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Evidence on Features of a DSGE Business Cycle model from

Bayesian Model Averaging1 ;2

Rodney W. Strachan

Research School of Economics, The Australian National University

Herman K. van Dijk

Econometric and Tinbergen Institutes, Erasmus University Rotterdam and VU

University Amsterdam

ABSTRACT

The empirical support for features of a Dynamic Stochastic General Equilibrium

model with two technology shocks is evaluated using Bayesian model averaging over

vector autoregressions. The model features include equilibria, restrictions on long-run

1*Manuscript received October 2008; revised September 2010.
2We would like to thank Frank Schorfheide and three anonymous referees for extensive comments

which led to a substantial revision and extension of the results presented in the original working

paper. A preliminary version of this paper has been presented at the US Federal Reserve Bank

in 2008 and at Cambridge University in 2011. We also thank Luc Bauwens, Geert Dhaene, John

Geweke, David Hendry, Lennart Hoogerheide, Soren Johansen, Helmut Lutkepohl, Christopher Sims,

Mattias Villani and Anders Warne for helpful discussions on the topic of this paper. Of course, any

remaining errors remain the responsibility of the authors. Van Dijk acknowledges �nancial support

from the Netherlands Organization of Scienti�c Research.
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responses, a structural break of unknown date and a range of lags and deterministic

processes. We �nd support for a number of features implied by the economic model

and the evidence suggests a break in the entire model structure around 1984 after

which technology shocks appear to account for all stochastic trends. Business cy-

cle volatility seems more due to investment speci�c technology shocks than neutral

technology shocks.

Key Words: Posterior probability; Dynamic stochastic general equilibrium model;

Cointegration; Model averaging; Stochastic trend; Impulse response; Vector

autoregressive model.

JEL Codes: C11, C32, C52

Running Head: Evidence on a DSGE model from BMA
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1 Introduction.

In this paper we evaluate the robustness, in face of model uncertainty, of the empir-

ical support for long-run equilibrium relationships implied by a Dynamic Stochastic

General Equilibrium (DSGE) business cycle model subject to a investment-speci�c

technology shock and a neutral technology shock. We embed these features of the

DSGE model within a set of Vector AutoRegressive (VAR) models and take into ac-

count model uncertainty using a Bayesian Model Averaging (BMA) approach. Our

work is distinguished from most other model averaging papers since averaging over

systems of variables (rather that single equation models) implies averaging over fea-

tures of the model rather than averaging over sets of regressors. Averaging over

model features in systems of variables adds a level of complexity compared to single

equation models and requires careful consideration of prior distributions. However,

the approach we propose makes such an exercise feasible and the empirical results

suggest the exercise is worthwhile.

The DSGE model investigated in this paper is based upon one described by Fisher

(2006). This model has several features that can be empirically weighted: for exam-

ple, the economic model suggests that the Great Ratios (e.g., consumption to income,

investment to income) are stationary, that only investment-speci�c technology shocks

have permanent e¤ects on the real investment good price, and only technology shocks

a¤ect productivity in the long run. Model uncertainty derives from uncertainty over
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the number of stochastic trends, on the form of the reduced form equilibrium (cointe-

grating) relations, on the form of the deterministic trends, and, �nally, on lag length.

By considering the unconditional evidence, where �unconditional�means that the em-

pirical evidence does not depend upon a single model, it is possible to identify those

features that have stronger empirical support. The joint evidence for those features

implied by the model will indicate its empirical support.3

The idea underlying BMA is relatively straightforward. Model speci�c estimates

are weighted by the corresponding posterior model probability and then averaged

over the set of models considered. Although many statistical arguments have been

made in the literature to support model averaging (e.g., Leamer 1978, Hodges 1987,

Draper 1995, Min and Zellner 1993 and Raftery, Madigan and Hoeting 1997), an

increasing number of recent applications suggest its relevance for macroeconometrics

(Fernández, Ley and Steel 2001, Sala-i-Martin, Doppelho¤er and Miller 2004, Koop

and Potter 2003, Wright 2008 and Koop, León-González and Strachan 2012). There

are several arguments for model averaging and only a few are mentioned here. At the

simplest level, it is often attractive to report inferences robust to model speci�cation.

Second, a large body of applied work has demonstrated that averaging results in

gains in forecasting accuracy (Bates and Granger 1969, Diebold and Lopez 1996,

3We use the word �features�rather than �structures�to avoid confusing our work with structural

VAR analysis, although we later consider �structural breaks�in the common use sense of this term.
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Newbold and Harvey 2001, Terui and van Dijk 2002, Hoogerheide, Kleijn, Ravazzolo,

van Dijk and Verbeek 2010 and Wright 2008). Some explanation for this phenomenon

in particular cases was provided by Hendry and Clements (2002). Thirdly, from a

methodological point of view, averaging over models addresses to some degree the

well understood pre-test problem (see, for example, Poirier 1995, pp. 519-523).

There is clear evidence from the literature that a structural break should be con-

sidered around 1984 (see, for example, McConnell and Perez-Quiros 2000 and Stock

and Watson 2002). This literature suggests there is evidence of a break in possibly

both the variances and mean equation coe¢ cients. There is little work to date on

changes in the overall structure or features of the model, such as changes in lag dy-

namics or stability of variables. We �nd the empirical evidence suggests that allowing

for structural changes in the models, that is allowing the process to switch from one

model to another, rather than just the parameter values, is justi�ed.4 Incorporating

this model switching is a computationally challenging task. We simplify this task by

considering what was the most likely model before the break and which was the most

likely model after the break, rather than trying to compute the evidence of the switch

from one model structure to another.

This paper makes three contributions. First, we show how to obtain posterior

4The introduction of the structural break analysis was on the suggestion of a referee to whom we

are very grateful. This extension has signi�cantly altered the results and conclusions.
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inference from model averages in which the economically and econometrically impor-

tant features may have weights other than zero or one. In other words, the inferences

are based on a large �nite mixture of model structures. Second, this paper treats a

structural break as a change in the entire structure of the model, not just a change

in parameter values. We �nd strong evidence that the entire structure, rather than

just the parameter values, has changed. This extension implies a very large model

set but we demonstrate how to obtain inference using some simple algebra and fast

computation. Third, the proposed methodology is demonstrated with an empirical

investigation of the long-run equilibrium relationships implied by the DSGE model.

Important in this model are the long run responses of investment prices and pro-

ductivity to technology shocks and that technology follows stochastic rather than

deterministic trends.

The structure of the paper is as follows. In Section 2 the important features

of the economic model used by Fisher (2006) are outlined. In Section 3 the basic

econometric models of interest in this paper are introduced, including characteriza-

tions of the features implied by the economic model. We present priors, likelihood

and the sampling scheme used in Section 4 together with the tools for inference in

this paper including the posterior predictive probabilities (Geweke 1996 and Geweke

and Amisano 2011) of alternative model features and the Laplace approximation.

The posterior and predictive evidence of model features are presented in Section 5
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as are estimates of important functions of parameters. In Section 6 we summarize

conclusions and discuss possibilities for further research.

2 Long-Run Relations from a DSGE Business Cycle Model.

In this section we outline the features of a DSGE model that is based upon the real

business cycle model of Fisher (2006), which is in turn based upon the competitive

equilibrium growth model of Greenwood, Hercowitz, and Krusell (1997). We impose

two simpli�cations: capital is not separated into equipment and structures; and tech-

nologies are given stochastic rather than deterministic trends. The general model was

developed in Kydland and Prescott (1982) and detailed in King, Plosser and Rebelo

(1988), and an interesting early econometric analysis is provided in King, Plosser,

Stock and Watson (1991, hereafter referred to as KPSW). The reader is directed to

these papers for the development of the model as we focus upon certain features that

imply restrictions upon our reduced form econometric model that we want to weight

using BMA.

The model suggests that a system of consumption, Ct; investment, Xt; and output,

Yt = Ct+Xt; will share a balanced growth path since each is driven by shocks to two

technologies: an investment speci�c technology, Vt; and neutral technology, At. We

denote the logs of Ct; Xt; and Yt by ct; xt; and yt respectively.

7



The resource constraint and Cobb-Douglas production technology are given by

Ct +Xt � AtK�
t H

1��
t ; 0 < � < 1

and period t+ 1 capital stock is given by

Kt+1 � (1� �)Kt + VtXt; 0 < � < 1:

Fisher (2006) speci�es technology as having stochastic rather than deterministic

trends. The log of investment-speci�c technology, vt = ln (Vt) ; and the log of neutral

technology, at = ln (At) ; are assumed to be independent simple random walks, possi-

bly with drifts. In the empirical analysis we evaluate the evidence on the importance

of deterministic and stochastic trends as well as the relative contribution to business

cycle volatility of investment speci�c and neutral technology shocks.

The production technology and the resource constraint imply that we can repre-

sent the log real price of an investment good in consumptions goods by pt = �vt and

pt = pt�1 � � � zI;t: Since � � 0; this is in accordance with the downward trend we

see in the price of an investment good. Neutral technology evolves by the process

at = 
+at�1+zN;t where 
 � 0 and (zI;t; zN;t)0 has zero mean and constant covariance

matrix.

A �rst implication of this model is that the variables ct; xt; and yt will all be

integrated of order one due to a common stochastic trend given by !at + (1� !) pt

and the di¤erences between any two will be stationary. This is not an unusual result
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in the balanced growth literature (see, for example, KPSW) and it implies that we

can treat the Great Ratio relations ct�yt and xt�yt as valid cointegrating relations.

Denote by ht = ln (Ht) the log number of hours worked which is assumed to

have no unit root. Although it may have a trend over short periods, and the evidence

suggests this, it is not possible for hours worked per capita to have a permanent trend.

The log price of an investment good, pt; and labour productivity, at = ln (Yt=Ht) =

yt � ht, are assumed to have unit roots but pt should not cointegrate with the other

variables. Since ht is assumed to be I (0) ; and ct; yt and xt are all assumed to be I (1)

sharing a common stochastic trend, the above assumptions imply that at will be I (1)

and ct � yt and xt � yt will be I (0). The assumptions of Fisher (2006) preclude the

above I (0) relations having deterministic trends and this is not a feature we would

expect to �nd over long samples. By allowing for structural breaks we may �nd

trends in one or more subsamples, perhaps as a trend in the second period o¤-sets

the e¤ect of the trend in the �rst period, but we would expect that they are inherently

temporary features.

Two important �nal restrictions apply. First, Fisher (2006) assumes that the long

run response of pt to zI;t will be nonzero, in fact negative, but its long run response

to all other shocks will be zero. Second, the long run response of at to both zI;t

and zN;t will be nonzero, but the long run response of at to any other shock will be

zero. These restrictions identify the investment-speci�c technology shock, zI;t, and
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the neutral technology shock, zN;t.

3 A Set of Vector Autoregressive Models.

When a VAR process cointegrates, the model may be written in the vector error

correction model (VECM) form. The VECM of the 1� n vector time series process

yt = (pt; at; ht; ct; xt) ; t = 1; : : : ; T; conditioning on l + 1 initial observations is

�yt = yt�1�� + dt�+�yt�1�1 + : : :+�yt�l�l + "t (1)

where �yt = yt � yt�1: The 1 � n vector of errors "t are assumed to be iidN (0;
).

The matrices �j j = 1; : : : ; l are n� n and � and �0 are n� r and assumed to have

rank r 2 f0; 1; :::; 5g : We de�ne the deterministic terms dt� below.

As the model in the previous section implies two common stochastic trends, from

the two technology shocks, there will be three cointegrating relations; that is r =

3. The model is quite speci�c about the form of these cointegrating relations and

these impose overidentifying restrictions on the cointegrating vectors. Speci�cally,

the model says that: pt has a unit root but does not cointegrate with the other

variables in the system; that hours worked, ht, are stationary; and the great ratios

of consumption to income and investment to income, ct � yt = ct � at � ht and

xt � yt = xt � at � ht, are stationary. We index the overidentifying restrictions by

o and when all of the restrictions in the previous sentence are imposed we set o = 2

and this can only occur when r = 3: When no restrictions are imposed we set o = 0
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which can occur for any r in f0; 1; :::; 5g :When we only impose the restriction that pt

has a unit root but does not cointegrate then o = 1. The restriction o = 1 is allowed

to hold for 1 � r � 4:

We allow for �ve lag lengths, l 2 f2; 3; 4; 5; 6g. The deterministic processes are

denoted by d 2 f1; 2; 3; 4; 5g and these processes are the �ve most commonly used

combinations of trends in yt and trends in yt� (for details see Johansen 1995, Section

5.7). The two empirically important deterministic processes in this paper are d = 2

which implies a linear trend in yt� and a linear drift in yt; and d = 4 which implies no

drift in the levels and no trend in the cointegrating relations. Some models implied

by the deterministic processes will be observationally equivalent. For example, if

r = 0 then di¤erent models of trends in yt� will be observationally equivalent. The

treatment of a priori impossible and observationally equivalent models is explained

in the next section when the prior is outlined.

Finally, the long run restriction to identify the technology shocks is employed.

As discussed in the previous subsection, this restriction implies that the long run

response of pt is nonzero only for the investment-speci�c technology shocks and that

the long run response of at is nonzero only for the investment-speci�c technology shock

and the neutral technology shocks. This restriction can be parameterized using the

standard Beveridge-Nelson form of the Wold representation of the VECM as

�y0t = C

1=2z0t + C

� (L) 
1=2�z0t where C = �? (�?��?)
�1 �?:
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The �rst two elements of zt = 
�1=2"t are the investment-speci�c technology shock,

zI;t, and the neutral technology shocks, zN;t, respectively. Further, � = In � �li=1�i:

These restrictions imply the �rst two rows of C
1=2 will have the following zero

entries5: 2664 � 0 0 0

� � 0 � � � 0

3775 : (2)

This restriction is obtained by the appropriate choice of 
1=2 such that 
 = 
1=2
1=20

and C
1=2 has the structure shown above. For an explanation of how such restrictions

are implemented see the Appendix, and see Chang and Schorfheide (2003) and Del

Negro and Schorfheide (2010) for further examples and discussion.

Since C has rank n � r; and 
1=2 must have rank n; the zero restrictions on

C
1=2 and the assumption of nonzero responses of pt and at stated above imply

C must have at least rank two, then this identi�cation scheme can only apply if

r 2 f0; 1; : : : ; n� 2g. This is consistent with the two technology shocks entering the

system as stochastic trends.

Fisher (2006) assumes a break date around 1982 Q3, although our results suggest

a slightly later date. We allow for a range of 16 break dates from the �rst quarter of

1982 until the last quarter of 1985. In our sample these periods cover the observations

from t = 137 to t = 152: We index these dates by � 2 f� ; � + 1; :::; � + 15; �g where

the �rst break is at 1982Q1 (� = 137), the second break occurs at 1982Q2, and so on

5The asterisks (*) imply no restriction is imposed.
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until the last break at 1985Q4 (� = 152).

In total we average using 255 models before the structural break, and 255 after the

break and twelve break dates. This gives a total of over 780; 000 models that need

to be computed. Computation of marginal likelihoods for this many multivariate

models would be computationally challenging. As our interest is in the date when

the break occurs and modelling after the break date, we need only estimate 510

marginal likelihoods for 12 break dates; a total of 6120 marginal likelihoods. This is

still a large number of computations, but much more readily achievable. We provide

further details on how this is achieved in Section 4.2.

4 Priors, Posteriors and Model Averaging.

In this section the priors and resultant posterior are presented. For notational con-

venience we collect the lag parameters into a ki � n matrix � = [�01 � � � �0l]
0 and

vectorize into � = vec (�) : Conditional upon �; the model in (1) is linear in the

equation parameters �, vec (�) and �, while conditional upon �, vec (�) and �, the

model is linear in �: This fact makes it relatively straightforward to elicit priors on

the parameters.
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4.1 The Prior.

All models included for the averaging are treated equally likely. The set of models

included for the averaging is a subset of the full set of models that result from all

combinations of r; o; d and l and 16 break dates � . We exclude impossible and mean-

ingless models and, if two or more models are observationally equivalent, we include

only one of them. To avoid notational burden, and because we use the same prior

for models before and after the structural break, in this section we do not distin-

guish between parameters and models before and after the break dates except where

necessary.

For 
 we use a proper inverted Wishart prior with scale matrix S = In10 and

degrees of freedom � = n + 1 as this prior is rather uninformative. The parameters

in � are given a normal prior with zero mean and covariance matrix 1=�V � where

V � = (Iu+ V 0 (1� u)) (I (1� u) + V 1u) and u 2 f0; 1g with prior probabilities

Pr (u = 1) = Pr (u = 0) = 0:5: Here V 0 = 
 
 Iki and V 1 is the Litterman (1980,

1986) type prior for a VECM similar to that speci�ed in Villani (2001). We use a

gamma prior with mean E (�) = 5 and a relatively large variance V (�) = 16:67 for

�: The settings we use provide a reasonable degree of shrinkage towards zero which

has been shown to improve estimation (see Ni and Sun 2003).

We specify a weakly informative normal proper prior for vec (�; �)0 conditional

upon (
; �;Mi) (and hyperparameters discussed below) with zero mean and covari-
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ance matrix 1=�V a where V a = 
 
 Ir.6 Further details on the speci�cation of the

full prior is given at the end of the next subsection. The matrix � is given a Normal

prior with zero mean and covariance matrix n�1Inr. The theory underpinning this

speci�cation is provided in Koop, León-González and Strachan (2010). Its motivation

is to induce a uniform prior on the cointegrating space and a fast, e¢ cient sampling

scheme.

Let a =
�
vec (�)0 ; vec (�)0 ; �0

�0
; b = vec (�) and V be the block diagonal matrix

with V a and V � on the diagonals . Introduce � as the vector containing the elements

of �; a; and 
: The full prior distribution for the parameters in a given model is then

p (�; �; ujMi) _ exp
�
��=2a0V �1a� n=2b0b

	
nnr=2

� j
j�(�+n+1+r+uki)=2 exp
�
�1=2tr
�1S

	
�
n(ki+r)+1

2 exp f�5�=6g :

Ideally all models would be treated as a priori equally likely, however this is

not a straightforward issue in VECMs.7 The priors for the individual elements of

i = (r; o; d; l) are not independent, as certain combinations are either impossible

(such as when r = n and o = 2), meaningless (such as, for example, r = 0 with o = 1)

or observationally equivalent to another combination (such as the models with r = n

6If an informative prior is used on for the cointegrating space then we recommend the prior for �

described in Koop, León-González and Strachan (2008). Further details on the development of this

prior are available in an earlier working paper version of this paper: Strachan and van Dijk (2010).
7The authors are grateful to Geert Dhaene, John Geweke and an anonymous referee for useful

comments on this issue.
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and d = 1 or 2). The prior probability for impossible and meaningless models is

set to zero. However, the researcher must carefully consider how she wishes to treat

observationally equivalent models. Treating these models as just one model and then

assigning equal prior probabilities to all models biases the prior weight in favour of

models with 0 < r < n: This could shift the posterior weight of evidence in favour of

some economic theories for which we wish to determine the support.8 Alternatively,

these could be treated as separate models. A choice must be made and in this paper,

observationally equivalent models are treated as one model.

A referee raised the interesting question as to whether it is appropriate to specify

independent priors for r; o; d and l: One might expect, for example, that a strong

deterministic process such as d = 1 might reduce the prior expectation of �nding

stochastic trends in the processes. This might imply that the probability Pr (r < njd)

may decrease as d increases. Similarly a shorter lag length, l, might be associated

with a higher prior probability of �nding (more) stochastic trends. We do not pursue

this idea further, but note that it might be a worthwhile topic for investigation.

4.2 Posterior Analysis.

We conduct the empirical investigation in two stages. We �rst compute the esti-

mated model probabilities and the timing of the structural break. We then estimate

8This issue could be viewed as a con�ict between the desire to be uninformative across statistical

models and the desire to be uninformative across economic models.
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the functions of interest such as impulse responses and variance decompositions. We

estimate the model probabilities using a Laplace approximation of predictive densi-

ties, and the impulse responses and variance decompositions are estimated using a

Gibbs sampler.

When investigating the evidence on structural breaks we encounter two issues

that need to be addressed: the strength of the prior information; and proliferation

of models to compute. As we have a separate prior for the parameters before and

after the break, we have e¤ectively doubled the amount of prior information in the

posterior and halved the amount of data (on average) used to estimate the parameters.

This introduces the problem that the prior information is strong relative to the data.

We could make the priors less informative, but then that increases their in�uence in

the computation of the posterior probabilities (see discussion on Bartlett�s paradox

in Geweke 2005, Section 2.6.2). This situation implies a trade o¤ between prior

uncertainty about the parameters and posterior uncertainty about the models. To

mitigate this issue we compute predictive probabilities (see, for example, Geweke

1996 and Geweke and Amisano 2011) from predictive densities.

The predictive densities can be derived for each model via the expression

pT0;T2i = p
�
yT2T1+1jy

T1
T0
;Mi

�
=

R
�
p
�
yT2T1+1jy

T1
T0
;Mi; �

�
p
�
yT1T0 jMi; �

�
p (�jMi) d�R

�
p
�
yT1T0 jMi; �

�
p (�jMi) d�

(3)

where � = (�; u; �) and yt1t0 is the data from observation t0 to t1: For a model prior to

the structural break at time � , then T0 = 1; T0 < T1 < T2 and T2 = � �1; whereas for
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a model after the structural break, T0 = � and T2 = T: As T2 !1 or T1 ! 0; then

p
�
yT2T1+1jy

T1
T0
;Mi

�
becomes the standard marginal likelihood. Thus the full predictive

density for a process that switches from model Mi to model Mj at time � is the

product p�i = p
1;��1
i p�;Tj :

We estimate the numerator and denominator in (3), and therefore pT0;T2i , using

the Laplace approximation. This technique approximates the integral by a second

order expansion around the mode of the log of the integrand (see Tanner 1993).

Although often described as a normal approximation, the Laplace approximation has

been shown to work very well with many non-normal distributions. For example,

Strachan and Inder (2004) apply the approach to the VECM where the integral is

over linear subspaces which have bounded supports and non-standard distributions.

Denoting by � the set of models and using the notation pT0;T2;� = �
j2�
pT0;T2j ; then at a

given break date � we can compute the posterior predictive probability of a modelMi

holding before (or after) the break using the pT0;T2i as p
�
MijyT2T0 ; �

�
= pT0;T2i �pT0;T2;�.

While using the Laplace approximation greatly speeds up the computation of

the model probabilities, as discussed earlier, we allow the entire model structure to

change at the break. This implies we have a very large number of models because

the process is allowed to switch from any model before the break to any model after

the break. To further reduce computation time, we make use of the fact that we are

only interested in computing the probability that a break occurs at a point in time,
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and not which model after the break followed a speci�c model before the break. This

observation greatly reduces the number of necessary computations.

If we have K possible break dates, then the posterior probability of a break at

date � = � � is obtained by p (� = � �jy) =
�
p1;�

��1;�p�
�;T;�

�
=�K�=1

�
p1;��1;�p�;T;�

�
:

This expression, explained in a working paper (Strachan and van Dijk 2012), reduces

the required number of computations from 780,300 to 6,120. The probability of a

particular feature (e.g., d = 2) holding after the break is then obtained by summing

the products of the probabilities of the models with that feature and the probabilities

of their break dates.

To estimate the impulse responses we require draws from the posteriors of the

models with non-negligible posterior weight. An expression for the posterior distrib-

ution of the parameters for any model given the data is obtained by combining the

prior, p (�; �; ujMi) ; with the likelihood for the data L (yj�;Mi) where y represents

all data. That is,9 p (�; �; ujMi; y) _ p (�; �; ujMi)L (yj�;Mi) : As the sampler uses a

Gibbs sampling scheme, it is necessary to present the conditional posterior for each

parameter.

In the following results, we gather together terms to keep expressions notationally

concise. Collect yt�1� and the vector z2;t = (d2;t;�yt�1; : : : ;�yt�l) into the vector

zt = (yt�1�; z2;t) and recall the de�nition of a =
�
vec (�)0 ; vec (�)0 ; �0

�0
. As the model

9Note that as � and u are hyperparameters, they do not enter the likelihood.
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is linear conditional upon b = vec (�) ; standard results show that the posterior for

a conditional on all other parameters will be normal with mean a and covariance

matrix V constructed as

a = V
�

�1 
 Iki+r

�
vec

�
�Tt=1z

0
t�yt

�
and

V =
��

�1 
 �Tt=1z0tzt

�
+ �V �1

��1
:

Next, the posterior for b conditional upon the other parameters will be normal

with mean b and covariance matrix V b which are constructed as

b = V b
�
�
�1 
 In

�
vec

�
�Tt=1y

0
t�1 (�yt � z2;t�)

�
and

V b =
��
�
�1�0 
 �Tt=1y0t�1yt�1

�
+ nInr

��1
:

The posterior for � will be Gamma with degrees of freedom �� = n (ki + r)+3 and

mean �� = 1=
�
a0V �1a+ 5=3

�
=�� (see, for example, Koop 2003): Finally, u will have

a Bernoulli conditional posterior distribution with p = Pr (u = 1ja;
; �; y) equal to

p = exp
�
��=2a0V �10 a

	
=
�
exp

�
��=2a0V �10 a

	
+ exp

�
��=2a0V �11 a

	�
:

We use the following scheme at each step q to obtain draws of (a;
; �; �; u) :

1. Initialize (
; b; a; �; u) =
�

(0); b(0); a(0); �(0); u(0)

�
;
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2. Draw 
jb; a; �; u from IW
�
S + u�A0A+

PT
t=1 "

0
t"t; T + uki + r

�
;

3. Draw aj
; b; �; u from N
�
a; V

�
;

4. Draw bj
; a; �; u from N
�
b; V b

�
;

5. Draw �j
; b; a; u from Gamma(��; ��);

6. Draw uj
; b; a; � from Bernoulli (p);

7. Repeat steps 2 to 6 for a suitable number of replications.

To end this section we outline how we implement Bayesian model averaging. Let

� (�;Mi) be an economic object of interest which is a function of the parameters, �,

for a given model,Mi. Examples include estimates of impulse responses, forecasts, or

loss functions. To report the unconditional (of parameters or any particular model)

expectation of this object it is necessary to estimate E (�jy) = �
i2�
E (�jy;Mi) p (Mijy)

where E (�jy;Mi) is the expectation of � (�;Mi) from model i marginal of �: Estimate

E (�jy;Mi) as follows. First denote the qth draw of the parameters from the posterior

distribution for modelMi as �(q) and so the qth draw of � (�;Mi) as �
�
�(q);Mi

�
. Using

J draws of the parameters from the posterior distribution for each of the models in �,

obtain estimates of E (�jy;Mi) from each model by bE (�jy;Mi) =
1
J
�Jq=1�

�
�(q);Mi

�
.

These estimates are then averaged as bE (�jy) = �
i2�
bE (�jy;Mi) bp (Mijy) in which

bp (Mijy) is an estimate of the posterior model probability, p (Mijy).
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5 Evidence on Model Features.

In this section we provide empirical evidence on the support for the features of the

DSGE model with two technology shocks and the various restrictions that this eco-

nomic model implies for the econometric model. We begin with providing evidence

on the timing of the structural break, and the posterior probabilities of the features

of the reduced form VECM that are implied by this DSGE model. We estimate the

posterior probability of a structural break occurring at a range of dates and, in sub-

sequent analysis, focus upon the results for the data after the structural break. We

then report the estimates of objects of interest including impulse response functions.

The variables and the data: The variables of interest are: log real price of

an investment good measured in consumptions units, pt; log labour productivity, at;

log number of hours worked, ht; log of consumption, ct; and log investment, xt. The

data, which are seasonally adjusted, start in the �rst quarter of 1948 and end in the

second quarter of 2009. Where appropriate, the data are measured in 1996 dollars

de�ated using a chain-weighted index of consumption prices. For more background

on the data we refer to the working paper Strachan and Van Dijk (2012).

Break Dates and Stability of Great Ratios: Three break dates receive mea-

surable support, 1984Q3, 1984Q4 and 1985Q1 with probabilities of 0.01%, 57.78%

and 42.21% respectively. Of the 765 models over these three dates, there were 62

post break models with measurable support and 12 pre-break models with measur-
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able support. From the pre-break models, the model with one cointegrating relation,

no overidentifying restrictions, no drift and two lags, (r; o; d; l) = (1; 0; 4; 2) ; with a

break at 1984Q4 has 57.8% of the probability mass and the same model with with

a break at 1985Q1 has 41.3% posterior probability. Thus, the models prior to the

break provide strong evidence against the features we would expect under the eco-

nomic model. While the results prior to 1984 have important information in them,

there is evidence of several breaks in the 1970. As the aim of this paper is not a

comprehensive treatment of all breaks, the remainder of the discussion focuses on the

post break results as this period is well represented by a single, stable model.

Among the post break models, one model accounted for half the posterior mass

and the top �ve models accounted for 99.73% of the posterior probability mass, as

presented in Table 1. The posterior probabilities of the top �ve models are presented

in Table 1. Post the break, the model (3; 2; 2; 2) with a break at 1984 Q4 and the model

(2; 1; 4; 3) with a break at 1985 Q1 capture 79% of the probability mass. Although

relatively few models get any support, it is clear that support is fairly strong for the

top �ve models.

As the primary aim of this paper is to investigate the degree and role of model

uncertainty in the empirical evidence on technology shocks and important features of

DSGE models, we discuss the results with reference to a number of important papers

in the literature. In Table 2 we have summarized the relevant features of the model
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by Fisher and compare this with results found in the literature in the KPSW study

and the study by Centoni and Cubadda (2003, hereafter CC). We note that none of

these speci�c models receive notable posterior support with our data set.

The posterior probability of having only two stochastic trends (r = 3) is 76%,

although there is evidence of a third if the break is delayed until 1985 Q1. The DSGE

model is driven by technology shocks which, in Fisher and KPSW, are stochastic

trends. These are the only stochastic trends described in the economic model and

KPSW assume a unique technology is (in the three variable model) the only stochastic

trend that enters the system. The economic model of Fisher implies there are only

two common stochastic trends. CC report evidence of an extra stochastic trend in a

three variable system, but they then choose use the single trend model for inference.

We conclude the evidence on an extra unit root is an empirical issue. It is possible the

extra stochastic trend could be entering from the hours worked variable, ht. While ht

does not display a trend, it does display a very large and slow cyclical component with

peak-to-peak cycles of around 10 years duration and a sudden drop in 2009. Such

large cycles and outliers are not easily captured in linear models (such as the VECM)

and may be manifesting as evidence of a third unit root. An alternative explanation is

provided in Chang, Doh and Schorfheide (2007), that hours may appear nonstationary

if labour adjustment costs are not explicitly incorporated into the model.

The data are positively informative about the form of the cointegrating relations.
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That is, there is a 76% probability that the Great Ratios are stable and that the

investment price has a unit root and does not cointegrate with the other variables

(o = 2). The assumptions that the price of an investment good is nonstationary and

does not cointegrate with any other variable in the system, with 99% probability mass

on o = 1 and o = 2, have very strong support. Since the joint posterior probability of

(r = 3; o = 2) is 76%, and the posterior probability of (r = 3; o = 0 or o = 1) is zero,

the evidence that the Great Ratios are stationary is positive, although not compelling.

According to the model of Fisher, it might be reasonable to expect few determin-

istic processes in the system and so to see d � 3 as the technologies are commonly

described as random walks possibly with drifts, but the economic model does not

suggest we would expect trends in the cointegrating relations (d = 2) or quadratic

trends in the variables (d = 1). Table 3 presents the marginal probabilities of the

various features of the VECM. There is a 76% probability that there is a drift in the

levels and a trend in the cointegrating relations (d = 2) and 24% probability of no

drift in levels and no trend in the equilibria (d = 4). With a 76% posterior probability

that the cointegrating relations are the Great Ratios of consumption to income and

investment to income, the trend may be picking up the decline in the savings that

occurred since the mid 1990s.

Overall the evidence in the estimated probabilities for the features of the econo-

metric model suggested by the DSGE model of Fisher (2006) is positive to strong.
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But, with 25% of the mass on features not supported by the economic model, the

evidence is not decisive and there remains considerable model uncertainty.

Table 1: Posterior probabilities, P (Mijy), of the top �ve models.

Cumulative

r o d l Break Date P (Mijy) probabilities

3 2 2 2 1984:4 0:5552 0:5552

2 1 4 3 1985:1 0:2343 0:7895

3 2 2 2 1985:1 0:0968 0:8863

3 2 2 3 1985:1 0:0884 0:9747

3 2 2 3 1984:4 0:0226 0:9973

Table 2: Features of related models

r o d l

KPSW 2 2 3 8=610

CC 2 0 3 1

Fisher11 0 0 3 3

10KPSW use 6 lags when testing for cointegration but 8 lags to produce the variance decomposi-

tions. In our results labelled KPSW below, we average over 6 to 8 lags.
11There is a distinction between the structure of the economic model of Fisher and the econometric

model estimated by Fisher. The economic model of Fisher implies r = 2 and o = 3: However, the

econometric model he estimates does not encompass all features of the economic model or use the

same set of variables as our study. Further, we are assuming the model of Fisher used d = 3 as this
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Table 3: Posterior marginal probabilities

of model features after the break.

r = 2 r = 3 o = 0 o = 1 o = 2

0.2364 0.7638 0.0019 0.2348 0.7635

d = 2 d = 4 d = 5 l = 2 l = 3

0.7636 0.2347 0.0019 0.6546 0.3454

Business Cycle Volatility due to Investment Speci�c and Neutral Tech-

nology Shocks: An important area of interest in DSGE models is the dynamics of

yt; ct; and xt; including the role of the investment speci�c and neutral technology

shocks in the business cycle. By decomposing the variance into the components due

to these technology shocks, it is possible to gain an impression of the relative impor-

tance of these e¤ects for the variability of the consumption, investment and output.

As the model set includes models with the same features (r; o; d; and l) as those used

in other studies, speci�cally KPSW and CC, it is possible to compare results across

models used in other studies. KPSW and CC did not consider the two technology

shocks per se, rather the role of permanent (possibly technology) shocks and tran-

sitory shocks. As the model in this paper has two additional variables (pt and ht),

the results will di¤er from those if we had used exactly the models in KPSW and

CC unless (pt; ht) is strongly exogenous to (ct; xt;yt) : KPSW and CC use output, yt,

was not clear from the paper.
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whereas this paper uses productivity, at = yt � ht. As at is a linear function of ht

which is also included in the model, the decomposition for yt can be readily obtained

from the estimation output.

KPSW derive an identi�cation scheme for a decomposition based upon a single

productivity shock entering these variables. This model is extended in Fisher to

permit two types of permanent shocks, however in both cases the economic model

implies that the Great Ratios (ct � yt and xt � yt) will be stationary. As discussed

above, results from our study suggest there is some uncertainty associated with this

aspect of the theory as the evidence suggests there may be more than two stochastic

trends entering the system. However, the equilibrium relations appear to be well

described by the Great Ratios. Notwithstanding this ambiguity, it is not evident that

the excess of stochastic trends a¤ects estimates of other outputs such as proportions of

the variance over the business cycle that can be attributed to the technology shocks.

Our interest is in the proportion of business cycle �uctuations due to the technol-

ogy shocks in total, and the investment speci�c shocks, zI;t, and neutral technology

shocks, zN;t, speci�cally. Therefore we adapt the approach of CC who consider the

variance decomposition within the frequency domain.

Figure 1 presents the posterior distribution averaged over all models, of the pro-

portion of the variance of ct; ht and yt over the business cycle due to investment

speci�c technology shocks and Figure 2 presents the posterior distribution of the pro-
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portion due to neutral technology shocks constructed by averaging over all models.

These estimates are obtained from 30,000 draws from the posterior of each model.

The plots show an amount of mass at zero for all three variables suggesting a slightly

larger role for non-technology shocks. Relatively, the investment speci�c technology

shocks are far more important than the neutral technology shocks and the propor-

tions have considerable mass away from zero. The proportion of variation due to

neutral technology shocks has little mass above 15%. We computed the same poste-

rior densities as those reported in Figures 1 and 2 but using the CC, KPSW and the

best models, as well as for all models in which the Great Ratios are the cointegrating

relations. These estimates all share similar forms and pairwise comparisons showed

no stochastic dominance of any distribution over any other.

Table 4 reports estimates of the mean proportions of the variance over the business

cycle due to zI;t and zN;t for a range of models and model sets. The single models

considered are those used by CC, KPSW and the best model in our model set. The

model sets we consider are, �rst, the set of all models and, second, the set of all

models in which the Great Ratios are stable. Comparing across di¤erent models

and model sets, the proportions appear relatively robust to speci�cation. The CC

model is the only one that does not include the Great Ratios as stable cointegrating

relations and we see that this results in slightly higher proportions of the variance

due to investment speci�c technology shocks for output and consumption, although
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the di¤erence is not large. Imposing the Great Ratios (as in KPSW, the best model

and the set of all models with stable Great Ratios) slightly reduced the role of zI;t in

business cycle variation for consumption and output, but not for investment. Overall,

the technology shocks explain between 26% and 38% of the variation over the business

cycle for these variables.

Relatively speaking, the investment speci�c technology shocks seem far more im-

portant than the neutral technology shocks as they explain between 70% and 97% of

the total variation due to technology shocks.

Table 4 reports the 95% credible intervals for the variance decompositions for

the models and model sets we consider.12 An interesting point that arises from a

study of these intervals is that allowing for model uncertainty does not necessarily

increase the degree of uncertainty about the variance decompositions. The last two

columns of this table report results for sets of models: all models; and all models with

balanced growth restrictions. In many cases the credible intervals in these columns

are narrower than those for the single model estimates in the �rst three columns. We

attribute this e¤ect, through correlations among outputs, to something analogous to

the well know variance reduction from diversi�cation in an investment portfolio of

�nancial assets.
12We are grateful to Frank Schorfheide for suggesting the inclusion of these intervals and to inves-

tigate the implications of model uncertainty and parameter uncertainty in the posterior distributions

of the variance decompositions.
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Propagation of Shocks: We conclude by discussing the responses in investment

price, hours, output, consumption and investment to both investment speci�c and

neutral technology shocks. The percentiles of the posterior distribution of these

responses are shown in the panels in Figure 3. The left panels show responses to

an investment speci�c shock, zI;t, while the right panels show responses to a neutral

technology shock, zN;t. Included in each panel is the mean impulse responses to the

technology shocks constructed from 30,000 draws of the parameters in each included

model. It is immediately apparent that most of the densities have mass near zero.

Note that these plots incorporate much more uncertainty than the usual ones that

condition upon a model and so cannot be interpreted in the same way. The densities

in Figure 3 re�ect both parameter and model uncertainty and so any intervals will

naturally be much wider and so can lead to di¤erent conclusions. Unlike with the

variance decompositions, we do not bene�t from model averaging in estimation of

impulse responses.

The mean path of investment price pt to shocks in zI;t and zN;t are very much as

would be expected from the model of Fisher and agree with the form of his simulated

and estimated responses. The plot of the posterior response of pt to an investment

speci�c shock is persistently negative, while the response to a neutral technology shock

shows only a slightly positive response, again agreeing with the results of Fisher.

Output has a positive response to both shocks and the sizes of the responses are
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similar in magnitude to those of Fisher, with a stronger and more persistent response

to zN;t. Neither consumption nor investment display the persistent or large responses

suggested by Fisher�s simulations. In contrast to the simulations of Fisher, investment

has an initially negative, then positive then declining response to investment speci�c

technology shocks. Investment simply declines in response to neutral technology

shocks. The response of hours worked di¤ers depending upon the type of technology

shock in that investment speci�c shocks lead to an eventual fall in hours worked

while the neutral shocks have a positive and persistent e¤ect. The magnitudes of the

responses in hours is slightly smaller than those of Fisher. Both our results and those

of Fisher suggest persistence in the response, however, our responses to investment

speci�c shocks di¤er from those reported in Fisher (2006) in an important respect.

Our results show a fall in hours worked while Fisher�s results suggest an increase in

hours worked.

While many of the mean paths agree with those of Fisher (2006), the extra un-

certainty leads to an important di¤erence in the conclusions. With the exception of

the response of investment price to zI;t; the mean paths are not far from zero if we

take the full posterior as the metric for distance. The posterior credible intervals for

many of the responses encompass the origin but these intervals do not capture all of

the information on the densities. The densities for the responses of the investment

price to a neutral technology shock in Figure 4 at three horizons give an impression
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of the general form and evolution of the response densities for other variables. The

leptokurtic form and mass generally around zero is representative of the responses

of at; yt; ht; ct and xt to investment speci�c shocks, and of ht to neutral technology

shocks.

The responses of at; yt; ct and xt to neutral technology shocks show a very di¤erent

response. As an example, Figure 5 presents the posterior distribution of the response

of output yt to an neutral technology shock at three di¤erent horizons. These densities

all have platykurtic forms for responses after one or two periods. However, they

become increasingly bimodal at the time since the shock increases. This bimodality

is not due to di¤erent models producing di¤erent paths as the responses for the best

model in Table 1 produced very similar responses. A number of possible explanations

exist, and one is that the identifying restrictions, at least for zN;t, disagree with the

data. However, as we are using just identifying restrictions it is not possible for us

to report evidence at this point on this question.
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Table 4: Estimated proportion of variance over the business cycle due to

the investment-speci�c technology shock, zI;t, and the neutral technology

shocks, zN;t. 95% Credible intervals are shown in parentheses.

CC KPSW Best All Balanced

model model model models Growth models

Consumption - ct

zI;t 0.299 0.179 0.212 0.223 0.212

(0.02,0.75) (0.01,0.53) (0.02,0.55) (0.02,0.58) (0.02,0.55)

zN;t 0.050 0.018 0.041 0.038 0.040

(0.00,0.20) (0.00,0.04) (0.00,0.15) (0.00,0.13) (0.00,0.14)

Investment - xt

zI;t 0.254 0.320 0.233 0.227 0.234

(0.02,0.62) (0.01,0.79) (0.02,0.60) (0.02,0.59) (0.02,0.60)

zN;t 0.051 0.01 0.035 0.033 0.035

(0.00,0.20) (0.00,0.01) (0.00,0.13) (0.00,0.12) (0.00,0.13)

Output - yt

zI;t 0.281 0.160 0.202 0.216 0.202

(0.02,0.69) (0.01,0.44) (0.02,0.53) (0.02,0.56) (0.02,0.53)

zN;t 0.097 0.045 0.082 0.076 0.081

(0.02,0.29) (0.02,0.08) (0.02,0.22) (0.02,0.20) (0.02,0.22)

34



Figure 1: Posterior densities of the proportion of the variance over the business

cycle of output, consumption and hours that is due to investment speci�c technology

shocks, zI;t.

6 Conclusions.

This paper presents a Bayesian model averaging approach in order to investigate the

empirical support for several features of the DSGE type of real business cycle model

of Fisher (2006) which we subject to two types of technology shocks. An important

component of this model is the restrictions of long run responses that are used to

identify investment speci�c and neutral technology shocks. For many of the features

implied by this model we �nd reasonable support and some, such as stability of the

Great Ratios, receive quite strong support, although not before 1984. Further, the
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Figure 2: Posterior densities of the proportion of the variance over the business cycle

of output, consumption and hours that is due to neutral technology shocks, zN;t.

impulse responses demonstrate that the predictions of the model are quite plausible

although there is considerable uncertainty around these estimates.

The methodology is an important contribution of this paper. The approach re-

sults in unconditional inference on these features of the vector autoregressive model

as the e¤ect of any one model on the inference has been averaged out, and so model

uncertainty is incorporated into the analysis. Techniques are developed for estimat-

ing marginal likelihoods for models de�ned by such features as the number of stable

relations (cointegration rank), overidentifying equilibrium restrictions, deterministic

processes and short-run dynamics. To account for structural breaks and model switch-

ing, methods are presented to make inference computationally feasible in a very large
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set of multidimensional models.

The methods presented in this paper, without the structural breaks, have already

found applications in several other areas. Koop, Potter and Strachan (2005) inves-

tigate the support for the hypothesis that variability in US wealth is largely due to

transitory shocks. They demonstrate the sensitivity of this conclusion to model un-

certainty. Koop, León-González and Strachan (2008) develop methods of Bayesian

inference in a �exible form of cointegrating VECM panel data model. These methods

are applied to a monetary model of the exchange rate commonly employed in inter-

national �nance. Other current work includes investigating the impact of oil prices

on the probability of encountering the liquidity trap in the UK and stability of the

money demand relation for Australia.

We end with mentioning two topics for further research. First, although our mix-

ing over priors partially addresses this issue, there remains the issue of the robustness

of the results with respect to wider prior and model speci�cations. Very natural

extensions of the approach in this paper are to consider forms of time variation in

the model itself as Cogley and Sargent (2001, 2005) and Primiceri (2005) do for the

VAR. These papers suggest there is considerable variation in the parameters, partic-

ularly over the 1970s. However, the reduced rank restrictions due to cointegration

introduce further conceptual and computational issues for time varying models and a

�rst example of how to implement such a time varying VECM is presented in Koop,
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León-González and Strachan (2011). Alternatively, in using a SVAR for business cy-

cle analysis one may use prior information on the length and amplitude of the period

of oscillation (see Harvey, Trimbur and van Dijk 2007). Unresolved issues in this

work include systematic use of inequality conditions which imply a more intense, or

better, use of MCMC algorithms. Extending this approach to large model sets is yet

to be considered and, given the computational issues, remains a challenge. Second,

one may use the results of our approach in explicit decision problems in international

and �nancial markets like hedging currency risk or evaluation of option prices.
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7 Appendix

Identi�cation of the technology shocks: In this appendix we detail how the two

technology shocks are identi�ed by the zero restrictions on C
1=2 shown in Section 3.

Let e
1=2 denote any unique decomposition of 
 such that 
 = e
1=2e
1=20. This could
be the unique Cholesky decomposition into a lower triangular matrix or taken from
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the square root of the singular value decomposition. As we use the singular value

decomposition below we will give this de�nition for e
1=2. Take the singular value
decomposition of the n�n matrix A as A = USV 0 where U 2 O (n), V 2 O (n) where

O (n) is the orthogonal group of n � n matrices, and S = diag (s1; s2; : : : ; sn) where

si � 0: A square root of A may be obtained by the construction A1=2 = US1=2V 0:

To identify zt we need to choose an orthogonal matrix eU such that 
1=2 = e
1=2 eU
such that 
 = 
1=2
1=20 = e
1=2 eU eU 0e
1=20 = e
1=2e
1=20.
Let c1 be (1� n) vector of the �rst row of Ce
1=2 and let c2 be the (1� n� 1) of

the second to last elements in the second row of Ce
1=2: Next let the projection matrix
projecting into the space of c1 be P 1 = c10 (c1c10)

�1
c1: Similarly, let the projection

matrix projecting into the space of c2 be P 2:

Then eU = U1U2 where U1 is the orthogonal matrix spanning the column space of
the singular value decomposition of P 1 = U1SV 0: Further,

U2 =

2664 1 0

0 U22

3775
where U22 is the orthogonal matrix spanning the column space of the singular value

decomposition of P 2 = U22SV 0: We can then de�ne zt as zt = 
�1=2"t.
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Figure 3: The 20%, 40%, 50%, 60% and 80% percentiles of the posterior distribution

of the response of investment price, p, output, y, consumption, c, investment, x, and

hours, h, to investment speci�c, I, and neutral, N, technology shocks. The x-axis is

periods since the shock and the y-axis is in percent.
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Figure 4: Posterior densities of the impulse responses of investment price, pt; to a

neutral technology shock, zN;t, at horizons h = 1, h = 10 and h = 20. The x-axis is

in percent.
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Figure 5: Posterior densities of the impulse responses of output to a neutral technol-

ogy shock, zN;t, at horizons h = 1, h = 10 and h = 20. The x-axis is in percent.
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