the symmetry of expression (23), we obtain

E sup
f∗∈F

∣

∣β + ασ−2uth
′′(f ∗)

∣

∣ = β + ασ−2E|ut| sup
f∗∈F

|h′′(f ∗)|. (25)

As a concrete example, consider the logistic link function h(f) = (1 + exp(−f))−1 with

Gaussian errors ut ∼ N(0, σ2), and unit scaling S ≡ 1. Then h′′(f) = −(e2f − ef)/(e3f +

3e2f + 3ef + 1), and hence equation (25) reduces to

β +
α
√
3

18σ
· ut

σ
= β +

α
√
6

18σ
√
π
≈ β + 0.076776α/σ. (26)

Appealing again to symmetry arguments, we obtain the SE region

|β| < 1−
(

|α|
√
6
)/

(

18σ
√
π
)

. (27)

For σ2 = 1, Figure 1 plots the regions obtained by numerical evaluation of the Straumman-

Mikosch condition in Assumption 2, and the analytic bound obtained in (26).

4.1.3 Maximal SE regions

Finally note that if we consider a GAS model for (18) where we scale the scores ∇t(ft;λ)

by the square root of the inverse information matrix

It(ft;λ) = −E
[

∇t(ft;λ)
2
]

= σ−2h′(ft)
2,

we obtain

st(ft;λ) = S(ft;λ) · ∇t(ft;λ) = It(ft;λ)
−1/2 · ∇t(ft;λ) = σ−1ut.
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Figure 1: Stationarity and ergodicity regions for the dynamic logistic regression model

As a result, we obtain the maximal SE region characterized by |β| < 1 for this model.

The maximal SE region can also be obtained if we let the time-varying parameter

be the mean, rather than the transformed mean of yt, that is yt = ft + ut. The GAS

model for this parameterization has h(f) = f and it follows that st(ft;λ) = S(ft;λ)ut/σ
2.

Therefore, as long as the scale S(ft;λ) does not depend on ft, we obtain the maximal SE

region. This includes all cases where S(ft;λ) is a power of It(ft;λ).

4.2 Example 2: volatility dynamics

The case of volatility models is particularly interesting, as it embeds new robust volatility

models such as the Student’s t based GAS volatility model of Creal, Koopman, and

Lucas (2011) and the Beta-t-Garch model of Harvey and Chakravarty (2008) as well as

new models for positively valued random variables, such as the robust Gamma-Weibull

mixture models for duration data as proposed in Koopman, Lucas, and Scharth (2012).

A special case of the GAS model with observation equation (6) is the GAS scale model

that we specify as

yt = h(ft)ut , ft+1 = ω + αst(ft;λ) + βft, (28)

where {ut} is independently identically distributed with ut ∼ pu,λ and the function h is

smooth. We typically have E[ut] = 0 in a volatility model and E[ut] = 1 in a duration or
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intensity model. Then

st(ft;λ) = S(ft;λ) · ∇t(ft;λ) = −S(ft;λ) · ∇h(ft) · (∇pu,λ(ut)ut + 1) , (29)

where ∇h(ft) = ∂ log h(ft)/∂f and ∇pu,λ(ut) = ∂ log pu,λ(ut)/∂ut. It follows that

∂st(f ;λ)

∂f
= −

(

∂∇h(f)

∂f
S(f ;λ) +

∂S(f ;λ)

∂f
∇h(f)

)

(∇pu,λ(ut)ut + 1) . (30)

The result applies to, for example, the familiar GARCH model where pu,λ is the standard

normal distribution and S(ft;λ) = It(ft;λ)
−1. It also covers many other models, including

models for volatility and duration dynamics as discussed in Section 1. The GAS scale

model (28) with Gaussian disturbance sequence {ut} can be adopted to illustrate cases

where the conditions of Assumption 4 do not hold and a non-degenerate SE region cannot

be ensured. In addition, Gaussian and Student’s t based examples are useful to illustrate

that in some cases the derivation of bounds on the SE region is easy and the Dudley

integral vanishes.

4.2.1 Non-degeneracy of SE region

In case of the GAS scale model (28), Assumption 4 applies with

η(ft;λ) = S(ft;λ)
∂∇h(ft)

∂f
+

∂S(ft;λ)

∂f
∇h(ft),

ζ1(ut;λ) = ζ∗(ut;λ) = −∇pu,λ(ut)ut − 1, (31)

η∗(f, f ′;λ) = η(f ;λ)− η(f ′;λ).

The theory developed in Section 3 can be used to obtain the non-degeneracy of the SE

region as long as η(ft;λ) is bounded, and ζ1(ut;λ) = ζ∗(ut;λ) is L2(pu,λ) and satisfies the

exponential tail bound.

Let us first consider the GAS scale model with

h(ft) = f
1/2
t , ut ∼ N(0, 1), S(f ;λ) = 1.

It follows that

∇t(f ;λ) = st(f ;λ) = −1

2
f−1(1− u2

t ),
∂st(f ;λ)

∂f
=

1

2
f−2(1− u2

t ).
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Since η(f ;λ) = 1
2
f−2 is not bounded, the conditions of Assumption 4 are not satisfied.

Therefore, we cannot ensure the existence of a non-degenerate SE region for this GAS

model.

A different GAS model is obtained if we replace the assumption of unit scaling

S(ft;λ) = 1 by a scaling based on the inverse information matrix, that is S(ft;λ) =

It(ft;λ)
−1. We obtain,

st(f ;λ) = f · (u2
t − 1),

∂st(f ;λ)

∂f
= u2

t − 1. (32)

In this case the non-degeneracy of the SE region can be obtained by noting that the

Dudley entropy integral in Lemma 2 vanishes. This is due to the fact ∂st(f ;λ)/∂f does

not depend on f and, therefore, the diameter of the function space Ξλ is zero (ν = 0) under

any pseudo-metric of interest. Hence, from Lemma 2 we have E supf∗∈F |∂st(f ∗;λ)/∂f | ≤
E|1− u2

t |/2 < ∞. The non-degeneracy of the SE region can also be obtained without an

appeal to the Dudley integral by observing that st(ft;λ) is linear in ft and by relying on

Corollary 1.

4.2.2 SE region bounds

When making use of (31), the structure of Assumption 4 can be used to obtain bounds on

the SE region. We specifically consider the parameterization h(ft) = f
1/2
t which implies

that ft is the variance of yt. If we set S(ft;λ) = It(ft;λ)
−1, we obtain

st(f ;λ) = −2f · I−1
pu,λ

· (∇pu,λut + 1),
∂st(f ;λ)

∂f
= −2I−1

pu,λ
· (∇pu,λut + 1),

where Ipu,λ = E[(∇pu,λ(ut))
2u2

t ] − 1, which does not depend on f . As a result, we ob-

tain ν = diam(Ξλ) = 0 for every relevant pseudo-metric on Ξλ and the Dudley integral

vanishes. This result is valid for models that are substantially different from the stan-

dard GARCH model, such as the Student’s t GAS volatility model of Creal, Koopman,

and Lucas (2011) and the Generalized Hyperbolic GAS volatility model of Zhang, Creal,

Koopman, and Lucas (2011). These models have dynamic volatility properties that are

clearly different from those of the GARCH model. In particular, they correct the volatility

dynamics for the fat-tailedness and possible skewness of ut. The GAS volatility model for

a Student’s t distribution with λ degrees of freedom can serve as an example. Its dynamic
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equation for the volatility ft is given by

ft+1 = ω + βft + αst(ft;λ), st(ft;λ) = (1 + 3λ−1) ·
(

wt(ft;λ)y
2
t − ft

)

, (33)

where

wt(ft;λ) =
1 + λ−1

1 + λ−1y2t /ft
=

1 + λ−1

1 + λ−1u2
t

.

The weight wt ensures that large values of yt have a smaller impact on future values of

ft; see Creal, Koopman, and Lucas (2011) for more details. To ensure positivity of the

variance ft at all times, it follows directly from (33) that we require β > (1+3λ−1)α > 0.

If λ−1 = 0, these restrictions collapse to the standard restrictions for the GARCH model7.

Using these restrictions, we obtain the simplification

E sup
f∗

∣

∣

∣

∣

β + α
∂st(f

∗)

∂f

∣

∣

∣

∣

= E

∣

∣

∣

∣

β − (1 + 3λ−1)α + (1 + 3λ−1)α
(1 + λ−1)u2

t

1 + λ−1u2
t

∣

∣

∣

∣

= β − (1 + 3λ−1)α+ (1 + 3λ−1)α E

[

(1 + λ−1)u2
t

1 + λ−1u2
t

]

= β − (1 + 3λ−1)α+ (1 + 3λ−1)α = β. (34)

Hence analytical bounds are immediately given by |β| < 1 subject to conditions that

ensure positivity of ft for all t.

Figure 2 presents the SE regions obtained by the numerical evaluation of condition

(10) and the analytical derivations based on condition (34) for different values of λ. The

(linearly) upward sloping lower bound of the SE region follows from the condition ft > 0

and is given by the relation β = (1 + 3λ−1)α. The horizontal line β = 1 is the upper

bound of the SE region as obtained using the Dudley integral. Finally, the curved region

is obtained by numerical integration of equation (10). The difference between the curved

SE region and the solid triangle is a consequence of Jensen’s inequality when going from

sufficient condition (10) to (11).

4.2.3 Maximal SE regions

We have discussed in Section 4.1.3 that for particular choices of the parameterization h and

scale S, we can obtain the maximal SE region. In case of model (28), we can set h(ft) =

exp(ft) and S(ft;λ) = 1, which implies that we model log volatility with unit scaling. This

7The parameters α and β of the GAS model coincide to the familiar α∗ and (α∗ + β∗) parameters,
respectively, for the standard GARCH model as in Bollerslev (1986). Hence the restrictions β > α > 0
for the GAS parameter are the same as α∗, β∗ > 0 in the standard GARCH model.
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Figure 2: Stationarity and ergodicity regions for the Student’s t GAS volatility model for
different values of λ.

parameterization can be convenient to ensure positivity of the variance without imposing

parameter restrictions on α or β. This model has been used in, for example, Janus,

Koopman, and Lucas (2011), and its multivariate counterparts in Creal, Koopman, and

Lucas (2011) and Zhang, Creal, Koopman, and Lucas (2011). It is easily shown that

st(ft;λ) does not depend on ft for this specification. As a result, ∂st(f ;λ)/∂f = 0 and

we obtain the maximal SE region |β| < 1.

We conclude this example by investigating the influence of the scaling function S.

In particular, we consider the GAS model (28) with S(ft;λ) = It(ft;λ)
−1/2 for some

arbitrary parameterization h(ft). We then have

st(f ;λ) = −I−1/2
pu,λ

· (∇pu,λut + 1),

which does not depend on ft and hence yields the maximum SE region |β| < 1 for an

arbitrary parameterization h(ft) and a square root inverse information matrix scaling.8

This is a specific case of the more general framework described in Section 3.3 where the

effect of the parameterization h(ft) on the size and shape of the SE region vanishes for a

specific choice of the scaling function S.

8The SE region may be smaller than |β| < 1 if parameter restrictions apply to α and β, for example,

to ensure positivity of ft for the Student’s t GAS model with h(ft) = f
1/2
t .
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4.3 Example 3: higher-order moments

Our final example consists of a model with time-varying higher-order moments. In partic-

ular, we consider a model where the tail index ft of a Pareto distribution is time-varying.

Consider the density

py(yt|ft) = f−1
t y

−(1+f−1

t )
t , yt > 1, (35)

where h(ft) = ft > 0 is the tail index. The model is a special case of equation (6) and

implies that the data is generated by

g(ft, ut) = (1− ut)
−ft , (36)

where ut ∈ (0, 1) is a standard uniform random variable. The equivalence of the two

model representations can be shown by inverting the cumulative distribution function

corresponding to (35). The score function is given by

∇t(ft;λ) = f−2
t (log(yt)− ft) = f−1

t · (− log(1− ut)− 1), (37)

where − log(1 − ut) has a standard exponential distribution with unit mean. The infor-

mation matrix is given by It(ft;λ) = f−2
t .

For a GAS model with unit scaling S(ft;λ) = 1, we cannot ensure the existence of

a non-degenerate SE region since ∇t(ft;λ) is unbounded in ft for fixed ut. For a GAS

model with inverse information matrix scaling S(ft;λ) = It(ft;λ)
−1, st(ft;λ) is linear in

ft. Therefore, its derivative does not depend on ft and we can use the Dudley integral

with ν = diam(Ξλ) = 0 to obtain the bound for the SE region. The result is presented

in Figure 3, where we impose the restriction β > α > 0 to ensure that the tail index ft

always remains positive.

An interesting feature of our current approach is that sometimes we can facilitate the

derivation of the SE region by a transformation of variables rather than by a transforma-

tion of parameters. For example, consider the GAS model for log(yt) rather than for yt.

The Jacobian of this transformation does not depend on ft and therefore does not influ-

ence the GAS dynamics for ft. In particular, using (36) we recognize that log(yt) has an

exponential distribution with mean ft. Therefore, we can consider the model specification

log(yt) = ft · u∗
t ,
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Figure 3: Stationarity and ergodicity region for the dynamic tail index model (35)

where u∗
t is a standard exponentially distributed random variable with unit mean. It

reduces the derivation of the SE region for model (35) to equation (28). Based on this

relation, the SE regions take a similar form as those in Section 4.2. This similarity also

holds when we consider a GAS model with inverse square root information matrix scaling

S(ft;λ) = It(ft;λ)
−1/2. In this case st(ft;λ) does not depend on ft and hence we obtain

the maximal SE region |β| < 1. The same result holds if we parameterize the log tail

index rather than the tail index itself and consider unit scaling S(ft;λ) = 1.

5 Concluding Remarks

In this paper we have derived conditions characterizing the stationarity and ergodicity

(SE) regions for a general class of observation driven dynamic parameter models which

are referred to as Generalized Autoregressive Score (GAS) models. The GAS model

has a likelihood function that is analytically tractable. Given the flexibility of the GAS

framework, new dynamic models of empirical interest are easily formulated. However,

the dynamic specification for most GAS models is highly non-linear. This complicates

our understanding of the dynamic properties of the model. We have shown that the

Dudley integral provides a useful mechanism to characterize the SE region for GAS models

and their dynamic processes. In particular, the Dudley integral relates the existence of

non-degenerate SE regions to the complexity of the space of functions characterizing the

dynamics of the time-varying parameter. The higher the complexity and empirical entropy
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of the function spaces, the more difficult it is to ensure a bounded SE region.

Different formulations of the conditions for SE may be relevant for different GAS

model formulations. Illustrations are provided for GAS models of time-varying means,

variances, and tail shapes, whose dynamic SE properties have not been characterized in

earlier work. The examples are empirically relevant and include GAS models for volatility

and duration dynamics under fat-tailed distributions.

Given the current results, three obvious extensions emerge. First, it appears useful to

apply our results to a proof of consistency and asymptotic normality for the maximum

likelihood estimator of a class of univariate GAS models. The characterization of the SE

region is a key step in obtaining laws of large numbers and central limit theorems that are

required in the proof of such results. Second, it is interesting to extend our current results

to the multivariate context. Third, it is interesting to use the generality of the stochastic

recurrence approach to characterize the SE regions of mixed models for continuous and

discrete data, such as the mixed measurement dynamic factor GAS models of Creal,

Schwaab, Koopman, and Lucas (2011). We leave such extensions for future work.
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Appendix: Proofs

Proof of Proposition 1: By Assumptions 1-3 and Lemma 1, {ft} is an SE sequence. By continuity

of h, {h(ft)} is a measurable sequence (w.r.t. the Borel σ-algebra). This sequence is trivially stationary.

Ergodicity follows by Proposition 4.3 of Krengel (1985, p.26). Together with {ut} being SE (Assumption

3), it follows that {(ut, h(ft))} is a stationary and ergodic vector sequence. By the same argument,

continuity of gλ ensures measurability of yt = gλ(h(ft), ut) and hence that {yt} = {gλ(h(ft), ut)} is also

SE.

Proof of Proposition 2: For every map φt(·; θ) : F → R, define

H(φt(·; θ)) = sup
f,f ′

‖φt(f ; θ)− φt(f
′; θ)‖

‖f − f ′‖ ,

and note that,

E

[

log sup
f,f ′

H(φ
(r)
0 (·; θ))

]

= E

[

log sup
f,f ′

‖φ(r)
0 (f ; θ)− φ

(r)
0 (f ′; θ)‖

‖f − f ′‖

]

= E

[

log sup
f,f ′

‖φ0(·; θ) ◦ · · · ◦ φ1−r(f ; θ)− φ0(·; θ) ◦ · · · ◦ φ1−r(f
′; θ)‖

‖f − f ′‖

]

≤ E

[

log

r
∏

i=1

sup
f,f ′

‖φ1−i(f ; θ)− φ1−i(f
′; θ)‖

‖f − f ′‖

]

≤
r

∑

i=1

E

[

log sup
f,f ′

‖φ1−i(f ; θ)− φ1−i(f
′; θ)‖

‖f − f ′‖

]

,

since for every collection of Lipschitz maps φ0(·; θ), ..., φ1−r(·; θ) with H(φi(·; θ)) < ∞ it holds that
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H(φ0(·; θ) ◦ · · · ◦ φ1−r(·; θ)) ≤
∏r

i=1 H(φ1−r(·; θ)). Hence, it follows that,

E

[

log sup
f,f ′

‖φ1−i(f ; θ)− φ1−i(f
′; θ)‖

‖f − f ′‖

]

< 0 ∀ i ⇒
r

∑

i=1

E

[

log sup
f,f ′

‖φ1−i(f ; θ)− φ1−i(f
′; θ)‖

‖f − f ′‖

]

< 0

⇒ E

[

log sup
f,f ′

‖φ(r)
0 (f ; θ)− φ

(r)
0 (f ′; θ)‖

‖f − f ′‖

]

< 0.

We can thus focus on the condition, E[logH(φt(·; θ))] < 0 for all t ∈ Z. By Jensen’s inequality,

E

[

log sup
f,f ′

‖φt(f ; θ)− φt(f
′; θ)‖

‖f − f ′‖

]

≤ log E

[

sup
f,f ′

‖φt(f ; θ)− φt(f
′; θ)‖

‖f − f ′‖

]

,

such that we have the sufficient condition

E

[

sup
f,f ′

‖φt(f ; θ)− φt(f
′; θ)‖

‖f − f ′‖

]

< 1. (1)

The assumed a.s. continuous differentiability of st in f implies the a.s. continuous differentiability of φt

in f . The exact Taylor series expansion on the realized φt states that for every (f, f ′) ∈ R
2, ∃f∗ ∈ [f, f ′]

such that

φt(f ; θ) = φt(f
′; θ)+

∂φt(f
∗; θ)

∂f
(f − f ′) ⇔ ‖φt(f ; θ)− φt(f

′; θ)‖ =

∥

∥

∥

∥

∂φt(f
∗; θ)

∂f

∥

∥

∥

∥

‖f − f ′‖

⇔ ‖φt(f ; θ)− φt(f
′; θ)‖

‖f − f ′‖ =

∥

∥

∥

∥

∂φt(f
∗; θ)

∂f

∥

∥

∥

∥

.

Now, since this holds for every pair (f, f ′), then,

sup
f,f ′

‖φt(f ; θ)− φt(f
′; θ)‖

‖f − f ′‖ ≤ sup
f∗

∥

∥

∥

∥

∂φt(f
∗; θ)

∂f

∥

∥

∥

∥

,

and hence

E sup
f,f ′

‖φt(f ; θ)− φt(f
′; θ)‖

‖f − f ′‖ ≤ E sup
f∗

∥

∥

∥

∥

∂φt(f
∗; θ)

∂f

∥

∥

∥

∥

.

As a result, (1) is implied by E supf∗ ‖∂φt(f
∗; θ)/∂f‖ < 1. Finally, since ∂φt(f

∗; θ)/∂f = β + α ·
∂st(f

∗;λ)/∂f , we have that

E sup
f∗

∥

∥

∥

∥

∂φt(f
∗; θ)

∂f

∥

∥

∥

∥

< 1 ⇔ E sup
f∗

∥

∥

∥

∥

β + α
∂st(f

∗;λ)

∂f

∥

∥

∥

∥

< 1.

By norm sub-additivity, we have

E sup
f∗

∥

∥

∥

∥

β + α
∂st(f

∗;λ)

∂f

∥

∥

∥

∥

< |β|+ |α| · E sup
f∗

∥

∥

∥

∥

∂st(f
∗;λ)

∂f

∥

∥

∥

∥

,

which yields the desired condition E supf∗ ‖∂st(f∗;λ)/∂f‖ < (1− |β|)/|α|.

The following lemma illustrates the kind of entropy bounds that have been obtained for specific

classes of functions; see, for example, van der Vaart and Wellner (1996) and van de Geer (2000, Lemma
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3.8, p.36, and Corollary 2.6, pgs. 20 and 152) for more results. We let dΞλ
. ‖ · ‖pu,λ

q mean that dΞλ
is

weaker than ‖ · ‖pu,λ
q and define ‖ξf,λ‖pu,λ

q := (
∫

|ξf,λ|qpu,λ(ut) dut)
1/q.

Lemma 3. (Square Integrable Class) Let Ξλ := {ξf,λ : R → R , ξf,λ ∈ L2(pu,λ) , ‖ξf,λ‖pu,λ

2 ≤ δλ}. Then
ED(ε,Ξλ, ‖ · ‖pu,λ

2 ) ≤ log(4δλ + ε)− log(ε) ∀ ε > 0 and hence it follows that

∫ ν

0

√

ED(ε,Ξλ, dΞλ
) dε ≤ ν

∫ 1

0

√

log(4ιλ + x)− log(x) dx with ιλ =
δλ
ν
.

Proof of Proposition 3: By Lemma 2, the bound on E supξf,λ |Xξf,λ | is achieved if X = {Xξf,λ , ξf,λ ∈
Ξλ} = {∂st(f ;λ)/∂f, f ∈ F} is a separable sub-Gaussian process and the empirical entropy integral
∫ ν

0

√

ED(ε,Ξλ, dΞλ
) dε is bounded. Separability of the stochastic process Xξf,λ is implied by a.s. path

continuity. This is ensured in our case by a.s. continuous differentiability of st. Sub-Gaussianity of Xξf,λ

w.r.t. dΞλ
follows from the fact that,

P
[
∣

∣

∣
Xξf,λ −Xξf′,λ

∣

∣

∣
> x

]

= P [|ξf,λ(ut)− ξf ′,λ(ut)| > x] ≤ P [|η∗(f, f ′;λ)ζ∗(ut;λ)| > x]

= P [|η∗(f, f ′;λ)| · |ζ∗(ut;λ)| > x] = P [|ζ∗(ut;λ)| > x/ |η∗(f, f ′;λ)|] ,

where the inequality follows by the separable bound in (15). Using the exponential tail bound, we have,

P [|ζ∗(ut;λ)| > x/ |η∗(f, f ′;λ)|] ≤ k1 exp

(

−k2
x2

η∗(f, f ′;λ)2

)

≤ k1 exp

(

−k2
x2

dF (f, f ′)2

)

.

for any pseudo-metric dF satisfying dF (f, f
′) ≥ |η∗(f, f ′;λ)|. Hence, sub-Gaussianity of X is obtained

w.r.t. to the pseudo-metric dΞλ
(ξf,λ, ξf ′,λ),

P
[
∣

∣

∣Xξf,λ −Xξf′,λ

∣

∣

∣ > x
]

≤ k1 exp

(

−k2
x2

dF(f, f ′)2

)

≤ 2 exp

(

−1

2

x2

dΞλ
(ξf,λ, ξf ′,λ)2

)

,

where dΞλ
(ξf,λ, ξf ′,λ) = k3 · dF(f, f ′) for some appropriate k3 > 0.

By Lemma 3, the empirical entropy integral
∫ ν

0

√

ED(ε,Ξλ, dΞλ
) dε is bounded if ξf,λ ∈ L2(pu,λ)

for every ξf,λ ∈ Ξλ with finite uniform empirical L2 bound, supξf,λ∈Ξλ
‖ξf,λ‖pu,λ

2 ≤ δλ < ∞ and finite

diameter 0 < ν = diam(Ξλ) < ∞. A finite δλ follows from

sup
ξf,λ∈Ξλ

(‖ξf,λ‖pu,λ

2 )2 = sup
f∈F

(‖ξf,λ‖pu,λ

2 )2 = sup
f∈F

(‖ξ(ut, f ;λ)‖pu,λ

2 )2 = sup
f∈F

∫

|ξ(ut, f ;λ)|2 pu,λ(ut) dut

≤ sup
f∈F

∫

|η(f ;λ)ζ1(ut;λ) + ζ2(ut;λ)|2 pu,λ(ut) dut

= sup
f∈F

(

‖η(f ;λ)ζ1(ut;λ) + ζ2(ut;λ)‖pu,λ

2

)2

≤ sup
f∈F

(

|η(f ;λ)|‖ζ1(ut;λ)‖pu,λ

2 + ‖ζ2(ut;λ)‖pu,λ

2

)2

≤
(

‖ζ1(ut;λ)‖pu,λ

2

)2
sup
f∈F

η(f ;λ)2 +
(

‖ζ2(ut;λ)‖pu,λ

2

)2

+ 2‖ζ1(ut;λ)‖pu,λ

2 ‖ζ2(ut;λ)‖pu,λ

2 sup
f∈F

η(f ;λ) < ∞,

where the first inequality holds by the assumption of a separable bound for |ξ(ut, f ;λ)|, the second by
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norm sub-additivity, and the third inequality follows from the assumptions of bounded η and square

integrable ζ1 and ζ2 (in empirical norm) which ensures that all elements are bounded.

The finite diameter ν is obtained by noting that,

diam(Ξλ) = sup
(ξf,λ,ξf′,λ)∈Ξλ×Ξλ

dΞλ
(ξf,λ, ξf ′,λ) ≤ sup

(ξf,λ,ξf′,λ)∈Ξλ×Ξλ

‖ξf,λ − ξf ′,λ‖pu,λ

2

= sup
(f,f ′)∈F×F

(

E(ξf,λ − ξf ′,λ)
2
)

1

2 ≤ sup
(f,f ′)∈F×F

(

E
(

η∗(f, f ′;λ)2ζ∗(ut;λ)
2
)

)
1

2

=
(

∫

|ζ∗(ut;λ)|2pu,λ(ut) dut

)
1

2

sup
(f,f ′)∈F×F

η∗(f, f ′;λ) < ∞,

where the first inequality follows by the assumption that dΞλ
is weaker than ‖·‖pu,λ

2 , the second inequality

follows by the separable bound assumption on the derivative’s difference, and the last inequality follows

by the assumptions of bounded η∗ and empirical norm square integrability of ζ∗.
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