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Abstract

Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is ap-

plicable in many different contexts. This paper investigates the influence of the choice of kernel and the

setting of tuning parameters on forecast accuracy. We review several popular kernels, including polyno-

mial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kernels in terms of their

smoothing properties, and we relate the tuning parameters associated to all these kernels to smoothness

measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, we

provide guidelines for selecting the tuning parameters from small grids using cross-validation. A Monte

Carlo study confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth

functional forms provided by the Gaussian and Sinc kernels makes them widely applicable, and we rec-

ommend their use instead of the popular polynomial kernels in general settings, in which no information

on the data-generating process is available.
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1 Introduction

In many areas of application, forecasters face a trade-off between model complexity and forecast accuracy.

Due to the uncertainty associated with model choice and parameter estimation, a highly complex nonlinear

predictive model is often found to produce less accurate forecasts than a simpler, e.g. linear, model. Thus, a

researcher wishing to estimate a nonlinear relation for forecasting purposes generally restricts the search space

drastically, for example to polynomials of low degree, or to regime-switching models (Teräsvirta, 2006) or

neural networks (White, 2006). A recent comprehensive overview was given by Kock and Teräsvirta (2011).

The improvement of such models upon the predictive accuracy of linear models is often found to be limited,

see Stock and Watson (1999), Teräsvirta et al. (2005), and Medeiros et al. (2006), among others.

Another manifestation of this complexity-accuracy trade-off is that, while a very large number of poten-

tially relevant predictors may be available, thecurse of dimensionalityimplies that better forecasts can be

obtained if a large proportion of the predictors is discarded. This situation arises, for example, in economic

applications. Hundreds or even thousands of predictors are often available, and economic theory does not

usually provide guidelines concerning which variables should or should not influence each other. A reduction

in the number of predictors can of course be achieved by selecting a small subset of representative variables,

but the most common way to proceed is to summarize the predictors by a small number of principal com-

ponents. This approach has found successful forecasting applications in macroeconomics (e.g. Stock and

Watson, 2002) and in finance (e.g. Ludvigson and Ng, 2007, 2009).

In this paper we discusskernel ridge regression, a forecasting technique that can overcome both aspects

of this trade-off simultaneously, making it suitable for estimating nonlinear models with many predictors.

While kernel methods are not widely known in the fields of economics and finance, they have found ample

applications in machine learning; a recent review can be found in Hofmann et al. (2008). A typical application

is classification, such as optical recognition of scanned handwritten characters (Schölkopf et al., 1998). Re-

cently, Exterkate et al. (2011) use this technique in a macroeconomic forecasting application and they report

an increase in forecast accuracy, compared to traditional linear methods.

The central idea in kernel ridge regression is to employ a flexible set of nonlinear prediction functions

and to prevent overfitting by penalization, in a way that limits the computational complexity. This is achieved
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by mapping the set of predictors into a high-dimensional (or even infinite-dimensional) space of nonlinear

functions of the predictors. A forecast equation is estimated in this high-dimensional space, using a penalty

(or shrinkage, or ridge) term to avoid overfitting. Computational tractability is achieved by choosing the

kernel in a convenient way, so that calculations in the high-dimensional space are actually prevented.

Kernel ridge regression provides the practitioner with a large amount of flexibility, but it also leaves him

with a number of nontrivial decisions to make. One such decision concerns which kernel to use. Although

any choice of kernel leads to restrictions on the functional form of the forecast equation, little attention is

generally paid to such implications. Additionally, kernel ridge regression involves tuning parameters, and

their practical interpretation is not always clear. This feature makes it difficult to select “reasonable” values

for these parameters, resulting in time-consuming grid searches or in suboptimal performance.

To give a clear interpretation of the kernel functions and their associated tuning parameters, we review

the kernel methodology from two different points of view, namely, function approximation and Bayesian

statistics. This combination of perspectives enables us to relate one of the two tuning parameters that are

found in most applications of kernel ridge regression to the signal-to-noise ratio in the data, and the other to

smoothness measures of the prediction function. Based on these insights, we give explicit rules of thumb for

selecting their values by using cross-validation over small grids. Cross-validation may also be used to select

among different types of kernel. However, one needs to be somewhat careful with this procedure: we provide

empirical evidence against including the popular polynomial kernels in the cross-validation exercise.

In Section 2 we describe the kernel methodology, from the perspective of function approximation and

from Bayesian statistics. We discuss several popular kernels and the functional forms of their associated

forecast equations, and we interpret their tuning parameters. Section 3 presents a Monte Carlo simulation to

show the effects of choosing the kernel or its tuning parameters incorrectly. Concerning the tuning parameters,

selecting them using cross-validation from our grids affects the forecast quality only marginally, compared to

using the true values. The choice of kernel can also be left to cross-validation; however, using a polynomial

kernel when the data-generating process is non-polynomial, or vice versa, reduces forecast accuracy. We

also present simulations in which all kernels estimate misspecified models, and we find that the “smooth”

Gaussian and Sinc kernels outperform polynomial kernels in this case. We provide conclusions in Section 4.
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2 Methodology

Kernel ridge regression can be understood as a function approximation tool, but it can also be given a Bayesian

interpretation. We review the method from both viewpoints in Sections 2.1 and 2.2, respectively. We present

some popular kernel functions in Section 2.3. In Section 2.4 we give an interpretation to the associated tuning

parameters, and we derive “reasonable” values for these parameters.

2.1 Kernel ridge regression for function approximation

We first introduce some notation. We are givenT observations(y1, x1) , (y2, x2) , . . . , (yT , xT ), with yt ∈ R

andxt ∈ RN , and our goal is to find a functionf so thatf (xt) is a “good” approximation toyt for all

t = 1, 2, . . . , T . Then, we are given a new observationx∗ ∈ RN and asked to predict the correspondingy∗.

We denote this prediction bŷy∗ = f (x∗). By selectingf from a large and flexible class of functions while

preventing overfitting, we hope to achieve that this prediction is accurate.

To describe the class of functions from which we selectf , we first choose a functionϕ : RN → RM .

The regression functionf will be restricted to a certain set of linear combinations of the formϕ (x)′ γ, with

γ ∈ RM . The number of regressorsM is either a finite integer withM ≥ N , or M = N, representing a

countably infinite number of regressors. Examples of both types are presented in Section 2.3 below.

If a flexible functional form is desired, the number of regressorsM needs to be large. Therefore we wish

to avoidM -dimensional computations, and it turns out that we can do so by requiring only that the dot product

κ (xs, xt) = ϕ (xs)
′ ϕ (xt) can be found using onlyN -dimensional computations, for anyxs, xt ∈ RN . The

functionκ : RN × RN → R is commonly called the kernel function. Conversely, functionsκ for which a

correspondingϕ exists can be characterized by a set of conditions due to Mercer (1909). All kernel functions

discussed in this study satisfy these conditions; a thorough justification can be found in Hofmann et al. (2008).

Finally, define a space of functionsH0 which containsf : RN → R if and only if there exists a finite set

xf
1 , x

f
2 , . . . , x

f
S ∈ RN and real numbersαf

1 , α
f
2 , . . . , α

f
S such thatf (x) =

∑S
s=1 α

f
sκ
(
x, xf

s

)
. Every such

f (x) is a linear combination of the elements ofϕ (x), as can be seen by recalling the definition ofκ: we have

f (x) = ϕ (x)′
(∑S

s=1 α
f
sϕ
(
xf

s

))
. We equipH0 with the following dot product:
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if f (x) =
S∑

s=1

αf
sκ
(
x, xf

s

)
andg (x) =

S′∑
s′=1

αs′κ
(
x, xg

s′
)

, then 〈f, g〉H =
S∑

s=1

S′∑
s′=1

αf
sα

g
s′κ
(
xf

s , x
g
s′

)
.

(For the verification that〈·, ·〉H is indeed a valid dot product, see Hofmann et al. (2008).) Finally, Aronszajn

(1950) proved that completingH0 in the corresponding norm||f ||H =
√
〈f, f〉H leads to a Hilbert space,

which we callH. This is the class of functions from whichf will be selected.

In finite samples, an unrestricted search over the spaceH will lead to overfitting. Indeed, ifH allows

for sufficiently flexible functional forms, a prediction functionf may be obtained for which the in-sample

fit is perfect, but the out-of-sample predictive accuracy will generally be poor. Therefore, we consider the

regularized problem

min
f∈H

T∑
t=1

(yt − f (xt))
2 + λ ||f ||2H , (1)

for someλ > 0. A result due to Kimeldorf and Wahba (1971), known as therepresenter theorem, states

that the minimizer of this problem can be written asf (x) =
∑T

t=1 αtκ (x, xt), for some sequence of real

numbersα1, α2, . . . , αT . That is, the optimal prediction function admits a kernel expansion in terms of the

observations: the set of expansion points
{
xf

1 , x
f
2 , . . . , x

f
S

}
may be taken equal to{x1, x2, . . . , xT }.

If we definey =



y1

y2

...

yT


, α =



α1

α2

...

αT


, andK =



κ (x1, x1) κ (x1, x2) · · · κ (x1, xT )

κ (x2, x1) κ (x2, x2) · · · κ (x2, xT )
...

...
...

...

κ (xT , x1) κ (xT , x2) · · · κ (xT , xT )


,

we see that problem (1) is equivalent to

min
α∈RT

(y −Kα)′ (y −Kα) + λα′Kα. (2)

Minimizing the quadratic form in (2) yieldsα = (K + λI)−1 y, whereI is theT×T identity matrix. Finally,

to forecast a new observationy∗ if the correspondingx∗ is given, we have

ŷ∗ = f (x∗) =
T∑

t=1

αtκ (x∗, xt) = k′∗α = k′∗ (K + λI)−1 y, (3)

where the vectork∗ ∈ RT hasκ (x∗, xt) as itst-th element.
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2.2 Kernel ridge regression for Bayesian prediction

In this section we retain the notation introduced above, but our point of view is different. We assume that,

conditional onxt, eachyt has a normal distribution, with meanϕ (xt)
′ γ for someγ ∈ RM , and with some

fixed varianceθ2. If we let Z be theT ×M matrix1 with t-th row equal toϕ (xt)
′, the probability density

function may be written as

p
(
y|Z, γ, θ2

)
∝
(
θ2
)−T

2 exp
(
−1
2θ2

(y − Zγ)′ (y − Zγ)
)
.

We specify our prior beliefs aboutγ andθ2 as follows. We take the uninformative Jeffreys prior onθ2 and,

givenθ2, our prior on the distribution ofγ is normal with mean zero and variance
(
θ2/λ

)
I:

p
(
θ2
)
∝
(
θ2
)−1

, p
(
γ|θ2

)
∝
(
θ2
)−M

2 exp
(
−λ
2θ2

γ′γ

)
.

Using Bayes’ rule, the posterior density of the parameters is given by

p
(
γ, θ2|Z, y

)
∝ p

(
y|Z, γ, θ2

)
p
(
γ|θ2

)
p
(
θ2
)

∝
(
θ2
)−T+M+2

2 exp
(
−1
2θ2

[
(y − Zγ)′ (y − Zγ) + λγ′γ

])
,

see e.g. Raiffa and Schlaifer (1961). Now, for a new observationx∗ ∈ RN , denotez∗ = ϕ (x∗) and assume

that, just likey1, y2, . . . , yT , the unobservedy∗ follows the normal distribution

p
(
y∗|z∗, γ, θ2, Z, y

)
∝
(
θ2
)− 1

2 exp
(
−1
2θ2

(
y∗ − z′∗γ

)2)
.

Then, again by Bayes’ rule, the predictive density ofy∗, given all observed data, is

p (y∗|z∗, Z, y) =
∫

RM

∫ ∞

0
p
(
y∗|z∗, γ, θ2, Z, y

)
p
(
γ, θ2|Z, y

)
dθ2dγ

=
∫

RM

∫ ∞

0

(
θ2
)−T+M+3

2 exp
(
−1
2θ2

[
(y − Zγ)′ (y − Zγ) +

(
y∗ − z′∗γ

)2 + λγ′γ
])

dθ2dγ.

1If M is infinite, applying the derivations in this section to a finite subset of the regressors and then lettingM →∞ leads to the
same final results.

5



This integral can be evaluated analytically (see e.g. Raiffa and Schlaifer, 1961) and the resulting predictive

density haŝy∗ from (3) as its mean, median, and mode. More precisely, introducingk∗∗ = z′∗z∗ and

w =
1
T
y′ (K + λI)−1 y

(
k∗∗ + λ− k′∗ (K + λI)−1 k∗

)
,

the quantityw−1/2 (y∗ − ŷ∗) follows Student’st distribution withT degrees of freedom.

That is, two different approaches to forecastingy∗ in terms of linear combinations of certain functions of

x∗ lead to the same point forecastŷ∗. We shall exploit both points of view in the next section, which describes

some common kernel functions, and in Section 2.4, where we discuss the associated tuning parameters.

2.3 Some popular kernel functions

A first obvious way of introducing nonlinearity in the prediction functionf (x) = ϕ (x)′ γ is by making

it a polynomial of some specified degreed. That is, we chooseϕ in such a way thatϕ (x) contains all N + d

d

 monomials of the formxd1
1 x

d2
2 · · ·xdN

N , with all dn nonnegative integers with
∑N

n=1 dn ≤ d.

As shown by Poggio (1975), the kernel function takes a simple form if we multiply each monomial by a

constant: if a typical element ofϕ (x) is

(
σ−

∑N
n=1 dn

)√√√√ d!(
d−

∑N
n=1 dn

)
!
∏N

n=1 dn!

N∏
n=1

xdn
n , (4)

whereσ > 0 is a tuning parameter, then the kernel function is simply

κ (xs, xt) =
(

1 +
x′sxt

σ2

)d

. (5)

A more sophisticated method for constructing kernels is to require that the resulting prediction function

must be smooth in some sense. From the point of view of function approximation, this is a sensible require-

ment, as we do not want to overfit the data. In the context of Section 2.1, we can achieve this by selectingκ

to generate a Hilbert spaceH for which ||f ||H measures lack of smoothness off ; see the objective (1).
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Following Smola et al. (1998), we restrict ourselves to functionsf for which
∫

RN f (x)2 dx is finite, and

we measure the smoothness of such a function by examining its Fourier transform, defined by

f̃ : RN → R with f̃ (ω) = (2π)−
N
2

∫
RN

exp
(
−iω′x

)
f (x) dx.

The Fourier transform decomposesf according to frequency.2 That is, if f̃ (ω) takes large values for large

values of||ω||, this indicates thatf (x) fluctuates rapidly withx, i.e., thatf is not smooth. It follows that lack

of smoothness off can be penalized by choosingκ in such a way that

||f ||H = (2π)−N
∫

RN

∣∣∣f̃ (ω)
∣∣∣2

v (ω)
dω, (6)

where(2π)−N is a normalization constant,|·| denotes the absolute value of a complex number, andv : RN →

R is a suitably chosen penalization function. As explained, we want to penalize mainly the high-frequency

components off ; thus, we choosev such thatv (ω) is close to zero for large||ω||.

Hofmann et al. (2008) show that it is possible to select a kernel functionκ so that (6) holds, for any

functionv that satisfies the regularity conditionsv (ω) ≥ 0,
∫

RN v (ω) dω = 1, andv (ω) is symmetric inω.

Specifically, they derive from a theorem of Bochner (1933) that the kernel function

κ (xs, xt) = (2π)
N
2 ṽ (xs − xt) (7)

satisfies the Mercer (1909) conditions and leads to a norm||·||H that penalizes lack of smoothness as in (6).

We will now discuss two kernels that can be derived using (7). A popular choice is to use

v (ω) =
(

2π
σ2

)−N
2

exp
(
−σ

2

2
ω′ω

)
, (8)

whereσ > 0 is a tuning parameter. Components off with frequencyω are penalized more heavily if||ω|| is

larger, and high-frequency components are more severely penalized for larger values ofσ. It can be shown

that substituting (8) into (7) yields

2Note thatf̃ (ω) is symmetric inω, so that no interpretation difficulties arise from “negative frequencies”.
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κ (xs, xt) = exp
(
−1
2σ2

||xs − xt||2
)
, (9)

where||·|| is the usual Euclidean norm. Function (9), introduced by Broomhead and Lowe (1988), is known

as the Gaussian kernel.

Notice that the Gaussian kernel allows all frequencies to be present in the prediction functionf , albeit

with very large penalties for high frequencies. One may alternatively choose to set an infinitely large penalty

on certain frequenciesω by settingv (ω) = 0, thereby explicitly disallowing noisy behavior off .3 One

obvious way to accomplish this is by using the uniform penalty function

v (ω) =


(

σ
2

)N
if − 1

σ < ωn <
1
σ for all n = 1, 2, . . . , N ;

0 otherwise,

(10)

where again,σ > 0 is a tuning parameter. Substituting (10) into (7) yields the corresponding kernel function

κ (xs, xt) =
N∏

n=1

sinc

(
xsn − xtn

σ

)
, (11)

the Sinc kernel (see Yao, 1967), where sinc(0) = 1 and sinc(u) = sin (u) /u for all u 6= 0. Despite its

intuitive interpretation given in (10), the Sinc kernel does not seem to have found wide application in the

kernel literature.

As mentioned before, all kernels discussed in this study have the property that there exists a mapping

ϕ such thatκ (xs, xt) = ϕ (xs)
′ ϕ (xt). However, the kernel functions derived here are much more easily

understood by studying howv penalizes certain frequencies than by explicitly finding the regressorsϕ (x).

As an example, Exterkate et al. (2011) derive the following expression forϕ (x) for the Gaussian kernel: it

contains, for each combination of nonnegative degreesd1, d2, . . . , dN , the “dampened polynomial”

(
σ−

∑N
n=1 dn

)
exp

(
−x′x
2σ2

) N∏
n=1

xdn
n√
dn!

.

3More formally, we exclude the region wherev (ω) = 0 from the domain of integration in (6), and we restrictf to havef̃ (ω) = 0
in that region.
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2.4 Tuning parameters

Two tuning parameters have been introduced in our discussion of kernel ridge regression: a penalization

parameterλ and a kernel-specific tuning parameterσ. In this section, we give an interpretation to both

of these parameters. This interpretation will result in a small grid of “reasonable” values for both tuning

parameters. Selection from this grid, as well as selection of the kernel function, can then be performed using

leave-one-out cross-validation; see Cawley and Talbot (2008) for a computationally efficient implementation

of this procedure. We choose this selection mechanism because of its close resemblance to the task at hand:

the out-of-sample forecasting of the value of the dependent variable for one observation.

The parameterλ is most easily understood from the Bayesian point of view. We assumed that, conditional

onxt and the model parameters,yt is normally distributed with meanϕ (xt)
′ γ and varianceθ2. Equivalently,

we may decomposeyt into signal and noise components:yt = ϕ (xt)
′ γ+εt, with εt ∼ N

(
0, θ2

)
. The entire

analysis in Section 2.2 was conditional onxt. If we now treatxt as a random variable, of which the priors on

γ andθ are independent, we can write

var
(
ϕ (xt)

′ γ
)

= E
(
ϕ (xt)

′ γγ′ϕ (xt)
)

= E
(
E
(
ϕ (xt)

′ γγ′ϕ (xt) |xt

))
= E

(
ϕ (xt)

′
(
θ2

λ
I

)
ϕ (xt)

)
=

θ2

λ
E
(
ϕ (xt)

′ ϕ (xt)
)

=
θ2

λ
E (κ (xt, xt)) .

This result enables us to relateλ to the signal-to-noise ratio,

ψ =
var
(
ϕ (xt)

′ γ
)

var(εt)
=

θ2

λ E (κ (xt, xt))
θ2

=
E(κ (xt, xt))

λ
. (12)

For the Gaussian kernel (9) and the Sinc kernel (11),κ (xt, xt) = 1 does not depend onxt and the signal-

to-noise ratio is simplyψ = 1/λ. For the polynomial kernels (5), the signal-to-noise ratio is still inversely

proportional toλ, but the proportionality constant depends on the distribution ofxt. For example, if we

assume thatxt ∼ N (0, I), thenx′txt follows aχ2 distribution withN degrees of freedom, and hence

ψ =
1
λ

E

((
1 +

x′txt

σ2

)d
)

=
1
λ

d∑
j=0

 d

j

σ−2jE
((
x′txt

)j) =
1
λ

d∑
j=0

 d

j

σ−2j
j−1∏
i=0

(N + 2i) . (13)
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We see that in all cases, the “correct” value ofλ could be obtained if the signal-to-noise ratioψ were

known. We propose the following simple procedure for estimatingψ: obtain theR2 from linear OLS regres-

sion ofy on a constant andX (or, if N is not small relative toT , on a small number of principal components

of X). If the estimated linear model were the true model, we would haveψ0 = R2/
(
1−R2

)
, and its corre-

spondingλ0 can be found using (12). As one expects to obtain a better fit using nonlinear models, it is likely

that aλ < λ0 is required, and we propose to selectλ from the grid
{

1
8λ0,

1
4λ0,

1
2λ0, λ0, 2λ0

}
. The simulation

study in Section 3 confirms that this grid is sufficiently fine, as well as the grids forσ that we define below.

On the other hand, the parameterσ is best understood in the context of function approximation. For the

Gaussian and Sinc kernels, its interpretation is clear from the penalty functionsv introduced in the previous

section: a higher value ofσ forces the prediction function to be smoother. For the Sinc kernel, this works

by explicitly disallowing components of frequency greater than1/σ. Recall that a component off (x) with

a frequency of1/σ oscillates1/ (2πσ) times asx changes by one unit. As we will always studentize the

predictors, a one-unit change is equivalent to a one-standard-deviation change. We select a grid that implies

that such a change inx may never result in more than two oscillations:
{

1
4π ,

1
2π ,

1
π ,

2
π ,

4
π

}
.

For the Gaussian kernel, although all frequencies are allowed, the penalty function (8) decreases to zero

faster for larger values ofσ. In fact, along each dimension,95% of its mass lies in the interval(−2/σ, 2/σ),

leaving very little mass (that is, very high penalties) for frequencies greater than2/σ. Therefore, the same

reasoning as above leads to a grid in which all values are twice those in the grid for the Sinc kernel:{
1
2π ,

1
π ,

2
π ,

4
π ,

8
π

}
.

Finally, for the polynomial kernels, the contributions of terms of different orders to the variance ofyt are

given in (13). Irrespective of the distribution ofxt, a higher value ofσ allows higher-order terms to contribute

less. Thus, as for the other kernels, a higherσ imposes more smoothness on the functionf . To derive a rule

of thumb for theσ grid, we propose that in most applications the first-order effects should dominate in terms

of variance contributions, followed by the second-order, third-order, etc. If we assume thatxt ∼ N (0, 1), we

can derive from the right-hand-side of (13) that this ordering is preserved ifσ > σ0 =
√

(d− 1) (N + 2) /2.

Thus, ford > 1 we selectσ from the grid
{

1
2σ0, σ0, 2σ0, 4σ0, 8σ0

}
. Ford = 1, this formula yieldsσ0 = 0,

which cannot be used. We setσ0 =
√
N/2 instead and construct the grid in the same manner.
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3 Monte Carlo simulation

In order to assess the empirical validity of the rules of thumb for selecting tuning parameters described in

Section 2.4, and to investigate the impact of kernel choice on forecast quality, we perform two simulation

studies. In the first Monte Carlo study, the data-generating processes correspond to the kernels discussed in

Section 2.3. For estimation, we consider four different cases:

• treating the kernel and the tuning parameters as known;

• treating the kernel as known, but selecting the tuning parameters using cross-validation;

• deliberately picking an incorrect kernel, and selecting the tuning parameters using cross-validation; and

• selecting the kernel and the tuning parameters jointly using cross-validation.

In the second Monte Carlo experiment, the data-generating process is such that all kernels estimate a misspec-

ified model. This experiment is intended to resemble practical situations, in which nothing is known about

the data-generating process.

3.1 Setup

In each replication of the kernel simulation study, we obtainT + 1 random drawsxt from theN -variate

normal distribution with mean zero and variance the identity matrix. The prediction functionf (x) is then

defined using the kernel expansion given below equation (1), using random drawsαt ∼ N (0, 1) for the

expansion coefficients. An additional set ofT + 1 random drawsεt from the univariate normal distribution

is generated, with mean zero and a variance selected to control the signal-to-noise ratio, andyt = f (xt) + εt

is computed fort = 1, 2, . . . , T + 1. Finally, theyt are rescaled to have mean zero and unit variance. Kernel

ridge regression is then used to forecastyT+1, givenxT+1 and the pairs(yt, xt) for t = 1, 2, . . . , T .

We simulate univariate (N = 1), intermediate (N = 10), and data-rich (N = 100) models, fixing the

number of observations atT = 100. The kernels that we consider are the polynomial kernels (5) of degrees

1, 2, and 3, the Gaussian kernel (9), and the Sinc kernel (11). The signal-to-noise ratioψ is varied over

{0.5, 1, 2}, and the smoothness parameterσ is varied over the middle three values in the grids in Section 2.4.
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Each kernel is used for forecasting in each data-generating process, to allow us to assess the impact on

forecast accuracy of selecting an incorrect kernel. The tuning parameterσ is selected from the grids that we

defined in Section 2.4. As the correct value ofλ is known in this simulation study, we do not estimate it as

described in Section 2.4. Instead, we select it from the grid
{

1
4λ0,

1
2λ0, λ0, 2λ0, 4λ0

}
, whereλ0 is the true

value. This procedure allows us to determine whether such a grid, which is of the same form as the grid we

proposed for situations in whichλ0 is unknown, is sufficiently fine.

In the second simulation study, we only consider the univariate modelyt = (1 + exp (−10xt))
−1 + εt.

We shall refer to this experiment as the logistic simulation study. The factor 10 in the exponent is present

to make the data-generating process sufficiently nonlinear, see also Figure 1. Note that in this case, the true

model differs substantially from the prediction functions associated with each of the kernels. As|x| grows

large, a prediction function estimated using a polynomial kernel has|f (x)| → ∞, while the Gaussian and

Sinc kernels both havef (x) → 0. In contrast, the logistic function approaches different (but finite) values:

f (x) → 0 asx→ −∞ andf (x) → 1 asx→∞.

As in the kernel simulation study, we vary the signal-to-noise ratioψ over{0.5, 1, 2}, and we setT = 100.

Forecasts are obtained using the same five kernels as above.

3.2 Results

Mean squared prediction errors (MSPEs) over 2500 replications of the kernel simulation study are shown in

Tables A.1-A.3 in Appendix A, and a summary of these results is reported in Table 1. For ease of comparison,

we have divided all MSPEs by1/ (ψ + 1), the expected MSPE that would result if the data-generating process

were known and used. The summarized results in Table 1 were obtained by averaging the relative MSPEs

over all DGPs with the same kernel and number of predictors; the differences in results across different values

of the parametersψ andσ are minor.

The column headed “kernel,λ, σ correct” lists the MSPEs that are obtained if kernel ridge regression is

used with the same kernel and tuning parameterσ as in the DGP, and with the value ofλ corresponding to the

true signal-to-noise ratio. As we would expect by our normalization, most numbers in this column are close

to unity.
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Table 1: Average relative mean squared prediction errors in the kernel simulation study.
data-generating process kernel,λ, σ selectλ andσ using CV CV for
kernel N correct Poly(1) Poly(2) Poly(3) Gauss Sinc kernel,λ, σ
Poly(1) 1 0.978 0.981 0.987 1.002 1.011 1.012 1.007

10 1.128 1.109 1.119 1.119 1.220 1.316 1.128
100 1.042 1.019 1.018 1.015 2.014 2.014 1.020

Poly(2) 1 0.985 1.089 0.989 1.003 1.033 1.040 1.016
10 1.165 1.145 1.147 1.149 1.227 1.315 1.160

100 1.021 1.025 1.014 1.010 1.841 1.841 1.024

Poly(3) 1 0.991 1.073 1.002 1.004 1.039 1.046 1.019
10 1.147 1.134 1.140 1.137 1.216 1.304 1.152

100 1.009 1.013 1.006 1.002 1.856 1.856 1.014

Gaussian 1 1.014 1.403 1.321 1.271 1.029 1.036 1.038
10 1.065 1.144 1.185 1.188 1.116 1.127 1.143

100 0.952 0.990 1.002 0.994 0.952 0.952 0.991

Sinc 1 1.012 1.570 1.484 1.441 1.040 1.036 1.045
10 1.053 1.117 1.144 1.143 1.101 1.098 1.122

100 0.952 0.990 1.002 0.994 0.952 0.952 0.991

Notes: This table reports mean squared prediction errors (MSPEs) over 2500 replications of the kernel simulation study, relative to
the expected value of the MSPE if the DGP is known, which is1/ (ψ + 1). The MSPEs in this table were obtained by averaging
over all values of the DGP parametersψ andσ; detailed tables are shown in Appendix A. In the group of columns headed “selectλ
andσ using CV”, MSPEs obtained using the correct kernel are printed in boldface.

We now shift our attention to the MSPEs resulting from using the correct kernel, but selectingλ andσ

using cross-validation, which are indicated in boldface in Table 1. Interestingly, these numbers are not much

different from those obtained when fixingλ andσ at their correct values; we find that not knowing the correct

values of these parameters leads to an increase in MSPE of only around0.5%. Recall that the values ofλ and

σ are selected from a grid that allows each of them to be off by a factor of four. Thus, while very extreme

values of the tuning parameters might lead to poor forecasts, our relatively crude rule of thumb for selecting

their values seems sufficient. Inspecting the selected values, we find thatλ is generally selected correctly,

whereas forσ a larger value than that in the data-generating process is often selected in all kernels. This

suggests that kernel ridge regression is somewhat biased toward smoother prediction functions, although the

effect of this bias on forecast accuracy is minor.

Next, we investigate what happens if we use an incorrect kernel. The results from this procedure can be

found in the group of columns headed “selectλ andσ using CV” (where CV stands for cross-validation),
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excluding the numbers printed in boldface. Four features clearly emerge from these results. First, we observe

that if the data-generating process is polynomial, using a polynomial kernel of too high degree hardly hurts

the forecasting performance. Apparently, the ridge term is an effective safeguard against overfitting in this

case. Using a polynomial kernel of too low degree does deteriorate the quality of the forecasts, as expected.

Second, the “smooth” Gaussian and Sinc kernels perform almost interchangeably, despite the very different

appearance of their kernel functions (9) and (11). Third, there is an important difference between polynomial

and non-polynomial kernels. Using a kernel from one group when the data is generated from a process in

the other group almost invariably leads to large forecast errors. Fourth, we observe from the full tables in

Appendix A that the differences between kernels are mitigated if the true value ofσ goes up. Notice that for

all types of kernels under consideration, a higher value ofσ translates into a smoother prediction function.

The smoother a function is, the less the estimation method matters.

In the last column of Table 1 we show the results from selecting not only the tuning parameters, but

also the kernel function using cross-validation. We find that in about half of the cases, the cross-validation

procedure selects the correct kernel. Moreover, incorrectly selected kernels usually fall in the correct group

of polynomials or non-polynomials. As a result, the MSPEs are on average less than2% larger than when

use of the correct kernel is imposed. The selection frequency of the correct kernel is lower for larger values

of σ; again, the smoothest functions are easily estimable using any method.

Most of these observations apply to the results with one, ten, or one hundred predictors alike. The main

exception is that the difference in results between using polynomial and non-polynomial kernels increases

with the number of predictors,N . Related to this finding, we observe that using cross-validation to select the

kernel also performs somewhat worse for largerN , since occasionally selecting an incorrect kernel makes

a larger difference in that case. For this reason, it seems desirable to consider the correct group of kernels

only in cross-validation, that is, to select only among polynomial or non-polynomial kernels. Of course, in

practice one does not observe the data-generating process. However, given the more flexible and smoother

functional forms provided by the Gaussian and Sinc kernels, we argue that a practitioner is in general better

off using only this set of kernels, unless he would have strong prior knowledge that the true predictive relation

is polynomial.
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Table 2: Relative mean squared prediction errors in the logistic simulation study.
signal-to-noise selectλ andσ using CV CV for

ratio (ψ) Poly(1) Poly(2) Poly(3) Gauss Sinc kernel,λ, σ
0.5 1.040 1.046 1.051 1.031 1.035 1.037
1.0 1.097 1.106 1.094 1.057 1.072 1.073
2.0 1.221 1.228 1.173 1.083 1.101 1.091

Notes: This table reports mean squared prediction errors (MSPEs) over 2500 replications of the logistic simulation study, relative to
the expected value of the MSPE if the DGP is known, which is1/ (ψ + 1).

We now turn to the results of the logistic simulation study, in which kernel ridge regression always

estimates an incorrectly specified model. The relative MSPEs, again over 2500 replications, are reported

in Table 2. It is clear from theses results that the Gaussian kernel performs best in approximating the logistic

function, with the Sinc kernel ranking second best. For the smallest signal-to-noise ratio that we consider

(ψ = 0.5), the differences between the kernels are minor. Asψ increases, however, the polynomial kernels

perform much worse than the non-polynomial ones. That is, if the DGP is reflected by the data more clearly,

it becomes more apparent that a polynomial prediction function is not a suitable approximation.

Selecting the kernel using cross-validation leads to a forecast accuracy that ranks in between the polyno-

mial and non-polynomial kernels. Cross-validation selects the Gaussian kernel in59% and the Sinc kernel

in 32% of the replications; however, the remaining9% in which polynomial kernels are selected still brings

the forecast accuracy down substantially. This result illustrates our recommendation that in general, it is not

advisable to use the popular polynomial kernels.

As an illustrative example, we show a scatter plot of one simulated data set in Figure 1. The true prediction

function f is also shown, as well as its estimates using the third-degree polynomial, Gaussian, and Sinc

kernels. This figure shows that in contrast with the non-polynomial estimates, the polynomial prediction

function is not sufficiently flexible to capture the behavior of the truef . This is particularly evident near

xt = 0, where most data points are located.
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Figure 1: The logistic data-generating process with 100 data points, generated with signal-to-noise ratioψ = 2.0. Three
estimated prediction functions, using the third-degree polynomial, Gaussian, and Sinc kernels, are also shown.
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4 Conclusion

We review the technique of kernel ridge regression from two different points of view, namely from a function

approximation perspective and from a Bayesian statistical point of view. This combination of perspectives

enables us to give a clear interpretation to two tuning parameters that are generally present in kernel ridge

regression. We relate one of these parameters to the signal-to-noise ratio, and the other to the overall smooth-

ness of the regression function. Moreover, we provide rules of thumb for selecting their values.

In addition to the well-known polynomial and Gaussian kernels, we discuss the Sinc kernel. Kernel ridge

regression using this kernel function acts as a low-pass filter, so that any high-frequency patterns observed

in the data are considered noise and are discarded. Despite this attractive feature, the Sinc kernel has not

received widespread attention in the kernel literature.
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Our simulation studies confirm the empirical usefulness of our parameter selection rules. Compared to

using the true values of the tuning parameters, selecting their values using our rules of thumb leads to an

increase of mean squared prediction errors of only0.5%.

Cross-validation can also be used relatively safely to distinguish among different kernel functions, with

a 2% increase in mean squared prediction errors when compared to using the correct kernel. This method

performs less favorably for a larger number of predictor variables. We argue that this problem is mainly due

to the large difference between non-polynomial and polynomial kernels. For this reason, and because of their

smoother and more flexible prediction functions, we recommend to use only non-polynomial kernels if no

prior knowledge of the true prediction function is available.

A Detailed simulation results

On the next three pages, we report the mean squared prediction errors for all data-generating processes in the

kernel simulation study. A summary of these results was presented in Table 1.
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Table A.1: Relative mean squared prediction errors in the kernel simulation study, forT = 100, N = 1.
data-generating process kernel,λ, σ selectλ andσ using CV CV for

kernel σ ψ correct Poly(1) Poly(2) Poly(3) Gauss Sinc kernel,λ, σ
Poly(1) 0.71 0.5 0.978 0.980 0.991 1.004 1.010 1.006 1.009

1.0 0.978 0.980 0.991 1.008 1.014 1.012 1.008
2.0 0.978 0.980 0.989 1.010 1.028 1.025 1.013

1.41 0.5 0.978 0.983 0.988 1.001 1.004 1.006 1.007
1.0 0.978 0.981 0.986 1.000 1.010 1.016 1.009
2.0 0.978 0.980 0.986 1.000 1.018 1.022 1.011

2.83 0.5 0.977 0.981 0.982 0.997 0.998 1.002 1.000
1.0 0.978 0.981 0.983 0.997 1.005 1.006 0.999
2.0 0.978 0.981 0.984 0.997 1.009 1.014 1.003

Poly(2) 1.22 0.5 0.991 1.108 0.997 1.007 1.053 1.054 1.031
1.0 0.992 1.234 0.998 1.011 1.085 1.102 1.023
2.0 0.992 1.486 0.995 1.014 1.123 1.154 1.046

2.45 0.5 0.984 0.995 0.989 1.001 1.005 1.008 1.008
1.0 0.987 1.007 0.990 1.003 1.009 1.018 1.015
2.0 0.989 1.029 0.988 1.003 1.017 1.018 1.024

4.90 0.5 0.976 0.979 0.982 0.994 0.995 1.000 1.001
1.0 0.978 0.980 0.982 0.996 1.003 1.002 0.998
2.0 0.979 0.981 0.983 0.998 1.008 1.008 1.002

Poly(3) 1.73 0.5 1.002 1.090 1.014 1.010 1.064 1.071 1.043
1.0 1.009 1.199 1.033 1.016 1.100 1.110 1.031
2.0 1.014 1.414 1.064 1.018 1.158 1.178 1.067

3.46 0.5 0.983 0.994 0.987 1.001 1.003 1.008 1.006
1.0 0.987 1.002 0.988 1.003 1.008 1.019 1.010
2.0 0.991 1.020 0.989 1.003 1.016 1.019 1.020

6.93 0.5 0.976 0.977 0.981 0.994 0.993 0.998 1.000
1.0 0.977 0.978 0.981 0.994 1.002 1.002 0.996
2.0 0.978 0.979 0.981 0.995 1.008 1.007 1.001

Gaussian 0.32 0.5 1.020 1.279 1.252 1.235 1.034 1.045 1.041
1.0 1.037 1.571 1.507 1.465 1.047 1.058 1.057
2.0 1.056 2.155 2.015 1.914 1.064 1.084 1.073

0.64 0.5 1.001 1.171 1.134 1.110 1.020 1.022 1.024
1.0 1.010 1.349 1.264 1.203 1.025 1.031 1.035
2.0 1.020 1.705 1.522 1.383 1.037 1.042 1.047

1.27 0.5 0.988 1.052 1.028 1.022 1.006 1.006 1.015
1.0 0.994 1.112 1.057 1.044 1.012 1.015 1.023
2.0 1.000 1.231 1.112 1.064 1.013 1.018 1.027

Sinc 0.16 0.5 1.020 1.340 1.325 1.330 1.044 1.044 1.047
1.0 1.034 1.710 1.673 1.656 1.064 1.059 1.064
2.0 1.049 2.449 2.366 2.323 1.086 1.070 1.085

0.32 0.5 1.001 1.269 1.235 1.224 1.033 1.026 1.034
1.0 1.009 1.551 1.471 1.433 1.042 1.032 1.045
2.0 1.016 2.112 1.952 1.830 1.052 1.047 1.057

0.64 0.5 0.988 1.096 1.049 1.038 1.011 1.009 1.017
1.0 0.993 1.198 1.096 1.053 1.015 1.016 1.025
2.0 0.997 1.400 1.187 1.082 1.012 1.022 1.028

Notes: This table reports mean squared prediction errors (MSPEs) over 2500 replications of the kernel simulation study withN = 1
predictor, relative to the expected value of the MSPE if the DGP is known, which is1/ (ψ + 1). In the group of columns headed
“selectλ andσ using CV”, MSPEs obtained using the correct kernel are printed in boldface.
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Table A.2: Relative mean squared prediction errors in the kernel simulation study, forT = 100, N = 10.
data-generating process kernel,λ, σ selectλ andσ using CV CV for

kernel σ ψ correct Poly(1) Poly(2) Poly(3) Gauss Sinc kernel,λ, σ
Poly(1) 2.24 0.5 1.138 1.131 1.142 1.144 1.176 1.215 1.156

1.0 1.157 1.149 1.163 1.161 1.242 1.319 1.169
2.0 1.169 1.161 1.175 1.181 1.353 1.500 1.173

4.47 0.5 1.111 1.092 1.103 1.102 1.146 1.195 1.116
1.0 1.134 1.103 1.110 1.111 1.201 1.286 1.124
2.0 1.154 1.114 1.124 1.124 1.285 1.447 1.130

8.94 0.5 1.076 1.070 1.079 1.080 1.135 1.183 1.089
1.0 1.094 1.076 1.084 1.086 1.182 1.271 1.096
2.0 1.117 1.082 1.090 1.087 1.259 1.428 1.097

Poly(2) 2.45 0.5 1.158 1.165 1.174 1.175 1.183 1.211 1.195
1.0 1.222 1.219 1.214 1.214 1.248 1.308 1.228
2.0 1.328 1.313 1.269 1.275 1.353 1.475 1.282

4.90 0.5 1.120 1.105 1.115 1.114 1.153 1.198 1.126
1.0 1.146 1.118 1.128 1.133 1.213 1.294 1.140
2.0 1.180 1.137 1.146 1.149 1.303 1.458 1.157

9.80 0.5 1.087 1.077 1.087 1.087 1.138 1.185 1.097
1.0 1.108 1.083 1.092 1.096 1.183 1.274 1.110
2.0 1.131 1.091 1.100 1.100 1.266 1.433 1.109

Poly(3) 3.46 0.5 1.141 1.153 1.163 1.159 1.166 1.194 1.184
1.0 1.190 1.201 1.207 1.201 1.225 1.283 1.223
2.0 1.268 1.282 1.263 1.253 1.320 1.442 1.269

6.93 0.5 1.113 1.096 1.111 1.107 1.153 1.195 1.121
1.0 1.139 1.109 1.120 1.120 1.205 1.285 1.133
2.0 1.170 1.127 1.134 1.136 1.292 1.451 1.141

13.86 0.5 1.080 1.072 1.082 1.082 1.135 1.183 1.093
1.0 1.100 1.079 1.088 1.089 1.183 1.272 1.105
2.0 1.123 1.086 1.094 1.090 1.262 1.429 1.102

Gaussian 0.32 0.5 1.045 1.077 1.092 1.092 1.072 1.066 1.093
1.0 1.045 1.091 1.113 1.110 1.085 1.080 1.111
2.0 1.045 1.120 1.150 1.149 1.105 1.111 1.139

0.64 0.5 1.046 1.078 1.094 1.093 1.074 1.066 1.093
1.0 1.047 1.094 1.114 1.114 1.086 1.082 1.112
2.0 1.047 1.123 1.155 1.153 1.109 1.113 1.140

1.27 0.5 1.091 1.148 1.178 1.183 1.128 1.133 1.152
1.0 1.105 1.218 1.288 1.289 1.164 1.191 1.195
2.0 1.118 1.351 1.485 1.509 1.218 1.301 1.252

Sinc 0.16 0.5 1.045 1.077 1.092 1.091 1.072 1.066 1.093
1.0 1.045 1.091 1.113 1.110 1.085 1.080 1.111
2.0 1.045 1.120 1.150 1.149 1.105 1.111 1.139

0.32 0.5 1.045 1.077 1.093 1.092 1.073 1.066 1.093
1.0 1.046 1.091 1.114 1.110 1.086 1.080 1.111
2.0 1.046 1.121 1.151 1.150 1.106 1.111 1.140

0.64 0.5 1.062 1.106 1.132 1.128 1.097 1.093 1.109
1.0 1.068 1.146 1.184 1.184 1.124 1.118 1.132
2.0 1.074 1.220 1.270 1.273 1.160 1.156 1.166

Notes: This table reports relative MSPEs over 2500 replications of the kernel simulation study withN = 10 predictors.
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Table A.3: Relative mean squared prediction errors in the kernel simulation study, forT = 100, N = 100.
data-generating process kernel,λ, σ selectλ andσ using CV CV for

kernel σ ψ correct Poly(1) Poly(2) Poly(3) Gauss Sinc kernel,λ, σ
Poly(1) 7.07 0.5 1.033 1.026 1.024 1.017 1.361 1.361 1.026

1.0 1.099 1.063 1.056 1.053 1.781 1.781 1.062
2.0 1.214 1.119 1.107 1.105 2.624 2.624 1.114

14.14 0.5 0.990 0.993 0.995 0.991 1.412 1.412 0.995
1.0 1.023 1.005 1.007 1.005 1.883 1.883 1.007
2.0 1.086 1.022 1.024 1.023 2.830 2.831 1.023

28.28 0.5 0.966 0.977 0.977 0.977 1.426 1.426 0.979
1.0 0.975 0.981 0.982 0.981 1.914 1.914 0.983
2.0 0.994 0.987 0.988 0.988 2.895 2.895 0.989

Poly(2) 7.14 0.5 0.996 1.014 1.005 0.999 1.179 1.179 1.013
1.0 1.019 1.050 1.028 1.020 1.417 1.417 1.048
2.0 1.049 1.120 1.060 1.050 1.895 1.895 1.111

14.28 0.5 1.000 0.999 1.001 0.997 1.378 1.378 1.002
1.0 1.037 1.019 1.016 1.013 1.815 1.815 1.019
2.0 1.097 1.048 1.044 1.039 2.693 2.693 1.046

28.57 0.5 0.974 0.982 0.984 0.983 1.420 1.420 0.985
1.0 0.991 0.990 0.991 0.991 1.901 1.902 0.993
2.0 1.027 1.000 1.001 1.000 2.869 2.869 1.003

Poly(3) 10.10 0.5 0.987 1.001 0.994 0.994 1.184 1.184 1.003
1.0 1.005 1.033 1.017 1.008 1.427 1.427 1.031
2.0 1.027 1.093 1.047 1.033 1.915 1.915 1.086

20.20 0.5 0.993 0.995 0.997 0.993 1.389 1.389 0.998
1.0 1.025 1.009 1.009 1.006 1.837 1.837 1.009
2.0 1.078 1.032 1.029 1.029 2.737 2.738 1.031

40.40 0.5 0.970 0.979 0.980 0.979 1.423 1.423 0.981
1.0 0.983 0.986 0.989 0.986 1.907 1.907 0.988
2.0 1.011 0.994 0.995 0.994 2.881 2.881 0.996

Gaussian 0.32 0.5 0.952 0.974 0.980 0.976 0.952 0.952 0.972
1.0 0.952 0.984 0.999 0.991 0.952 0.952 0.986
2.0 0.952 1.012 1.026 1.016 0.952 0.952 1.013

0.64 0.5 0.952 0.974 0.980 0.976 0.952 0.952 0.972
1.0 0.952 0.984 0.999 0.991 0.952 0.952 0.986
2.0 0.952 1.012 1.026 1.016 0.952 0.952 1.013

1.27 0.5 0.952 0.974 0.980 0.976 0.952 0.952 0.972
1.0 0.952 0.984 0.999 0.991 0.952 0.952 0.986
2.0 0.952 1.012 1.026 1.016 0.952 0.952 1.013

Sinc 0.16 0.5 0.952 0.974 0.980 0.976 0.952 0.952 0.972
1.0 0.952 0.984 0.999 0.991 0.952 0.952 0.986
2.0 0.952 1.012 1.026 1.016 0.952 0.952 1.013

0.32 0.5 0.952 0.974 0.980 0.976 0.952 0.952 0.972
1.0 0.952 0.984 0.999 0.991 0.952 0.952 0.986
2.0 0.952 1.012 1.026 1.016 0.952 0.952 1.013

0.64 0.5 0.952 0.974 0.980 0.976 0.952 0.952 0.972
1.0 0.952 0.984 0.999 0.991 0.952 0.952 0.986
2.0 0.952 1.012 1.026 1.016 0.952 0.952 1.013

Notes: This table reports relative MSPEs over 2500 replications of the kernel simulation study withN = 100 predictors.
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