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Abstract

Earnings forecasts can be useful for investment decisions. Research on
earnings forecasts has focused on forecast performance in relation to firm
characteristics, on categorizing the analysts into groups with similar behaviour
and on the effect of an earnings announcement by the firm on future earnings
forecasts. In this paper we investigate the factors that determine the value
of the forecast and also investigate to what extent the timing of the forecast
can be modeled. We propose a novel methodology that allows for such an
investigation. As an illustration we analyze within-year earnings forecasts
for AMD in the period 1997 to 2011, where the data are obtained from the
I/B/E/S database. Our empirical findings suggest clear drivers of the value
and the timing of the earnings forecast. We thus show that not only the
forecasts themselves are predictable, but that also the timing of the quotes is
predictable to some extent.
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1 Introduction

Earnings forecasts can provide useful information for investors. When investors in

part rely on such forecasts, it is important to have more insights into how such

earnings forecasts are created. What drives forecasters to give their quotes, that is,

when do they do so and what value will they quote? Answers to these questions are

relevant as the part that can be predicted from factors that are also observable to the

user of the forecast is perhaps not the most interesting part of an earnings forecast.

In fact, it is the unpredictable component of the earnings forecast that amounts to

the forecaster’s true added value, based on latent expertise and knowledge. Hence,

the evaluation of the quality of earnings forecasts should also mainly focus on that

unpredictable part, as that is truly the added value of the professional forecaster.

There is much literature on the properties and performance of earnings forecasts,

but interestingly enough, there is almost no research available on the drivers of the

timing of such forecasts. What makes it that forecasters give their quotes today and

not on any other day, and is the timing perhaps linked with the forecast quote itself?

In this paper we fill this gap by proposing two models for earnings forecasts, one

for the forecast itself and, more importantly, one for the timing of the quote. We

illustrate the methodology for AMD earnings forecasts. Even though this concerns

only a single firm, we are tempted to draw a few generalizing conclusions. Two key

drivers of the timing of earnings forecasts appear to be the time since or to earnings

announcements and the forecasting behavior of other individual forecasters. For

example, the longer ago the forecast was given, the more likely it becomes that a

new quote will be released. All in all, we document that earnings forecasts are to

some extent predictable.

The outline of our paper is as follows. In Section 2 we concisely review the

relevant literature. In Section 3 we discuss the AMD data. In Section 4 and 5

we present the models for the forecast quotes and for the timing. Estimation will

be based on Bayesian Gibbs techniques as we also want to incorporate the days

when no forecasts are quoted, and hence for which some of the relevant variables

are unobserved. Section 6 explores if these two models can somehow be connected.
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Finally, Section 7 concludes with various avenues for further research.

2 Literature review

Earnings forecasts have been the topic of interest for many researchers. For an

extensive discussion of research on earnings forecasts in the period 1992-2007, see

Ramnath et al. (2008). For earlier overviews we refer to Schipper (1991) and Brown

(1993).

One stream of earnings forecast research has focused on relationships between

forecast performance and forecaster characteristics. Performance can be measured

in several ways, such as forecast accuracy and forecast impact on stock markets. The

characteristics of these performance measurements have been related to timeliness

(Cooper et al., 2001; Kim et al., 2011), the number of firms that the analyst follows

(Kim et al., 2011; Bolliger, 2004), the firm-specific experience of the analyst (Bolliger,

2004), age (Bolliger, 2004), the size of the firm being followed and of the firm at which

the analyst works (Kim et al., 2011; Bolliger, 2004), and whether the analyst works

individually or in a team (Brown and Hugon, 2009).

There has also been an interest to document how the value of an earnings forecast

is related to what other analysts have forecasted. In particular, herding behavior is

considered, which occurs when forecasters produce forecasts that converge towards

the average of the other forecasters. In this line, there has been an effort to cate-

gorize earnings forecasters into two groups, corresponding to leaders and followers

or to innovators and herders (Jegadeesh and Kim, 2010; Clement and Tse, 2005).

This is interesting as different types of forecasters might have different amounts of

information which can be useful for investors to incorporate into their investment

decisions. A leading or innovating forecast might on average be more useful than

a herding forecast, as the latter will be close to what is already known. This does

not directly imply that leading forecasts are also more accurate, as accuracy and the

type of forecast are not necessarily related. In fact, aggregation of leading forecasts

seems to be a fruitful tactic to produce accurate forecasts (Kim et al., 2011).

Recently, Clement et al. (2011) have studied the effect of stock returns and other
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analysts’ forecasts on what analysts do. In contrast to Jegadeesh and Kim (2010)

and Clement and Tse (2005), Clement et al. (2011) do not consider grouping the

forecasters. Instead, they consider how the first forecast revision after a forecast

announcement has been affected by how the stock market and other analysts have

reacted to that forecast announcement. Landsman et al. (2012) also look at how

earnings announcements affect the stock market, where these authors focus on how

mandatory IFRS adoption has influenced this effect. Sheng and Thevenot (2012)

propose a new earnings forecast uncertainty measure, which they use to demonstrate

that forecasters focus more on the information in the earnings announcement if there

is high uncertainty in the existing set of earnings forecasts.

In sum, the value of an earnings forecast has been studied concerning its per-

formance and some of its drivers. Concerning the timing of a forecast, there has

been some theoretical research (Guttman, 2010). An application to empirical data

has been limited to investigating the effect of timing on performance (Kim et al.,

2011). There are no studies which jointly consider the drivers of either the value

or the timing of the earnings forecast. In the present paper we provide such an

examination.

3 Data

We analyze the unadjusted forecasts for yearly earnings per share for the firm Ad-

vanced Micro Devices, Inc. (which is better known by its acronym AMD). A stylized

version of the data format is shown in Figure 1. In this figure, an x corresponds

to the occurence of a forecast on a particular day by an analyst, while one of the

explanatory variables (returns) is observed each day. EA indicates the earnings an-

nouncements, and these are the targeted events of the forecasts. After each EA,

the next EA is the new target of the forecasts, as we limit ourselves to within-year

forecasts, which are the forecasts that are produced for the yearly earnings announce-

ment of the current year. The figure further shows several typical properties of the

data, that is (i) the occurence of forecasts is irregular; (ii) some forecasters produce

forecasts more often than others; (iii) some forecasters produce on a more regular
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basis than others; (iv) some forecasters only become active at a later stage; and (v)

some forecasters stop making forecasts.

We only use within-year data, so we discard forecasts that target at future yearly

earnings announcements instead of the first upcoming announcement. We do so to

avoid additional (and complicated) correlation between several forecasts from the

same forecaster for different earnings announcements.

For AMD, we investigate the period from January 9th 1997 to September 14th

2011. In this period 129 forecasters have produced at least one yearly earnings fore-

cast for AMD. The period amounts to 5373 days for which we observe whether a

forecaster produces a forecast or not. In total 2589 forecasts have been produced.

Figure 2 shows the distribution of the number of the forecasts per forecaster. The

minimum number of forecasts per single forecaster is 1, while the maximum number

is 92. The number of forecasts produced by a forecaster is heavily skewed. Many

forecasters produce few forecasts, while a few forecasters produce many. The fore-

casts and their dates have been taken from the I/B/E/S database. The time it takes

to convert the data from this source into daily observed variables is the main reason

that we only consider AMD in the present study.

We also use stock market related variables, which are based on the NYSE quotes,

normalized to 1 on the first day of the sample, January 9th 1997. As a measure of

returns, we use log-returns.

4 Modeling the value of earnings forecasts

In this section we present a model for the value of the earnings forecasts. We

also present the explanatory variables and then apply the model to our data as an

illustration.

Model specification

Let yi,t denote the forecast of forecaster i quoted on day t, if actually observed. This

indicates that we have different time series with forecasts for every forecaster. As

new information becomes available only gradually over time, the forecasts also will
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differ over time. And, contemporaneous forecasts produced by different forecasters

will most likely not be the same, see Figure 3. To visually highlight which forecasts

are produced by the same forecaster, we interpolate linearly between two subsequent

forecasts produced for the same earnings announcement. Figure 3 seems to show that

the different forecasters follow a similar pattern over time. This seems to suggest

that most of the variation in the forecasts might be captured by variables that only

change over time, and not by individual-specific variation.

We propose a simple model relating yi,t to other variables Zt−1, that is,

yi,t = γZt−1 + ηi,t (1)

with ηi,t ∼ N(0, σ2
η) denoting the ideosyncratic shock. Zt−1 contains an intercept

and relevant regressors that are highly correlated with the forecast and which are

the same for all forecasters. Our choice of regressors will be discussed below.

If the parameter estimates for the model are known, the model can also be used

to construct estimates of forecasts for days when no forecasts are quoted. For this,

we use the notation y∗i,t. The forecast revision for the same target is the difference

y∗i,t−yi,st when the last available forecast by forecaster i on day t has been produced

on day st. This estimated variable will be used later as a regressor in the timing

model, to be discussed in Section 5.

We will estimate the parameters of this model using a Bayesian approach (Gibbs

sampling), using a diffuse prior on γ and a degenerate inverted Gamma-2 prior on

σ2
η (p(σ2

η) ∝ σ−2η ). Using the draws of γ and σ2
η we can then construct draws of y∗i,t.

Choice of regressors in the value model

We now discuss which regressors we will use in the vector Zt−1. We decide to consider

the average of the forecasts that are observed and the stock price. Figure 4 seems to

confirm our choice of regressors as the patterns are rather similar. As the individual

interpolated forecasts are similar to each other and thus also to their average, the

individual forecasts could very well be modeled using these regressors.

In sum, we define Zt−1 as

Zt−1 =
[
1 MFt−1 pt−1

]
(2)
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with MFt−1 = 1
n

∑n
i=1 yi,st−1 denoting the average of the relevant forecasts of the

forecasters at time t − 1 (which are the most recent forecasts made for the same

earnings report) and with pt−1 denoting the stock price at time t− 1.

This means that (1) can be written as yi,t = γ0 +γ1MFt−1 +γ2pt−1 + ηi,t. If γ0 =

γ2 = 0 and γ1 = 1, then new forecasts are on average equal to the previous averaged

forecasts for the same earnings announcement. When γ1 6= 1, the forecasts are on

average moving away from their previous average values. For example, if γ1 > 1,

this would mean that new forecasts are on average higher than previous forecasts in

the same year. If the new forecasts are also better forecasts, this information could

be used to improve the previous forecasts. A similar situation occurs if γ1 = 1, but

γ0 > 0 (while γ2 = 0).

Empirical results for AMD

As an illustration, we will now present results of the Gibbs sampling to estimate the

parameters of (1). Details can be found in Appendix A.1, which also contains the

convergence criteria.

Results on the posterior density of the parameters are in Table 1. The estimated

mean of the MFt−1 coefficient shows that (ceteris paribus) an increase in the average

observed forecast results in about a similar-sized increase in the individual forecasts.

Interestingly, this parameter of MFt−1 seems to be quite in excess of 1 (at least

when using the 95% HPD region), indicating that for this data the forecast updates

were on average positive. This could be due to an upward trend in the forecasts

throughout the year, but it could also be that the more positive forecasters have

updated their forecasts more often. Another possibility is that this γ1 > 1 is only

due to γ2 < 0. The interpretation of this result of γ2 is that a higher stock price is

related to a decrease in the forecast, while keeping the average forecast constant.

In sum, the parameter estimates are not too far off from the case with γ0 = 0

and γ1 = 1. Apparently, earnings forecasters produce new forecasts that are about

equal to the previous average observed forecast plus a negative effect of previous-day

stock returns.
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5 Modeling the timing of earnings forecasts

In this section, we present a model for the timing of the earnings forecasts. We also

discuss the explanatory variables and then we apply the model to our data.

Model specification

Let qi,t be a binary variable indicating whether or not forecaster i has quoted a new

forecast at time t. For modeling this qi,t, we will use a dynamic probit model, which

uses variables contained in a vector Xi,t as regressor, that is,

P (qi,t = 1) = Φ(Xi,tβ), (3)

where Φ is the CDF of the normal distribution. This model can also be written as

wi,t = Xi,tβ + εi,t (4)

qi,t = I[wi,t > 0] (5)

with εi,t ∼ N(0, σ2
ε) the ideosyncratic shock and I[.] the indicator function which is

equal to 1 if its argument is true and 0 otherwise.

For identification reasons, σ2
ε will be set equal to 1. The elements of β are

estimated using a Gibbs-sampling procedure with a diffuse prior on β, just like for γ

in Section 4. Data Augmentation will be applied to obtain simulated values of wi,t.

Choice of regressors in the timing model

As regressors in Xi,t we use various types of variables. We use general timing vari-

ables, stock market information for the firm under study, aggregate information from

all analysts, individual track record of forecaster i, and the forecast update compared

to the previous forecast by forecaster i. We will now discuss each of the regressors

and hypothesize expected signs of their coefficients. An overview of all regressors

can be found in Table 2.

Considering the general timing variables, we choose to incorporate the time dis-

tance of t to the previous and forthcoming yearly earnings report (TSR and TUR)

and also the intermediate quarterly reports (TQ1, TQ2 and TQ3). Their corre-

sponding variables have all been constructed as a measure of distance (in contrast
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to closeness) to the respective event, namely by using log(|number of days|+1). The

absolute value reflects that we expect a similar forecasting probability just before

the event as just after. The logarithm reflects that the difference in effect between,

for example, 2 and 3 days before the next event will be larger than between 45 and

46 days. We expect to see a larger forecasting probability in the vicinity of a new

report, which corresponds to a negative sign for these regressors.

For the stock market, we consider the daily returns of the AMD stock on the

NYSE and its absolute value as a measure of volatility. We expect large returns (in

absolute sense) to be a conveyor of new information on the firm, so we expect a pos-

itive sign for AbsRET. The sign of the coefficient of RET then depends on whether

positive or negative returns have a larger impact on the updating probability. Due

to optimism (Easterwood and Nutt, 1999), we expect the forecasters to react more

to positive shocks, and hence we conjecture a positive sign.

Concerning the aggregate actions of all analysts, we make use of the total number

of forecasts on the previous day, together with the change in the mean of all the

available forecasts and the absolute value of the change in mean. It could be that

forecasters respond more due to general activity of others (which corresponds with

SQL, the number of forecasts on the previous day), but it could also be that they

only react more if these actions are of a large size (corresponding with AbsDMF,

the absolute change in the mean forecast). In either case, we expect both of these to

have positive coefficients. For DMF it could go either way, but as before for RET,

we expect a positive sign due to optimism.

For the variables related to the track record of the forecaster, we include whether

a forecaster has already been active for this firm this year (ACT). We expect that

forecasters may eventually stop following a firm after following it during previous

years. In such a situation, the associated parameter is negative. Also, if a forecaster

has already produced a forecast yesterday (QL), he will not be inclined to do it

again today since that would make him seem unreliable. In general, the effect of

the time since the last forecast (TSU) is less clear. It could be a positive effect as

the forecaster might want to regularly update his forecast, but it could also be a

negative effect if after a long time (but still within the same year) the forecaster
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decides to stop following the firm. Given the irregularity of the forecasts, we expect

the latter option to be more likely and thus we expect a negative sign for TSU.

The variables corresponding to the forecast updates of the forecaster are both

based on our conjecture that forecasters are more likely to update their forecasts if

their current forecast is very different from the one that is now publicly available.

This would be reflected by a positive sign for AbsDYY, while for DYY we again

expect a positive sign due to optimism. The forecast update will be based on the

draws of y∗i,t as discussed in Section 4, which makes the update equal to y∗i,t − yi,st .

Empirical results for AMD

As an illustration, we will now present the results of the Gibbs sampling to estimate

the parameters of (4). Details can be found in Appendix A.2, which also contains

the convergence criteria.

Table 3 contains the results of the Gibbs estimation. We present the mean and

several other properties of the distribution of the parameters. Values of the mean

in boldface indicate that 0 is outside the 95% HPD region and that the sign is as

expected. If the values of the mean are in italics, then 0 is outside the HPD region,

but the sign is not as expected.

Also shown in the figure is a column with the header StCoef. This standardized

coefficient would have been the mean of the distribution of the coefficient if we

would have standardized the regressors beforehand. This is needed to compare

the explanatory power of the different regressors, as larger values of StCoef (in an

absolute sense) correspond to more explanatory power.

Parameter estimates and fit

The results show that there is no single variable that explains the bulk of the varia-

tion. The two variables with the largest coefficient estimates (StCoef) are ACT and

TSU, which are two of the three variables that associate with the individual track

record. The estimates confirm our expectation (i) that forecasters that have not yet

been active in this current year have a smaller probability of producing a forecast

than those who have been active already and (ii) that the more time has passed
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since the last forecast, the smaller is the probability of a new forecast.

Other variables with much explanatory power are the general timing variables

that are the same for all forecasters. These are the time since the last report and

until the next report, and the time distance to the quarterly reports. These all have

negative posterior estimates as we expected, which shows that forecasters become

more active just before and after an official firm event.

The other variables have varying explanatory power. SQL and QL have almost

opposite estimates (with signs as expected). This shows that the day after his own

forecast a forecaster will not quickly produce a new forecast, but he will produce

a new forecast the day after many forecasts by all other forecasters. This might

be due to reacting to the other forecasters, but it could also occur because there

has been some unexpected firm information and that some forecasters are a bit

slower to respond than others. Both stock market related variables do not contain

much explanatory power. It can be seen that large returns tend to be followed by a

forecast a day later, in particular when large returns are positive. The change in the

aggregate forecast has a significant but small effect on the probability of producing

a new forecast. The parameter of DMF is the only (significant) estimate that has

an unexpected sign.

Surprisingly, the two variables for which 0 is contained in the HPD region (DYY

and AbsDYY) are the two forecast update variables. This indicates that forecasters

ignore the value of their own past forecast in deciding when to produce a new one,

even though they do not ignore the timing of their past forecast (indicated by the

coefficients for ACT, TSU and QL).

Overall, the highest value of McFadden R2 across all draws is equal to 0.118,

which is high for probit models, certainly for sample sizes like ours. We conclude

that the timing of the earnings forecasts can be modeled quite well.

Fit per category

Table 4 shows the joint explanatory power per cluster of variables, calculated by

summing the absolute values of the standardized coefficients. It can be seen that

the majority of the explained timing of the forecasts is explained by general timing
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variables and variables corresponding to the individual track record (together 82.7%).

The activity of all forecasters and the stock market contain only little information,

and the effect of the forecast update itself is negligible.

6 Correlations between the shocks of both models

In the previous sections, we have discussed a linear model for the value of a forecast

(yi,t = γZt−1 +ηi,t) and a dynamic probit model for the timing of a forecast (slightly

rewritten to qi,t = I[wi,t = Xi,tβ > −εi,t]). These models have been discussed

independently, but it might well be that they are related. In this section, we discuss

two extensions that both capture an interaction between the two models. The first is

a correlation between the shocks in both models and the second is a relation between

the occurence of tail values for both models.

Correlation between the errors

In this subsection we allow for correlation between ηi,t and εi,t using a joint model.

If this correlation is positive, this suggests that optimistic forecasts (forecasts above

what is to be expected on the basis of (1)) are faster quoted than pessimistic fore-

casts. If the correlation is negative, the reverse is true: pessimistic forecasts will

have a larger probability of being quoted than optimistic forecasts.

Allowing for a correlation ρ between both shocks is equivalent to defining the

covariance matrix Σ =

[
σ2
ε σεη

σεη σ2
η

]
with σεη = ρσεση the covariance. Similar as

in Section 5, we need to restrict σε to 1 for identification. This suggests using

Σ =

[
1 σεη
σεη σ2

η

]
, but as it is not obvious how to sample the covariance matrix using

this specification, we instead follow the reparametrization of McCulloch, Polson and

Rossi (2000): Σ =

[
1 ρ
ρ φ+ ρ2

]
. In the sampling routine, we use the degenerate

inverted Wishart prior p(Σ) ∝ |Σ|−3/2. Details can be found in Appendix A.3.

As can be seen in Table 5, the results show that there is no clear evidence of a

correlation between the two models, that is, 0 is almost in the center of the HPD

region of ρηε. This means that positive and negative forecasts are produced with the

same probability.
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As there is not much correlation, the results of the other parameters are also

almost the same as in the two separate models.

A posteriori evaluation of correlation of tails

Another possibility is that tail forecasts are produced with a different probability

than forecasts that do not differ much from the general expectation. To see whether

this is the case, we calculate the correlation between η2i,t and ε2i,t. Alternatively,

we also calculate the correlation between |ηi,t| and |εi,t|. In both cases, a positive

correlation indicates that the tail forecasts are produced at unexpected moments,

while normal forecasts are produced more often at normal forecasting moments.

A negative correlation indicates that tail forecasts tend to be produced at normal

forecasting moments, while normal forecasts would occur more often at unexpected

forecasting moments.

We do not incorporate this possibility directly into the model, but calculate these

correlations a posteriori for each iteration in the Gibbs sampler. This means that we

base this measure on the estimated residuals. As we calculate it for each iteration,

this procedure provides us with a density of the tail correlations.

We calculate the above measure only for qi,t = 1, as for qi,t = 0 the ηi,t is not

observed but simulated instead. This simulation is of course independent of the εi,t

as we do not model this type of correlation. Because of this, we only focus on the

values of ηi,t and εi,t for when qi,t = 1.

Table 6 contains the correlations between the tails of the two forecast residuals.

It can be seen that there is virtually no correlation between the size of the residuals

of the two models, no matter if one uses the absolute or the squared measure. This

means that tail values of the forecasts do not coincide with unexpected timing of the

forecasts. It is also not the case that they are contrasting each other, such as would

be the case if unexpected timing results in forecasts that are closer to the general

expectation than otherwise.

Next, there is also no significant autocorrelation in the residuals (bottom row

of Table 6. This means that there is no sign that extreme-valued or unexpected

observations occur two days in a row.
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7 Conclusion

The methodology that we presented in this paper can be used to elicit the drivers of

earnings forecast values and of the timing of such quotes. We illustrated our models

for earnings forecasts for AMD, and we found that both value and timing are quite

predictable.

Of course, our findings concerned only a single firm, and future work should

indicate whether our current findings hold true more in general. A second issue for

further research concerns the models themselves. At present, we have assumed that

the model parameters are the same across all forecasters. However, it might well

be that there are clusters of forecasters who display similar behavior, and for who

different drivers might prevail. This would build on the recent studies in Jegadeesh

& Kim (2010) and Clement & Tse (2005).

A third, and more involved, avenue for further research relates to the evaluation of

the quality of earnings forecasts. As we have demonstrated in this paper, apparently

an earnings forecast can be decomposed into a part that is predictable using an

econometric model which includes publicly available information, and a part that is

not predictable as such. Intuitively, one would reward the qualities of an earnings

forecaster more if higher accuracy is associated with a larger unpredictable part.

This leads to a new look at evaluating the accuracy of earnings forecasts, and we

relegate this to future research.
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A Additional results of the Bayesian inference

In this appendix we present additional results of the Bayesian inference, including

the relevant Gibbs samplers and the convergence criteria.

A.1 The model for the value of the forecast

Gibbs steps

For the model for the value of the forecast, we need to draw γ|ση, yi,t and ση|γ, yi,t.

Additionally, we also want to construct draws of y∗i,t|γ, ση for the cases in which we

do not observe yi,t.

As the formulation of (1) is that of a linear regression model, we can use stan-

dard results, such as documented in (Zellner, 1971). This means that γ|ση, yi,t ∼

N(γ̂, ση(Z
′Z)−1) with γ̂ the OLS estimate of (1) and Z the matrix containing the

regressors. Also, ση|γ, yi,t is distributed as IG(
∑

(yi,t − Zi,tγ)2, nobs), with IG de-

noting the Inverted Gamma distribution, with Zi,t containing the regressors and

with nobs =
∑
qi,t equal to the number of observations that we have for yi,t.

To simulate values of y∗i,t given γ and ση, we just simply use y∗i,t ∼ N(Zγ, ση),

which follows directly from the formulation of (1).

Convergence criteria

Table A1 shows the convergence criteria for the value model. To find out whether the

draws have converged, we split the data into two parts and test whether the means

are equal. Due to the Markovian nature of the draws, one needs to include an AR(1)

term in the testing equation and/or use standard errors that are consistent when

there is serial correlation. As can be seen, for none of the parameters convergence

is rejected at any reasonable significance level.

Also shown are the effective sample sizes for the different parameters, which

corrects for the fact that new draws do not contain 100% information if there is

autocorrelation. Due to the low autocorrelation in the draws, the effective sample

size is equal to the true sample size in this case. In fact, one can see from the Gibbs

steps for this model that the draws of γ are also in theory uncorrelated.
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A.2 The model for the timing of the forecast

Gibbs steps

For the model for the timing of the forecast, we need to draw β|σε, y∗i,t, qi,t and

σε|β, y∗i,t, qi,t with y∗i,t taken directly from the draws of Appendix A.1. To do this,

we apply Data Augmentation (Dempster et al., 1977), which means that we also

construct draws of wi,t|β, σε, y∗i,t, qi,t and use these to draw β|σε, y∗i,t, wi,t, qi,t and

σε|β, y∗i,t, wi,t, qi,t.

Given wi,t, the formulation of (4) is that of a linear regression model, so we

can use standard results from (Zellner, 1971). This means that β|σε, y∗i,t, wi,t, qi,t ∼

N(β̂, σε(X
′X)−1) with β̂ the OLS estimate of (4) and Xi,t the matrix of regressors as

in Table 2. Also, σε|β, y∗i,t, wi,t, qi,t is then distributed as IG(
∑

(wi,t −Xi,tβ)2, N),

with Xi,t containing the values of X for forecaster i at time t and with N equal to

the total number of observations.

To simulate values of wi,t|β, σε, y∗i,t, qi,t, we use the formulation of (4): if qi,t = 1,

this means that wi,t > 0 which is equivalent to εi,t > −Xi,tβ. This means that in this

case we need to draw εi,t from N(0, σε), truncated from below by −Xi,tβ. Similarly,

if qi,t = 0, wi,t < 0 and thus εi,t < −Xi,tβ. In this case, we need to draw εi,t from

N(0, σε) truncated from above by −Xi,tβ. Using these draws of εi,t we can then

construct draws of wi,t = Xi,tβ + εi,t.

Convergence criteria

Table A2 shows the convergence criteria for the timing model. As above, we have

split the data into two parts and tested whether the means are equal to find out

whether the draws have converged, using again an AR(1) term in the testing equa-

tion. As can be seen, for one of the sixteen parameters, convergence is rejected at

the 5% level. This is not directly a sign that the total system has not converged, as

the probability of rejecting one of sixteen hypotheses at the 5% level is quite large.

Also shown are the effective sample sizes for the different parameters. The auto-

correlation in the draws is quite high (between 0.74 and 0.97), so the effective sample

size is quite a bit smaller than the number of draws. Still, the distributions of all
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parameters are effectively based on at least 1500 almost-independent observations,

which is large enough to have a satisfactory sample distribution.

A.3 The combined model with correlation

Gibbs steps

For the combined model with correlation, we again apply Data Augmentation. This

means that we need draws of β, γ|Σ, y∗i,t, wi,t; of Σ|β, γ, y∗i,t, wi,t; of y∗i,t|γ,Σ, wi,t; and

of wi,t|β, γ,Σ, y∗i,t, qi,t. Most of the Gibbs steps are obvious extensions of the steps in

the separate models.

First, β and γ can be drawn simultaneously, as shown in for example (Zellner

and Ando, 2010). Define β̃ =

[
β
γ

]
. To combine X and Z into one large regressor

matrix, we need to incorporate the correlation between both models, which can be

done using the Cholesky decomposition L′L = Σ−1. This results in the definition

of X̃ =

[
L1,1X L1,2Z
L2,1X L2,2Z

]
. Similarly, ỹ =

[
L1,1w + L1,2y

∗

L2,1w + L2,2y
∗

]
. Then, β̃|Σ, y∗i,t, wi,t ∼

N( ˆ̃β, (X̃ ′X̃)−1) with ˆ̃β the OLS estimator (X̃ ′X̃)−1X̃ ′ỹ.

For Σ|β, γ, y∗i,t, wi,t, the situation is not standard as the element correspond-

ing to σ2
ε needs to be restricted to 1. We follow the solution of McCulloch et al.

(2000), who propose the reparametrization Σ =

[
1 ρ
ρ φ+ ρ2

]
. Using their results,

ρ|φ, β, γ, y∗i,t, wi,t ∼ N((
∑

i,t ε
2
i,t)
−1(
∑

i,t εi,tηi,t),
√
φ(
∑

i,t ε
2
i,t)
−1). To obtain a value

for φ, use φ|ρ, β, γ, y∗i,t, wi,t ∼ IG(
∑

i,t (ηi,t − ρεi,t)2, N).

To draw values of the distribution of wi,t|β, γ,Σ, y∗i,t, qi,t, we first calculate the

full conditional distribution, which is N(µ∗w, σ
∗
w) with µ∗w = X ′β + σηε

σ2
η

(y∗ − Z ′γ)

and σ∗w =
√

1− σ2
ηε

σ2
η

, using the conditional expectation and standard deviation in

case of two normals and the indication assumption σε = 1. Then, this conditional

distribution is truncated using the information in qi,t as in the separate timing model,

making sure that wi,t > 0 if qi,t = 1 and wi,t < 0 otherwise.

Finally, to obtain draws of the distribution of y∗i,t given γ and ση, we again use

a conditional normal distribution y∗ ∼ N(µ∗y, σ
∗
y), with µ∗y = Z ′γ + σηε(w −X ′β)

and σ∗y =
√
σ2
η − σ2

ηε, again using that σε = 1.
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Convergence criteria

Table A3 shows the convergence criteria for the combined model. As before, we have

split the data into two parts and tested whether the means are equal to see if the

draws have converged, using again an AR(1) term in the testing equation. As can

be seen, for one of the 21 parameters, convergence is rejected at the 5% level (as ρ

is a function of σ2
η and σηε). This is not directly a sign that the total system has

not converged, as the probability of rejecting one of 21 hypotheses at the 5% level

is quite large.

Also shown are the effective sample sizes for the different parameters. For the co-

efficients, the autocorrelation in the draws is quite high (between 0.74 and 0.97), so

the effective sample size is quite a bit smaller than the number of draws. Still, the dis-

tributions of all parameters are effectively based on at least 1500 almost-independent

observations, which is large enough to have a satistfactory sample distribution. For

the covariance, the autocorrelation of the draws is even higher (almost 1), indicating

that for this parameter the number of draws might have been too low.
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