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Identification and inference in a simultaneous equation
under alternative information sets and sampling schemes
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Abstract

In simple static linear simultaneous equation models the empirical distributions of
IV and OLS are examined under alternative sampling schemes and compared with their
first-order asymptotic approximations. We demonstrate that the limiting distribution of
consistent IV is not affected by conditioning on exogenous regressors, whereas that of
inconsistent OLS is. The OLS asymptotic and simulated actual variances are shown to
diminish by extending the set of exogenous variables kept fixed in sampling, whereas such
an extension disrupts the distribution of IV and deteriorates the accuracy of its standard
asymptotic approximation, not only when instruments are weak. Against this background
the consequences for the identification of parameters of interest are examined for a set-
ting in which (in practice often incredible) assumptions regarding the zero correlation
between instruments and disturbances are replaced by (generally more credible) inter-
val assumptions on the correlation between endogenous regressor and disturbance. This
yields OLS-based modified confidence intervals, which are usually conservative. Often
they compare favorably with IV-based intervals and accentuate their frailty.

1. Introduction

We approach the fundamental problems of simultaneity and identification in econometric linear
structural relationships in a non-traditional way. First, we illustrate the effects of the chosen
sampling regime on the limiting and empirical finite sample distributions of both OLS (ordinary
least-squares) and IV (instrumental variables) estimators. We distinguish sampling schemes
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in which exogenous variables are either random or kept fixed. We find that, apart from its
shifted location due to its inconsistency, the OLS distribution is rather well-behaved, though
mildly dependent on the chosen sampling regime, both in small and in large samples. On the
other hand, and not predicted by standard asymptotic theory, the sampling regime is found
to have a much more profound effect on the actual IV distribution. Especially for fixed and
not very strong instruments, IV is in fact often much less informative on the true parameter
value than OLS is. Next, following ideas from the recent partial identification literature1, we
then dare to replace the standard point-identifying but in practice often incredible assumption
on the zero correlation between (possibly weak) instruments and the disturbance term by an
alternative identifying information set. We demonstrate that identification can also be obtained
by abstaining from instruments altogether, by adopting instead a restricted range of possible
values for the correlation between endogenous regressor and disturbance. Choosing this range
wide leads to a gain in credibility and robustness, but at the expense of precision. In principle
this approach and the standard approach are equally (un)feasible, because both are based on
statistically untestable presuppositions.
Achieving identification through replacing orthogonality conditions by simultaneity as-

sumptions yields confidence intervals which are purely based on standard OLS statistics. These
have just to be transformed by a very simple formula, which involves: both the endpoints of
the assumed interval for the simultaneity correlation coeffi cient, the sample size, and a stan-
dard Gaussian or Student critical value. The simplicity of the procedure is partly based on the
following truly remarkable result regarding the asymptotic variance of OLS under simultaneity.
This asymptotic variance is smaller (in a matrix sense) than the standard expression that holds
under classic assumptions. Under the adopted partial identification assumption, however, the
OLS estimator is corrected for its inconsistency by a term based on standard OLS results
and on the assumed simultaneity coeffi cient. Because this correction is random, it yields an
increment to the asymptotic variance of inconsistent OLS. Under normality and adopting the
conservative unconditional sampling scheme, this modified OLS estimator is found to have an
asymptotic variance identical again to the classic well-known simple expression.
The limiting distribution of inconsistent OLS has been examined before (Goldberger, 1964;

Rothenberg, 1972; Schneeweiss, 1980; Kiviet and Niemczyk, 2012), but the effects of (not)
conditioning on exogenous variables have not yet been studied in a systematic way. Here
we provide the framework to do so, but in order to keep the derivations transparent we re-
strict ourselves to results for single regressor models. Unconditional IV estimation received
little attention in the literature, possibly because in the standard case conditioning has no
consequences asymptotically. Early studies on the small sample distribution of method of
moments estimators in static simultaneous equations (Sawa, 1969; Mariano, 1973; Phillips,
1983), all focussed on the case of fixed instruments. The more recent literature on the effects
of weak instruments took off in Nelson and Startz (1990a,b). They adopted even more se-
vere conditioning restrictions, leading to extreme correlation between structural and reduced
form disturbances, as noted by Maddala and Jeong (1992). Next a literature developed in
which only observed instruments are kept fixed again (Woglom, 2001; Hillier, 2006; Forchini,
2006; Phillips 2006, 2009; Andrews and Stock, 2007a), although in some studies that analyze
weak/many instrument asymptotic frameworks attention is also paid to random instruments
(Staiger and Stock, 1997; Andrews and Stock, 2007b). Here we will systematically examine and
compare the consequences of three stages of conditioning on simple IV and OLS estimation,

1See Manski (2003, 2007) and for a recent review see Tamer (2010). Phillips (1989) and others have used
‘partial identification’to indicate a fundamentally different situation.
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both asymptotically and experimentally.
Concerns about identification and alternative approaches to achieve identification in simul-

taneous equations models can be found in many econometric studies. Since the validity of
instruments can only be tested statistically under the maintained hypothesis of a suffi cient
number of valid instruments to achieve just identification, other arguments than empirical-
statistical ones are required to validate the initial set of identifying conditions. Recently, such
argumentation - based either on common sense reasoning or economic theory - has often been
used convincingly by designing empirical research in the format of natural or quasi-experiments,
see (references in and the discussions on) Angrist and Pischke (2010). Doubts about instrument
validity can also be alleviated through replacing exclusion restrictions by point or interval as-
sumptions (Kraay, 2012; Conley et al., 2012), or by allowing instruments to be correlated with
structural disturbances, but less so than the endogenous regressor (Nevo and Rosen, 2012),
or in the context of treatment response analysis by making so-called monotone instrumental
variable assumptions (Manski and Pepper, 2000, 2009). All these approaches enable to obtain
inference in the form of confidence intervals which are asymptotically valid under the relaxed
alternative assumptions that they require. The inference that we will produce here is unique in
the sense that no assumptions on external instruments have to be made at all; the identifying
information exploited relates directly to the degree of simultaneity. Whether in a particu-
lar situation this approach is preferable does not simply depend on objective characteristics
of the case under study, because the actual credibility of alternative assumptions to achieve
identification is inherently subjective and cannot be measured objectively on a simple ordinal
scale.
Correlation between regressors and disturbances also occurs in models allowing for measure-

ment errors, but then the degree of simultaneity is directly related to the parameters of primary
interest and the assumptions made regarding the distribution of the errors in the variables.
Studies in that context with similar aims as the present study are Kapteyn and Wansbeek
(1984), Erickson (1993) and Hu (2006), but their results cannot directly be converted to the
classic simultaneous equations model.
The structure of this paper is as follows. In Section 2 we sketch the various settings that

we will examine regarding DGP (data generating process), alternative adopted information
sets and different sampling schemes. In Section 3 the limiting and simulated finite sample
distributions of IV and OLS are examined under these various settings. Section 4 demonstrates
how inference can be based just on OLS results and an assumed interval for the simultaneity
coeffi cient. It also compares its accuracy with best-practice IV-based methods in a simulation
study, and illustrates the empirical consequences for the well-known Angrist and Krueger
(1991) data. Finally Section 6 concludes.

2. DGP, information sets, sampling schemes

The DGP involves just two jointly dependent data series and one external instrument, from
which any further exogenous explanatory variables have been partialled out. Generalizations
with more than one endogenous regressor, overidentification and explicit exogenous regressors
are left for future work. Despite its simplicity, this DGP already embodies various salient
features met in practice when analyzing actual relationships, especially when based on a cross-
section sample. After its specification, we discuss the various settings under which the re-
lationship might be analyzed in practice. These settings differ regarding two aspects, being
characteristics of the adopted information set and of the assumed relevant sampling scheme.

3



The latter relates to conditioning (or not) on random exogenous variables and the former to
the available information in the form of observed data and of adopted parametric restrictions.

2.1. The DGP

Instead of specifying the analyzed model and the underlying DGP top-down, as is usually done
in econometrics, we introduce these here bottom-up, following precisely the generating scheme
as used in the simulation experiments that will be exploited later. The basic building block of
the DGP consists of three series (for i = 1, ..., n) of IID zero mean random variables

εi ∼ IID(0, σ2ε), v
∗
i ∼ IID(0, σ2v∗) and zi ∼ IID(0, σ2z), (2.1)

which are also mutually independent. To avoid particular pathological cases we assume σ2ε > 0
and σ2z > 0, but allow σ2v∗ ≥ 0. The εi will establish the disturbance term in the single
simultaneous equation of interest with just one regressor xi. The reduced form equation for this
regressor xi has reduced form disturbance vi, which consists of two independent components,
since

vi = v∗i + ξεi. (2.2)

Variable zi is to be used as instrument. The reduced form equation for xi is

xi = πzi + vi, (2.3)

and the simultaneous equation under study is

yi = βxi + εi. (2.4)

So, in total we have 6 parameters, namely σ2ε, σ
2
v∗ , σ

2
z, ξ, π and β, where the latter is the para-

meter of primary interest. However, some of these parameters can be fixed arbitrarily, without
loss of generality. We may take β = 0, hence acting as if we had first subtracted βxi form both
sides of (2.4). Also, we may take σz = 1 and next interpret π as the original πσz. Moreover,
scaling equation (2.4) by taking σε = 1 has no principle consequences either. So, we find that
this DGP has in fact only three fundamental parameters, namely ξ, π and σ2v∗ . Nevertheless,
it represents the essentials of a general linear just identified (provided π 6= 0) simultaneous
equation with one endogenous regressor, where any further exogenous explanatory variables,
including the constant, have been netted out.
We shall consider a simple nonlinear reparametrization, because this yields three different

basic parameters which are easier to interpret. Not yet imposing the normalizations (σz = 1 =
σε) we find

Cov(xi, εi) = ρxεσxσε = ξσ2ε and Cov(xi, zi) = ρxzσxσz = πσ2z. (2.5)

The correlations ρxε and ρxz parametrize simultaneity and instrument strength respectively.
Because the instrument obeys the moment restrictions E(ziεi) = 0 (thus ρzε = 0) and E(zivi) =
0, we also find

V ar(xi) = σ2x = π2σ2z + σ2v, (2.6)

with
V ar(vi) = σ2v = σ2v∗ + ξ2σ2ε, (2.7)

thus
V ar(v∗i ) = σ2v∗ = σ2x(1− ρ2xε − ρ2xz), (2.8)
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and from σ2v∗ ≥ 0 it follows that
ρ2xε + ρ2xz ≤ 1. (2.9)

So, only combinations of ρxε and ρxz values in or on a circle with radius unity are admissible.
Such a restriction is plausible, because, given that zi is uncorrelated with εi, regressor xi cannot
be strongly correlated with both εi and zi at the same time.
The above derivations yield a more insightful three-dimensional parameterization for this

DGP. This is based on simply choosing values for σx > 0, ρxε and ρxz, respecting (2.9). Next
the data can be generated according to the equations (2.1) through (2.4), where

π = ρxzσx/σz and ξ = ρxεσx/σε, (2.10)

with σ2v∗ as in (2.8), and taking σε = σz = 1 and β = 0.
Another basic model characteristic often mentioned in this context is the population con-

centration parameter (PCP ), given by

PCP ≡ nV ar(πzi)

V ar(vi)
= n

π2σ2z
σ2v∗ + ξ2σ2ε

= n
ρ2xz

1− ρ2xz
. (2.11)

We control this simply by setting values for ρxz and n. These two, together with ρxε and σx,
and the further distributional characteristics (third and higher moments) of the IID variables
εi, v

∗
i and zi, will determine the actual properties of any inference technique for β in this model.

2.2. Alternative information sets

Despite its simplicity the data generation scheme above for the relationship (2.4) is to be used
to represent the essentials of particular practically relevant modelling situations, in which the
ultimate goal is to produce inferences regarding β. These inferences should preferably be: in-
terpretable (identified), accurate (supplemented by relatively precise probability statements),
credible (based on nonsuspect assumptions), robust (valid under a relatively wide set of as-
sumptions) and relatively effi cient (small absolute or mean squared errors). Although they
have to be obtained from a finite actual sample they will generally be based on asymptotic
approximations to the distributions of estimators and test statistics. To derive these we have to
make assumptions. Regarding these we will compare a few alternative sets. These information
sets are characterized by whether particular variables are supposed to be available or not and
by particular adopted parametric restrictions.
We will assume throughout that the variables yi and xi have been observed and are available

to the practitioner, but not the disturbances εi, v∗i and vi.We will distinguish settings in which
zi is available too, and is used as an instrument, but also the situation in which it is not used.
Instrument zi may not be used because: (i) it is not available, (ii) because the researcher
(possibly erroneously) assumes that ρxε = 0, or (iii) the researcher is not willing to make the
assumption ρzε = 0, because it seems incredible. In these cases OLS may be used, although xi
establishes an invalid instrument when ρxε 6= 0.
So, regarding parametric restrictions, we will consider the situation where one is either

willing to make the assumption ρzε = 0, or not. In addition, we will consider the situation
where one is prepared to make an assumption regarding ρxε of the from ρxε ∈ Rxε ≡

[
ρLxε, ρ

U
xε

]
,

or not. Below we will show that under ρxε ∈ Rxε coeffi cient β can be identified and analyzed
accurately by a modified version of OLS, which does not require any instruments. In a way
this brings IV and OLS on a comparable base: IV requires the statistically unverifiable (and
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therefore often incredible) assumption ρzε = 0, whereas the modified OLS technique requires
the generally unverifiable assumption ρxε ∈

[
ρLxε, ρ

U
xε

]
, which can be made more credible (at the

expense of precision) by choosing a wider interval. A similar though fundamentally different
approach is followed by Nevo and Rosen (2012) who adopt an interval for ρzε.

2.3. Alternative sampling schemes

When running the experiments required to obtain the finite sample distribution of estimators
of β we have the choice to draw new independent series for the three random variables of (2.1)
every replication, or to keep the series for either zi or v∗i , or for both, fixed. By keeping none of
the series which are exogenous regarding εi fixed, we will examine unconditional distributions.
This seems especially relevant in the context of a cross-section analysis where the random sam-
ple of n observations is obtained from a much larger population. Each Monte Carlo experiment
should then mimic that a new independently drawn sample does not only yield different values
for the disturbances, but also for the instruments, and for the component of the reduced form
disturbances which is not associated with εi.
However, in the other extreme, when the sample covers the whole population and hence

establishes a census, the situation is different. Then the εi, which represent the effects of
variables not explicitly taken into account into the model, should still be redrawn every exper-
iment, but there are good reasons to condition on one specific realization of the zi, in order
to keep close to the population under study. And since the v∗i represent all the further typical
determinants of xi, in addition to πzi, which are not associated with εi, one can argue that one
would even keep closer to the characteristics of the actual population by keeping v∗i fixed as
well, despite the fact that in practice v∗i is not observed. That would lead then to conditioning
on latent variable x∗i , where

x∗i = πzi + v∗i . (2.12)

When the data establish time-series there is no clear-cut population and there are good reasons
to condition inference on the actual realized values of all the exogenous determinants of the
endogenous variables. Note that xi = x∗i + ξεi with E(x∗i εi) = 0, so x∗i is exogenous, and —
if available —would establish the strongest possible instrument for xi, since E(x∗ixi) = σ2x∗ =
σ2x(1− ρ2xε) and hence, due to (2.9),

ρ2x∗x =
σ4x(1− ρ2xε)2
σ4x(1− ρ2xε)

= 1− ρ2xε ≥ ρ2xz. (2.13)

In the present context, as will be shown in the next section, the limiting distribution of
consistent estimators is invariant with respect to whether or not one conditions on exogenous
variables. Therefore, inference based on asymptotic arguments is not directly affected, which
explains why the issue of sampling schemes is not often discussed in the econometrics litera-
ture. However, we shall also demonstrate that often —also for consistent estimators —finite
sample distributions may be affected substantially by such conditioning. Therefore, the actual
accuracy of asymptotic inference may be highly dependent on whether it is used to provide
information on a much larger population, or whether it is just used to answer questions about,
say, a given set of countries or states, or a particular time period over which the exogenous
variables had particular values and conditioning on them seems useful, simply to make the
inferences more relevant. In addition to all that, we will also demonstrate in the next sec-
tion that the limiting distribution of inconsistent estimators is not invariant with respect to
conditioning.
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For the simple DGP examined here, we will distinguish three different conditioning sets,
indicated by C∅, Cz and Cx∗ respectively. They are defined as follows2:

C∅ : conditioning set is empty (unconditional)
Cz : conditioning set is {z1, ..., zn}
Cx∗ : conditioning set is {x∗1, ..., x∗n}

 (2.14)

Obviously, when conditioning simulation results on a single arbitrary realization of a random
exogenous series, this will yield specific results, since a different realization will yield different
results. Below we will cope with that in two ways, namely by producing results for a few
different arbitrary realizations, and also by stylizing the "arbitrary" realizations in a particular
way, and then producing results for a few stylized arbitrary realizations.
The actual effects on estimators of conditioning on exogenous variables have not yet been

fully documented in the literature. In studies primarily aiming to understand the effects
of weakness of instruments Nelson and Startz (1990a,b) examine IV in the present simple
model exclusively under Cx∗ , whereas Maddala and Jeong (1992), Woglom (2001), Hillier (2006)
and Forchini (2006) focus on Cz. So does Phillips (2006, 2009), who also examines OLS, but
especially under further parametric restrictions which bring in an identity and lead to Cz = Cx∗ .
Then the DGP refers to the classic consumption function model ci = γxi + εi (where xi is
income, 0 < γ < 1), supplemented and closed by the budget restriction equation xi = ci + zi,
where zi is exogenous. Defining yi = ci − γxi this yields yi = βxi + εi (with true value β = 0)
and reduced form equation

xi =
1

1− γ zi +
1

1− γ εi. (2.15)

So, this represents the very special parameterization π = ξ = 1/(1− γ) with σ2v∗ = 0. Instead
of three parameters, this DGP has just one free parameter σx, since from ρxε = ρxz and
ρ2xε + ρ2xz = 1 it follows that ρxε = ρxz = 1

2

√
2 ≈ 0.7, whilst PCP = n. Hence, the simultaneity

is always serious (in fact the conditional simultaneity coeffi cient is unity), and, according to the
rule of thumb devised by Staiger and Stock (1997), the instrument is not weak when n > 10.
The above should illustrate that our present-day understanding of the finite sample distri-

bution of IV estimators largely refers just to very particular cases, mostly in a setting in which
some kind of conditioning on exogenous variables has been accommodated. We will demon-
strate that a major finding in the established literature on the shape of IV probability densities
(often bimodal and even zero between the modes) is not typical for the three parameter model
examined here, but only occurs in very specific cases under a conditional sampling scheme.
However, before we examine simulated distributions also for less restricted settings, we will
first design a generic approach by which we can derive for both consistent and inconsistent
estimators what the effects of conditioning are on their limiting distributions.

3. Limiting and simulated distributions of IV and OLS

Throughout the paper we make the following basic assumption:

Assumption 1 (basic DGP). The single simple structural equation (2.4) for yi is completed
by the reduced form equation (2.3) for xi, whereas the external instrumental variable zi and

2It does not seem to make sense to condition just on v∗i and not on zi. Further motivation to examine the
consequences of conditioning on x∗i are given in Appendix A.
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the two disturbance terms are characterized by (2.1) and (2.2). Moreover, 0 < σ2ε < ∞,
0 < σ2v∗ <∞, 0 < σ2z <∞, 0 < σ2x <∞ and π 6= 0.

Hence, we restrict ourselves to the standard case where the variable zi is an appropriate
instrument in the sense that it is both valid and relevant, because the orthogonality condition
E[zi(yi − βxi)] = 0 and the identification rank condition E(zixi) 6= 0 hold. Hence, β is
point-identified, although the identification may be weak when ρxz is close to zero. In the
asymptotic analysis to follow we do not consider consequences of instrument weakness in which
one assumes π = ρxzσx/σz = O(n−1/2), as in Staiger and Stock (1997). To maintain generality
of the analytic results, we will not impose yet the normalization restrictions to be used later
in the simulations, which are: β = 0, σ2ε = 1 and σ2z = 1.
For particular results we specify the following further regularity assumptions:

Assumption 2 (regularity ε). For the structural form disturbances εi we have E(ε4i ) = 3σ4ε.

Assumption 3 (regularity v). For the reduced form disturbances vi we have E(v4i ) = 3σ4v.

Assumption 4 (regularity x). For the regressor xi we have E(x4i ) = 3σ4x.

In the next two subsections we examine the limiting and the finite sample distributions of
the IV and OLS estimators of β, which are given by

β̂IV =
∑n

i=1 ziyi/
∑n

i=1 zixi = β +
∑n

i=1 ziεi/
∑n

i=1 zixi (3.1)

and
β̂OLS =

∑n
i=1 xiyi/

∑n
i=1 x

2
i = β +

∑n
i=1 xiεi/

∑n
i=1 x

2
i . (3.2)

3.1. Limiting distributions

The following lemma allows to investigate the effects of conditioning regarding realized random
variables on the limiting distribution of an estimator for which the estimation error is given
by a ratio of scalar sample aggregates. All proofs are collected in Appendix B.

Lemma (scalar conditional limiting distribution). Let the estimation error β̂ − β = N/D be
a ratio of scalar random variables, where the numerator N =

∑n
i=1Ni and the denominator

D =
∑n

i=1Di are both sample aggregates for a sample of size n, whereas both N and D can
be decomposed, employing some set of conditioning variables C, such that N = N̄ + Ñ and
D = D̄+ D̃, where N̄ ≡ E(N | C) = O(n) and D̄ ≡ E(D | C) = O(n), while Ñ | C = Op(n

1/2)

and D̃ | C = Op(n
1/2). Then, provided D̄ 6= 0, n1/2(β̂ − β − N̄/D̄) | C d→ N (0, V ) , where

V = (limn−1D̄)−2V0 with V0 such that n−1/2(Ñ − N̄D̃/D̄) | C d→ N (0, V0) .

This lemma can be applied to both IV and OLS under the three sampling schemes dis-
tinguished above. We find that the limiting distribution of the consistent IV estimator is not
affected by these three sampling schemes, whereas that of the inconsistent OLS estimator is.
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Theorem 1: Let Assumption 1 hold. Under the sampling schemes set out in (2.14) the limiting
distributions of simple IV and OLS estimators are given by:

(a) n1/2(β̂IV − β) | Cj
d→ N

(
0, σ

2
ε

σ2x

1
ρ2xz

)
for j ∈ {∅, z, x∗},

(b1) n1/2
(
β̂OLS − β − ρxε σεσx

)
| C∅

d→ N
(

0, σ
2
ε

σ2x
(1− ρ2xε)

)
,

(b2) n1/2
(
β̂OLS − β − ρxε σεσx [1− ρ2xz(1− 1

nσ2z

∑n
i=1 z

2
i )]
−1
)∣∣∣ Cz

d→ N
(

0, σ
2
ε

σ2x
[1− ρ2xε(1 + 2ρ4xz)]

)
,

(b3) n1/2
(
β̂OLS − β − ρxε σεσx [ρ2xε + (1− ρ2xε) 1

nσ2
x∗

∑n
i=1 x

∗2
i ]−1

)∣∣∣ Cx∗
d→ N

(
0, σ

2
ε

σ2x
(1− ρ2xε)[1− 2(1− ρ2xε)ρ2xε]

)
.

Additional requirements for result (b1) are Assumptions 2 and 4, for (b2) Assumptions 2 and
3, and for result (b3) Assumption 2.

The underlying reasons for the equivalence of the IV results under conditioning are that
for the numerator we have E(N | Cz) = E(N | Cx∗) = 0 and (therefore) also E(N) = 0
and the limiting distribution will always be centered around β. It can be obtained simply
from (D̄/n)−1n−1/2Ñ , where lim D̄/n = σzx and n−1/2Ñ

d→ N (0, σ2εσ
2
z), irrespective of the

conditioning used. The situation is different for the inconsistent estimator. Here N̄ = nρxεσxσε
differs from zero under simultaneity, so the center of the limiting distribution is not at β. Its
shift N̄/D̄ differs for different conditioning variables, because D̄ is an expression involving
these conditioning variables. This also affects the second term in Ñ − N̄D̃/D̄, which leads to
different expressions for V0 and thus for V. Note that N̄/D̄ is (or converges to) the inconsistency
ρxεσε/σx, which is bounded, because ρxε and σ

2
ε/σ

2
x are too.

Result (b1) can already be found in Goldberger (1964, p.359), who considers a model with
more possibly endogenous regressors. However, he does not mention that it only holds when the
IID observations on all the variables have a 4th moment corresponding to that of the Normal
distribution. Result (b2) corresponds to a (in our opinion less transparent) formula given in
Hausman (1978, p.1257) and Hahn and Hausman (2003, p.124), who refer for its derivation to
Rothenberg (1972, p.9). Result (b3) can be found in Kiviet and Niemczyk (2007, 2012), where
the issue of conditioning is not addressed explicitly. Similar distinct limiting distributions due
to using alternative conditioning sets have been obtained in the context of errors in variables
models by Schneeweiss (1980).
Result (a) shows that the asymptotic variance of IV is inversely related to the strength of

the instrument, and the asymptotic distribution is invariant with respect to: (i) the degree
of simultaneity ρxε, (ii) regarding the value of σ

2
z > 0 and (iii) with respect to the actual

distribution of the disturbances, regressor and instrument.
When there is no simultaneity (ρxε = 0) the asymptotic variance of OLS (both conditionally

and unconditionally) is σ2ε/σ
2
x. Irrespective of the simultaneity, the asymptotic variance of IV

using instrument z, is equal to this ratio σ2ε/σ
2
x multiplied by ρ

−2
xz . Since |ρxz| ≤ 1, this factor

is never smaller than 1. Applying OLS under simultaneity has the serious consequence of
inconsistency, but also the advantage that it yields a smaller asymptotic variance, because this
is given by the ratio σ2ε/σ

2
x multiplied by a factor smaller than unity. In fact, when comparing

the asymptotic variances of IV and OLS we find:
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Corollary 1. Under the conditions of Theorem 1 we have

AsyV ar(β̂IV ) ≥ AsyV ar(β̂OLS | C∅) ≥ AsyV ar(β̂OLS | Cz) ≥ AsyV ar(β̂OLS | Cx∗).

So, apart from the inconsistency, the OLS asymptotic distribution seems always more
attractive than that of IV, whereas the asymptotic variance of OLS gets smaller by extending
the conditioning set. Conditioning OLS on instrument zi (which it does not exploit) does reduce
the asymptotic variance more the stronger the instrument is, and extending the conditioning
set from zi to x∗i = πzi + v∗i decreases the asymptotic variance even more, provided σ

2
v∗ > 0.

The magnitudes of the four different multiplying factors of σ2ε/σ
2
x are depicted in Diagram

1, in separate panels for six increasing values of the strength ρxz of the instrument, and with
the degree of simultaneity ρxε on the horizontal axis. Note that these six panels have different
scales on their horizontal axis, because its range of admissible values is restricted by 0 ≤
ρxε ≤

√
1− ρ2xz. All depicted curves are symmetric around zero in both ρxε and ρxz, so we

may restrict ourselves to examining just positive values. Diagram 1 shows that conditioning
on instrument z has a noticeable effect on the OLS variance only when the instrument is
suffi ciently strong, say |ρxz| > 0.5. Adding v∗i to the conditioning set already consisting of zi
has little effect when the instrument is very strong and σ2v∗ is correspondingly small. But for
|ρxz| < 0.8 it has a noteworthy effect, especially for intermediate values of the simultaneity ρxε
(then the discrepancy between the circles and the crosses is substantial). When the strength
parameter is below 0.8 the factor 1/ρ2xz for IV is so much larger than unity that it is diffi cult
to combine it with the OLS results in the same plot. Therefore, the IV results are shown only
in the bottom two panels referring to a very strong instrument.
Due to the inconsistency of OLS we should not make a comparison with IV purely based

on just asymptotic variance. Therefore, in Diagram 2, we compare the asymptotic root mean
squared errors (ARMSE). For IV this is simply σε/(σxρxz). For OLS we have to take into
account also the squared inconsistency multiplied by n, because we confront it with the as-
ymptotic variance. Hence, for unconditional OLS this leads to

ARMSE(β̂OLS | C∅) =
σε
σx

[(1− ρ2xε) + nρ2xε]
1/2,

and similarly for the conditional OLS results. In Diagram 2 we present the ratio (hence, σε/σx
drops out) with the IV result in the denominator, giving the ARMSE of OLS as a fraction of
the IV figure. There is symmetry again regarding ρxε and ρxz. The only further determinant
is n. When this is not extremely small the effect of the inconsistency is so prominent that
the differences in variance due to the conditioning setting become trifling and the curves
for the three (un)conditional OLS results almost coincide. OLS beats IV according to its
asymptotic distribution when the curve is below the dashed line at unity. Hence, we note that
for n = 100 IV seems preferable when |ρxz| > .5 and |ρxε| > .2. However, when |ρxz| < .5 and
n = 30 the ARMSE of OLS could be half or just one fifth of that of IV. Whether this is useful
information for samples that actually have size 30 depends on the accuracy of these asymptotic
approximations, which we will check in the next section. Especially when the instrument is
weak special weak-instrument asymptotic results are available, see Andrews and Stock (2007a),
which might be more appropriate for making comparisons with the ARMSE of OLS.

3.2. Simulated distributions

We obtained the empirical densities of OLS and IV by generating the estimators R ≥ 50, 000
times and distinguishing between the sampling schemes; all series (2.1) were drawn from the
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Normal distribution and we took —without loss of generality —β = 0 and σε = σz = 1. In
all simulations we chose σx = 3. This does not lead to loss of generality either, because all
depicted densities are multiples of σx, which means that the form and relative positions of
the densities would not change if we changed σx; the only effect would be that the scale on
the horizontal axis would be different. We examined the cases ρxε = 0, .3, .5, .7. This gives 4
panels of densities. Most diagrams contain results for both ρxz = .4 and ρxz = .1; then the top
four panels in a diagram are those for the not so weak instrument, and the bottom four those
for the much weaker instrument. Most densities are for sample size n = 100, but in some we
took n = 1000. All the relevant design parameter values and their consequences for PCP are
given in the diagrams.
Diagram 3 considers the unconditional case, so in all replications new vectors for the three

series (2.1) have been drawn. The IV density is dashed (red) and the OLS density is solid
(blue). The panels also show the standard asymptotic approximations for IV (dotted, red) and
for OLS (dotted, blue). By not fully displaying the mode of all distributions we get a clearer
picture of the tails. Even at ρxz = .4, where PCP = 19, the asymptotic approximation for
IV is not very accurate, especially for ρxε high. Although the limiting distribution is invariant
for ρxε this is clearly not the case for the finite sample distribution of IV. The asymptotic
approximation for the OLS distribution is so accurate that in all these drawings it collapses
with the empirical distribution. For ρxz = .1 the standard IV approximation starts to get
really bad, but it is much worse for even smaller values of ρxz (not depicted). For ρxε away
from zero OLS is clearly biased, but so is IV when the instrument is weak. In most of the
panels OLS seems preferable to IV, because most of its actual probability mass is much closer
to the true value of zero than is the case for IV.
Diagram 4 presents results in which the zi series has been kept fixed. Both IV and OLS are

plotted for 6 different arbitrary realizations of zi (in the diagram indicated by 6×raw). For OLS
the densities almost coincide, except for the stronger instrument when simultaneity is serious.
For IV the effects of conditioning are more pronounced, especially for the stronger instrument.
In Diagram 5 the same 6 realizations of the zi series have been used after stylizing them by
normalizing them such that their first two sample moments correspond to the population mo-
ments (indicated by 6×stylized). Now all 6 curves almost coincide, and apparently the effects
of higher order sample moments not fully corresponding with their population counterpart has
hardly any effects.
In Diagram 6 we conditioned on both zi and v∗i , again using 6 arbitrary realizations. Note

that although E(ziv
∗
i ) = 0 the sample correlation coeffi cient rzv∗ may deviate from zero. The

effects of this type of conditioning are much more pronounced now, just a little for OLS,
but extremely so for IV in the weak instrument case. Then, the empirical distribution of IV
demonstrates characteristics completely different from its standard asymptotic approximation;
especially for low ρxz and high ρxε bimodality is manifest with also a region of zero density
between the two modes. Stylizing the zi and v∗i series (also making sure that their sample
covariance is zero) makes the curves coincide again in Diagram 7, but shows bimodality again
in the case where the instrument is weak and the simultaneity serious.
From all these densities it seems obvious that the distribution of IV gets more problematic

under conditioning, and that it seems worthwhile to develop a method such that OLS could be
employed for inference. That this conclusion does not just pertain to very small samples can
be learned from Diagram 8, where n = 1000 and ρxz = .1, giving rise to PCP just above 10.
The top four diagrams are unconditional, whereas the bottom four diagrams present results
conditional on x∗i . In most cases all realizations of the OLS estimator are much closer to the
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true value than most of those obtained by IV. Especially if OLS could be corrected for bias
(without a major increase in variance) it would provide a welcome alternative to IV, not only
when the sample is small, and even when the instrument is not all that weak.

4. Robust OLS inference under simultaneity

In Kiviet and Niemczyk (2012) an attempt was made to design inference on β based on a bias
corrected OLS estimator and an assumption regarding ρxε. An infeasible version, which used
also the true values of σx and σε worked well, which is promising. However, after replacing
σx and σε by sample equivalents it became clear that such a substitution at the same time
alters the limiting distribution of the bias corrected estimator, so that further refinements of
the asymptotic approximations are called for.

4.1. The limiting distribution of bias corrected OLS

We shall derive the appropriate limiting distribution in the hope that it will lead to an as-
ymptotic approximation that is still reasonably accurate in finite samples. We will focus on
the unrestrained sampling scheme, because we found that the variance of OLS has a tendency
to decrease by conditioning on exogenous regressors. Therefore, any resulting unconditional
(regarding the exogenous variables) confidence sets are expected to have larger coverage proba-
bility (thus will be conservative) under conditioning. Moreover, when we will compare uncondi-
tional robust OLS inference with unconditional IV inference and the former is found to provide
a useful alternative, then we would know for sure that this will certainly be the case under a
restrained sampling scheme, because we have seen that conditioning worsens the situation for
IV and improves it for OLS.
So, our starting point is result (b1) of Theorem 1. This suggests the unfeasible bias corrected

OLS-based estimator β̂UOLS(ρxε, σε/σx) ≡ β̂OLS − ξσ2ε/σ
2
x = β̂OLS − ρxεσε/σx for β, with

limiting distribution

n1/2
(
β̂UOLS(ρxε, σε/σx)− β

)
d→ N

(
0,
σ2ε
σ2x

(1− ρ2xε)
)
. (4.1)

This estimator is unfeasible, because it requires the values of ρxε and σε/σx. Below we shall show
that the noise-signal related quantity σε/σx can be estimated consistently, but this estimator
is unfeasible as well, although it just requires knowledge of the value of ρxε or a consistent
estimator of it. The latter would require exploiting at least one valid and relevant instrument
zi, which in its turn is a feasible procedure only when adopting the value zero for ρzε. Since
testing the hypothesis ρzε = 0 is only possible by exploiting at least one other valid and
relevant instrument (which should be linearly independent from zi), we find ourselves in a
recursion. This highlights that making an untestable assumption is unavoidable. One either
needs to adopt validity of at least one instrument, or one should adopt a particular value for
ρxε, provided that this would lead to an accurate and practicable inference procedure. We set
out to examine whether this is the case.
Consider the estimator for β

β̂KLS(ρxε) ≡ β̂OLS − ρxε

 σ̂2ε/(1− ρ2xε)
n−1

∑n

i=1
x2i

1/2

, (4.2)
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which is a function of the OLS estimator for β, the (ML) estimator for σ2 given by σ̂2ε ≡
n−1

∑n

i=1
(yi−xiβ̂OLS)2 and of ρxε.We nickname this estimator KLS (kinky least-squares) for

which we find the following.

Theorem 2 (unconditional limiting distribution of KLS). Under Assumptions 1, 2 and 4 we
have n1/2(β̂KLS − β)→ N (0, σ2ε/σ

2
x) .

Hence, remarkably, the standard OLS estimator, which has asymptotic variance σ2ε/σ
2
x

when ρxε = 0, and when ρxε 6= 0 has inconsistency ρxεσε/σx and —provided both ε and x
have fourth moments as if they were Gaussian —the smaller unconditional asymptotic variance
σ2ε(1− ρ2xε)/σ2x, has again the original asymptotic variance σ2ε/σ2x after one has subtracted an
OLS-based estimate of its inconsistency based on the true value of ρxε. To estimate the variance
of β̂KLS one should not use the standard expression V̂ ar(β̂OLS) = σ̂2ε/

∑n

i=1
x2i , but

V̂ ar(β̂KLS) ≡ σ̂2ε

(1− ρ2xε)
∑n

i=1
x2i

=
1

1− ρ2xε
V̂ ar(β̂OLS), (4.3)

because that yields plimnV̂ ar(β̂KLS) = σ2ε/σ
2
x, as it should.

4.2. Simulation results on KLS-based inference

In a Monte Carlo study based on 100,000 replications we have examined the bias of both β̂OLS
and β̂KLS, the Monte Carlo estimate of V ar(β̂KLS) and the estimated expectation of its em-
pirical estimate V̂ ar(β̂KLS). Also we have examined the coverage probability of an asymptotic
KLS based confidence interval with nominal confidence coeffi cient of 95%. Hence, we analyzed
the frequency over the Monte Carlo replications by which the true value of β was covered by
the interval

[β̂KLS − 1.96× ŜD(β̂KLS), β̂KLS + 1.96× ŜD(β̂KLS)], (4.4)

where both β̂KLS and ŜD(β̂KLS) ≡ (V̂ ar(β̂KLS))1/2 = (1 − ρ2xε)−1/2ŜD(β̂OLS) are calculated
on the basis of the true value of ρxε.
Since the simulation results in Table 1 are purely OLS based, they do not require the avail-

ability of an instrumental variable, and thus instrument strength is irrelevant. No conditioning
on exogenous variables occurred and all results are invariant regarding the true values of β
and σε. Just n, ρxε and σx/σε matter, but the latter is found (and can be shown) not to affect
the coverage probability of KLS confidence intervals. The bias of OLS is found to be (almost)
invariant with respect to n, and to be extremely close to the inconsistency, which predicts it
to increase with (the absolute value of) ρxε and to be inversely related to σx/σε. The KLS
coeffi cient estimator, which is based on the true value of ρxε, is almost unbiased, and variance
estimator (4.3) is found to have a minor negative bias for the true variance. The actual cov-
erage probability of the KLS confidence intervals is remarkably close to the nominal value of
95%. These estimates have a Monte Carlo standard error of about .0007, hence we establish
a significant slight under-coverage over all the design parameter values examined, also when
ρxε = 0. The latter is due to using a critical value from the normal and not from the Student
distribution. As far as the slight under-coverage is due to inaccuracies for n small in the OLS
bias approximations, this could be repaired possibly by employing higher-order approximations
as in Kiviet and Phillips (1996). The appearance of the factor 1 − ρ2xε in the denominator of
(4.3) indicates that ρxε values really close to unity will be problematic.
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Table 1 Qualities of KLS-based inference
σx/σε n ρxε E(β̂OLS)− β E(β̂KLS)− β V ar(β̂KLS) E[V̂ ar(β̂KLS)] Cov.Prob.
3 30 .0 -.000 -.000 .00395 .00397 .9405

.3 .100 -.002 .00396 .00397 .9409

.6 .200 -.003 .00401 .00397 .9410

.9 .300 -.005 .00408 .00397 .9401

300 .0 .000 .000 .000372 .000373 .9487
.3 .100 -.000 .000374 .000373 .9481
.6 .200 -.000 .000375 .000373 .9479
.9 .300 -.000 .000377 .000373 .9483

10 30 .3 .030 -.001 .000356 .000358 .9409
.9 .090 -.002 .000367 .000357 .9401

300 .3 .030 -.000 .000034 .000034 .9481
.9 .090 -.000 .000034 .000034 .9483

Interval (4.4) is based on standard OLS statistics only. When ζα/2 expresses the α/2
quantile of the standard Normal distribution an interval with confidence coeffi cient 1 − α is
obtained by

β̂OLS − [(n1/2ρxε ± ζα/2)/(1− ρ2xε)1/2]ŜD(β̂OLS). (4.5)

It can deviate substantially from a standard OLS interval when ρxε is far from zero. Its location
with respect to the standard OLS interval shifts, due to the bias correction. Moreover, its width
is multiplied by the factor (1−ρ2xε)−1/2 and hence bulges up for ρ2xε close to unity. If one wants
to base inference on an interval assumption, say ρxε ∈ [ρLxε, ρ

R
xε], then a conservative (1−α)100%

confidence interval is obtained by taking the union of all intervals for ρxε in that interval.
Diagrams 9 and 10 provide an impression of what such intervals might achieve in comparison

to those provided by IV under ideal circumstances, namely based on the actual finite sample
distribution of IV, which in practice is very hard to approximate, whereas we have seen that
this works fine for the KLS estimator. Diagram 9 replicates the results of Diagram 3 for the
finite sample distributions of IV and OLS, but in addition it shows the densities of KLS when
based on an (in)correct assumption regarding ρxε. The blue curve uses ρxε = 0, so here KLS
simplifies to OLS. The other densities use the assumptions ρxε = −.9 (red), −.6 (green) or −.3
(cyan), .3 (magenta), .6 (yellow), .9 (black). Hence, in each panel at most one KLS curve uses
a ρxε value very close to its true value (which is mentioned in the panel). The superiority of
KLS when employing a ρxε value that is wrong by about a ±0.3 margin is apparent, because
it yields a probability mass much closer to the true value of zero than IV, especially when the
instrument is weak. In Diagram 10 densities of the same estimators are presented but now
for n = 1000. For a not very weak instrument and a large sample IV may do better, but for
cases where PCP is smaller than or around 10 the instrument-free KLS inference seems a very
welcome alternative. This will be even more the case in practice, when the available (weak)
instrument could actually be endogenous.
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4.3. Comparison of the qualities of alternative confidence sets

As already argued above, the reputation of any inference technique should be based on criteria
such as: is it based on credible assumptions; does it fulfill (also in finite samples) its promises
regarding its claimed accuracy; can it boast other credentials, such as robustness; and is its
inference more effi cient than that produced by competing techniques. As a rule, in most
contexts there does not exist a single technique which uniformly dominates all others under
all relevant circumstances.
For the DGP examined above we will now compare the properties of various confidence

sets on the scalar parameter β. We will examine KLS-based confidence sets with IV-based
confidence sets, where the latter are constructed from either the standard asymptotic Wald
(W) test statistic or by inversion of the Anderson-Rubin (AR) statistic. The W procedure is
known to be defective when instruments are weak, whereas the AR procedure is known to be
robust under the null when instruments are weak. Mikusheva (2010) claims that it performs
reasonably well amongst other techniques which focus on invariance of the asymptotic null
distribution with respect to weakness of instruments. However, in the present just identified
case these other (LM and LR based) techniques simplify to the AR procedure.
In the present context, the Wald statistic for H0 : β = β0 is given by

W (β0) =

(
β̂IV − β0
ŜD(β̂IV )

)2
, with ŜD(β̂IV ) =

(
(y − xβ̂IV )′(y − xβ̂IV )/(n− 1)

x′z(z′z)−1z′x

)1/2
, (4.6)

where y, x and z are n× 1 vectors containing all the sample data. For nominal (1−α)× 100%
confidence coeffi cient, it yields confidence interval(

β̂IV + ζα/2ŜD(β̂IV ), β̂IV + ζ1−α/2ŜD(β̂IV )
)
. (4.7)

The AR test statistic for the same hypothesis is performed by substituting the reduced form
equation in the structural form relationship and next testing the significance of the slope in
the equation y − xβ0 = zπ(β − β0) + ε+ (β − β0)v. Under the null the tests statistic

AR(β0) = (n− 1)
(y − xβ0)′z(z′z)−1z′(y − xβ0)

(y − xβ0)′[I − z(z′z)−1z′](y − xβ0)
(4.8)

is asymptotically distributed as χ2(1) and under normality exactly as F (1, n − 1). It implies
the confidence interval

CAR(α) = {β0 : AR(β0) < Fα(1, n− 1)} . (4.9)

This can be established by solving aβ2+bβ+c ≥ 0, where a = x′Ax, b = −2x′Ay and c = y′Ay,
with A = I−dz(z′z)−1z′ and d = 1 + (n−1)/Fα(1, n−1). If ∆ = b2−4ac ≥ 0 then an interval
follows easily provided a ≤ 0; when a > 0, though, the interval consists of the whole real line,
except for a finite interval, and thus has infinite length. When ∆ < 0 the interval is empty
for a < 0 and equals the full real line when a > 0 (note that ∆ < 0 and a = 0 cannot occur).
These anomalies, if they really do occur, would be the result of uncomfortable behavior of the
AR statistic under the alternative hypothesis, implying either unit rejection probability for all
alternatives (CI empty), or zero rejection probability for either all alternatives (CI is the full
real line) or for just a closed set of alternatives (CI is the real line, except for a particular
interval). In the simulations to follow, we will monitor the occurrence of these anomalies.
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Since we will focus on the width of the interval, we will examine the ∆ ≥ 0 and a ≤ 0 cases
exclusively, in order to exclude non-existing intervals and intervals of infinite length. For those
with finite length we will report the median width, because the occurrence of outliers clearly
indicates that for both W and AR the random variable width has no finite moments.
Regarding the KLS-based intervals we will present results for three intervals [ρLxε, ρ

U
xε],

namely: (A) ρLxε = ρUxε = ρxε; (B) ρ
L
xε = ρxε − 0.2, ρUxε = ρxε + 0.2; and (C) ρLxε = 0, ρUxε = 0.5.

Of course, in practice it will be unrealistic that one could ever attain (A), and although (B)
is more realistic, in practice one might specify occasionally an interval that excludes the true
value. This is possible with interval (C), which simply states that any simultaneity will be
non-negative and not exceeding 0.5.We ran 100,000 replications for a few combinations of ρxε
and ρxz values for n = 100, giving rise to PCP values equal to 56.25, 4.16 and 1.01 respectively.

Table 2 Actual properties of various confidence intervals; σx/σε = 10, n = 100, α = 0.05
CP = coverage prob.; MW = median width; PF = prob. of finite width interval

ρxε ρxz W AR KLS(A) KLS(B) KLS(C)
CP MW PF CP MW CP MW CP MW CP MW

.0 .6 .954 .065 1.00 .950 .069 .948 .039 1.000 .081 .973 .100
.2 .993 .188 .52 .949 .246 .947 .039 1.000 .081 .973 .100
.1 .998 .305 .17 .949 .349 .947 .039 1.000 .081 .973 .100

.2 .6 .953 .065 1.00 .950 .069 .947 .039 1.000 .083 1.000 .098
.2 .985 .186 .52 .950 .244 .947 .039 1.000 .083 1.000 .098
.1 .994 .300 .17 .944 .339 .947 .039 1.000 .083 1.000 .098

.4 .6 .949 .065 1.00 .950 .069 .947 .039 1.000 .091 .999 .091
.2 .958 .179 .52 .951 .239 .947 .039 1.000 .091 .999 .091
.1 .971 .283 .17 .924 .323 .947 .039 1.000 .091 .999 .091

.6 .6 .941 .064 1.00 .950 .070 .947 .039 1.000 .115 .656 .080
.2 .905 .166 .52 .952 .234 .946 .039 1.000 .115 .657 .080
.05 .903 .252 .17 .895 .293 .946 .039 1.000 .115 .658 .080

Table 2 shows that for a weak instrument the IV-based Wald test can both be conservative
(when the simultaneity is moderate) and yield under-coverage (when the simultaneity is more
serious). The AR procedure is of little practical use in this model, because it does not improve
on the Wald test when the latter works well, and although it does produce intervals with
appropriate coverage when the instrument is weak, much too frequently it does not deliver an
interval (of finite length) at all. Moreover, the few intervals that it delivers when ρxz = .1 have
larger width on average than those produced by the Wald procedure, even when the latter are
conservative. The KLS(A) procedure performs close to perfect. Its coverage is not only very
close to 95%, but its performance is also invariant with respect to both ρxε and ρzx, and the
width of the interval is 60% (for ρxz = .6) or just about 15% (for ρxz = .1) of the Wald interval.
The more realistic KLS(B) intervals are much too conservative, but nevertheless have smaller
width than the Wald intervals when the instrument is weak. The same holds for the realistic
KLS(C) intervals, provided that the true value of ρxε is in the interval. If this is not the case,
then the KLS procedure breaks down.
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4.4. Empirical illustration

The application that has undoubtedly received most attention over the last two decades in the
debate and research on the effects of weakness and validity of instruments on the coeffi cient
estimate of an endogenous variable is Angrist and Krueger (1991), who analyzed the returns to
schooling on log wage. In Donald and Newey (2001) and Flores-Lagunes (2007) many variants
of IV based estimates have been obtained. Donald and Newey (2001, p.1178) present also the
OLS results for the coeffi cient estimate for schooling, being .0673 with a standard error equal
to .0003. This has been obtained from a sample of size 329500. They also indicate sample
second moments of the structural and reduced form disturbances which suggest estimates of
the simultaneity coeffi cient equal to -.127, -.192 and -.204 according to 2SLS, LIML and B2SLS
respectively. However, when the IV estimates are biased or even inconsistent due to the use
of invalid or weak instruments these assessments may be misleading. From the OLS estimates
we can deduce for different assumptions on ρxε the KLS inferences collected in Table 3.

Table 3 KLS estimates and confidence intervals
for the effect of schooling

ρxε β̂KLS ŜD(β̂KLS) 95% CI for β
-.5 .1667 .0003 (.1660, .1674)
-.4 .1425 .0003 (.1418, .1431)
-.3 .1215 .0003 (.1208, .1221)
-.2 .1025 .0003 (.1019, .1031)
-.1 .0846 .0003 (.0840, .0852)
0 .0673 .0003 (.0667, .0679)
.1 .0500 .0003 (.0494, .0506)
.2 .0321 .0003 (.0315, .0327)
.3 .0131 .0003 (.0125, .0138)
.4 -.0079 .0003 (-.0085, -.0072)
.5 -.0321 .0003 (-.0328, -.0314)

Note that unlike the IV results the KLS inferences are not affected by the quality or validity
of any of the external instrumental variables. However, like the IV results, they do assume
that apart from the schooling variable all the partialled out regressors are exogenous. We find
that when ρxε were close to -.2 indeed, KLS infers that the effects of schooling are close to
.10 and in fact much closer than IV is able to produce. The IV-based techniques examined in
Flores-Lagunes (2007) yield much wider confidence intervals of about [.8, .13]. From KLS one
can deduce that such values are plausible only if ρxε is in the range (-.35,-.08). If ρxε is in fact
mildly positive (as many have argued on theoretical grounds), then the effect of schooling on
wage is actually much smaller than .10 and possibly just around .03 as Table 3 shows. Then
the present IV findings would be the result of their inescapable frailty when instruments are
weak or even invalid.

5. Conclusions

It is well-known now that the actual distribution of IV estimators gets rather anomalous when
based on weak instruments. This paper shows that another factor causing serious deviations of
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the finite sample distribution of IV from its standard asymptotic approximation is the sampling
scheme. Conditioning on exogenous regressors aggravates the anomalies of IV. It leads more
often to the occurrence of bimodality and occasionally to an area close to the median of the
distribution where the density is zero. On the other hand, the distribution of the OLS estimator
in simultaneous equations is much smoother, always unimodal and much less dispersed than
for IV, it is much less affected by the sampling scheme and its asymptotic approximation is
remarkably accurate even in small samples. Its major problem is its inconsistency, although this
is bounded. We demonstrate how the OLS estimator can be corrected to render it consistent,
without using instrumental variables at all. According to the established view, however, this
corrected estimator is unfeasible, because it is based on an unknown parameter, namely the
degree of simultaneity. But in fact similar problems affl ict the single equation IV estimator,
because its consistency is also based on making assumptions on parameter values, namely the
coeffi cient values (possibly their exclusion) of at least as many regressors as the relationship
involves endogenous regressors with unknown coeffi cients. Only a surplus of such restrictions
and corresponding orthogonality conditions can be verified by empirical-statistical methods; an
initial set as large as the number of included endogenous regressors requires parameter values
chosen on the basis of rhetorical arguments to be deduced from economic theory or natural
experiment settings. Even when these adopted restrictions are valid we show how vulnerable
IV inferences are when instruments are weak. To be able to avoid this situation we derive the
limiting distribution of bias corrected OLS, which allows to produce inference on the structural
coeffi cient for a range of possible values of the simultaneity parameter. By taking the union of
a series of confidence intervals we obtain relatively effi cient, accurate, robust and often more
credible inferences, without the need to nominate instrumental variables. In future research we
plan to generalize the method for models under less strict independence restrictions involving
more than just one endogenous regressor from which exogenous regressors are not necessarily
partialled out in order to construct accurate external-instrument-free inference for all structural
coeffi cients.
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Appendices

A. The relevance of conditioning on unobserved variables

The DGP introduced in section 2.1 with just three fundamental parameters can of course
easily be generalized in various directions. We will indicate here one particular type of possible
extension, just because that supports the interpretation of the component v∗i of the reduced
form disturbance vi and provides arguments to examine in Monte Carlo experiments both
cases where v∗i is either random or fixed. When allowing for overidentification, this requires to
replace zi ∼ IID(0, 1) by the L > 1 series z(l)i ∼ IID(0, 1), l = 1, ..., L. Then the reduced form
equation generalizes to

xi =
∑L

l=1
πlz

(l)
i + vi, (A.1)

where again vi = v∗i + ξεi. Without loss of generality we may assume that the L instruments
(possibly after a transformation) are all mutually independent. Then it follows that

σ2x =
∑L

l=1
π2l + ξ2 + σ2v∗ . (A.2)

With E(xiz
(l)
i ) = ρxz(l)σx = πl and (2.10) one finds σ2v∗ = σ2x(1 − ρ2xε −

∑L

l=1
ρ2
xz(l)

). This
again implies admissibility restrictions, which here involve an (L+ 1)-dimensional unit sphere,
namely

ρ2xε + ρ2xz(1) + ...+ ρ2xz(L) ≤ 1. (A.3)

Now imagine that a researcher has available (or is aware of) only L# of the instrumental
variables, namely z(l)i for l = 1, ..., L#, where 0 < L# < L. Then xi = π1z

(1)
i + ...+ πL#z

(L#)
i +

v#∗i +v∗i +ξεi, with v
#∗
i = πL#+1z

(L#+1)
i + ...+πLz

(L)
i . Now v#∗i +v∗i plays the role of the earlier

v∗i . Actual inference can now only be conditioned on the L
# available instruments. Thus, in a

Monte Carlo analysis of that situation one may choose to keep only these L# instruments fixed.
However, it does make sense too to keep v#∗i fixed as well, simply if one is of the opinion that
this mimics the actual population better. Keeping both v#∗i and v∗i fixed simply represents the
extreme case in which all the contributions to xi which are exogenous with respect to εi but
are not explicitly taken into account by the available instruments, are supposed to represent
the actual population of interest best. For our simple model where L = 1 there are no such
intermediary cases for conditioning on just L# instruments, but only the two extremes Cz and
Cx∗ .

B. Proofs

Lemma: From D−1 = [D̄ + (D − D̄)]−1 = D̄−1(1 + D̄−1D̃)−1, where D̄−1D̃ = Op(n
−1/2), the

Taylor expansion (1 + D̄−1D̃)−1 = 1 − D̄−1D̃ + op(n
−1/2) yields D−1 = D̄−1(1 − D̄−1D̃) +

op(n
−3/2), giving R = N/D = (N̄ + Ñ)D̄−1(1 − D̄−1D̃) + op(n

−1/2). Note that ÑD̄−2D̃ =
Op(n

−1). So, conditional on C, we have

n1/2(R− N̄/D̄) = (D̄/n)−1n−1/2[Ñ − (N̄/D̄)D̃] + op(1).

Now the result of the lemma follows directly by omitting the remainder term and invoking
standard results attributed to Slutsky and Cramér to the right-hand term.
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Theorem 1:
For obtaining the unconditional limiting distribution of IV we do not need the Lemma,

and can just follow the standard textbook approach. This exploits that according to the
Law of Large Numbers (LLN) plimn−1

∑n
i=1 zixi = σxz 6= 0, while a standard Central Limit

Theorem (CLT) yields n−1/2
∑n

i=1 ziεi
d→ N (0, σ2εσ

2
z) , since E(ziεi) = 0, E(zizjεiεj) = 0 for

i 6= j and E(z2i ε
2
i ) = σ2εσ

2
z, because of the the independence of zi and εi. Then it follows

from (3.1) that n1/2(β̂IV − β) = (n−1
∑n

i=1 zixi)
−1
n−1/2

∑n
i=1 ziεi

d→ N (0, σ2εσ
2
z/σ

2
xz) , where

σ2z/σ
2
xz = 1/(ρ2xzσ

2
x).

When conditioning β̂IV on the zi we employ the Lemma with N =
∑n

i=1 ziεi and D =∑n
i=1 zixi and find

N̄ ≡ E(N | Cz) = E(
∑n

i=1 ziεi | Cz) =
∑n

i=1 ziE(εi | Cz) = 0,

Ñ ≡ N − N̄ =
∑n

i=1 ziεi, with Ñ | Cz = Op(n
1/2),

D̄ ≡ E(D | Cz) = E(
∑n

i=1 zixi | Cz) =
∑n

i=1 ziE(xi | Cz) = π
∑n

i=1 z
2
i = O(n),

D̃ ≡ D − D̄ =
∑n

i=1 zi(xi − πzi) =
∑n

i=1 zivi, with D̃ | Cz = Op(n
1/2).

We conclude that Ñ | Cz = Op(n
1/2), because V ar (

∑n
i=1 ziεi | Cz) = σ2ε

∑n
i=1 z

2
i = O(n). The

result for D̄ follows immediately from (2.3), whereas D̃ | Cz = Op(n
1/2), because we find

V ar (
∑n

i=1 zivi | Cz) = σ2v
∑n

i=1 z
2
i = O(n). Hence, the conditions of the Lemma are satisfied,

although N̄ is actually much smaller than O(n). Moreover, Ñ − N̄D̃/D̄ = Ñ =
∑n

i=1 ziεi,
thus n−1/2(Ñ − N̄D̃/D̄) = n−1/2

∑n
i=1 ziεi, for which we have already obtained that it has

conditional expectation zero and conditional variance σ2ε
1
n

∑n
i=1 z

2
i , thus a standard CLT yields

V0 = limσ2ε
1
n

∑n
i=1 z

2
i = σ2εσ

2
z. Since lim D̄/n = πσ2z = ρxzσzσx we find that conditioning on the

instruments has no effect. This is because N̄ = 0 and due to limn−1D̄ = lim 1
n

∑n
i=1E(zixi |

zi) = π lim 1
n

∑n
i=1 z

2
i = πσ2z = plim 1

n

∑n
i=1 zixi.

Conditioning IV on x∗i and exploiting E(x∗i εi) = 0 yields

N̄ ≡ E(N | Cx∗) = E(
∑n

i=1 ziεi | Cx∗) =
∑n

i=1 ziE(εi | Cx∗) = 0,

Ñ ≡ N − N̄ =
∑n

i=1 ziεi, with Ñ | Cx∗ = Op(n
1/2),

D̄ ≡ E(D | Cx∗) = E[
∑n

i=1 zi(x
∗
i + ξεi) | Cx∗ ] =

∑n
i=1 zix

∗
i = π

∑n
i=1 z

2
i +

∑n
i=1 ziv

∗
i = O(n),

D̃ ≡ D − D̄ =
∑n

i=1 zi(xi − πzi − v∗i ) = ξ
∑n

i=1 ziεi, with D̃ | Cx∗ = Op(n
1/2).

That Ñ | Cx∗ = Op(n
1/2) is now self-evident. Because V ar (ξ

∑n
i=1 ziεi | Cx∗) = σ2ε

∑n
i=1 z

2
i =

O(n) we find D̃ | Cx∗ = Op(n
1/2). Again N̄ = 0, giving n−1/2(Ñ − N̄D̃/D̄) = n−1/2

∑n
i=1 ziεi

and V0 = lim σ2ε
1
n

∑n
i=1 z

2
i = σ2εσ

2
z. Because lim D̄/n = πσ2z + limσ2ε

1
n

∑n
i=1E(ziv

∗
i ) = πσ2z =

ρxzσzσx, we again find the same limiting distribution, and hence have established result (a) of
the Theorem.

For simple OLS we have N =
∑n

i=1 xiεi and D =
∑n

i=1 x
2
i . For C empty and using decom-

position xi = πzi + v∗i + ξεi = x∗i + ξεi we easily obtain

N̄ = E(
∑n

i=1 xiεi) = nξσ2ε = O(n),

Ñ =
∑n

i=1(xiεi − ξσ2ε) =
∑n

i=1[x
∗
i εi + ξ(ε2i − σ2ε)] = Op(n

1/2),

D̄ = E(
∑n

i=1 x
2
i ) = nσ2x = O(n),

D̃ =
∑n

i=1(x
2
i − σ2x) = Op(n

1/2),

where the orders of probability of Ñ and D̃ follow because their expectation is zero and
their variance is O(n), provided x∗i and εi have finite 4th moments, which is the case under
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Assumptions 2 and 4. We may write Ñ − (N̄/D̄)D̃ as
∑n

i=1 ui. Here, using N̄/D̄ = ξσ2ε/σ
2
x,

we have

ui = x∗i εi + ξ(ε2i − σ2ε)− ξ
σ2ε
σ2x

[(x∗2i − σ2x∗) + 2ξx∗i εi + ξ2(ε2i − σ2ε)], (B.1)

with E(ui) = 0, E(uiuj) = 0 for i 6= j. Under Assumptions 2 and 4 we find that

E(u2i ) = σ2εσ
2
x∗ + 2ξ2σ4ε + ξ2

σ4ε
σ4x

[2σ4x∗ + 4ξ2σ2x∗σ
2
ε + 2ξ4σ4ε]− 4ξ2σ2x∗

σ4ε
σ2x
− 4ξ4

σ6ε
σ2x

= σ2εσ
2
x − ξ2σ4ε + 2ξ2σ4ε + ξ2

σ4ε
σ4x

[2(σ4x − 2ξ2σ2xσ
2
ε + ξ4σ4ε) + 4ξ2σ2xσ

2
ε − 4ξ4σ4ε + 2ξ4σ4ε]

−4ξ2σ2x
σ4ε
σ2x

+ 4ξ4
σ6ε
σ2x
− 4ξ4

σ6ε
σ2x

= σ2εσ
2
x(1− ρ2xε).

is finite and constant. So n−1/2
∑n

i=1 ui
d→ N (0, σ2εσ

2
x(1− ρ2xε)) according to the CLT and,

making use of n−1D̄ = σ2x, we find from the Lemma the unconditional limiting distribution
indicated as (b1) in the Theorem.
Conditioning on the instrument we find

N̄ = E(
∑n

i=1 xiεi | Cz) =
∑n

i=1E[(πzi + v∗i + ξεi)εi | Cz] = nξσ2ε = O(n),

Ñ =
∑n

i=1[πziεi + v∗i εi + ξ(ε2i − σ2ε)] and Ñ | Cz = Op(n
1/2),

D̄ = E(
∑n

i=1 x
2
i | Cz) = π2

∑n
i=1 z

2
i + nσ2v = O(n),

D̃ =
∑n

i=1[2πzivi + (v2i − σ2v)] and D̃ | Cz = Op(n
1/2),

where the orders of probability of Ñ and D̃ again follow upon noting that their conditional
expectation is zero and their conditional variance is O(n), provided εi and vi have finite fourth
moment. Here we find for Ñ − (N̄/D̄)D̃ =

∑n
i=1 ui that it has

ui = πziεi + v∗i εi + ξ(ε2i − σ2ε)

−N̄
D̄

[2πzi(v
∗
i + ξεi) + (v∗2i − σ2v∗) + 2ξv∗i εi + ξ2(ε2i − σ2ε)], (B.2)

with E(ui | Cz) = 0 and E(uiuj | Cz) = 0 for i 6= j. Substituting N̄ = nξσ2ε, and using
Assumptions 2 and 3, we obtain

E(u2i | Cz) = σ2ε{π2z2i + σ2v∗ + 2ξ2σ2ε + D̄−2n2ξ2σ2ε[4π
2σ2vz

2
i + 2σ4v]

−4D̄−1nξ2[π2z2i σ
2
ε + σ2v∗σ

2
ε + ξ2σ4ε]},

which is finite. Therefore, a standard CLT applies, giving

n−1/2
∑n

i=1 ui | Cz
d→ N

(
0, limn−1

∑n
i=1E(u2i | C)

)
.

Making use of limn−1D̄ = limn−1 (π2
∑n

i=1 z
2
i + nσ2v) = π2σ2z + σ2v = σ2x we find

limn−1
∑n

i=1E(u2i | Cz) = σ2εσ
2
x[1− ρ2xε(1 + 2ρ4xz)]

from which the conditional limiting distribution (2b) is found.
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When conditioning on x∗ we find

N̄ = E(
∑n

i=1 xiεi | Cx∗) =
∑n

i=1E[(x∗i + ξεi)εi | Cx∗ ] = nξσ2ε = O(n),

Ñ =
∑n

i=1[x
∗
i εi + ξ(ε2i − σ2ε)] and Ñ | Cx∗ = Op(n

1/2),

D̄ = E(
∑n

i=1 x
2
i | Cx∗) =

∑n
i=1 x

∗2
i + nξ2σ2ε = O(n),

D̃ =
∑n

i=1[2ξx
∗
i εi + ξ2(ε2i − σ2ε)] and D̃ | Cx∗ = Op(n

1/2),

where the orders of probability of Ñ and D̃ again follow provided εi has finite 4th moment.
Here Ñ − (N̄/D̄)D̃ =

∑n
i=1 ui has

ui = x∗i εi + ξ(ε2i − σ2ε)−
N̄

D̄
[2ξx∗i εi + ξ2(ε2i − σ2ε)], (B.3)

with E(ui | Cx∗) = 0, E(uiuj | Cx∗) = 0 for i 6= j and under Assumption 2

E(u2i | Cx∗) = σ2ε{x∗2i + 2ξ2σ2ε + D̄−2n2ξ2σ2ε[4ξ
2x∗2i σ

2
ε + 2ξ4σ4ε]− 4D̄−1nξ2[x∗2i σ

2
ε + ξ2σ4ε]},

which is finite again. Making use of limn−1D̄ = limn−1
(∑n

i=1 x
∗2
i + nξ2σ2ε

)
= σ2x∗ + ξ2σ2ε = σ2x

we obtain

limn−1
∑n

i=1E(u2i | Cx∗) = σ2ε{σ2x + ρ2xεσ
2
x +

ρ2xε
σ2x

[4ρ2xεσ
2
xσ

2
x∗ + 2ρ4xεσ

4
x]− 4[ρ2xεσ

2
x∗ + ρ4xεσ

2
x]}

= σ2εσ
2
x

{
1 + ρ2xε + ρ2xε[4ρ

2
xε(1− ρ2xε) + 2ρ4xε]− 4[ρ2xε(1− ρ2xε) + ρ4xε]

}
= σ2εσ

2
x(1− ρ2xε)[1− 2(1− ρ2xε)ρ2xε]

from which the limiting distribution of β̂OLS conditional on Cx∗ , indicated as result (b3), follows.

Corollary 1:
It is obvious that 1 ≥ (1 − ρ2xε) ≥ [1 − ρ2xε(1 + 2ρ4xz)], because ρ

2
xε ≥ 0 and 1 + 2ρ4xz ≥ 1.

From 0 ≤ ρ2xz + ρ2xε ≤ 1 it follows that 1 + 2ρ4xz ≤ 1 + 2(1− ρ2xε)2, thus

1− ρ2xε(1 + 2ρ4xz) ≥ 1− ρ2xε[1 + 2(1− ρ2xε)2] = (1− ρ2xε)[1− 2(1− ρ2xε)ρ2xε].

Theorem 2:
Substituting (2.4) and (3.2) in the estimator for σ̂2ε we find

σ̂2ε ≡ n−1
∑n

i=1
(yi − xiβ̂OLS)2 = n−1

∑n

i=1
ε2i − n−1

(∑n

i=1
xiεi

)2
/
∑n

i=1
x2i (B.4)

for which

plim σ̂2ε = limn−1
∑n

i=1
E(ε2i )−

(
limn−1

∑n

i=1
E(xiεi)

)2
/ limn−1

∑n

i=1
E(x2i )

= σ2ε − (ξσ2ε)
2/σ2x = σ2ε(1− ρ2xε).

So, if ρxε were known, σ̂
2
ε/(1 − ρ2xε) establishes a consistent estimator of σ

2
ε and likewise

β̂KLS(ρxε) for β. The limiting distribution of β̂KLS(ρxε) does not simply coincide with that
of β̂OLS(ρxε, σε/σx) given in (4.1), due to the randomness of the correction term. To derive it,
we substitute (B.4) in (3.2) to obtain (omitting from now on in the notation the dependence
of β̂KLS on ρxε)

β̂KLS − β =
Σixiεi
Σix2i

− ρxε
(1− ρ2xε)1/2

(
Σiε

2
i

Σix2i
− (Σixiεi)

2

(Σix2i )
2

)1/2
. (B.5)
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This has now to be linearized and scaled in order that we can invoke a CLT to its leading
terms. We consider first the major components of (B.5) separately. When deriving result (b1)
from Theorem 1 we obtained

Σixiεi
Σix2i

=
ξσ2ε
σ2x

+
1

nσ2x
Σiui + op(n

−1/2), (B.6)

with ui as defined in (B.1). In similar way, employing the Lemma, we obtain

Σiε
2
i

Σix2i
=
σ2ε
σ2x

+
1

nσ2x
[Σi

(
ε2i − σ2ε

)
− σ2ε
σ2x

Σi

(
x2i − σ2x

)
] + op(n

−1/2).

From (B.6) we find
(Σixiεi)

2

(Σix2i )
2 =

ξ2σ4ε
σ4x

+
2ξσ2ε
nσ4x

Σiui + op(n
−1/2).

Combining the latter two results yields

Σiε
2
i

Σix2i
− (Σixiεi)

2

(Σix2i )
2 =

(
σ2ε
σ2x
− ξ2σ4ε

σ4x

)
+

1

nσ2x
Σi

(
ε2i − σ2ε

)
− σ2ε
nσ4x

Σi

(
x2i − σ2x

)
− 2ξσ2ε
nσ4x

Σiui + op(n
−1/2).

This has the form v = θ+w+op(n
−1/2), where θ = O(1) with w containing three terms and all

are Op(n
−1/2). One can easily obtain by a Taylor expansion (and check by taking the square)

that v1/2 = θ1/2 + 1
2
θ−1/2w + op(n

−1/2). Hence,(
Σiε

2
i

Σix2i
− (Σixiεi)

2

(Σix2i )
2

)1/2
=

σε(1− ρ2xε)1/2
σx

+
1

2nσεσx(1− ρ2xε)1/2
×

Σi[
(
ε2i − σ2ε

)
− σ2ε
σ2x

(
x2i − σ2x

)
− 2ρxεσε

σx
ui] + op(n

−1/2).

Collecting the various components of (B.5) now yields

n1/2(β̂KLS − β) =
1

n1/2σ2x
Σiui

− ρxε
2n1/2σεσx(1− ρ2xε)

Σi[
(
ε2i − σ2ε

)
− σ2ε
σ2x

(
x2i − σ2x

)
− 2ρxεσε

σx
ui] + op(1)

=
1

σ2x(1− ρ2xε)
1

n1/2
Σi[ui −

σxρxε
2σε

(
ε2i − σ2ε

)
+
σερxε
2σx

(
x2i − σ2x

)
] + op(1),

from which we should derive the variance of its Op(1) terms. Substituting (B.1) and employing
Assumptions 2 and 4 we find

V ar[ui −
σxρxε
2σε

(
ε2i − σ2ε

)
+
σερxε
2σx

(
x2i − σ2x

)
]

= V ar{x∗i εi + ξ(ε2i − σ2ε)− ξ
σ2ε
σ2x

[(x∗2i − σ2x∗) + 2ξx∗i εi + ξ2(ε2i − σ2ε)]

−1

2
ξ
(
ε2i − σ2ε

)
+

σ2ε
2σ2x

ξ[(x∗2i − σ2x∗) + 2ξx∗i εi + ξ2(ε2i − σ2ε)]}
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= V ar{(1− ξ2σ
2
ε

σ2x
)x∗i εi +

1

2
(ξ − ξ3σ

2
ε

σ2x
)(ε2i − σ2ε)−

1

2
ξ
σ2ε
σ2x

(x∗2i − σ2x∗)}

= (1− ξ2σ
2
ε

σ2x
)2σ2x∗σ

2
ε +

1

2
(ξ − ξ3σ

2
ε

σ2x
)2σ4ε +

1

2
ξ2
σ4ε
σ4x
σ4x∗

= (1− ρ2xε)3σ2xσ2ε +
1

2
ρ2xε(1− ρ2xε)2σ2xσ2ε +

1

2
ρ2xε(1− ρ2xε)2σ2xσ2ε

= σ2xσ
2
ε(1− ρ2xε)2.

Now invoking a standard CLT yields the amazingly simple result of the Theorem.
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Diagram 1: Factor of σ2ε/σ
2
x to obtain the asymptotic variance for OLS when conditioned on:

C∅ (blue, solid), Cz (red, circles), Cx∗ (green, crosses) respectively, and for IV (magenta, dots);
simultaneity = ρxε; strength = ρxz.
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Diagram 2: Relative asymptotic precision: ARMSE (OLS | C) /ARMSE (IV ) ,
where C = C∅ (blue, solid), Cz (red, circles), Cx∗ (green, crosses).
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Diagram 3: Probability densities for IV (dashed, red) and OLS (solid, blue), both
unconditional, supplemented by their respective asymptotic approximations (dotted)
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Diagram 4: IV (dashed) and OLS (solid) conditional on z (6×raw)
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Diagram 5: IV (dashed) and OLS (solid) conditional on z (6×stylized)
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Diagram 6: IV (dashed) and OLS (solid) conditional on x∗ (6×raw)
The 6 arbitrary realizations had: rzv∗ = -.14, .11, -.03, -.04, .08, -.05 respectively.
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Diagram 7: IV (dashed) and OLS (solid) conditional on x∗ (6×stylized)
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Diagram 8: IV (dashed) and OLS (solid) for n = 1000 and ρxz = .1; unconditional in
the top panel and conditional on x∗ (6×raw) in the bottom panel

34



­1 0 1
0

0.5

1

ρxz = 0.40; n = 100; PCP = 19.05

ρxε
 = 0.00

­1 0 1
0

0.5

1

σx = 3; R = 500000

ρxε
 = 0.30

­1 0 1
0

0.5

1 ρxε
 = 0.50

­1 0 1
0

0.5

1 ρxε
 = 0.70

­1 0 1
0

0.5

1

ρxz = 0.10; n = 100; PCP = 1.01

ρxε
 = 0.00

­1 0 1
0

0.5

1

σx = 3; R = 500000

ρxε
 = 0.30

­1 0 1
0

0.5

1 ρxε
 = 0.50

­1 0 1
0

0.5

1 ρxε
 = 0.70

Diagram 9: Unconditional IV (dashed) and KLS for n = 100 where KLS uses:
ρxε = −.9 (red), −.6 (green) or −.3 (cyan), 0 (blue), .3 (magenta), .6 (yellow), .9 (black)
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Diagram 10: Unconditional IV (dashed) and KLS for n = 1000 and where KLS uses:
ρxε = −.9 (red), −.6 (green) or −.3 (cyan), 0 (blue), .3 (magenta), .6 (yellow), .9 (black)
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