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Abstract

We use the introduction and the subsequent removal of the flash order facility (an action-
able indication of interest, IOI) from the NASDAQ as a natural experiment to investigate
the impact of voluntary disclosure of trading intent on market quality. We find that flash
orders significantly improve liquidity in the NASDAQ. In addition, overall market quality
improves substantially when the flash functionality is introduced and deteriorates when it is
removed. One explanation for our findings is that flash orders are placed by less informed
traders and fulfill their role as an advertisement of uninformed liquidity needs. They suc-
cessfully attract responses from liquidity providers immediately after the announcement is
placed, thus lowering the risk-bearing cost for the overall market. Our study is important in
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I Introduction

The recent proliferation of algorithmic trading, new trading venues, and innovative new trading

products raises many issues about financial regulation and market design. What is the impact of

the financial innovations by trading venues on various market participants and market quality?

What is the role of market transparency in today’s fast-moving markets? These questions have

important implications for market liquidity, price efficiency, overall welfare and the trading

strategies of market participants.

We study how introducing a facility for voluntarily disclosing trading intent affects equity

market quality. To this end, we use the introduction and the removal of the flash order fa-

cility by NASDAQ OMX Group (NASDAQ). Flash orders are marketable orders that match

or improve the national best bid or offer (NBBO) prices quoted at an away-exchange, orders

that would normally be routed to and executed in the away exchange but are posted for up

to 500 milliseconds to market participants in NASDAQ. These orders are essentially actionable

indications of interest (IOIs) that advertise liquidity needs in an attempt to trigger a response

from other traders. An actionable IOI expresses a trading interest with a specified price, side,

and number of shares, and allows the buy-side trader to trade immediately on the indication

directed to them, while submitters wait for the counterparty to hit their IOI (O’Hara, 2010).1

One important feature of flash orders is that the submission of a flash order imposes a

potential delay cost on the submitter in NASDAQ, as opposed to submitting a marketable limit

order that executes immediately in the away exchange. The risk of delay makes flash orders less

attractive for high-frequency traders that try to exploit short-lived information (e.g., statistical

arbitrageurs). Given this feature, we argue that flash orders are more likely to be used by

uninformed traders that aim at minimizing transaction costs. Moreover, if market participants

regard flash orders as coming mainly from uninformed traders, their overall execution probability

and fill rate could be higher than comparable orders and result in lower implicit costs and price

improvement. In the analysis, we consider the pre-routing feature of flash orders as a voluntary

announcement of trading intent. We first attempt to determine who the main users of flash

orders are. We then assess whether the introduction and the removal of the flash order facility

have an impact on overall U.S. equity market quality.

1An IOI functionality, frequently associated with “dark pool” liquidity, is provided mainly by electronic com-
munication networks (ECN) and alternative trading systems (ATS) to facilitate trades among market participants
with large orders and is an important trading outlet for long-term retail and institutional investors.
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To assess whether users of flash orders are informed, we categorize the algorithms that place

flash orders as agency and proprietary (Hasbrouck and Saar, 2010). Then we estimate three

measures aimed at gauging the informativeness of flash orders, or at understanding whether

flash orders are being picked off by better-informed traders. To this end, we first measure the

contribution of trades against flash orders to a stock’s price change (e.g., Barclay and Warner,

1993); second, the adverse selection component for executed trades against flash orders and

normal orders; and third, the temporary and permanent price impact of orders that execute

against flash orders (Hasbrouck, 1991). We find that flash orders are mainly placed by agency

algorithms, suggesting that their main users are large institutional investors or intermediaries

such as brokers.2 These users are more likely to be less informed. In addition, we find that

adverse selection costs associated with flash order executions are substantially lower than those

for non-flash executions, their permanent price impact is very small, and the weighted price

contribution is only 2%. The findings of lower trading costs associated with executed flash

orders indicate that market participants regard these orders as less informative and are willing

to fill them quickly at favorable prices.

To examine the impact of flash orders on overall U.S. market quality, we use two identifi-

cation strategies: (i) a ten-day event study around the introduction and removal of the flash

functionality from the NASDAQ, and (ii) a difference-in-difference analysis over the sample pe-

riod April-October 2009. The event study approach minimizes the impact of any confounding

effects in our analysis. The difference-in-difference analysis and regression allow us to implement

controls and account for potential estimation problems. A comparison of various liquidity and

activity measures around the flash introduction and removal periods shows that overall mar-

ket liquidity (measured by quoted and relative spread, and Amihud illiquidity ratio) improves

(deteriorates) significantly when flash orders are introduced (removed). We find that market

volatility improves (deteriorates) substantially when flash orders are introduced (removed). The

results of the difference-in-difference analysis corroborate those of the event study. The “pseudo”

event and cross-sectional analysis in the robustness section provide additional support for our

findings.

As a framework for interpreting our results, we suggest that flash orders are similar to

sunshine trades as modeled by Admati and Pfleiderer (1991), due to the pre-announcement

characteristic. Sunshine trading is a strategy whereby a trader preannounces to other traders

2See Goldstein, Irvine, Kandel, and Wiener (2009) for details on the institutional brokerage market.
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in the market that he or she will trade a specific number of shares or contracts several hours

(or perhaps longer) before the order is actually submitted. Admati and Pfleiderer (1991) argue

that sunshine trading reduces the risk-bearing costs for both announcers and non-announcers,

because it reduces the uncertainty of the liquidity demand of uninformed traders and the amount

of noise in the price. While we do not explicitly test their model, we argue that if flash orders

are mainly used by uninformed traders, the general model predictions may have some bearing

in the high-frequency trading environment.

A reduction in overall risk-bearing costs may be one possible driving force behind our results,

as can be seen from the micro- and macro-analyses previously described. The results support

the hypothesis that flash orders indicate to market participants that uninformed liquidity is

available at a particular venue so that they can quickly route to it if it represents the best

available trading opportunity. Our findings indicate that advertising liquidity needs through

flash orders successfully attracts liquidity providers and lowers price uncertainty and overall

trading costs in the market. Thus flash orders appear to act as a coordinating mechanism for

supply and demand and for the identification of informationless trades, a finding in line with

the predictions of the Admati and Pfleiderer (1991) model.

While we acknowledge the difference in announcement time between traditional sunshine

trades (hours or days), as defined by Admati and Pfleiderer (1991), and flash orders (half a

second), we suggest that the latter may be viewed as a high-frequency version of the former and

that flash orders may provide a similar function in today’s high-frequency trading environment.

As Angel, Harris, and Spatt (2011) point out, the advancement of electronic technology has

profoundly altered how exchanges, brokers, and dealers arrange most trades. Trading system

performance is measured in milliseconds rather than hours, and high-speed communication net-

works allow faster coordination and execution of trades among traders and better service to

clients. Thus expecting the time for indication of trading interest before order submission to

decrease from several hours in the 1980s to milliseconds in today’s fast trading world is not un-

reasonable. Indeed, the main implications of their model align quite well with our results. Our

results show that not only are submitters of flash orders uninformed but also that, as postulated

in the model, (i) trading costs of announcers are lower when preannouncement takes place than

when it does not; (ii) adverse selection costs decrease with pre-announced orders; (iii) market

liquidity and price efficiency improve with preannouncement; and (iv) preannouncement affects
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price volatility.

An important and immediate application of our results is to the on-going policy debate on

the withdrawal of the flash order practice. In September 2009, the Securities and Exchange

Commission (SEC) proposed banning the use of flash orders in both U.S. equity and option

markets. However, the SEC has not yet banned the use of flash orders, nor has it made any

decisions on restricting dark pools and IOIs.3 Our work provides the first analysis of the effect of

flash orders in particular, and actionable IOIs in general, on market quality and may be useful

for guiding both the debate and the final decision of the SEC or other European and Asian

regulators considering these issues.

This paper proceeds as follows. Section II positions our paper with respect to the existing

literature. Section III provides a history and discussion of flash orders. Section IV introduces

the data and presents descriptive statistics on flash orders. Section V investigates who submits

flash orders and whether they are associated with informed trading. Section VI discusses the

results of the relation between flash orders and market quality, while Section VII provides further

analysis. Section VIII concludes.

II Literature Review and Contribution

The role of market transparency on market quality is ambiguous and complex, as there is

a tradeoff between the two.4 On the one hand, an increase in transparency leads to lower

information asymmetry, which reduces adverse selection costs. On the other hand, transparency

exposes liquidity traders to undue risk, which can reduce market liquidity, as liquidity providers

are less willing to provide free options to the market in the form of limit orders. Voluntary pre-

trade disclosure retains the benefits of lower information asymmetry and reduces the free option

problem by allowing better coordination between liquidity providers and uninformed liquidity

demanders.

The recent emergence of actionable IOIs in U.S. equity and option markets reopens the debate

on the benefits and costs associated with voluntary pre-trade disclosure. Admati and Pfleiderer

(1991) theoretically show that trading costs can improve when liquidity demanders preannounce

3See http://www.bloomberg.com/news/2011-01-21/sec-dark-pool-rule-may-not-arrive-in-11-NASDAQ-s-
hyndman-says.html?cmpid=yhoo.

4The literature on market transparency is vast and is often classified into pre- and post-trade transparency.
See O’Hara (1995), Madhavan (2000) and Biais, Glosten, and Spatt (2005) for detailed discussions. A list of
theoretical models on transparency includes Biais (1993), Madhavan (1995, 1996), Pagano and Röell (1996),
Bloomfield and O’Hara (2000), Baruch (2005), and Moinas (2006).
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their liquidity needs, i.e., “sunshine trading.” Sunshine trading is beneficial because it allows

for the coordination of liquidity supply and demand and the identification of informationless

trades. Pre-announcers indicate to the counterparty that they are uninformed by voluntarily

disclosing their order, thus reducing the cost of adverse selection.5 In addition, sunshine trading

reduces the risk-bearing costs for both pre-announcers and non-announcers, as it reduces the

uncertainty of the liquidity demand of uninformed traders and the amount of noise in the price.

Our paper contributes to the literature on the impact of pre-trade transparency on market

quality. In an experimental study, Flood, Huisman, Koedijk, and Mahieu (1999) find that

transparency reduces trading cost and price efficiency, while Bloomfield and O’Hara (1999) in a

different experiment find that transparency increases price informational efficiency but widens

spreads. More recently, the empirical work of Boehmer, Saar, and Yu (2005), Hendershott and

Jones (2005) and Madhavan, Porter, and Weaver (2005) uses the introduction or availability of

information about the limit order book, as an indication of pre-trade transparency, and finds

contradictory results. The first two show that the availability of quote information is associated

with increased market quality in the U.S.; the latter finds that execution costs increase with pre-

trade transparency in the Toronto Stock Exchange.6 Foucault, Moinas, and Theissen (2007) find

a significant improvement in liquidity after the switch of Euronext Paris to an anonymous limit

order book. While prior works focus on the impact of mandatory pre-trade transparency and of

limit order book information on market quality, little work focuses on how pre-trade disclosure by

uninformed liquidity demanders affects the limit order exposure strategies of liquidity providers

and overall trading costs. Our paper helps to fill this gap by studying the role of voluntary

pre-trade disclosure in a limit order book market, and we align our finding with the theoretical

model of Admati and Pfleiderer (1991).7

In a related paper, Hasbrouck and Saar (2009) categorize limit orders that are canceled

within two seconds of submission as fleeting orders, and investigate the new economic role of

limit orders. An important insight from their work is that a new “equilibrium” has emerged in

5However, uninformed liquidity demanders might not always preannounce their trading intentions.
Schoeneborn and Schied (2009) model the liquidity needs of traders with short trading horizons and argue that liq-
uidity demanders’ decision on whether to engage in sunshine or stealth trading depends on the expected behavior
of other market participants, who might either provide liquidity or predate them.

6Bessembinder, Maxwell, and Venkataraman (2006), Goldstein, Hotchkiss, and Sirri (2007), and Edwards,
Harris, and Piwowar (2007) investigate the impact of transparency in the corporate bond market and find that
transparency improves market quality.

7Dia and Pouget (2011) study the impact of pre-opening orders for eight stocks listed in the West African
Bourse, which operates three times a week, and liken pre-opening orders to sunshine trading. They find that
pre-opening large orders are not cancelled, pre-opening prices reveal information before trading hours, and large
volumes are traded without significant price movements in this infrequent and illiquid market.
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today’s trading environment due to technological advancements: a more active trading culture

and market fragmentation that transform the market from one that merely posts visible limit

orders to one that actively searches for liquidity. With a detailed data set at the order level

and on actionable IOI, we find supporting evidence consistent with their suggestion that traders

adopt high-frequency order submission strategies that signal liquidity demands in their search

for liquidity.

This paper is also closely related to the literature on order exposure strategies. The first

stream of the literature focuses on trader’s choice between limit and market orders. The aggres-

siveness and number of limit orders is related to the depth and spread of the limit order book

(Biais, Hillion, and Spatt, 1995; Griffiths, Smith, Turnbull, and White, 2000; Ranaldo, 2004).

Furthermore, Ranaldo (2004) finds that limit order trades are more aggressive with increased

recent volatility, while Handa and Schwartz (1996) and Ahn, Bae, and Chan (2001) find that

market depth increases with higher transitory volatility.8 The second stream of the literature

investigates the use of hidden orders. Harris (1996, 1997) provide the economic rationale behind

the use of hidden orders. The empirical literature suggests that hidden orders reduce implicit

transaction costs (Bessembinder and Venkataraman, 2004) and do not affect trading volume

(Anand and Weaver, 2004), but that they obtain worse execution quality than visible limit

orders (Bessembinder, Panayides, and Venkataraman, 2009).9 While prior studies investigate

order exposure strategies through regular and hidden limit orders, we examine the use of flash

orders and compare their execution quality to that of limit orders. Our analysis shows that order

exposure through actionable IOIs, which are more likely to be less informed, attracts trading

interest from participants and results in better execution quality. Thus we provide insights into

the order submission strategies of impatient uninformed liquidity takers.

More broadly, this paper contributes to the literature on voluntary disclosure in accounting

and finance. Several papers show that voluntary disclosure reduces information asymmetry,

which consequently reduces the cost of capital (Diamond and Verrecchia, 1991; Coller and Yohn,

1997) and facilitates externally financed firm growth (Khurana, Pereira, and Martin, 2006)

and that voluntary disclosure of firm specific information allows better monitoring by investors

and ensures that managers undertake optimal investments (Fama and Jensen, 1983; Diamond

and Verrecchia, 1991; Bushman and Smith, 2001; Khurana et al., 2006). Consistent with this

8Chakravarty and Holden (1995), Bae, Jang, and Park (2003), Anand, Chakravarty, and Martell (2005), and
Ellul, Jain, Holden, and Jennings (2007) also study the choice between market and limit orders submissions.

9Hasbrouck and Saar (2004) find that traders use fleeting orders in Island ECN to sweep for hidden orders.
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literature, we show that voluntary disclosure of trading intention reduces the cost of asymmetric

information and facilitates the coordination of the supply and demand of liquidity among traders.

This paper also contributes to the literature on dark pools and algorithmic trading. In

a recent theoretical paper, Buti, Rindi, and Werner (2010) show that IOIs that inform some

traders on the state of liquidity in dark pools can draw orders away from the transparent

market. However, they also show that IOIs provide information about dark pool liquidity,

which increases the welfare of both informed and uninformed large traders. Angel, Harris,

and Spatt (2011) provide an excellent overview about equity trading in the 21st century and

liken IOIs to Craigslist advertisements because they help coordinate the supply and demand of

liquidity. They argue that IOIs lower the transaction cost of retail and institutional investors

at the expense of informed traders. Understanding the characteristics of IOIs and how traders

use IOIs is important to better understanding dark pools. Despite its importance, no empirical

work exists on IOIs due to data unavailability. Our work provides a detailed illustration of the

characteristics, users, and trading strategies related to actionable IOIs. As actionable IOIs are

mostly used by algorithmic traders in the NASDAQ, our results also provide some insights into

trading strategies used by algorithmic traders.

III Flash Orders: Description, History, and Discussion

A Description

Flash orders, as implemented by the NASDAQ, are actionable IOIs that expose submitted

marketable orders at/or improving the NBBO, which is quoted at another trading venue, for a

predefined period to only its participants. Therefore, a “flash” order may execute locally at the

NBBO or better, while normally it would have been routed for execution to the other exchange

offering the NBBO. Orders can only be flashed when a new order message is submitted or an

order is updated; thus the same order can be flashed more than once, e.g. at submission and

when updated.

NASDAQ implemented two types of flash orders: NASDAQ-Only Flash Orders (90%) and

Flash Enhanced Routable Orders (10%) (percentages from NASDAQ). After attempting to

sweep the NASDAQ book, a NASDAQ Only Flash Order allows the order up to 500 milliseconds

additional exposure to market participants and vendors via a NASDAQ direct data-feed interface

at the most aggressive possible price that would not result in a trade-through on the NASDAQ.
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Executed flashed orders receive a rebate. Orders that remain marketable after the flash period

are deleted. Orders that become non-marketable and that do not execute in the flash period can

be cancelled or re-inserted in the limit order book (see following numerical example).10 After

attempting to sweep the NASDAQ book, Flash Enhanced Routable Orders allow the order up

to 30 milliseconds additional exposure to market participants and vendors in NASDAQ before

being routed away. The market could not distinguish between the two upon submission, and

neither can we in our data.

Description NBBO Results

1 NASDAQ-only order arrives to Buy 2,000 @9.55 9.54x9.55 Order attempts to execute to the maximum possible on the NAS-

DAQ book

2 500 shares are executed at 9.55 @ NASDAQ 9.54x9.55 Firm pays taker fee

3 Order is displayed for up to 500 milliseconds 9.54x9.55 NASDAQ displays a Buy order of 1,500@$9.55 via ITCH

4 1,000 share executed on NASDAQ during flash period 9.54x9.55 Firm receives full liquidity provider rebate for 1,000 shares

5 Remaining shares could be marketable or non-

marketable

6 If remaining 500 shares are marketable 9.54x9.55 Order cancels back to customer after flash period expires

7 If remaining 500 are non marketable 9.55x9.56 Shares can be deleted by customer or re-enter NASDAQ book

B History

Given their short duration, flash orders are not required for inclusion in the public consolidated

quotation data according to paragraph (a)(1)(i)(A) of Rule 602 (quote rule) of Regulation Na-

tional Market System (NMS).11 The SEC under Chairman William Donaldson first approved

the use of flash trading systems in 2004 for the options market, Boston Options Exchange.

Flash orders were introduced when options trading took place mainly on exchange floors. As

the floor quotes that constituted the NBBO were updated infrequently and could be unreliable,

the purpose of flash orders was to increase the speed and the likelihood of filling an order at the

NBBO.

Flash trading, originally an obscure practice in the options market, was introduced in the

equity market on January 27, 2006, by Direct Edge.12 Direct Edge offered the “enhanced

liquidity program, ELP,” whereby an IOI can be sent to the liquidity providers participating in

their network (typically brokers and high-frequency proprietary traders), if an order cannot be

10A marketable order is any buy (sell) limit order with a limit price that is greater (less) than or equal to the
current ask (bid) price.

11Regulation NMS, approved by the SEC is a series of initiatives for promoting fair and efficient price formation
across U.S. financial markets through competition among market participants. Rule 602 requires exchanges to
make their best bids and offers in U.S.-listed securities available in the consolidated quotation data that is
disseminated to the public. Paragraph (a)(1)(i)(A) of Rule 602, however, excludes bids and offers (communicated
on an exchange) that are executed, cancelled, or withdrawn immediately after communication (less then 500
milliseconds).

12Direct Edge was an ECN at the time but is currently an equity exchange.
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matched on Direct Edge’s book. The ELP order can be routed or canceled if there is still no

match, according to the users’ instructions.

In response, the NASDAQ and BATS Global Markets (BATS) introduced their own flash

programs, where orders are flashed to their members before getting routed to rival platforms,

to protect their market share. On June 4, 2009, BATS introduced BATS Optional Liquidity

Technology (BOLT), which included an optional display period during which a marketable order

could be displayed to its users (and market data recipients) before being routed, canceled, or

posted to the BATS book. The NASDAQ introduced Flash Orders on June 5, 2009. According

to Roseblatt Securities, executed flash orders constituted 3% of daily traded volume in the U.S.

market for the period June-August 2009, a market share as large as the AMEX or the Boston

Stock Exchange at the time. The NYSE is the only major market center that has not offered

any enhanced liquidity provider program or flash-order functionality.13

Given the flash trading controversies and political pressure, both the NASDAQ and BATS

voluntarily discontinued support for flash orders on September 1, 2009, pending SEC review.

DirectEdge also withdrew ELP in March 2011. However, IOIs and actionable IOIs continue to

be heavily used by dark pools both in the U.S. and Europe. On September 18, 2009, the SEC

proposed the elimination of the flash order exception from Rule 602 of Regulation NMS. To date

no decision has been made.

C Discussion and Regulatory Concerns

Since mid-2009, there have been wide media coverage and intense debates by regulators, in-

dustry analysts, and commentators over the impact of flash trading on financial markets and

participants (see a summary of arguments for and against in Table A1 in the Appendix).14 The

first concern is that “flashing of order information could lead to a two-tiered market in which

the public does not have access, through the consolidated quotation data streams, to informa-

tion about the best available prices for U.S.-listed securities that is available to some market

participants through proprietary data feeds.” Our data does not allow us to address this concern

about the two-tiered market.

13The NYSE has vehemently protested against the trading practices of their competitors, especially those
related to flash and dark pool trading. The NYSE’s concerns and complaints induced New York Senator Charles
Schumer to request the SEC to ban flash trading and to increase monitoring of dark pool trading. Any ban or
restriction of the flash functionality and provision of dark pool liquidity may help the NYSE to win back market
share in the U.S. equity market.

14See SEC Release No. 34-60684, File No. S71-21-09, Elimination of Flash Order Exception from Rule 602 of
Regulation NMS.
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The second concern is that high-speed trading firms may use flash orders, and that flash

orders may significantly decrease incentives for market participants, who do not have access

or the technology to use flash orders, to display their trading interest publicly. However, the

impact of flash orders on liquidity provision is unclear. Manual flash orders have long been prac-

ticed on floor-based exchanges, where brokers announce orders to the floor crowd for potential

price improvements. Harris and Namvar (2011) highlight that such actions from floor traders,

“flash order system on the floor,”are to seek additional liquidity from other participants in the

exchange. Thus, liquidity might even improve rather than decrease. Flash orders in electronic

markets were supposed to replicate this auction market process. This view is supported by

the International Security Exchange, which argues that flash orders attract more liquidity by

tapping into undisplayed trading interest, from traders concerned about pick-off risk.

Although our analysis cannot differentiate the display of trading interest or liquidity provision

for market participants in all the U.S. exchanges, our results show that market quality for

all market participants increases with the availability of flash-like functionality. This finding

supports the view that flash orders, much like shouting orders on the floor, attract undisplayed

trading interests and improve liquidity. Our findings have important policy implications because

they provide detailed empirical evidence that might resolve the debate on at least one of the

regulatory concerns about flash orders.

IV Data and Descriptive Statistics

A Data

The main data source used in this paper consists of the complete set of quotes and trades in

the NASDAQ system for the sample period from April 1 through October 31, 2009. The flash

order period covers June 5 through August 31, 2009. The data is obtained from NASDAQ

ITCH-TotalView.15 We retain stocks for which information is available in Trades and Quotes

(TAQ), Center for Research in Security Prices (CRSP), and Compustat. Following the literature,

we use only common stocks (Common Stock Indicator Type=0), common shares (Share Code

10 and 11), and stocks that do not change primary exchange, ticker symbol, or CUSIP over

the sample period (Hasbrouck, 2009; Goyenko, Holden, and Trzcinka, 2009; Chordia, Roll, and

Subrahmanyam, 2000). We also exclude stocks that exhibit a price lower than $5 and higher

15The intra-day data in which flash orders can be identified is available from June 10, 2009.
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than $1,000 or market capitalization less than $1,000,000 over the sample period. Finally, we

exclude stock-dates with reported negative bid-ask spreads and trading volume equal to zero.

As a result we are left with a sample of 1,867 stocks and 265,000 firm/day observations. Because

some of the stocks in our sample are affected by the Troubled Asset Relief Program (TARP),

for robustness we also carry out our analysis with a subsample that excludes all financial stocks

(SIC 6000-7000) and non-financial stocks that received TARP funds.

We employ the complete dataset of new order messages, updates, cancelations, deletions,

executions, hidden orders, and crossing-network orders to build the complete limit order book

(LOB) message by message for 188 stocks (10% of our sample) following Kavajecz (1999). We

randomly select the LOB stocks from portfolios representing different industry, size, book-to-

market, and liquidity characteristics. Panels A and B of Table I show that the LOB sample is

a good representation of the full data sample. Limiting the number of stocks is necessary for

computational purposes, because we have to process more than 600 million observations per day.

As flash orders cannot be posted during pre- and post-trading hours, all statistics are calculated

within the trading hours 9:30-16:00 Eastern Standard Time.

Panel C of Table I presents the main characteristics of the LOB. The size of executed flash

orders is larger than other orders. Following Goldstein and Kavajecz (2000) we calculate the

cumulative depth as the sum of all shares available at a particular price or better on the LOB,

at successively distant prices. The table presents depth at 5 and 10 levels away from the best

quotes. On average there are 4,610 and 9,486 shares in the first five and 10 levels of the book,

respectively. On average, the cumulative depth on both the bid and ask side increases by 794

shares per tick for the first five levels of the LOB.

To investigate the impact of flash orders on the U.S. equity market quality, we use end-of-day

daily data from CRSP. We employ two measures of spread: quoted and relative. The quoted

spread measures the difference between the best prevailing ask and bid for a stock, i.e. the

absolute “round trip” cost of trading a small amount of shares at the inner quote. The relative

spread is the quoted spread divided by the bid-ask midpoint. To measure price impact at the

market level, we calculate the Amihud (2002) illiquidity ratio (ILR), which is closely related

to Kyle’s lambda. ILR is calculated as |r|/VOLUME, where |r| is the daily absolute return

and VOLUME is the daily total dollar volume (in million $). Markets with lower short-term

volatility are deemed more efficient, as high depth at the inner quotes makes the trade prices less

11



Table I
Sample Characteristics

The table shows the daily and intra-day sample characteristics. Price is the stock price in $, Volume is daily
trading dollar volume in $ millions, Trades is the daily number of trades in the NASDAQ, Market Cap. is
the market capitalization in $ millions, Spread is the bid-ask spread, ask price - bid price in $, Rel. Spread is
Spread/((ask+bid)/2) in %, ILR is the illiquidity ratio |return|/dollar volume for a million shares, Volatility is
return2. Panel A presents the statistics for 1867 stocks in the sample over the period April 1, 2009, to October
31, 2009. Panel B presents the statistics for the 188 stocks used for rebuilding the limit order book and used for
the intraday analysis. Panel C presents the intra-day characteristics of the limit order book stocks. Flash Trade
Size is the average size of trades for flashed orders, Trade Size is the average size of trades for non-flash orders,
Slope 5 and 10 are the slopes for the first five and ten levels of the book, respectively, and Depth 5 and 10 are
the cumulative number of shares standing in the first five and ten levels of the book, respectively. All variables
are defined in Table A2.

Price Volume Trades Market Spread Rel. ILR Volatility
Cap. Spread

Panel A. CRSP Daily Sample

Mean 27 54 5,450 4,893 0.083 0.489 0.2962 0.0012
Median 21 8 1,130 910 0.020 0.109 0.0016 0.0002
25th 14 2 260 324 0.010 0.057 0.0003 0.0000
75th 33 37 2,809 2,809 0.050 0.240 0.0010 0.0009
St. Dev. 29 176 15,191 17,202 0.234 1.583 2.9206 0.0051

Panel B. Limit Order Book Sample

Mean 29 52 4,658 4,310 0.102 0.589 0.3583 0.0011
Median 20 7 1,042 708 0.030 0.122 0.0020 0.0002
25th 13 1 18 255 0.010 0.064 0.0004 0.0000
75th 30 27 3,500 2,258 0.060 0.280 0.0143 0.0009
St. Dev. 47 208 10,570 13,288 0.269 1.770 3.0870 0.0088

Panel C. Intraday Sample Characteristics

Flash Trade Trade Slope 5 Slope 10 Depth 5 Depth 10
Size Size

Mean 202 106 794 630 4,610 9,486
Median 145 96 169 167 2,069 5,767
25th 101 83 45 47 1,433 3,954
75th 226 108 564 568 3,666 9,363
St. Dev. 247 184 1,974 1,358 8,636 12,748
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volatile. We calculate short-term volatility as returns squared. We censor observations where

spread and ILR ratio are at the 99th percentile of the distribution. The censoring is particularly

important for ILR, which exhibits large outliers when trading volumes are low.

B Descriptive Statistics for Flashed Orders

First, we compare and contrast the usage and execution performance of flash orders relative to

regular limit orders. We then present some general statistics on the cross-sectional characteristics

of flashed stocks, where we investigate how flash intensity is related to stock characteristics such

as market capitalization and trading volume. Finally, we perform an intra-day event study in

message time around flash events to examine what happens to spreads and depth around flash

order submissions and executions on NASDAQ.

Characteristics of flashed orders

Panel A of Figure 1 presents an initial overview of the flash order activity during the flash

period. The figure shows the daily total number of orders that are flashed at least once. The

daily number of submitted flash orders is about four million and it constitutes about 5% of the

total number of submitted orders on the NASDAQ. Panel B of Figure 1 presents the intra-day

variation of flashed orders at 5-minute intervals across the trading day. There is a distinct

pattern in the submission of orders that are flashed. Orders are flashed less frequently at the

beginning of the day, less than 1% of total orders, and increase up to 4% at the end of the day.

Panel A of Table II presents an overview of the type of orders that are flashed and what

happens to these orders. Five percent of all unique orders in the NASDAQ are flashed at

least once, and 87% of these are flashed upon initial submission rather than during an update.

Fourteen percent of the orders that are flashed at least once are executed, compared to 4% of

non-flashed orders. The statistics suggest that non-flashed orders are executed proportionally

less frequently than flashed orders. In addition, the average daily proportion of flash orders that

are executed to total executed orders is 16%. Even though flash order submissions are a small

proportion (5%) of total submitted orders, they constitute a substantial part (16%) of executed

orders on the NASDAQ.

To measure execution quality, we compute fill rates for flash and non-flash aggressive limit

orders (at or improving the best price). Fill rates are defined as the percentage of original order
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Figure 1
Flashed Orders at Nasdaq

The figure presents the time series evolution of orders that are flashed at least once. Panel A presents the daily
number of flashed orders. Panel B presents the intra-day variation in flashed orders submissions accumulated at
the 5 minute interval.

Panel A: Daily

Panel B: Intraday - 5 minute interval
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Table II
Order Submission and Execution Quality

The table shows statistics on the daily average number of orders submitted at the NASDAQ and their execution
quality. Panel A shows statistics related to the daily average of orders that involve at least one flash, divided
into two categories, orders flashed at submission (Flash Order Submission) and orders flashed during an update
(Flash Order Update). Flash Order Total is the total number of orders that are flashed at least once. The average
number of daily non-flash orders is Non-Flash Orders, and the average total number of daily orders is Total
Orders. Flash Order % presents the share of the Total Orders (New, Executed, or Deleted) that are flashed. %
Executed is the percentage of submitted orders that are executed. Panel B shows the fill rates during the flash
period split into Flash and Non-Flash orders, and the difference in fill rates at the introduction and removal of
flash orders. Introduction is the difference in fill rates for the first five days of flash introduction and five days
before (post-pre), and Removal is the difference between five days after the removal of flash and five days prior
(post-pre). Panel C shows the average composition of the 14% of executed flash orders. % is the proportion of
executed flashed orders executed at submission, executed after updates, or executed right after entering the book.
Later execution are flashed orders executed sometime after entering the LOB. ∗,∗∗,∗∗∗ represent significance at
the 10, 5, and 1% level, respectively.

Panel A. Order Submissions

Flash Order Flash Order Flash Order Non-Flash Total
Submission Update Total Orders Orders Flash Order %

No. Orders 3,228,724 499,140 3,727,864 64,581,142 68,309,006 5%
87%

Executed 350,163 166,023 516,187 2,714,660 3,230,847 16%
68%

Deleted 2,878,561 333,117 3,211,677 61,866,482 65,078,159 5%
% Executed 14% 4% 5%

Panel B. Fill Rates

Flash Non-Flash Introduction Removal
Mean 9.17% 3.85% -1.00%*** 0.06%

Panel C. Flash Executions

Mean %
Execution at submission 3.40 24.54
Execution at update 0.77 5.59
Execution right after entering book 7.63 55.16
Later execution 2.04 14.71
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volume that is executed (Harris and Hasbrouck, 1996). Panel B of Table II shows that the

average fill rate of orders that are flashed at least once is 9.17% and is much higher than that

of non-flash aggressive limit orders during the flash period. The low fill rates are mainly due to

quotes moving away from the posted price or order cancelations. The difference in fill rates for

non-flash orders before and after the introduction and removal of the flash functionality from

NASDAQ, using a ten-day event window, suggests that the average fill rate of non-flash orders

decreased during the flash period. These results indicate that users of flash orders get better

execution quality than non-users, and execution quality for non-users deteriorates as in Admati

and Pfleiderer (1991).

Panel C of Table II presents statistics on when flash orders are executed. The largest part

of executions occurs right after flash orders are entered into the LOB. Of the 516,187 executed

flashed orders, 30% are executed during the flash period, 24% during an order submission, and

6% during an update. This finding is consistent with Angel et al. (2011)’s suggestion that IOIs

are similar to Craigslist advertisements of available uninformed liquidity.

Cross-sectional characteristics of flashed stocks

Table III provides cross-sectional descriptive statistics on various stock characteristics (price,

dollar volume traded, number of trades, market capitalization) and market quality measures

(quoted and relative spreads, ILR, and volatility) within terciles based on the number of flash

messages. The same stock might be placed in different terciles in different days, as stocks do

not have the same number of flashes every day. Panel A of Table III provides statistics based

on stocks sorted by the daily number of flash messages. Results in Panel B are based on stocks

sorted by the average number of flash orders across the flash period. The second measure is

important because we use it to sort stocks in the pre- and post-flash periods.

Panels A and B of Table III show a monotonic improvement in the liquidity variables from

the first to the third tercile, when sorted according to the number of flash orders. Stocks that

are most frequently flashed are also stocks with the highest market capitalization, the highest

numbers of trades and traded volume, and the lowest spreads and volatility.16 Table A4 in the

Appendix presents the liquidity characteristics for stocks double sorted by market characteristics:

volume and market capitalization, and flash messages. The same pattern of higher liquidity for

the most flashed stocks emerges.

16The same results hold when TARP stocks are excluded (see table A3 in the appendix).
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Table III
Flash Stock Characteristics

The table shows the characteristics of the stocks according to the number of daily flashed orders (Panel A), and
the mean number of flashed orders over the sample period (Panel B). Tercile 1 represents the stocks with the
least flashes (at least 1), while tercile 3 the stocks with most flashes. There are approximately 620 stocks in each
tercile. All variables are defined in Table A2.

Tercile Volume Trades Size Spread Rel. Spread ILR Volatility Flash

Panel A. Number of Daily Flashed Orders

1 (low) 2 578 410 0.1714 1.088 0.72444 0.00129 13
2 20 2,977 1,825 0.0366 0.139 0.03753 0.00098 185
3 (high) 140 21,066 13,734 0.0191 0.076 0.00410 0.00071 10172

Panel B. Period Mean Flashed Orders

1 (low) 2 497 348 0.1956 1.315 1.01489 0.00148 20
2 22 3,413 1,829 0.0328 0.114 0.01621 0.00110 272
3 (high) 158 22,852 14,372 0.0203 0.083 0.00258 0.00096 10414

Intra-day patterns around flash order submissions and executions

Flash orders are used when the best NASDAQ quotes are at or worse than the NBBO.17 We

first construct the NBBO for the 188 LOB stocks using the TAQ database following Hasbrouck

(2010).18 Then we merge the NASDAQ LOB data with the NBBO. The NBBO is fixed over

each second, while the quotes at the NASDAQ may move within the second. To examine the

status of the NASDAQ spread relative to the NBBO spread at points in time when there is

flash activity, we construct a distance measure, the SRATIO, the ratio of the local spread to the

NBBO spread minus one for each message. Thus the SRATIO measures the relative deviation

of the NASDAQ spread from the NBBO spread, e.g., when SRATIO>0 the NASDAQ spread is

greater than the NBBO spread.19

We first investigate how the SRATIO changes around new flash order submissions. To do so,

we set up an event study around flash order submissions with an event window of 50 messages

before and after the submission. Thus the submission of the flash order is centered at message

17If the volume at the best quotes is low, flash orders that are motivated by liquidity needs may also occur
when the NBBO is at the NASDAQ.

18TAQ data is reported in one second intervals, and the NASDAQ ITCH data is time stamped at the millisec-
ond. While in TAQ there are quotes from several exchanges at each second, we do not know at which millisecond
the quote is received. Thus we use the best quotes across all exchanges for each second as our proxy for the
prevailing NBBO for each second.

19As the best prevailing NBBO quotes are sampled at the one-second frequency while the best NASDAQ quotes
are sampled at the millisecond frequency, the NASDAQ spread can become lower than the NBBO spread within
the second. The average clock time for the event window is 16.5 seconds.
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Figure 2
Flash Order Submissions

The figure shows the cross-sectional average SRATIO for 50 messages before and after the flashed order events

for 188 stocks. The SRATIO is calculated as the NASDAQ spread (ask-bid) divided by the best prevailing NBBO

spread (ask-bid) minus one. The x-axis is the number of messages relative to the flashed order submission, which

is the event of interest centered at zero, and the y-axis shows the SRATIO. The SRATIO for buy orders is the

dotted line and for sell orders is solid line, and the number of flash orders is in bars, (secondary y-axis).
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number 0. Only events in which flash orders are not preceded by other flash orders in the

pre-event window are used.20

Figure 2 shows the change in the SRATIO surrounding flash order submissions to buy and

sell. The bars show the total number of flash submissions (buys+sells) during the event window.

Figure 2 shows that the SRATIO increases prior to the flash event at time 0 on the x-axis. The

rate of flash order submissions decreases after the initial flash, as the NASDAQ spread moves

closer to the NBBO. As long as the NASDAQ quotes are worse than the NBBO, one would

expect flash interest. The figure shows a very similar pattern around flash orders to buy and to

sell. Overall, there is an improvement in the NASDAQ spreads right after flash orders. Flash

orders appear to make the local market more efficient, and reduce the spread at the NASDAQ

and the spread gap with the national market.

We also examine what happens around flash order executions. We perform a similar event

study as before, but instead of conditioning on new flash order submissions, we now condition

on flash order executions. As previously discussed, a flash order, because it supplies liquidity,

20We also investigate the case when there are no flash orders subsequent to the initial flash order, and the
results (available upon request) do not change qualitatively.
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Figure 3
Flash Order versus Marketable Limit Order Executions

The figure shows NASDAQ liquidity around the execution of flashed and marketable limit orders for 188 stocks.
Event time 0 is the execution time, and the event window is 50 messages before and after the execution. Panel
A shows the change in cumulative depth (the total depth of the limit order book) around the execution of the
two types of orders. The y-axis portrays the average cumulative % change in the total depth of the limit order
book. Panel B shows the NASDAQ bid-ask spread (ask-spread) around the execution of the two types of orders:
flashed orders and marketable limit orders. The y-axis shows the average NASDAQ bid-ask spread.
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is very different from a marketable limit order. We compare the NASDAQ spread and changes

in the full depth of the LOB around the execution of each of these types of orders. In the LOB

set-up, the main difference between a marketable limit order and a flashed order is that the

marketable limit order executes immediately at the best prevailing quote, while a flash order

fishes for liquidity at the NBBO quotes without the certainty of execution.

Panel A of Figure 3 shows the cumulative change in total depth of the LOB for marketable

limit order executions and flash order executions. When a marketable limit order executes, the

total depth of the LOB decreases immediately, whereas when a flash order executes the depth

in the LOB is replenished. Panel B of Figure 3 shows the average spread around marketable

limit order and flash order executions. Marketable limit orders arrive when the spread is low
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and the spread is improving prior to their submission, consistent with liquidity takers consuming

liquidity when the spread is low. The spread increases immediately after marketable limit orders

execute as the best level(s) of the LOB is taken out. In contrast, a flash order arrives when the

bid-ask spread is large, and when it executes the spread improves substantially, i.e., liquidity is

filled.

These two figures show that flashed orders act as a call for liquidity and result in the coor-

dination of supply and demand, as posited by Admati and Pfleiderer (1991). The average price

improvement that executed flashed orders get, compared to the best prevailing quote in the

NASDAQ, is 0.09% both for buys and sells. The improvements after flash order executions are

due to competitive liquidity providers posting quote improving limit orders. Market participants

choose to flash their orders for the possibility of a price improvement, quicker execution, getting

paid a maker fee, and avoiding paying the routing fees.

V Flash Orders: Who and Why?

Traders must always decide on their order submission strategy: when and where to submit a

market or a limit order. Traders who submit market orders demand liquidity (takers) and those

who submit limit orders are liquidity suppliers (makers). The decision on one’s order submission

strategy depends on the trading problem at hand. Traders who face early deadlines (rebalancing

or liquidity needs) or those with short-lived private information will be more impatient and are

more likely to submit market orders or aggressive limit orders. We can consider these two types

as impatient uninformed liquidity traders and impatient informed traders. When the deadline

is distant and the spread is wide, liquidity traders are often patient and submit limit orders. As

the deadline draws nearer and their orders are not filled, they become impatient and may resort

to using more aggressive limit orders and market orders to assure execution. Thus, liquidity

traders are liquidity makers when they are patient and takers when the deadline to invest or

divest due to exogenous cash flow needs draws nearer (see Harris, 1998).

Although informed traders have private information about the underlying value of an asset,

this information is often transitory. Thus they can be impatient as they strive to exploit their

information superiority before the information becomes common knowledge. For this reason,

informed traders with short-lived information are more likely to use market orders to trade

quickly. Depending on the deadline of their information superiority, they may also use limit

20



orders if the spread is wide and the deadline is distant. Thus, informed traders can be liquidity

makers as well as takers.

Actionable IOIs are orders that are more aggressive than limit orders but less aggressive

than market orders, i.e., they are not ensured immediate execution. As actionable IOIs reveal

the submitter’s trading needs and intention, the response by other liquidity suppliers to IOIs

depends critically on whether the IOI submitter is perceived to be informed or uninformed.

If uninformed liquidity demanders submit actionable IOIs, these IOIs will trigger responses

from liquidity suppliers and will execute with lower transaction costs because of lower adverse

selection. Admati and Pfleiderer (1991) argue that preannounced orders, like actionable IOIs,

are likely to be informationless orders because of the potential costs of preannouncement for an

informed trader. As flashing an order entails a delay in the execution of the order, this delay

cost is likely to be higher for informed traders than for liquidity traders, e.g., because short-lived

private information might become common knowledge during the execution delay. Moreover,

flashing reveals the private information of informed traders. If other traders acquire information

through observing flash orders, the trading profit of informed traders will be severely reduced.

However, flashing of trading intentions by uninformed liquidity demanders are unlikely to be

front-run.21

To understand who uses flash orders and the information content of flash order submitters

and their counterparties, we employ different methodologies. First, we examine what type of

algorithms employ flash orders in their strategies. We do so by categorizing algorithms into

agency and proprietary in the spirit of Hasbrouck and Saar (2010) and by looking at the occur-

rences of flash orders within each type. Second, we employ three measures for understanding

whether flash orders are associated with private information events: the contribution of a stock’s

price change due to trades against flash orders (see Barclay and Warner, 1993; Barclay and Hen-

dershott, 2003; Choe and Hansch, 2005), the adverse selection component for executed trades

against flash orders and normal orders, and the permanent price impact of trades against flash

orders, as in Hasbrouck (1991).

21Front-running is an exploitation of information about future order placement of other traders by trading in
the same direction before the order is executed. Admati and Pfleiderer (1991) provides a good example on why
front-running is unlikely. If a large sale is preannounced and the public can observe this preannouncement, all
market participants will have a similar valuation of the stock, conditioning on this information. Thus it is unlikely
that any trader will buy from the front-runner at an unfavorable price conditioning on the pre-announcement
information. A trader that is willing to buy at the unfavorable price is an impatient liquidity demander, with high
demand for immediacy. Thus the front runner is providing a valuable market making service, which is unlikely to
be detrimental to pre-announcers in a competitive market, by transferring through time the demand to buy and
sell.
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A Identifying Flash Order Submitters

As flash orders are actionable only for a maximum of 500 milliseconds, only machines from

algorithmic traders can respond to them. Trading algorithms can be classified in two categories:

agency and proprietary (see Hasbrouck and Saar, 2010). Agency algorithms (AA) are frequently

used by buy-side institutions such as mutual funds, pension funds, and insurance firms, which

submit non-marketable limit orders as part of their strategies. They are normally used for

breaking large orders into small portions to be sent to multiple trading venues over time. It

is likely that these traders are uninformed. Algorithms that aim to profit from the trading

environment are classified as proprietary algorithms (PA). These algorithms are often associated

with electronic market makers, hedge funds, proprietary trading desks of large financial firms,

and independent statistical arbitrage firms. Some PAs aim to identify the trading needs of other

market participants (such as those of buy-side institutions) and profit at the expense of these

less sophisticated participants. A typical characteristic of PAs is the repeated submission and

cancelation of orders that aim to trigger actions from other algorithms.22 The observation of

such trading patterns might be associated with PAs and is called a “strategic run.” All orders

that are not part of a strategic run can be considered agency algorithms.

To identify whether flash order submitters are PAs or AAs, we construct runs for flash

and non-flash orders. We construct runs in two ways using messages posted in the NASDAQ

trade and quote data. Following Hasbrouck and Saar (2010), we link sequences of submissions,

cancellations, and executions that are likely to be part of a PA’s dynamic strategy. First, we link

an individual limit order with its subsequent cancelation or execution using the unique order

reference numbers supplied with the data. Second, we link a cancelation to either a subsequent

submission of a nonmarketable limit order, when the cancelation is followed within one second

by a limit order submission, or an execution, when the cancelation is followed by an execution, in

the same direction and for the same size. If a limit order is partially executed and the remainder

is canceled, we look for a subsequent resubmission or execution of the canceled quantity.23 An

HS run is the number of messages in a linked cancel-and-resubmit sequence. As Hasbrouck

and Saar (2010) point out, such a methodology may introduce some noise into the identification

22An example of such an algorithm is a “pinging” algorithm that sell-side investors use to identify reserve book
orders. When pinging, the PA issues an order extremely quickly and, if nothing happens, cancels it. But if the
order is successful, the PA learns about hidden information on the reserve book orders, information that it can
use to its advantage.

23See Hasbrouck and Saar (2010) for a detailed description and examples of strategic runs.
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of low-latency activity as it is not certain that the subsequent resubmission and execution are

linked to the initial individual limit order. However, this methodology is useful for identifying

runs during the period when the NASDAQ did not have the “update” function.

From 2008, NASDAQ provides the possibility to change and update the price and/or volume

of orders without having to cancel and resubmit them (message type U). Our second approach

to measuring runs is to use “update” messages, as they serve the same purpose as the cancel-

and-resubmit orders that Hasbrouck and Saar (2010) identify. An Update run is the number of

times an order is updated. We construct it by tracking the reference number associated with an

individual limit order and subsequent update messages in the same direction or a subsequent

execution within one second. Unlike Hasbrouck and Saar (2010), we are certain that order

update sequences and alterations are related to the initial individual limit order that we track.

Orders with updates do not exist in the Hasbrouck and Saar (2010) sample.

However, PAs may make use of both mechanisms to fulfill their strategies. Thus Table IV

shows the number of runs and the associated messages for flash and non-flash orders for HS

(Hasbrouck and Saar, 2010) and Update runs. One update corresponds to two messages in the

HS run (cancel+resubmit), thereby normalizing the number of messages in an update run to be

comparable to the HS runs. Total is the sum of HS and Update runs, which we can add because

they are mutually exclusive by construction. A run is classified as flash, if a flash message is part

of the run. We present the monthly runs to be able to compare with the results in Hasbrouck and

Saar (2010), who study and report results for two separate months. Given the smaller sample

and the smaller size stocks included in our sample, the total number of monthly runs and their

message length is comparable to those in Hasbrouck and Saar (2010). The total number of runs

is smaller for June because our sample starts only on June 10, 2009.

A run is considered strategic when it includes more than 10 messages. Most flash runs, HS

and Update, are part of runs shorter than 10 messages. On average less than 3% of the runs

with a flash order are longer than 10 messages, and this finding is consistent over the different

months. Over 7% of non-flash orders are part of runs longer than 10 messages, double the

strategic runs in flash orders. The results imply that flash orders are predominantly submitted

by agency or buy-side traders.
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B Informativeness of Flash Orders

To examine the informativeness of flash orders we apply three standard methods: examining

how much trades that execute against flash orders contribute to price changes, measuring the

adverse selection component associated with trades that hit flash orders, and estimating the

permanent price impact associated with trades against flash orders. All these methods assess

the informativeness associated with the initiating party of a trade (i.e., the taker); flash orders,

by definition, are the passive party in a trade. Thus these measures capture whether flash order

submitters are being picked off by better-informed traders. Alternatively, due to the symmetry

of these measures, we can also infer to what degree flash order submitters are systematically

better informed than those that hit the flash orders. For example, buyer (seller) initiated trades

against flash orders to sell (buy) would systematically experience an adverse price movement

subsequent to the trade in the same direction as the flash order to sell (buy). Alternatively,

if flash orders are generally not associated with private information events (on either side), we

would expect a very small post trade movement, in either direction, after flash order executions.

Weighted price contribution

First we look at the weighted price contribution of flash orders (see Barclay and Warner, 1993).

During a time period t there are N trades for stock j. Each trade belongs to one of two categories:

executed against flash orders or regular limit orders. The price contribution of trades executed

against flash orders is: PCjflash,t =
∑N
n=1 δn,flashr

j
n,t∑N

n=1 r
j
n,t

where δn,flash is an indicator variable equal

to 1 if the nth trade executes against a flash order, and 0 otherwise. rjn,t is the log return

between the price of trade n-1 and n for the nth trade. PCjflash,t is a stock specific measure,

while we are interested in the two categories across stocks. We use the weighted average across

stocks of the price contributions of trades against flash orders, weighted price contribution

(WPC ). The weight for each stock’s PC is the ratio of its absolute cumulative return to the

total absolute cumulative return for all the stocks WPCflash,t =
∑188

j=1(
|Rjt |∑J
j=1 |R

j
t |
PCjflash,t) where

Rjt =
∑N

n=1 r
s
n,t.

Results in Panel A of Table V show that the cumulative contribution of flash orders to

total returns is small but negative, while non-flash executed trades have a large and positive

contribution. This result implies that flash trades are not associated with private information

when it comes to the daily total change in price.
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Table V
Information Content of Flash Orders

The table presents the weighted price index and effective spread decomposition in NASDAQ, for 188 stocks. Panel
A presents the weighted price contribution of flash and non-flash executed orders. The price contribution of trades

executed against flash orders is: PCs,tflash =
∑N

n=1
δn,flashr

s,t
n∑N

n=1
r
s,t
n

where δn,flash is an indicator variable equal to 1 if

the nth trade executed against a flash order, and 0 otherwise and rs,tn is the return for the nth trade. The weight
for each stock’s PC is the ratio of its absolute cumulative return to the total absolute cumulative return for all the
stocks WPCtflash =

∑S
s=1( |Rs,t|∑S

s=1 |R
s,t|

PCs,tj ) where Rs,t =
∑N
n=1 r

s,t
n . Panel B presents the effective (espread)

and realized (rspread) spreads and adverse selection costs (adv selection). We show mean and median spreads
and costs. Diff is the difference between flashed and non-flashed orders spreads and adverse selection costs.

Panel A. Weighted Price Index

Flash Non-Flash
Mean 0.0199 0.9801
Median 0.0158 0.9842
25th 0.0009 0.9552
75th 0.0448 0.9991
St. Dev. 0.0462 0.0462

Panel B. Spread Decomposition

espread rspread adv selection
Mean

Flash 0.037 - 0.009 0.036
Non-flash 0.307 0.051 0.084
Difference -0.270 -0.060 -0.048
p-val 0.00 0.00 0.09

Median
Flash 0.029 0.000 0.020
Non-flash 0.053 0.000 0.027
Difference -0.024 0.000 -0.007
p-val 0.00 0.04 0.00
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Spread decomposition

Second, we measure the adverse selection associated with trades against flash orders by decom-

posing the effective spread into realized spread and adverse selection. As in Hendershott, Jones,

and Menkveld (2011), the effective half spread, espread is defined as:

espreadjt = qjt (p
j
t −m

j
t )/m

j
t ,

where j denotes the stock, qjt is the buy (1)/sell(-1) trade indicator, pjt is the traded price, and

mj
t is the quote midpoint prevailing at the time of the trade. Trades are signed with respect

to whether the initiating party (taker) is a buyer or seller. For each stock and day, we use

all NASDAQ quotes and trades to calculate the effective spread for each reported transaction.

The effective spread and its components are normalized by the number of shares traded in the

transaction. We calculate realized spread, rspreadjt , and adverse selection, adv selectionjt as:

rspreadjt = qjt (p
j
t −m

j
t+5min)/mj

t

adv selectionjt = qjt (m
j
t+5min −m

j
t )/m

j
t .

One of the main reasons to submit preannounced orders in the Admati and Pfleiderer (1991)

model is to signal to other market participants that the trader is uninformed. As a result, the

pre-announced trade would get a lower effective spread due to lower adverse selection. Panel

B of Table V presents the difference in the mean and median effective and realized spread and

adverse selection costs for flash and non-flash orders, aggregated by stock. Executed flash orders

exhibit lower effective and realized spreads and lower adverse selection costs than other executed

orders, consistent with the Admati and Pfleiderer (1991) model.

Hasbrouck decomposition

Third, we measure the permanent price impact of flash orders by estimating a VAR model

for every stock on each date, and produce the impulse response functions based on Hasbrouck

(1991). The basic bivariate VAR model estimated for each stock for each date is:

rjt =

P∑
i=1

aji r
j
t−i +

P∑
i=0

bji q
j
t−i + vj1,t, (1)

qjt =
P∑
i=1

cji r
j
t−i +

P∑
i=1

dji q
j
t−i + vj2,t, (2)
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where t is the event time counter (messsage time), i is the event lag up to a maximum of P , and

r denotes the quote midpoint change.24 To examine to what degree the information content of

executed flash orders is different from regular trades, we estimate the VAR separately for trades

against regular limit orders and trades against flash orders. To make better comparisons, we

exclude stock-days for which there are no flash orders.

Figure 4 shows the average cumulative impulse response of a one unit positive shock (i.e. a

buy). Panel A shows the average response for executions against regular orders and flash orders

for all orders, and Panel B shows the average response to trades against regular and flash orders

for different trade size categories. We define trades as small if the trade size is less than or equal

to 10 shares, medium if the trade size is between 10 and 100 shares, and large if the trade size

is greater than 100 shares.

Panel A of Figure 4 shows the typical Hasbrouck (1991) result that quote revisions are not

instantaneous. In addition, the permanent price impact of a trade (at t=20) is on average

about five times larger for regular orders than for flash orders. This finding suggests that flash

orders are facing less pick-off risk than regular limit orders. Nonetheless, the response function

associated with flash orders does not suggest that the traders hitting the flash orders are trading

against better-informed traders. Moreover, the results indicate that neither side of flash order

trades is adversely selected, consistent with our results that flash orders are not associated with

private information events.

Panel B of Figure 4 shows that for a one unit shock, the permanent impact of regular

orders regardless of trade size, is much greater than that of flash orders. More importantly, the

difference in responses across trade sizes for flash orders is very small.25

Overall, these results indicate that flash orders are not associated with informed trading.

Moreover, while the flash orders seem to face less pick-off risk than regular limit orders, the

traders hitting the flash orders do not appear to experience a systematically adverse price move-

ment after the trade. This finding therefore suggests that flashed orders come mainly from

uninformed traders, consistent with the Admati and Pfleiderer (1991) model assumptions.

24The contemporaneous realization of qjt enters the return equation. Thus it assumes that trades precede
quote revisions. This assumption is necessary for identification, and it ensures that innovations vj1,t and vj2,t
are uncorrelated. The innovation to the return equation is typically interpreted as quote revisions associated
with public information, while the innovations to the trade equation are interpreted as related to (unpredictable)
informed trading. Thus the permanent response of quote revisions to innovations in the trade equation should
capture the adjustments to private information.

25We also check whether impulse function responses change during the sample period and find that they do
not fluctuate across days. Results are available from the authors upon request.
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Figure 4
Quote Revision Process

The figures show the impulse response functions (IRF) associated with executions against regular limit orders
and flash orders. The IRFs are the average across dates and stocks. The sample of flash order executions and
regular executions is for the same stock and date combinations making the response functions comparable. The
IRFs are the cross-sectional average IRFs, where the IRF is first averaged across all dates for each stock and
then averaged across stocks. The dotted lines show the 5th and 95th confidence bands for the cross sectional
IRFs. Panel A shows the quote revision process for trades against regular limit orders versus flash orders for all
trade sizes, and Panel B shows the quote revision process associated with different trade sizes. Small trades are
defined as trades equal to or less than 10 shares, medium sized trades are trades between 10 and 100 shares, and
large trades as trades greater than 100 shares.
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VI Flash Orders and Market Quality

We start the investigation of the impact of flash orders on market quality, with an analysis of

the effect of flash orders within the U.S. market, through an event study and a panel regression

of market quality on dummy variable for the flash period. First, we conduct an event study

around the introduction and removal of the flash functionality. To investigate the change in

market quality variables caused by flash orders, we use ten-day event windows, five days before

and after the introduction and removal of the flash functionality. We chose the ten-day event

window to eliminate the possibility of corporate or market-wide events confounding our analysis,

while still keeping a reasonably long sample period. The pre-introduction period is May 28-June

4, 2009, the post-introduction period is June 5-11, 2009, the pre-removal period is August 25-31,

2009, and the post removal period is September 1-8, 2009.

Panel A of Table VI shows the proportional changes [(Post-Pre)/Pre] in the market quality

variables. Results based on the mean and median of various illiquidity measures suggest that

there are statistically significant improvements (deteriorations) in liquidity after the introduc-

tion (removal) of the flash functionality. Both the quoted and the relative spread decrease by

11% when flash orders are introduced. In addition, short-term volatility decreases (increases)

significantly after the introduction (removal) of flash orders.26 To better understand the impact

of flash orders on market quality, we conduct the event study on the sample sorted into three

terciles based on market capitalization. Panel B of Table VI shows a significant improvement in

liquidity and a reduction in volatility for mid-cap and large stocks. Flash orders appear to have

less impact on smaller stocks.27

We also run a panel regression of the liquidity variables on a flash period dummy and a

group of controls for the period April 1-October 31, 2009. This analysis helps us to determine

whether there is a longer-term impact of the introduction and removal of flash orders beyond

the event study window. We run a two-way fixed effect panel regression controlling for price,

(log) market capitalization, dollar trading volume, and the daily volume-weighted average price

(VWAP). Results in Panel C of Table VI show that the flash period dummy has a large coefficient

and is highly statistically significant. The results indicate that quoted and relative spreads, and

26The results for the non-TARP sample confirm the findings (see table A5 in the appendix). The same results
also hold when we use the entire market sample, i.e., include all stocks and all types of shares above $5 (see table
A6 in the appendix).

27This result is confirmed by the non-TARP subsample in Table A5 in the Appendix. Tables A7 and A8 in the
Appendix show that the same results hold when sorting according to flash orders and double sorting by market
capitalization and flash orders.
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Table VI
Flash Order Impact on Market Quality

The table presents the proportional change ((post-pre)/pre) in market quality variables after the introduction
and removal of flash orders in the equity market using end-of-day CRSP data. Introduction is the proportional
change between the first five days of flash introduction and five days before ((post-pre)/pre), and Removal is
the proportional change between five days after the removal of flash and five days prior ((post-pre)/pre). The
table presents results for the entire sample of 1867 stocks. Panel A presents the change in the impact on the
entire market. Mean presents the change in mean and Median the change in median. Panel B presents the
proportional change in the mean of market quality variables after the introduction and removal of flash orders for
stocks sorted according to market capitalization. Panel C shows the regression results for a two-way fixed effects
panel regression of market quality variables on a flash period dummy. Price is the stock price, VWAP is the log
volume weighted average price. Flash Dummy is a binary variable that is one for the period June 5-August 31,
2009, and zero otherwise. The coefficients for Volume and VWAP are multiplied by 1,000. All other variables
are defined in Table A2. All regressions include a constant (not reported to conserve space). p-values calculated
using Thompson (2010) two-way clustered robust standard errors. ∗,∗∗,∗∗∗ represent significance at the 10, 5, and
1% level, respectively.

Spread Rel. Spread ILR Volatility

Panel A. Whole Market

Introduction

Mean -0.11∗∗∗ -0.11∗∗ -0.06 -0.36∗∗∗

Median -0.33∗∗∗ -0.23∗∗∗ -0.17∗∗∗ -0.54∗∗∗

Removal

Mean 0.01 0.04 -0.11 0.31∗∗∗

Median 0.00 0.10∗∗∗ 0.26∗∗∗ 0.62∗∗∗

Panel B. Sorted by Market Capitalization

Introduction

1 (low) -0.08∗ -0.09∗ -0.06 -0.28∗∗∗

2 -0.15∗∗∗ -0.17∗∗∗ 0.04 -0.35∗∗∗

3 (high) -0.20∗∗∗ -0.24∗∗∗ -0.15∗∗ -0.54∗∗∗

Removal

1 (low) 0.01 0.04 -0.11 0.19
2 -0.01 0.10∗∗∗ 0.07 0.40∗∗∗

3 (high) 0.01 0.07∗∗∗ 0.35∗∗∗ 0.62∗∗∗

Panel C. Regression Analysis

Spread Rel. Spread ILR Volatility

Flash Dummy -0.001∗∗∗ -0.004∗∗ 0.002 -0.003∗∗∗

Log Market Cap. -0.059∗∗∗ -0.381∗∗∗ -0.732∗∗∗ -0.016∗∗∗

Price 0.002∗∗ 0.005∗∗∗ 0.013∗∗∗ -0.000∗∗∗

Volume 0.020∗∗∗ 0.115∗∗∗ 0.182∗∗∗ 0.080∗∗∗

VWAP -0.008∗∗∗ -0.050∗∗∗ -0.140∗∗∗ 0.017∗∗∗

Adj. R2 0.69 0.65 0.21 0.32
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volatility decreased substantially during the flash period, confirming the event study results.28 In

further results we also include a dummy variable for days when there are earning announcements

and an interaction term between earning announcements and flash orders. The coefficients of

both these variables are statistically insignificant.29

A linear regression method is causal, if we include all the appropriate control variables, such

that the conditional independence assumption holds. Although the results suggest that market

quality improves due to flash orders, these findings might be influenced by various unobserved

confounding effects at the stock price and size level. We therefore also use a matched sample

approach as an alternative methodology for causal inference, because it does not require the

specification of a functional form for the outcome equation and is less susceptible to misspecifi-

cation bias.

A Difference-in-Difference Analysis

Matching sample

For the difference-in-difference analysis, we need to construct a matching control group that is

not directly affected by flash orders. One potential control group is U.S. stocks not traded on

the NASDAQ. However, there were only 10 such stocks during our sample period, too few to

constitute a good control sample. An alternative is to use Canadian stocks, represented by the

Toronto Stock Exchange (TSE)-listed companies, as our control group. While this control is

clearly not perfect, it is a reasonable alternative given the similarity of market structures and

regulation and the absence of controls on the free flow of capital between the two countries.

Moreover, U.S. and Canadian trading hours fully overlap, Canadian stocks trade as ordinary

securities as opposed to American Depositary Receipts in the U.S. market, and competition

across the two markets is vigorous.30 One potential concern related to the Canadian match is

the relatively low market capitalization of its stocks. In our robustness section, to increase the

size of the control group, we also include stocks listed in the London Stock Exchange (LSE) in the

28We also replicate these results using TAQ data aggregated at the daily level and find qualitatively similar
results. While we use CRSP data for comparison with our match group, TAQ results are available from the
authors upon request.

29Results are not presented to conserve space, but are available from the authors upon request.
30Jorion and Schwartz (1986) and Foerster and Karolyi (1993) find that Canadian stocks have very similar

market characteristics in Toronto to those in the U.S.. Eun and Sabherwal (2003) find that prices on the TSE
and U.S. exchange are cointegrated and mutually adjusting. Bacidore and Sofianos (2002) find no significant
statistical differences in the intraday participation and stabilization rates of the NYSE specialist between U.S.
stocks and cross-listed Canadian stocks.
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control group together with the TSE-listed stocks. As they have higher market capitalizations,

the LSE-listed stocks are a good alternative to the TSE-listed ones.

All TSE and LSE data is downloaded from Datastream and converted to U.S. dollars, using

the end-of-day Canadian dollar/U.S. dollar and U.S. dollar/British pound exchange rate. We

exclude cross-listed stocks and stocks that exhibit a price lower than $5 or market capitalization

less than $1,000,000 at any time over the sample period, as we did for the CRSP sample. The

final control sample includes 481 TSE and 741 LSE stocks.

Propensity score matching

Our matching procedure relies on a matching of propensity scores in the spirit of Rosenbaum

and Rubin (1983) and Heckman, Ichimura, and Todd (1998). The matching procedure begins by

defining the treatment and control groups, which correspond to the CRSP and the TSE stocks,

respectively. Each CRSP stock is matched with a control firm from the TSE that has the

closest propensity score. We denote the two month period prior to the introduction of the flash

facility by t=-1 and the three month flash period as t=0. The propensity score is the estimated

probability of belonging to the CRSP group in period t=0 based on firm characteristics in period

t=-1. We estimate this probability using a logistic regression, where the dependent variable is

equal to 1 if it is a CRSP stock, and zero otherwise. The firm characteristics used are price,

log market capitalization, and relative bid-ask spread. We use the predicted probabilities (i.e.,

propensity scores) to match each firm from the treatment group with a firm from the control

group based on the smallest absolute difference between the estimated propensity scores, with

replacement. Figure 5 shows the propensity score distribution for the treatment (CRSP) and

control (TSE) groups after matching. The densities of the propensity scores after matching are

very close, and there is a clear overlap of the distributions, implying a good match between the

samples. In addition, Table A10 in the Appendix shows that the normalized differences between

the treatment and control groups are small and within the 0.25 limits proposed by Imbens and

Rubin (2011).

Event study

Table VII presents changes in market quality surrounding the introduction and removal of flash

orders for the difference between U.S. and Canadian stocks for a ten-day event window. Panel A
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Figure 5
Propensity Score Distribution

The figure shows the propensity score distribution of the treated (U.S.) and control (TSE) groups. The treated

group is in panel 1, and the control group is in panel 0. The logit regression to estimate the propensity scores is

run over the period April 1-June 4, 2009.

of Table VII shows that short-term volatility, quoted and relative spread decrease significantly

after the introduction of flash orders, while ILR does not change. With the introduction of flash

orders, the quoted and relative spreads in the U.S. decrease by 19 basis points and 3% over the

control group, respectively. The average quoted and realized spreads in the U.S. increase by an

additional 5.2 basis points and 2.7% when the flash functionality is removed.31 When stocks are

sorted according to market capitalization, the improvement in market quality comes from the

large and medium cap stocks. Flash orders appear to have limited impact on smaller stocks.

Regression analysis

To further control for the possibility that the observed relation between flash order introduction

and removal and market quality is due to changes in the two markets over time, we study

market quality changes around the duration of the flash order functionality in the NASDAQ in

a two-way fixed effect panel regression. The sample period, April 1-October 31, 2009 covers two

months before and after the introduction and removal of the flash order functionality from the

NASDAQ. We compare the 1820 CRSP sample stocks to the 1820 matched TSE control stocks

31The results are robust to using a longer event window of 20 days (see table A9 in the appendix). The
magnitude of the decrease, relative to the control group, in quoted and relative spread is even larger over the
20-day window with a decrease of 24 basis points and 5.3% respectively. When the flash facility is removed, the
change in both the quoted and realized spreads is positive but insignificant. Short term volatility also increases
after the removal of flash orders.

34



Table VII
Difference in Difference

The table shows results for the difference-in-difference analysis. Panel A shows the mean difference-in-difference
between the CRSP and Toronto Stock Exchange (TSE) market quality variables (treatment-control) for an event
study with a ten-day event window. Introduction is the difference in market quality measures between the flash
introduction and before (post-pre), and Removal is the difference between the removal of flash and prior (post-pre).
We show the results for the entire sample and the results for U.S. stock sorted according to market capitalization.
Panel B shows two-way fixed effect regressions of the market quality difference between the CRSP and TSE
(treatment-control) on a flash period dummy for the sample period: April 1-October 31, 2009. Market Cap. Diff.
is the difference in market capitalization between CRSP and TSE stocks, Volume Diff. is the difference in volume
between CRSP and TSE stocks, VWAP is the log volume weighted average price. The coefficients for Volume
Diff. and VWAP have been multiplied by 1,000. Flash Dummy is a binary variable that is one for the period
June 5-August 31, 2009, and zero otherwise. All other variables are defined in Table A2. All regressions include a
constant (not reported to conserve space). p-values calculated using Thompson (2010) two-way clustered robust
standard errors. ∗,∗∗,∗∗∗ represent significance at the 10, 5, and 1% level, respectively.

Panel A. Event Study

Introduction Removal

Whole Sample

Spread -0.0187∗∗∗ 0.0052
Rel. Spread -0.0301∗ 0.0270∗

ILR 0.0189 0.0337
Volatility -0.0023∗∗∗ 0.0065∗∗∗

Market Cap Sorted

Tercile 1 (low)

Spread 0.0045 0.0029
Rel. Spread 0.0744 0.0281
ILR 0.0769 0.0863
Volatility -0.0016 0.0069∗∗∗

Tercile 2

Spread -0.0256∗∗∗ 0.0122∗∗∗

Rel. Spread -0.0658∗∗∗ 0.0559∗∗∗

ILR 0.0007 0.0003
Volatility -0.0019∗∗ 0.0060∗∗∗

Tercile 3 (high)

Spread -0.0356∗∗∗ 0.0006
Rel. Spread -0.1022∗∗∗ -0.0032
ILR -0.0226∗ 0.0129
Volatility -0.0035∗∗∗ 0.0065∗∗∗

Panel B. Regression Analysis

Spread Rel. Spread ILR Volatility
Flash Dummy -0.002∗∗ -0.016∗∗∗ -0.011 -0.002∗∗∗

Log Market Cap. 0.004∗∗∗ -0.005∗∗ -0.007 0.000
Volume -0.001 -0.001 -0.007 0.069
VWAP -0.009∗∗ -0.050∗∗∗ -0.030 0.018
Adj. R2 0.56 0.17 0.13 0.23
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without flash functionality.

We estimate the following two-way fixed effects model for a variety of left-hand side variables

Yit measured for matched pair i on day t:

Yit = µi + φt + βDflash period
it + θXit + εit (3)

where Yit is the difference between CRSP and TSE match in the: quoted spread, realized spread,

ILR, and short-term volatility. µ and φ capture the match-pair fixed effect and time fixed effects.

Dflash period is equal to one during the flash period, and zero otherwise. Xit is a vector of pairwise

differences for the following control variables: market capitalization, dollar trading volume, and

VWAP. The matched-pair fixed effect accounts for any differences between two stocks in a pair

that are present during the non-flash period. The time fixed effects remove the impact of any

broad market changes in our variables of interest. The control variables pick up time variation

in the matching variables due to size, trading volume, and share price level. Statistical inference

is based on Thompson (2010) two-way clustered robust standard errors.

Panel B of Table VII shows the full-sample panel regression results. During the flash period,

a trader pays 2 basis points less in terms of quoted spread than the control group compared

to two months before and after the flash period. A trader pays 1.6% less in terms of relative

spread. We also find that short-term volatility decreases during the flash period. These results

also hold for the non-TARP sub-sample in Panel B of Table A9.

We recognize that despite many good reasons for the TSE stocks to be good matches for

the U.S.-listed stocks, the number of stocks available for matching from the TSE is limited.

Therefore, we use the LSE stocks as an additional control group to the TSE. Table A10 in

the Appendix provides the normalized difference between the treatment and control group after

matching. This difference is very small, indicating the good match between the two groups.

The results in Table A11 are very similar to the earlier results on the TSE match. The flash

dummy variable is large and highly statistically significant across the different equations. The

improvement in market quality during the flash period is always strong, regardless of which

methodology we employ.
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Table VIII
Return Autocorrelation

The table shows the return autocorrelation for 188 stocks for an event study with a ten-day event window for the
introduction and removal of flash orders. Introduction is the difference in autocorrelation measures between the
flash introduction and before (post-pre), and Removal is the difference between the removal of flash and prior
(post-pre). Panel A presents the results for the 30-minute return autocorrelation and Panel B the results for the
5-minute return autocorrelation.

Introduction Removal

Panel A. 30 Minutes

Mean 0.0463 -0.046
p-val 0.00 0.00
Median 0.050 -0.033
p-val 0.00 0.01

Panel B. 5 Minutes

Mean 0.076 0.027
p-val 0.00 0.40
Median 0.084 -0.007
p-val 0.00 0.25

B Market Efficiency

Autocorrelation is a measure of market efficiency: the lower the autocorrelation of returns,

the more efficient is the market. Like Boehmer and Kelley (2009) and Boehmer, Chava, and

Tookes (2010), we calculate intra-day first-order autocorrelation |AR|, using 30-minute and

5-minute quote midpoint return data, and correct for the negative bias in autocorrelations:

ρ̂(k) = ρ(k) + T−k
(T−1)2 [1− ρ2(k)] where ρ(k) =

Cov(r,rt+k)
V ar(rt)

, Fuller (1976).

After the correction for the negative bias in the autocorrelation of returns, the mean and

median autocorrelation at the 5- and 30-minute aggregation investigated remain negative and are

statistically different from zero. Table VIII shows the change in intra-day return autocorrelations

at the 5- and 30-minute frequency for the introduction and removal of the flash facility. The

5- and 30-minute return autocorrelation decreases significantly after the introduction of flashed

orders, i.e., autocorrelation becomes less negative, and thus the positive change. The 30-minute

return autocorrelation also decreases after the removal of the flash facility, but it does not change

at the 5-minute frequency. This finding constitutes additional evidence of the improvement in

market efficiency, as posited in the Admati and Pfleiderer (1991) model.
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C Summary

Our findings support the hypothesis that flash orders signal to market participants that un-

informed liquidity is available at a particular venue, so that they can quickly route to it if it

represents the best available trading opportunity. The market-wide results of the event study,

the regression analysis (with and without a control group), and the difference-in-difference anal-

ysis, show that the improvement in NASDAQ quality leads to an improvement in the overall

market. Our findings indicate that advertising for liquidity needs through flash orders success-

fully attracts liquidity providers and lowers price uncertainty and overall trading costs in the

market. Admati and Pfleiderer (1991) argue that sunshine trading reduces risk-bearing costs

for both announcers and non-announcers, because it reduces the uncertainty of the liquidity

demand of uninformed traders and the amount of noise in the price. Such a reduction in overall

risk-bearing costs may be one possible explanation for these results.

VII Robustness

A Cross Sectional Relation of Flash Orders and Market Quality

Thus far we have carried out a time series analysis on how the introduction and the removal of

the flash facility affects market quality in the U.S. through event study, panel regression, and

difference-in-difference regression analysis. In this section, we investigate the role of flash orders

on liquidity and volatility using cross-sectional analysis for robustness.

If flash orders affect market quality as demonstrated in our time series exercise, then the

difference in the number of flash orders across firms should also explain the cross-sectional

differences across firms liquidity and volatility. We follow Boehmer and Kelley (2009) in the

design of this analysis. Specifically, for each day during the flash sample period, we run cross-

section regressions of market quality variables and the number of flash orders per stock in the

day, controlling for the effect of size, volume, volatility, price, and the lagged dependent variable

(DV). We draw inferences from the time series of the estimated coefficients with Newey-West

standard errors. In addition, we run a pooled regression for the entire flash sample period.

The results in Panel A of Table A12 in the Appendix show a positive and significant contem-

poraneous relation between the daily number of flash orders and liquidity after controlling for

size, volume, volatility, lagged price, and the lagged dependent variable. Thus, larger numbers
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of flash orders are associated with greater liquidity and lower volatility. For the control vari-

ables, illiquidity decreases with the market capitalization and the trading volume of a stock but

increases with volatility. In further analysis we also include a dummy variable for days when

there are earning announcements and an interaction term between earning announcements and

flash orders.32 The coefficients of both these variables are statistically insignificant. Results

from the pooled regression in Panel B are qualitatively similar. This result is consistent with

the conclusions from the time series analysis, suggesting that flash orders improve liquidity and

lower volatility.

B Effect of Flash Orders on Pseudo Outcomes

Our final robustness test, pseudo treatment, focuses on estimating the effect of a treatment

known not to have an effect. Pseudo treatment is one approach in causal inference for assessing

the assumption of unconfoundedness (see Heckman, Ichimura, and Todd, 1998). We estimate

a “pseudo” average treatment effect by analyzing two control groups as if one of them were

the treatment group. In particular, we construct a sample of pseudo events drawn from the

non-flash period, two months pre- and post-flash period. We use a longer sample period than in

the main analysis, because we want to have more observations for our statistical inference and to

ensure non-overlap with the event study in Section VI. We test for the null hypothesis that the

treatment effect of the pseudo event studies on our variables of interest, V , is not different from

the event (flash) study. As in the event study in the earlier section, our variables of interest, V ,

are quoted and relative spread, ILR, and return volatility. We consider each day, from February

6 to May 8, 2009, and from September 29 to December 31, 2009, as a pseudo event date, for the

pre- and post-flash period, respectively.

For each pseudo event date, we construct the mean and the median of our variables of interest

for 5 days before and after the pseudo event date. As with the event study we carried out for the

flash period, we then create the difference in the pre- and post-period for these pseudo events.

For the pre-flash pseudo events from February 6 to May 8, 2009, we calculate the percentage

change in means and medians of the variable of interest ((Vpost−Vpre)/Vpre)) for pseudo event i,

and call this Introductionpseudoi . We carry out the same procedure for post-flash pseudo events

j from September 29 to December 31, 2009, and calculate the percentage change in means and

medians, and call this change Removalpseudoj . Panel A of Table A13 in the Appendix shows the

32Results are not presented to conserve space but are available from the authors upon request.
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mean and median change across the pre- and post-event periods, as for the flash period in Table

VI. Differently from the flash period, all means and medians are statistically not different from

zero, with the exception of the relative spread mean in the introduction period.

We test for the difference of the treatment effect of the pseudo events from the actual event

by taking the difference between Introduction for the flash and pseudo event for each pseudo

event day i (Introductionflash − Introductionpseudoi ). We do the same for Removal and test

whether the difference is statistically different from zero. Panel B of Table A13 in the Appendix

presents the results for the pseudo event analysis for the pre- and post-flash period, respectively.

For the pre-flash period, the negative average difference between the treatment effects of actual

and pseudo events implies that the improvement in liquidity at the introduction of flash orders

is much higher on average than those of the pseudo events. The difference both in means and

medians is statistically different from zero. For the post-flash pseudo event analysis, the positive

difference between the actual and pseudo removal event implies that the market deteriorated

substantially more during the removal of the flash functionality than in any post-flash pseudo

events. The difference both in means and medians again is statistically different from zero.

VIII Conclusions and Discussion

In this paper, we empirically analyze the implications of voluntary disclosure on the trading costs

of the announcer and market quality. We use the introduction and removal of actionable indi-

cations of interest, flash orders, by NASDAQ as a natural experiment to study the implications

of sunshine trading.

We find that flash orders are mainly submitted by agency algorithms, indicating that the

main users of flash orders are large institutional investors. Executed flashed orders have lower

adverse selection costs, implying that the market treats them as less informed. Our findings are

consistent with Admati and Pfleiderer (1991), where they argue that the potential delay cost of

preannouncement and information leakage by informed traders ensure that preannounced trades

are unlikely to contain information. Identification of uninformed traders allows other market

participants to lower the adverse selection cost they impose and encourages the provision of

liquidity. The signaling of liquidity demand attracts volume to NASDAQ immediately after

an order is flashed. The use of flash orders leads to improved execution quality. Furthermore,

the removal of flash orders leads to an overall increase in adverse selection costs. Thus, flashed
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orders improve the market quality in NASDAQ.

The improvement in NASDAQ market quality leads to an improvement in the overall mar-

ket. Comparing various liquidity and activity measures around the flash introduction and flash

removal periods, overall market liquidity improves (decreases) significantly when flash orders

are introduced (removed). Market efficiency also improves (deteriorates) when flash orders are

introduced (removed). The difference-in-difference analysis shows that market liquidity for large

and medium size stocks that are flashed more frequently improves significantly during the flash

period and deteriorates after its removal, while that of small stocks does not change.

Admati and Pfleiderer (1991) argue that while sunshine trading decreases the adverse se-

lection cost of preannounced trades, it increases the adverse selection cost of the non-announcers.

However, sunshine trading reduces the risk-bearing costs for both announcers and non-announcers,

because it reduces the uncertainty of the liquidity demand of the uninformed traders and the

amount of noise in the price. Overall, the improvement in trading cost of the uninformed traders

comes at the expense of the informed traders as informed traders are able to extract less con-

sumer surplus from the uninformed as the price becomes less noisy. This reduction in overall

risk-bearing costs is the driving force behind our results.

An important and immediate application of our results is to the on-going policy debate on

the withdrawal of the flash trade practice in the U.S.. Both our analysis and our results help

explain the impact and implications of similar competition-enhancing mechanisms that might

also be used by dark pools, such as Getco and Knight Link, which are establishing new trading

venues in Europe and Asia. Nonetheless, further research in the U.S. option market, where flash

orders are still widely used, would be useful. Furthermore, our results inform future decisions

on market design and transparency.
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A Appendix

Table A1
Arguments on Flash Orders

Against For

Market Quality

Discourage the public display of trading interest
and harm quote competition among markets, re-
duce incentives for public display of quotations.

Increase in volume and reduction of spreads,
increase in liquidity

Deprive those who publicly display their interest
at the best price from receiving a speedy execu-
tion at that price. Harm price discovery.

Attract liquidity from market participants
who are not willing to display their trading
interest publicly. Flash orders may provide
an opportunity for better execution than if
orders were routed elsewhere.

Front-running (flashed orders that do not re-
ceive an execution in the flash process are less
likely to receive a quality execution elsewhere.)
Quotes being taken away.

Increase the chance of execution at the best
price and lower cost.

Harm the interest of long-term investors to the
benefit of high-frequency traders.

Decrease volatility and provide more liquidity
in volatile markets.

Diverts a certain amount of order flow that
otherwise might be routed directly to execute
against displayed quotations in other markets.

Orders to be routed could go to dark pool,
thus flash reduce dark pool volume.

Fairness

Detract from the fairness and efficiency of the
national market system as the best quotations
from specific markets are made available to a
limited number of market participants.

“Last mover” advantage, cannot have price and
time priority because flash order comes at same
price but later time and is still executed imme-
diately, i.e. before outstanding orders.

Maximize an exchange’s competitive advantage,
since exchanges compete on volume of executed
trades.

Reduce flight to overseas markets

Those who are highly concerned about informa-
tion leakage generally would be unlikely to flash
their order information to a large number of pro-
fessional traders.
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Table A3
Flash Stock Characteristics - Non TARP

The table shows the characteristics of the non-TARP sample according to the number of daily flash orders (Panel
A) and the mean number of flashed orders over the sample period (Panel B). Tercile 1 represents the stocks with
the least flashes (at least 1), while tercile 3 the stocks with most flashes. There are approximately 620 stocks in
each tercile. All variables are defined in Table A2.

Tercile Volume Trades Size Spread Rel. Spread ILR Volatility Flash

Panel A. Total Flashed Orders

1 (low) 3 798 477 0.1066 0.573 0.19763 0.00130 15
2 21 3,100 1,857 0.0327 0.117 0.03203 0.00102 187
3 (high) 139 22,367 14,138 0.0187 0.074 0.00467 0.00071 9744

Panel B. Period Mean Flashed Orders

1 (low) 3 693 417 0.1166 0.635 0.25543 0.00141 25
2 22 3,399 1,832 0.0315 0.112 0.01833 0.00109 248
3 (high) 152 23,878 14,631 0.0201 0.081 0.00290 0.00089 9815
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Table A4
Market Quality After Double Sorting on Stock Characteristics and Flashed Stocks

The table shows the market quality measures of the sample after sorting according to stock characteristics and
the mean number of flashed orders a day. Panel A shows the results for sorting according to volume; Panel B,
according to market capitalization. All variables are defined in Table A2.

Tercile Spread Rel. Spread ILR Volatility Flash

Panel A. Volume

Volume Tercile 1 - Low

1 (low) 0.36836 2.94035 2.49553 0.00154 11
2 0.03575 0.13256 0.10303 0.00172 221
3 (high) 0.02103 0.07357 0.00024 0.00087 13,419

Volume Tercile 2

1 (low) 0.16094 0.96392 0.62878 0.00148 18
2 0.03286 0.11497 0.00679 0.00110 233
3 (high) 0.02143 0.08080 0.00723 0.00103 9,805

Volume Tercile 3 - High

1 (low) 0.10813 0.50922 0.33260 0.00144 28
2 0.03210 0.10934 0.00310 0.00097 302
3 (high) 0.01940 0.08787 0.00076 0.00095 9,637

Panel B. Market Cap

Market Cap Tercile 1 - Low

1 (low) 0.38485 3.10508 2.83379 0.00166 14
2 0.04229 0.13994 0.01800 0.00106 244
3 (high) 0.02174 0.06960 0.00020 0.00077 11,306

Market Cap Tercile 2

1 (low) 0.17652 1.11403 0.69302 0.00151 20
2 0.03196 0.11277 0.00399 0.00096 287
(high) 0.02055 0.07517 0.00037 0.00096 11,312

Market Cap Tercile 3 - High

1 (low) 0.11294 0.54561 0.31588 0.00137 24
2 0.03193 0.11099 0.02115 0.00116 269
3 (high) 0.01975 0.09124 0.00446 0.00101 9,675

45



Table A5
Flash Order Impact on Market Quality for non-TARP Stocks

The table presents the proportional change in market quality variables after the introduction and removal of flash
orders for 1420 non-TARP stocks. Introduction is the proportional change between the first five days of flash
introduction and five days before ((post-pre)/pre), and Removal is the proportional change between five days
after the removal of flash and five days prior ((post-pre)/pre). Panel A presents the change in the impact on
the entire market. Mean presents the change in mean and Median the change in median. Panel B shows the
proportional change in the mean of market quality variables after the introduction and removal of flash orders
for stocks sorted according to market capitalization. ∗,∗∗,∗∗∗ represent significance at the 10, 5, and 1% level,
respectively. All variables are defined in Table A2.

Spread Rel. Spread ILR Volatility

Panel A. Whole Market

Introduction

Mean -0.14∗∗∗ -0.17∗∗ -0.22 -0.39∗∗∗

Median -0.33∗∗∗ -0.24∗∗∗ -0.20∗∗∗ -0.56∗∗∗

Removal

Mean 0.06 0.07 0.09 0.42∗∗∗

Median 0.00 0.09∗∗∗ 0.29∗∗∗ 0.69∗∗∗

Panel B. Sorted by Market Capitalization

Introduction

1 (low) -0.11∗ -0.16∗∗ -0.22 -0.25∗∗∗

2 -0.10 -0.17∗∗∗ 0.13 -0.44∗∗∗

3 (high) -0.22∗∗∗ -0.25∗∗∗ -0.22∗∗∗ -0.59∗∗∗

Removal

1 (low) 0.06 0.07 0.09 0.46∗∗

2 0.07 0.08∗∗∗ -0.01 0.33∗∗

3 (high) 0.05 0.08∗∗∗ 0.35∗∗∗ 0.49∗∗∗
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Table A6
Flash Order Impact on Market Quality - Other Samples

The table presents the proportional change in market quality variables after the introduction and removal of flash
orders for two additional samples. Introduction is the proportional change between the first five days of flash
introduction and five days before ((post-pre)/pre), and Removal is the proportional change between five days
after the removal of flash and five days prior ((post-pre)/pre). Mean presents the change in mean and Median
the change in median. Panel A presents the results for the whole sample, unrestricted to common stocks and
common shares, of 4095 stocks, while Panel B presents the results for 2162 non-TARP stocks unrestricted to
common stocks and common shares. p-values are presented in brackets. All variables are defined in Table A2.

Spread Rel. Spread ILR Volatility

Panel A. All Sample

Introduction

Mean -0.07 -0.08 0.05 0.00
(0.01) (0.00) (0.46) (1.00)

Median -0.25 -0.15 -0.14 -0.54
(0.00) (0.00) (0.00) (0.00)

Removal

Mean 0.03 0.06 0.13 0.02
(0.23) (0.03) (0.08) (0.71)

Median 0.03 0.06 0.13 0.02
(1.00) (0.00) (0.00) (0.00)

Panel B. Non TARP

Introduction

Mean -0.12 -0.15 -0.12 -0.13
(0.00) (0.00) (0.49) (0.50)

Median -0.33 -0.21 -0.22 -0.57
(0.00) (0.00) (0.34) (0.00)

Removal

Mean 0.06 0.07 0.08 0.15
(0.12) (0.11) (0.03) (0.46)

Median 0.00 0.07 0.25 0.78
(1.00) (0.00) (0.33) (0.00)
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Table A7
Flash Order Impact on Market Quality in Terciles by Total Flash

The table presents the proportional change in the mean of the market quality variables after the introduction and
removal of flash orders for stocks sorted according to the number of flashed orders. Introduction is the proportional
change between the first five days of flash introduction and five days before ((post-pre)/pre), and Removal is the
proportional change between five days after the removal of flash and five days prior ((post-pre)/pre). All variables
are defined in Table A2. ∗,∗∗,∗∗∗ represent significance at the 10, 5, and 1% level, respectively.

Spread Rel. Spread ILR Volatility

Panel A. Whole Sample

Introduction

1 (low) -0.06 -0.09∗ -0.04 -0.28∗∗∗

2 -0.27∗∗∗ -0.26∗∗∗ -0.80 -0.37∗∗∗

3 (high) -0.27∗∗∗ -0.21∗∗∗ -0.68 -0.53∗∗∗

Removal

1 (low) -0.02 0.02 -0.11 0.24∗

2 0.11∗∗ 0.14∗∗∗ -0.39 0.24∗

3 (high) 0.10∗∗∗ 0.09∗∗∗ 0.98∗ 0.79∗∗∗

Panel B. Non TARP

Introduction

1 (low) -0.05 -0.15∗∗∗ -0.16 -0.30∗∗∗

2 -0.27∗∗∗ -0.27∗∗∗ -0.81 -0.37∗∗∗

3 (high) -0.27∗∗∗ -0.21∗∗∗ -0.68 -0.55∗∗∗

Removal

1 (low) 0.03 0.04 0.22 0.47∗

2 0.11∗∗∗ 0.14∗∗∗ -0.39 0.20∗∗

3 (high) 0.08 0.07∗∗∗ 1.07∗∗∗ 0.67∗∗∗
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Table A8
Flash Order Impact on Market Quality Double Sorted by Market Cap and Total

Flash

The table presents the proportional change in the mean of market quality variables after the introduction and
removal of flash orders for stocks double sorted according to market capitalization and the flash ratio. Introduction
is the proportional change between the first five days of flash introduction and five days before ((post-pre)/pre),
and Removal is the proportional change between five days after the removal of flash and five days prior ((post-
pre)/pre). All variables are defined in Table A2. ∗,∗∗,∗∗∗ represent significance at the 10, 5, and 1% level,
respectively.

Spread Rel. Spread ILR Volatility

Panel A. Introduction

Market Cap Tercile 1 (Low)

1 (low) -0.06 -0.07 -0.07 -0.38∗∗∗

2 -0.17 -0.16 0.52 -0.40∗∗∗

3 (high) -0.26∗∗∗ -0.23∗∗∗ -0.29∗∗∗ -0.65∗∗∗

Market Cap Tercile 2

1 (low) -0.15∗ -0.17∗∗ -0.19 -0.11
2 -0.14 -0.19∗∗∗ -0.55∗ -0.20
3 (high) -0.28∗∗∗ -0.23∗∗∗ -0.18∗∗∗ -0.54∗∗∗

Market Cap Tercile 3 (High)

1 (low) 0.04 -0.04 0.50 -0.38∗∗∗

2 -0.33∗∗∗ -0.31∗∗∗ -0.92∗ -0.41∗∗∗

3 (high) -0.28∗∗∗ -0.21∗∗∗ -0.69 -0.49∗∗∗

Panel B. Removal

Market Cap Tercile 1 (Low)

1 (low) -0.06 0.00 -0.12 -0.22
2 0.34 0.30 -0.47 -0.05
3 (high) 0.09 0.10∗∗ 0.34∗∗∗ 0.56∗∗∗

Market Cap Tercile 2

1 (low) 0.05 0.09 0.12 0.06
2 0.15∗∗ 0.17∗∗ -0.45 0.30∗∗∗

3 (high) 0.12∗∗ 0.09∗∗ 0.29∗∗∗ 0.38∗∗

Market Cap Tercile 3 (High)

1 (low) -0.04 0.00 -0.32 0.98∗∗

2 0.06 0.10∗∗ -0.38 0.27
3 (high) 0.09∗ 0.08∗∗∗ 1.19 1.08∗∗∗
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Table A9
Difference-in-Difference - 20 Day Window

The table shows the mean difference in difference between the CRSP and the Toronto Stock Exchange (TSE)
market quality variables (treatment-control) of a 20-day pre/post window event study. Introduction is the differ-
ence between the flash introduction and before (post-pre), and Removal is the difference between the removal of
flash and prior (post-pre). Panel A shows the results for the entire sample, and the results sorted according to
market capitalization. Panel B shows two-way fixed effect regressions for non-TARP stocks of the market quality
difference between the CRSP and TSE (treatment-control) on a flash period dummy for the sample period, April
1-October 31, 2009. Market Cap. Diff. is the difference in market capitalization between CRSP and TSE stocks,
Volume Diff. is the difference in volume between CRSP and TSE stocks, VWAP is the log volume weighted
average price. The coefficients for Volume Diff. and VWAP have been multiplied by 1,000. Flash Dummy is a
binary variable that is one for the period June 5 - August 31, 2009, and zero otherwise. All other variables are
defined in Table A2. All regressions include a constant, not reported to conserve space. p-values calculated using
Thompson (2010) two-way clustered robust standard errors. ∗,∗∗,∗∗∗ represent significance at the 10, 5, and 1%
level, respectively.

Introduction Removal

Panel A. Event Study

Whole Sample

Spread -0.024∗∗∗ 0.003
Relative Spread -0.053∗∗∗ 0.008
ILR -0.023 0.029
Volatility 0.000 0.002∗∗∗

Market Cap Sorted

Tercile 1 (Low)

Spread -0.008 0.002
Relative Spread 0.017 -0.006
ILR -0.057 0.071
Volatility 0.000 0.002∗∗∗

Tercile 2

Spread -0.030∗∗∗ 0.008∗∗∗

Relative Spread -0.089∗∗∗ 0.041∗∗∗

ILR -0.001 -0.001
Volatility 0.000 0.002∗∗∗

Tercile 3 (High)

Spread -0.036∗∗∗ -0.001
Relative Spread -0.091∗∗∗ -0.011
ILR -0.009 0.015
Volatility -0.001∗∗ 0.001∗∗∗

Panel B. Non TARP

Flash
Market Cap Volume VWAP Dummy Adj. R2

Spread 0.005∗∗∗ -0.004 -0.008∗ -0.002∗ 0.58
Rel Spread -0.004∗∗ 0.004 -0.050∗∗∗ -0.011∗∗∗ 0.21
ILR -0.008∗∗∗ -0.006 -0.030 -0.005 0.16
Volatility 0.000 0.081 0.016 -0.001∗∗∗ 0.26
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Table A10
Matching Quality Statistics

The table shows normalized mean differences between the treatment and control groups for the period April
1-June 4, 2009. All other variables are defined in Table A2.

Canada U.K. and Canada

Price 0.00 0.10
Volume 0.30 0.23
Market Cap -0.17 0.02
Spread -0.21 -0.25
Rel. Spread -0.19 -0.25
ILR 0.10 0.12
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Table A11
U.K. and Canada Match Group

The table shows results for the difference-in-difference regression where the match group is the combined stocks
of Toronto Stock Exchange and London Stock Exchange. The results are for two-way fixed effect regressions of
the market quality difference between the NASDAQ and matched group (treatment-control) on a flash period
dummy for the sample period: April 1-October 31, 2009. Market Cap is the difference in market capitalization
between NASDAQ and matched stocks, Volume is the difference in volume between NASDAQ and matched stocks,
VWAP (volume weighted average price) is the difference in VWAP between NASDAQ and matched stocks. The
coefficients for Volume and VWAP have been multiplied by 1000. Flash Dummy is a binary variable that is one
for the period June 5-August 31, 2009, and zero otherwise. All variables are defined in Table A2. All regressions
include a constant, not reported to conserve space. p-values calculated using Thompson (2010) two-way clustered
robust standard errors. ∗,∗∗,∗∗∗ represent significance at the 10, 5, and 1% level, respectively.

Spread Rel. Spread ILR Volatility

Flash Dummy -0.005∗∗∗ -0.014∗∗∗ -0.020∗∗∗ -0.002∗∗∗

Log Market Cap. 0.035∗∗∗ -0.076∗∗∗ -0.260∗∗∗ -0.007∗∗∗

Volume -0.007 -0.006 0.118∗∗∗ 0.032∗∗∗

VWAP -0.003∗∗∗ -0.070∗∗∗ -0.080∗∗∗ 0.025∗∗∗

Adj. R2 0.52 0.44 0.20 0.28
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Table A12
Cross-sectional Effect of Number of Flash Orders on Market Quality

The table shows the regression of market quality variables on the number of flash orders placed for each stock for
the period June 5-August 31, 2009. Panel A shows the contemporaneous cross-sectional regression, while Panel B
shows the pooled regression. Panel A presents the mean coefficient over 57 daily cross-sectional regressions. Flash
is the number of flashed orders a stock experienced, lag Price is the lagged log price, and lag DV is the lagged
dependent variable. The rest of the variables are defined in Table A2 in the Appendix. The coefficient for Flash
and Market Cap. has been multiplied by 1,000,000, and the coefficient for dollar volume has been multiplied by
10,000. We test for significance using the time-series variation in the regression coefficients over these 57 periods
and report the significance level based on Newey-West standard errors. All regressions include a constant, not
reported to conserve space. ∗,∗∗,∗∗∗ represent significance at the 10, 5, and 1% level, respectively.

Relative
Spread Spread ILR Volatility

Panel A. Average Daily Regression

Flash -0.090∗∗ -2.260∗∗∗ -0.850∗∗∗ -0.010∗∗∗

Market Cap. -0.050∗∗ 0.320∗∗∗ 0.770∗∗∗ -0.020∗∗∗

Volume -0.240∗∗∗ -0.142 -0.680∗∗∗ 0.030∗∗∗

Volatility 1.650∗∗∗ 11.500∗∗∗ 32.610∗∗∗ -
lag Price 0.010∗∗∗ -0.060∗∗∗ -0.030∗∗∗ 0.000∗∗∗

lag DV 0.710∗∗∗ 0.670∗∗∗ 0.510∗∗∗ 0.540∗∗∗

Panel B. Pooled Regression

Flash -0.100∗∗∗ -2.190∗∗∗ -1.120∗∗∗ -0.010∗∗∗

Market Cap. -0.110∗∗∗ 0.120∗ 0.530∗∗∗ -0.020∗∗∗

Volume -0.200∗∗∗ -0.115 -0.356 0.030∗∗∗

Volatility 0.544 3.551 15.004 -
lag Price 0.020∗∗∗ -0.060∗∗∗ -0.040∗∗∗ 0.000∗∗∗

lag DV 0.660∗∗∗ 0.610∗∗∗ 0.260∗∗∗ 0.168
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Table A13
Pseudo Event Analysis

The table shows the pseudo event results. We construct ten-day event windows for each day for the pre-flash
pseudo event period February 6-May 8, 2009 and the post-flash pseudo event period, from September 29-December
31, 2009. For each event date, we create the average and median of the market quality variables, V for 5 days
before and after the event date. We then create the difference in pre and post period in the same way as in
Table VI. Panel A presents the proportional change ((post-pre)/pre) in the mean and median of market quality
variables for the introduction and removal pseudo event windows. Introductionpseudoi for each pseudo event is
calculated as (Vpost − Vpre)/Vpre) for both means and medians. The same calculation is carried out for Removal.
t-stat is the t-statistic for the difference from zero. Panel B presents the average difference between the flash
period and the pseudo event change in market quality for the pre and post event period. It represents the average
of the difference in pre and post event period changes in V between pseudo events i and introduction of flash, as
per Table VI, (Introductionflash − Introductionpseudoi ). t-statistics are presented in square brackets.

Spread Relative ILR Volatility
Spread

Panel A. Pseudo Period

Introductionpseudo

Mean -0.01 -0.01 0.00 0.03
t-stat -1.52 -2.01 -0.08 1.06
Median 0.03 -0.01 0.00 0.04
t-stat 0.88 -0.88 0.03 1.01

Removalpseudo

Mean 0.01 0.02 0.03 0.00
t-stat 0.87 1.29 1.62 -0.07
Median 0.01 0.01 0.02 0.00
t-stat 0.84 0.66 1.03 -0.03

Panel B. Flash-Pseudo

Introduction

Mean -0.10 -0.10 -0.06 -0.39
t-stat -18.34 -17.30 -3.39 -13.75
Median -0.36 -0.22 -0.17 -0.58
t-stat -11.38 -25.04 -8.30 -15.59

Removal

Mean 0.00 0.02 -0.15 0.32
t-stat -0.31 1.62 -7.20 10.36
Median -0.01 0.09 0.24 0.62
t-stat -0.84 8.35 10.65 15.47
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