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Abstract

Real option theory has remained a fringe �eld; practitioners believe it is not practically
applicable in complex real world environments. We show that this view is mistaken by
applying real option theory to a highly complex energy problem with unhedgeable risk,
time varying volatilities and endogenous exercise dates (non-European options). Invest-
ment decisions in the energy industry are often undertaken sequentially and are sensitive
to information on markets and geographic conditions. Information may arrive gradually
over time and as a consequence of early stage decisions. NPV-based frameworks are un-
suitable because they do not allow for the fact that new information may change later
stage decisions. We apply the approach to exploitation decisions for a Dutch cluster of
gas �elds, where gas prices and �eld reservoir size are the two main sources of uncertainty.
Gas price returns show volatility clustering, which we model using a GARCH speci�ca-
tion. Reservoir size uncertainty is unhedgeable, which necessitates an approach dealing
with incomplete markets. Finally investment decisions can be postponed or delayed, which
implies an non-European option setting, for which no analytical solutions exist. Correctly
modeling the structure of volatility has a major impact: Option values shrink by 50%
if the time varying nature of volatility is ignored. We also show that a high correlation
between reservoir size at di�erent locations creates large option values. The non-standard
features of our approach have a major impact: option values are large so real options
based valuations substantially exceed corresponding NPV calculations.

Keywords: real options, unhedgeable risks, volatility clustering, valuing American Options,

gas �eld valuation, pricing �exibility

Classi�cation-JEL: C61, G11, G31, G32, Q4

1 Introduction

Net Present Value (NPV) and Discounted Cash Flow (DCF) methods are widely used in

capital budgeting processes. They are straightforward and convenient, but both methods

ignore path-dependency1 embedded in projects and fail to incorporate the value of managerial

�exibility to change or to revise decisions as new information becomes available. Real option

analysis can be looked at as an extension of NPV, providing more accurate estimates of

project values by taking both �exibility and path-dependence into consideration. This is of

particular importance in the energy sector: investment decisions in the energy industry are

1Two projects are said to be path-dependent when one project can only be initiated upon completion of the
other.
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often undertaken sequentially and are substantially in�uenced by new information on market

conditions as well as on geographic conditions. During a year, a gas company routinely has to

take all kind of day-to-day management decisions to which our analytical tools would apply:

• When to start exploration projects, like seismic programs or drilling exploration wells

• When to start development projects, like �eld development programs including develop-

ment drilling, installing platforms and pipelines etc

• When/whether to apply enhanced production techniques like compression

• Abandonment decisions, like plugging wells and abandon and clean platforms and pipelines

Each decision is usually assessed by its stand alone parameters and value outcomes. However,

in sequential investment projects where later investment opportunities are dependent on the

outcome of earlier projects, starting early investments often brings in additional opportunities

for further investments, which should be seen as an extra value of those early investments.

Real option analysis is more appropriate in such circumstances than NPV as a decision tool

in the capital budgeting process. But in practice, applications of real option theory have been

limited to highly simpli�ed investment decisions, modeled as simple option type problems.

Anything approaching real world complexity is typically considered too di�cult to solve using

this approach. As a result, real option theory has remained something of a niche product, nice

in theory but not useful for real world problems. In this paper, we show that such a view is

mistaken: we provide a complex but trackable solution to much more complicated option style

and strategic investment problems.

Real option analysis is often criticized for its misuse of standard option pricing models

(i.e. the Black-Scholes formula) since the assumption of market completeness does not hold in

most environments where it is or could be applied, which makes the preference free risk-neutral

valuation methods underlying traditional option pricing formulas inapplicable. With regard
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to the application considered in this paper, there are two sources of risk associated with the

value of underlying assets, market gas prices and reservoir volume. Gas contracts are traded on

public markets so we can assume gas price uncertainty can be hedged; but investment projects

also carry idiosyncratic risks, such as reservoir size, which cannot be hedged by appropriately

structured replicating portfolios due to a lack of correlated traded instruments. This lack of

market completeness makes standard option pricing methods inapplicable; we demonstrate

two alternative approaches to solving the resulting valuation problems.

The value of embedded options is strongly in�uenced by the stochastic process of gas prices

and reservoir distribution. Recent research in �nance has shown that the second moment

evolution of a price process should not be neglected. Therefore we use a GARCH model

(Generalized Autoregressive Conditional Heteroskedasticity model, Engle, 1982; Bollerslev,

1986) for gas price returns incorporating clustering and heteroskedasticity in volatility. Based

on econometric analysis we show that a GARCH model is the appropriate model for predicting

the stochastic process of natural gas price returns and volatility. That structure turns out

to have a major impact on option values. Reservoir size uncertainty is represented by a

distribution derived from industry interviews. Although a few attempts have been made to

predict commodity prices and volatility with GARCH models (e.g. Pindyck, 2003), this paper

is to our knowledge the �rst application within a real option pricing framework. It also provides

an empirical evidence of the e�ectiveness of a GARCH setting on option pricing problems.

The case study at hand, investment decisions in an o�shore gas �eld, presents more non-

standard features. Because decisions can be brought forward or backward in time, the em-

bedded options have endogenously determined exercise dates. We model the problem as a set

of compound Bermuda options2. Solving this complex Bermuda style option pricing problem

with multiple state variables is a formidable challenge because of spiraling dimensionality prob-

lems, which we bring down to manageable proportions through the use of simulation-based

2A Bermuda option is an option that can be exercised at a set of predetermined times.
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technique, Least Square Monte Carlo simulation (Longsta� and Schwartz, 2001).

We initially make the simplifying assumption of no reservoir size correlation among gas

�elds, but relax it later on in the analysis. To deal with the market incompleteness problem,

we �rst use an approach based on ideas similar to the model method for incomplete markets,

by setting a reasonable range of cost of capital. The cost of capital is the rate of return that

capital could be expected to earn in an alternative investment with equivalent risk. The results

yield a consistently higher project value than obtained through NPV, i.e. NPV consistently

underestimates the project value. Sensitivity analysis of the option price relative to changes

in the spot price of gas (i.e. Delta) shows that, as expected, option values are increasing in

spot gas prices. So a higher spot price a�ects a project value through two channels, directly

and indirectly, through its traditional NPV and option value respectively.

An alternative approach starts from the observation that if the assets on which options are

written are not traded in public markets nor are the associated risks otherwise hedgeable, it

is impossible to derive valuations that are preference free. This approach, utility indi�erence

pricing for derivatives, makes the valuation an explicit function of the investor's degree of risk

tolerance. We �nd that risk attitude has a signi�cant in�uence on project valuation: option

values are higher for investors with higher risk tolerance (lower risk aversion). Using this

method we again �nd that option values increase substantially when we introduce correlation

between reservoir sizes of di�erent projects.

Finally, the compound option model analyzed and priced in this study can be easily reduced

to a simpler model by leaving out the early or the late project. With appropriate modi�cations,

it can be applied to valuing a wide variety of options that are di�erent from the ones considered

in this paper, for example options to wait, options to abandon projects, etc.

The remainder of the paper is organized as follows. Section 2 discusses a selected bibliog-

raphy on real options including commodity prices modeling and option pricing methodology.

Section 3 describes the general compound option problem we think appropriate to model our
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problem. Section 4 explains the methodology of gas pricing modeling and the GARCH op-

tion pricing model, as well as the introduction of a utility function necessary for the second

valuation approach, utility indi�erence pricing. Section 5 provides the results of applying

the framework to exploration decisions concerning a combination of o�shore Dutch gas �elds.

Section 6 concludes.

2 Literature Review

2.1 Real Option Analysis vs NPV

Real Options Analysis is best seen as a complement rather than a substitute to traditional

NPV calculations. ROA builds on NPV but allows for managerial response to new information

coming on stream in the course of the project. The NPV scenarios are embedded in the analysis

because a manager can always choose to adhere to NPV scenarios instead of switching between

them. Dixit and Pindyck (1994) also stress that the di�erences between these two methods lie

in the ability of ROA to incorporate and value �exibility and path-dependency among projects.

As a consequence, an investment is always valued equally or higher by real option valuation

than by NPV. In other words, NPV undervalues investments as long as there exists any possible

�exibility. For instance, when evaluating mining plans under uncertainty, Dimitrakopoulos and

Sabour (2007) shows the project value as valued by real option analysis is 11-18% higher than

that by NPV. Quigg (1993) �rst presents empirical predictions of a real option-pricing model

using a large sample of market real estate prices. She �nds the wait to invest option accounts

for a premium of 6% of the theoretical asset value; her analysis shows how option models help

in understanding and predicting transactions prices over and above the intrinsic value.
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2.2 Incomplete Market Setting

In the gas �eld investment problem we focus on in this study, underlying asset value depends

on two state variables, gas price and reservoir size. We assume that these variables are not

correlated (Adam Borison, 2005); gas prices in the public market are obviously independent of

the reservoir size of one small �eld, while with �xed extraction costs, the market developments

also do not impact on the distribution of reservoir size3. Both reservoir uncertainty and our

assumption of stochastic volatility introduce risk factors that are not directly related to any

instrument traded in �nancial market. This makes it impossible to use traditional option

valuation formulas; the replicating portfolios on which they are based do not exist.

The market incompleteness problem resulting from stochastic volatility is easier to deal

with than the reservoir size related risk factor. Using a GARCHmodel to capture the stochastic

volatility embedded in gas prices adds the second moment evolution of a price process. Duan

(1995) provides a solution that approximates risk-neutral pricing to deal with the additional

risk source brought by stochastic volatility.

The other risk factor resulting in market incompleteness is the unhedgeable risk caused

by recoverable reserve size uncertainty. Hubalek and Schachermayer (2001) �nd that no-

arbitrage arguments yield no information on the option price in case of non-existence of a

matching trading asset. They propose that an adjustment to the cost of capital should be

made accordingly, which corresponds to our �rst cost-of-capital approach. Floroiu and Pelsser

(2013) make a similar argument in a situation with model ambiguity. A more structured

approach recognizes that in the absence of a replication portfolio it is not possible to achieve

preference free valuation. Explicitly specifying the investor's risk preference leads to a utility-

based valuation method. An example of this approach is given by De Jong (2008), who also sees

it as an appropriate approach for an incomplete market environment). Note that by assuming

3
Recoverable reservoir size may be dependent on market gas prices if marginal extraction costs are increasing

as more gas is extracted. We do not incorporate this dependence in our paper here, but it is an interesting
extension and adds more managerial �exibility.
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a utility function with constant absolute risk aversion, we allow the investor to consider only

the change of wealth brought by the corresponding investment instead of considering their

total wealth.

Furthermore, a series of papers by Smith and Nau (1995), Smith (1996), Smith and Mc-

Cardle (1998), and Smith and McCardle (1999) propose an integrated valuation procedure in

real option analysis when markets are partially complete, a proposed modus operandi that

we also follow. In practice this implies the following procedure. The underlying asset under

concern here is separated into two parts. First, with the assumption of complete trading mar-

kets, unique risk-neutral probabilities for the market states can be determined. In our case of

GARCH models, we approximate risk-netural pricing for gas detrivatives using Duan (1995).

Second, subjective risk assessment of reservoir size is processed for project evaluation; and

utility functions are introduced to capture an investor's risk preference. More speci�cally, the

�rst step of this integrated method is to reduce a problem in incomplete market to an equiva-

lent one in complete market, which is solved by valuing the e�ective certainty equivalent given

a utility function of the decision maker.

2.3 GARCH Option Pricing Model

Most of the real option literature assumes that the price of underlying asset follows a Geo-

metric Brownian Motion (GBM) process (McDonald and Siegel, 1986; Paddock, Siegel and

Smith, 1988), where commodity prices at any future time are lognormally distributed. But

historical price return data shows strong volatility clustering, which contradicts the constant

instantaneous volatility assumption used in traditional option analysis (Bates, 2003). Sadorsky

(2006) �nds that a single-equation GARCH model outperforms more sophisticated models in

forecasting volatility of commodity returns. Hansen and Lunde (2005) obtain similar results,

in terms of the ability to describe the conditional variance and forecasting ability, in their

comparison of no less than 330 ARCH-type models. But a GARCH option pricing model is
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a function of the volatility risk premium embedded in the underlying asset, which invalidates

the risk-neutral valuation relationship. An extension of the risk neutral valuation (so-called

LRNVR, i.e locally risk-neutral valuation relationship) is explored by Duan (1995) to deal

with the complex nature of GARCH(1,1) processes in option pricing. This property guaran-

tees that the GARCH option pricing model is a well-speci�ed model that at least locally does

not depend on preferences. Two further conditions are required to satisfy LRNVR according

to Duan (1995). With regard to our problem, these two conditions are

1. The investor is an expected utility maximizer and the utility function is time separable

and additive; The utility function displaces constant absolute risk aversion;

2. Relative changes in the aggregate cash �ow (NPV) are distributed normally with constant

mean and variance under real measure P.

We assume the investor maximizes a utility function satisfying the above conditions. Therefore

LRNVR holds and our GARCH option pricing model is well speci�ed. The LRNVR guarantees

the invariance of one-period ahead conditional variance with respect to a change in risk-

neutralized pricing measure.

Moreover, the time-varying volatility under (G)ARCH processes results in solutions which

are not analytically tractable, since the distribution of underlying asset prices cannot be de-

rived in closed form even for European type options. So more advanced numerical techniques

are needed, to which we turn in the following subsection.

2.4 Least Square Monte Carlo Method

The applied real option literature usually simpli�es the kinds of projects encountered in prac-

tice by setting them up as simple European call/put options with �xed exercise dates (Smith

and McCardle 1999, McDonald and Siegel 1986). This has the advantage that a closed form

solution can be easily derived from the classical option pricing model such as the Black-
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Scholes formula (Black and Scholes, 1973). But �rms run into much more complicated option

problems in reality, involving not only path-dependence (Copeland and Tufano, 2004) and

intercorrelation among investment projects, but also various risk sources. And managerial

�exibility implies in most cases the possibility to postpone or accelerate investment decisions;

this makes the real option problem more the equivalent of an American (or, in discrete time,

a Bermuda) option with endogenous exercise dates rather than a European option with one

�xed exercise date.

By rephrasing the investment problem as a dynamic programming problem, the decision

maker at each exercise date considers a two-step optimal strategy. The �rst step is to com-

pare immediate exercise payo� with the expected payo� of continuing (waiting) and possibly

exercising later; and next, the decision maker chooses not to exercise the option now if waiting

is more valuable than exercising now. The next exercise date, the same structure of choice

presents itself again. The choice of exercise dates and the calculation of continuation pay-

o�s both become even more complicated in the case of compound options, because values of

unlocked options further in the future should also be taken into consideration in calculating

continuation values now.

Without a closed form solution, advanced numerical techniques are required to solve the

resulting dynamic programming problem. Lattice methods (Cox et al. 1979, Trigeorgis 1996)

are simple from a computational point of view and do not require closed-form solutions. How-

ever, despite their �exibility and ease of application in valuing projects with many embedded

options, lattice techniques su�er from dimensionality di�culties and are therefore in practice

unable to handle multidimensional problems of a signi�cant size.

Longsta� and Schwartz (2000) propose a simulation-based technique instead. Similar to

Carr and Yang (1998), this Least Square Monte Carlo (LSMC) method is able to value various

styles of options including American options or more exotic options and to manage multi-

ple uncertainties described by complex stochastic processes without sacri�cing option pricing
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tractability. It approximates conditional continuation values with linear regression results

derived from backward simulation results. The backward simulations form the basis of the

regressions linking continuation values to state variables; although the backward simulations

cannot be used in the valuation exercise, the regression functions can be used in a subse-

quent forward simulation study to approximate continuation values. It essentially solves the

dimensionality problem, the complexity now increases linearly in dimension size instead of

exponentially.

Moreover, this algorithm is not restricted to Markovian processes; similar algorithms can

easily be applied to non-Markovian processes, like the (G)ARCH process we use. See for exam-

ple Stentoft (2005), who applies the LSMC method to price options with early exercise features

within a GARCH context. Of relevance to our study is the conclusion reached by Stentoft

(2005) based on his empirical analysis of out-of-sample performance, that GARCH e�ects are

of substantial importance and lead to signi�cant improvements over constant volatility model

results.

3 Problem Description

Drilling for near-�eld prospective resources is appealing because it both reduces unit operating

cost and extends infrastructure life as many viable prospects are located outside platform

owner's acreages. More accurate estimates of reservoir sizes of near �elds can be obtained

through accessing the information of �rst drilling. Thereafter an option problem rises. Here

we simplify an investment problem as follows.

Figure 1 illustrates a compound real option problem concerning both Prospect A and

Prospect B4, where the Platform, main pipeline, and Pipeline C for transportation are previ-

ously constructed infrastructure. Prospect A and Prospect B are both prospective gas �elds

4Here a prospect is de�ned as a gas �eld where recoverable reserves have been identi�ed by initial exploration.
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Figure 1: A Schematic Layout of a Simpli�ed Problem

Platform 
Prospect  A Prospect  B 

Pipeline A Pipeline B Pipeline C 

Main pipeline for transportation 

12



sharing similar geologic and geographic properties, and the dash lines represent pipelines to

be built for developing A or B.

The reservoir uncertainty of Prospect B can be resolved after one-year production, which,

due to similar geological structure, will provide information on the reserve distribution of

Prospect A. Based on new information, the �rm continues to decide whether and when to

explore Prospect A. Moreover, higher gas prices also make new investment projects more

attractive. For instance, if the gas price turns out to drop dramatically after one year, the

decision maker can simply choose to delay or abandon further investment if reservoir size of

A is proved to be poor.

To summarize, under the schematic layout, the investor's problem can be written as a com-

bination of two options. The �rst option is when/whether to start developing B: when/whether

to exercise the waiting option on B. The second option is subject to the exercise of the �rst

one. Once the waiting option of B is exercised, the �rm holds the right to decide whether and

when to exercise the option to undertake project A. So the two combined form a compound

option problem. The underlying asset of the option problem depend on market gas price and

reservoir distribution. Our aim is to evaluate prospect B by taking both �xed cash �ows and

future opportunities into consideration, i.e. an extra option value is added to the project

evaluation on top of the traditional NPV method, where this extra option value also depends

on the pro�tability of Prospect A.

3.1 Reservoir Distribution

In conformity with industrial standard terminologies, the reservoir distribution of a gas �eld

is decomposed into probability of success (POS) and reservoir size R. As is shown in Figure

2a, reservoir amount R > 0 is found with a probability equal to POS; otherwise zero reserve

amount is recovered with probability of 1-POS. Moreover, reservoir size R is random and

follows a mixed distribution as illustrated in Figure 2b. The distribution function of R consists
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of three atoms, where atom P50 has a probability mass of 40%, atom P10 and P90 each has

a probability mass of 30%. Here P90 stands for the most pessimistic reservoir, meaning that

the probability of a real production would be better than P90 case is 90%. On the same

analogy, P10 case is the most optimistic reservoir estimation that can only be accomplished

with a low probability of 10%. During the project evaluation process, production pro�les

which may di�er in both production lifetime and amounts are designed separately based on

three scenarios. For instance, in our case, the production lifetime of P90 and P50 is four years,

while for the high case P10, the active period is �ve years. Moreover, we can easily calculate

its mean as mean = 0.3× P90 + 0.4× P50 + 0.3× P10.
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Figure 2: Distribution of Reservoir Size

(a) Distribution of Reservoir Size

Reservoir Distribution 

Drilling 

0 

R          where R ~ Distribution(P10, P50, P90), 
 R = reservoir size 

Failure 
1-POS 

Success 
POS 

We assume only POS can be updated/influenced based on the information 
obtained from correlated prospect, while Distribution of R remains unchanges. 

(b) Cumulative Distribution and Probability Distribution for Reservoir Size in Case of Success

R 

F(R) 

0 P90 P50 P10 

70% 

30% 

100% 

Assume reservoir size is random. It is uniformly distributed between P90 and P50, as well 
as between P50 and P10. In addition, P90 case and P10 case are defined as atoms, such 
that each of them has a probability mass equal to 10%. The slopes of these two straight 
lines in CDF are not necessarily equal.  
 We can calculate its mean as 
 mean=0.3*P90+0.4*P50+0.3*P10 

R 

p(R) 

0 P90 P50 P10 

Atoms, with probability 
mass=30% each 

Atom: Given a measurable space (X,Σ) and a measure μ on that space, a set A in Σ is called 
an atom if μ(A)>0 and for any measurable subset B of A with μ(A)>μ(B), one has μ(B)=0. 

CDF PDF 

Atoms, with probability 
mass=40%  

In the application followed up, we �rst investigate a simpli�ed case where the reservoir

distribution of A and B are uncorrelated. Additionally, we assume the cumulative distribution

of reservoir amount conditional on successful drilling (i.e. R) remains una�ected, but these

two reservoirs are correlated knowing that a successful drilling of Prospect B results in a higher

POS of Prospect A.
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3.2 Option Model Set-up

Figure 3 shows the timeline of the investment problem. T is the minimum license duration of

Prospect A, B, and their facilities; TA and TB are production periods of Prospect A and B

respectively; tA and tB are the production starting dates of A and B. Interval I contains all

possible starting points of Project B; and Interval II contains all possible starting points of

Project A, whose lower boundary is subject to the starting date of project B, i.e. tB.

Figure 3: Timeline of Investment

0 tB tB+1 T-1-max(TA,TB) T-TA tA tB+TB tA+TA T 

Start B Start A 

II 

I 

We construct two sequential Bermuda-style options, which can be exercised at a set of

predetermined dates before maturity. The �rst option is a waiting option on Prospect B

starting from time 0 with maturity T −1−max (TA, TB). Investor has the option to wait until

the market gas price increases so that higher pro�ts are realized. Once the waiting option is

exercised5 at time tB and further information on POS (or R, or both) of A is gained at time

tB + 1, the �rm decides whether and when to explore Prospect A by taking both reservoir size

and future gas prices into consideration. The project A option arises after one-year production

of B (i.e. tB+1), when the reservoir quantity of B is revealed. It has a maturity TB−1 with the

assumption that the second option disappears once the development of Prospect B is �nished;

so we have tA ∈ II ≡ [tB + 1, tB + TB]. Since B unlocks option A, the project value of B

5i.e. the �rm starts drilling at Prospect B.
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should include the value of managerial �exibility embedded in project A.

4 Methodology

4.1 Predicting Future Gas Prices

4.1.1 Gas Price Data

The Dutch gas market has been considered as a mature and stable trading market on the

continent especially since the Title Transfer Facility (TTF) was set up in 2003. Operated by

TSO GTS, a wholly owned subsidiary of Gasunie, the TTF virtual hub is the second largest

European OTC gas trading market in terms of trading volumes and number of trades. It is

also the virtual gas hub covering all high calori�c entry and exit points in the Netherlands.

TTF records volume-weighted average natural gas price (Euro/Megawatt Hour) of all

orders that are executed and delivered on the same day. A weekly spot data set with 365

observations was obtained from Datastream covering the period of Mar 7, 2005 through May

18, 2012, where the starting date was constrained by the beginning of data available on

Datastream. Descriptions are given in Table 1.

Table 1: Statistics of Weekly Spot Prices

Statistics Observations Mean Std. Dev. Variance Skewness Kurtosis

Spot Prices 365 18.7072 5.6142 31.5197 -0.0495 2.3026

Phillips-Perron unit root test and Dickey-Fuller unit root test were used to detect the

existence of unit roots in historical gas data (test results in Appendix). The test results

show that time series Pt or lnPt has a unit root while �rst di�erence of gas prices ∆Pt, or

�rst di�erence of log prices ∆ lnPt are both stationary time series with p-value 0.0000. Only

stochastic trend exists in this time series. By observing Figure 4b, the log price returns series
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moves with gradual upward and downward �uctuations around a long-term mean. We continue

investigating the properties of logarithm return time series since its �rst di�erence series is

stationary and contains no trend. Figure 4b suggests changes in variance; there is evidence

of volatility clustering. For instance, larger �uctuations during the periods 2005-2006 and

2009-2010 are followed by less volatile periods.

Figure 4: Spot Price and Log Price Returns

(a) Weekly Spot Prices (b) Log Price Returns

4.1.2 GARCH Model Estimation

Due to techniques such as hydraulic fracturing, or "fracking", gas development costs in US

have been dramatically driven down since shale gas extraction became economically viable.

However this technique is still controversial in Europe and therefore has not been applied on

a large scale yet. So we expect no structural change for the foreseeable future.

Let Pt be the spot gas price at time t. Suppose under probability measure P, its one-period

rate of return has conditionally lognormal distribution. Following Duan (1995), we have
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ln
Pt
Pt−1

= µ+ λ
√
ht −

1

2
ht + ε̃t,

ht = α0 + α1ε̃
2
t−1 + α2ht−1,

where ε̃t|Ft−1 ∼ N (0, ht)

where µ is constant one-period risk-free rate of return and λ is the constant unit risk premium.

Here, Ft−1 is the information set, up to and including time t − 1; α1, α2 ≥ 0 so that

non-negative variance is guaranteed. To ensure its stationarity, α1 and α2 need to satisfy

α1 + α2 < 1. The process ε̃2t follows an ARMA(1,1) process.

4.1.3 GARCH Option Pricing Model

Duan (1995) shows that under risk-neutral pricing measure Q, ln Pt
Pt−1

follows a normal distri-

bution conditional on Ft−1 under assumptions mentioned in 2.3 and that

V arP
[
ln

Pt
Pt−1

|Ft−1

]
= V arQ

[
ln

Pt
Pt−1

|Ft−1

]

Hence under the risk neutral measure Q, the LRNVR is su�cient to reduce all preference

considerations and it implies the logarithm return follows a stochastic process as

ln
Pt
Pt−1

= µ− 1

2
ht + εt,

ht = α0 + α1

(
εt−1 − λ

√
ht

)2
+ α2ht−1,

where εt|Ft−1 ∼ N (0, ht) .

where annual risk-free return is 3% .

A MA(2)-GARCH(1,1) model is selected for predicting returns and volatilities of future
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gas prices.

ln
Pt
Pt−1

= 0.00058− 1

2
ht + εt + 0.114εt−1 − 0.178εt−2,

(−0.095) (−0.072)

ht = 0.002 + 0.735
(
εt−1 − 0.0001

√
ht

)2
+ 0.232ht−1

(−0.001) (−0.301) (−0.001) (−0.152)

where εt|Ft−1 ∼ N (0, ht)

Model comparisons and diagnostic tests are presented in Appendix B.

4.2 Integrated Valuation Method

Given a complete market, we value a claim OP by replicating it with the unique self-�nancing

portfolio, which yields a price XT at the �nal date T . Therefore X0 gives the price of OP

at time 0. However, a claim in an incomplete market cannot be perfectly replicated and we

run into a problem of �nding a unique price for this claim. More speci�cally, selling such a

claim entails exposing oneself to an idiosyncratic/unhedgeable risk, which can be represented

by XT −OP (or OP −XT ) at time T. This di�erence can be solved by specifying the investor's

preference towards the risk. Therefore the price of the claim should be

OP0 = X0 + utility value of (OPT −XT )

which results in the failure of preference free pricing. This leads to the necessity of intro-

ducing utility function to capture individual's preference.

Assume the investor has a utility function which is additive among individual periods such

that the �rm's utility at time 0 equals the sum of the utility of discounted cash �ow over all

20



periods. We assume the investor's preferences exhibit constant absolute risk aversion (CARA):

ut (xt) = − exp (−xt/ρt)

where ρt > 0 represents the decision maker's period-t risk tolerance. This assumption of

utility function implies that the investor's behavior does not depend on his initial wealth, and

he only cares about the change of his wealth caused by an investment. These two assumptions

(additivity and CARA) imply a certainty equivalence expression:

exp
(
−x̃CEt /ρt

)
= Et [exp (−x̃t/ρt)] ,

with

x̃CEt = −ρt ln (Et [exp (−x̃t/ρt)])

with x̃t as an uncertain cash �ow at period-t.

Suppose a project has a series of future cash �ows {CF0, CF1, ..., CFT } where CFt =

Pt×Gt−Ct, with gas price Pt, production Gt, and cost Ct at time t. More generally, we have

vt = NPVt (Pt, Rt, ut) =


0 if ut = 0, i.e. no exercise

Et
(
POS ×

∑T+t
i=t e

−(i−t)rf (Pi ×Gi − Ci) |Pt, Rt
)

if ut = 1, i.e. exercise

where Rt is the realized reservoir volume; and ut is a dummy variable, representing the decision

to exercise.

E�ective certainty equivalent is represented as ECEt+1 (·), de�ned by taking expectations

over period-t's private uncertainties (reservoir) conditional on the outcome of period-t's market

uncertainties (gas market). The calculation of ECEt+1 (·) depends on assumptions of the

utility function. For instance, an exponential utility function with an e�ective risk tolerance

equal to the sum of the decision maker's discounted future risk tolerance leads to
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ECEt+1

[
vt+1|Fm

t+1,Ft

]
= −γt+1 ln

(
Et
[
e
− vt+1
γt+1 vt+1|Fm

t+1,Ft

])
Here vt denotes the project value at time t and γt =

∑T
τ=t

ρτ

(1+rf)
τ−t is the NPV of the

future period risk tolerances, where ρt, same as before, denotes the decision maker's period-t

risk tolerance. Therefore the integrated valuation approach uses e�ective certainty equivalent

instead of NPV as an proxy of project value. Note that if γ → +∞, this decision make

becomes risk neutral and the option pricing problem becomes identical as if one in complete

market.

5 Application

In this section, we apply the proposed model to a Dutch o�shore case in Netherlands, where

two prospects are distributed as shown in Figure 1. Evaluated separately from Prospect

B, Prospect A has a possibly large reserve quantity but conditional on a low probability of

successful drilling; furthermore, initial explorations prove a poor reservoir potential of Prospect

B. Knowing that the cost of initial exploration can be considered as sunk costs which can never

be recovered, the investor needs to decide whether to abandon Prospect B or to continue

developing it with its POS equal to 80%. Here the maturity of the option on starting B is

de�ned as the closest license duration of Prospect B, Prospect A and other facilities, and its

exercise time is at the end of every following year. Unlike B, which has a high POS after

thorough exploration procedures, Prospect A has a much smaller POS of 30%. The tradeo�

embedded in the problem is that Prospect B in itself is not economically attractive enough

for the �rm, but giving up B e�ectively blocks future investment opportunity of A. However

if B would turn out to be a failure, A would lose investor's interests too. The decision tree is

shown in Figure 5.
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Figure 5: Decision Tree

B 

POSB 

1-POSB 

-Drilling cost; no further plan on A  

Cash flows from B … A 

POSA 

1-POSA 

-Drilling cost 

Cash flows from A 

For both methods of Cost-of-capital and integrated valuation, we �rst consider a simple

case where the revealed reservoir quantity of B adds no further information on A and then

a complicated one when further updates based on the outcome of B are possible. Moreover,

results and empirical tests on the properties of option values are also conducted under both

methods.

5.1 Cost-of-Capital Method

We choose a reasonable range for cost of capital6 that reveals the underlying risk of a project.

The dotted line in Figure 6 exhibits the simulated NPVs of Prospect B with respect to a

range of cost of capital (from 3% to 15%), where the red horizontal line separates projects

with positive and negative NPVs. It is clear that due to its low NPV, Prospect B is not

economically attractive enough to be developed in itself. Even if the manager chooses projects

only based on the sign of NPV, Prospect B is still rejected if the cost of capital is higher than

12%.

6The range includes all cost of capitals being used for the �rm's budgeting process.
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5.1.1 Results without reservoir information update

Option values are calculated for cost of capital rates varying from 3% to 15%, with risk-free

rate equal to 3%. Figure 6 shows that the integrated value of Prospect B is greatly increased

when option values are taken into consideration. For instance, with a cost of capital equal to

the risk free rate (3%), we assume the risk of the underlying asset can be perfectly hedged

in the market. The simulated NPV of Prospect B is then AC1.53mln. But its corresponding

option value is AC19.47mln, resulting in an integrated value of AC20.99mln. However, one has

completely ignored the risk embedded in reservoir by using the risk-free rate as the cost of

capital. To take the reservoir risk into consideration, we e�ectively assume the reservoir risk is

captured by subtracting the risk-free rate from the cost-of-capital; therefore the cost-of-capital

is presumably re�ects risk preferences and serves as a solution to deal with the incomplete

market problem.

Take another example when the cost of capital is 15%. The negative NPV of Prospect B

(AC−1.50mln) results in a rejection of this project based on the traditional selection criterion.

While real option analysis gives a positive integrated project value of B (AC8.70mln) implying

its commercial pro�tability; as a result it leads to an opposite investment decision to one made

under traditional NPV.
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Figure 6: Option Values vs NPV
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Integrated Value on B = NPV of B + Option Value on B.

Therefore real option valuation plays a crucial role in investment decisions by accepting

projects that could have been rejected under traditional evaluation rules. Under real option

valuation, the prospect B is valuable for development under all cost of capital considered. As

a result, the �rm should not simply abandon Prospect B; in fact, with the further exploration

opportunity on A, the project yields a positive expected value and is worth investing. Fur-

thermore, given the more precise evaluation of the projects, the �rm can compare them with

other investment opportunities and then choose (one of) those with highest values.

Two observations from Figure 6 are also worth commenting. First, as a natural result,

Project A is less valued with higher cost of capital rates. Therefore as expected, the option

value decreases in discount rates as well due to the shrinking value of Project A.

Second, note that the declining option value does not imply a negative Greek ρ, which is
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de�ned as an sensitivity measure evaluating the sensitivity of option value to the risk-free rate:

it is the derivative of the option value with respect to the risk free interest rate. Risk-free rate

here remains unchanged. What is shown in Figure 6 is the interaction between option value

and cost of capital, where cost of capital is used to adjust payo�s.

5.1.2 GARCH Model vs Constant Volatility

Due to the limited downside of options, an option becomes more valuable as the volatility of

underlying assets increases. Thus precise structure of volatility process is important in valuing

options. This subsection discusses how option value changes along with alternative variance

modeling.

Suppose the logarithm price return time series follows a log-normal distribution with mean

and constant variance calculated from the same TTF data set as used for the above GARCH

model. Following the same analogy, we show option values of the o�shore case in Figure 7.

In comparison to 5.1.1, the real option value is still positive but is only half size as the

result under GARCH model (Figure 6). Thus, neglecting clustered volatility dramatically

undervalues the corresponding options. Now the simulated NPV of B is negative under all

cost of capital rates considered. Both option values and NPVs are signi�cantly underestimated

and the project is more likely to be rejected under constant volatility assumption. Failure to

capture the main characteristic of volatility leads to severely biased results7. This �nding is

also consistent with standard �nance option pricing theories where higher uncertainty results

in higher option values.

7The reason why the results of di�erent gas price modelings di�er so much is that, we are modeling log price
return instead of gas price itself. Therefore a slight change in log price return may result in a large change in
gas price prediction, which has a signi�cant in�uence on option values.
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Figure 7: Option Values vs NPV with constant variance
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5.1.3 Spot Prices vs Option Values

Figure 8 shows how the integrated value and option value of Prospect B change with spot

prices, i.e. Delta. It can be observed from both 2D and 3D plots in Figure 8 that option

values are increasing in spot prices. This means that given a high spot price on the market,

the �rm is more likely to accept a project if it takes option value into account. On the other

hand, similar as what we have found before, the option value decreases as the cost of capital

grows. In other words, Delta is decreasing in cost of capital.

5.1.4 Results with reservoir information update

Until now we considered the case without reservoir correlation and that the option problem is

an issue caused only by the dynamics of future gas prices. In this section, we introduce one

27



F
ig
u
re

8:
O
p
ti
on

V
al
u
e
v
s
S
p
ot

P
ri
ce

(a
)
2
D

5
10

15
20

25
30

35
40

051015202530

S
po

t P
ric

e

Option Value (Million Euros)

O
pt

io
n 

V
al

ue
, S

po
t P

ric
e,

 a
nd

 C
os

t o
f C

ap
ita

l

 

 

r=
0.

03
r=

0.
07

r=
0.

11
r=

0.
15

(b
)
3
D

0
0.

05
0.

1
0.

15
0.

2

0

10

20

30

40051015202530

C
os

t o
f c

ap
ita

l

O
pt

io
n 

V
al

ue
s 

v.
s.

 S
po

t P
ric

es

S
po

t P
ric

e

Option Value

R
is
k
-f
re
e
ra
te
=
3
%
.
r
re
p
re
se
n
ts

th
e
co
st

o
f
ca
p
it
a
l.

28



extra dimension to our model by taking reservoir correlation into consideration. For practical

reasons, given the structure of uncertainty we work with, we can distinguish three cases of

correlation. The �rst one considers that only POS of A and POS of B are correlated. Assume

that POS of A rises to 50% given a success drilling of B. The second case considers when

POS remains unchanged but focuses on correlation between the PDFs of reservoir (i.e. R)

in particular. We assume that if the reservoir size of B turns out to be equal to that of P10

case, then the reservoir size of A equals the outcome of its P10 case as well. Similarly, a P50

(P90) outcome of B also implies a P50 (P90) outcome of A. Lastly, Case III combines the �rst

two cases, where both information updates in POS and R are considered. Note that the three

cases can be reduced to only one if an alternative reservoir distribution is assumed with POS

and R mingled together.

Figure 9 presents all the results from the three cases as well as the one with no correlation.

For all three cases with correlation, option values are much larger than what is obtained

without reservoir correlation. This is an obvious result because the more information can be

gained in the future, the more valuable the option is. In addition, the option value of Case III is

larger than either option value in Case I or in Case II. This is to be expected since information

has been updated to the largest extent in Case III. The positive correlation between option

price and reservoir correlation is consistent with the intuition that the option is more valuable

when more information of the underlying assets can be acknowledged in the future.
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Figure 9: Cost-of-capital method with Reservoir Correlation

5% 10% 15%

0

5

10

15

20

25

30

35

40

Cost of capital

N
P

V
/O

pt
io

n 
V

al
ue

 (
M

ill
io

n 
E

ur
os

)
Option Values with Reservoir Correlation

 

 

Option Value without Reservoir Correlation
Option Value with Reservoir Correlation Case I
Option Value with Reservoir Correlation Case II
Option Value with Reservoir Correlation Case III

5.2 Integrated Valuation Method

5.2.1 Results with and without reservoir information updates

Next we explore the preference-dependent valuation given a particular utility structure of

investors. The investor maximizes their utility function with idiosyncratic risk aversion (risk

tolerance) γ. Instead of exploring a reasonable set of cost of capital, we use e�ective certainty

equivalent to calculate option values based on di�erent γ within the context of incomplete

market.

Figure 10 shows how option values change along with increasing risk tolerance, with or

without reservoir correlation between A and B. From left to right, as γ becomes larger, the

investor becomes more risk tolerant (i.e. less risk averse). It is clear that more risk averse

investors value options less than investors with higher risk tolerance. Moreover, option value
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is a concave function of risk tolerance, meaning that the instantaneous acceleration of the

option value is decreasing along with the risk tolerance. Although option values increase

as the investor becomes more risk seeking (while still risk averse), preference dependence is

moderate, resulting from the observation that the di�erence of option values between risk

neutral and extremely risk averse investors is less than 6mln for a given reservoir correlation.

Figure 10: Results of Integrated Valuation Approach
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5.2.2 GARCH vs Constant volatility

Similar to 5.1.2, we compare the results with gas prices speci�ed under a GARCH process

and under a constant volatility assumption. Figure 11 shows that with a constant volatility

setting, not only the option values largely shrink, but also the e�ect of future information

update becomes smaller. This provides a strong empirical evidence that option value is largely

undervalued if constant volatility, rather than a more appropriate GARCH model, is chosen

for modeling underlying asset process.
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Figure 11: Results of Integrated Valuation Approach with Constant Volatility
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5.3 Cost-of-Capital vs Integrated Valuation approach

We apply two di�erent methods for one single aim of capturing individuals preference in

incomplete market asset pricing. The choice of cost-of-capital re�ects an individual's risk

preference; while the integrated valuation approach models investor's risk aversion explicitly

with the parameter of risk tolerance.

Despite their di�erent theoretical backgrounds, the results of these two approaches give

largely similar results. First, project value increases substantially comparing to one obtained

by traditional NPV method, which leads to potentially di�erent investment decisions. Sec-

ond, take the real option approach allows incorporation of future information as it becomes

available, which again raises project values when reservoir distributions are correlated. Third,

the GARCH speci�cation is preferred over a model with constant volatility, since the latter

undervalues the investment opportunity due to its oversimpli�cation. In short, the value of

embedded options is strongly in�uenced by the reservoir distribution and the stochastic process

of gas prices.

Both approaches have their own pros and cons, which is why we present both. The cost-

of-capital method is straightforward and closest to the traditional investor's capital budgeting

processes in practice. However, it is not clear how to choose an appropriate value of cost-of-

capital for use. The integrated valuation approach provides the best results if one knows the

investor's risk preference. Survey methods could be used to pin down the investor's γ (Cohen,

Ja�ray, and Said, 1987; Holt and Laury, 20027).

6 Conclusion

We have presented evidence regarding the e�ectiveness of investment valuation between real

option analysis and NPV. In this paper, we have found that under Cost-of-capital method

method, the option value is crucial in decision making process. We have also found that
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in the presence of clustered volatility, incorrectly assuming constant variance leads to an

underestimation of project values.

An integrated approach is applied by taking investor's risk aversion into account. Results

show that when the investor is not risk-neutral, option value increases as her risk aversion

becomes smaller. Moreover, the correlation between reservoirs has also a positive e�ect on

option values.

The results obtained from both methods are coherent in the sense that a choice of low cost

of capital rate corresponds to a high risk tolerance.

Further analysis can be extended for research, among which one interesting direction lies

in the dependence of productivity on market gas prices. A high market price might drive

the �rm to accelerate the producing rate. As the marginal cost of extraction is decreasing in

the remaining amount of reservoir, the production plan may be changed with unexpected gas

price realization. Thus the ex post production pro�le and costs become endogenous variables

depending on gas prices.

Note that the algorithm and valuation approach in this paper can also be applied to general

option pricing other than real options. For instance, it is very common that traders in reality

hedge with proxy assets when a liquid market for the asset of interest does not exist. However

the proxy asset is hardly perfectly correlated with the underlying asset, therefore the residual

risk should be taken into consideration by specifying the investor's risk preference.
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A LSMC for Cost-of-Capital method

Inputs include risk-free return rf , cost of capital r, production pro�le:
{
GB1 , G

B
2 , ..., G

B
TB

}
and{

GA1 , G
A
2 , ..., G

A
TA

}
and corresponding costs

{
CB1 , C

B
2 , ..., C

B
TB

}
and

{
CA1 , C

A
2 , ..., C

A
TA

}
.

1. Generate N paths, with gas prices simulated from MA(2)-GARCH(1,1) and reservoir

size simulated from the distribution illustrated in Section 3.2.

2. Compound Option on B

(a) Exercise Strategy Matrix: E is N × (M + 1) matrix, with 1 as exercise and 0 as no

exercise, where M + 1 is the number of predetermined exercise dates.

(b) NPV B
tB

= POSB ×
∑tB+TB

ti=tB
exp (−r (ti − tB))

(
PBti G

B
ti − C

B
ti

)
, with Gt = 0, where

tB ∈ I as shown in Figure 3.

(c) The analysis starts at the �nal moment when the �rm can make a decision, i.e.

tM = T − 1− TA − TB.

i. At t = tM , if exercise at path j, the exercise value includes not only the payo�

from B, i.e. XtM ,j = NPV B
tM ,j

, but also an option on A. The option value of

A at time tM for path j is

AtM ,j = max
t∈II

EtM
(

exp (−rf (t− tM )) max
(
NPV

A|B
t,j , 0

))

where II is shown in Figure 3 and

NPV
A|B
t,j = POSA|B

tA+TA∑
ti=tA

exp (−r (ti − tA))
(
PAti G

A
ti − C

A
ti

)
.

Suppose τ is the set of stopping time
{
t : tA0 , t

A
1 , ..., t

A
L

}
8, while τ\ {t < tM}

represents the possible exercising date set of starting drilling A, i.e. II =

8L + 1 is the number of predetermined exercise dates for A.
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{
t : tA0 , t

A
1 , ..., t

A
L

}
∩ {t ≥ tM}, with regard to σ-algebra {Ft}. Therefore, the

compound option value on B becomes

max
t∈τB

E0 (exp (−rf t) max (Xt,j +At,j , 0))

ii. De�ne X ′tM ,j = XtM ,j + AtM ,j and Y
′
tM−1,j

= exp (−rf (tM − tM−1))X ′tM ,j , for

all j ∈
{
j : X ′tM ,j > 0

}
.

iii. At t = tM , if X ′tM ,j > 0, exercise the option and let E (j,M + 1) = 1; if

X ′tM ,j ≤ 0, abandon the project and let E (j,M + 1) = 0.

iv. Move one step backward. At t = tM−1, regress Y
′
tM−1,j

on a set of basis

functions of X ′tM−1,j
, for instance, a set of a constant, X ′tM−1,j

, and X ′2tM−1,j
.

Y ′tM−1,j
= β0 + β1X

′
tM−1,j

+ β2X
′2
tM−1,j

+ u′j

Longsta� and Schwartz (2001) shows that the results from the Least Square

Monte Carlo algorithm are signi�cantly robust to the choice of basis functions.

Adding extra high degree of basis functions does not help improving accuracy

noticeably.

v. It is take-it-or-leave-it choice that the �rm will exercise the option to produce

if X ′tM ,j > 0 and not otherwise. Compare the continuation value Ŷ ′tM−1,j

with immediate payo� X ′tM ,j . If Ŷ
′
tM−1,j > X ′tM ,j , which means continuation

value is higher than exercise at tM−1, the corresponding exercise strategy is

not to exercise, i.e. E (j,M) = 0; while if Ŷ ′tM−1,j < X ′tM ,j , the �rm �nds it

more pro�table to exercise right now rather than to wait for next exercise date,

resulting in E (j,M) = 1, and E (j,M + 1) is updated to 0 whatever it was

given last step at time tM . Table 2-a and Table 2-b explain the idea of LSMC.

40



It compares the net present value at each exercise moment with the optimal net

present value of next exercise date discounted into the current exercise date.

vi. By proceeding recursively, we again obtain an exercise strategy matrix E with

only zero or one as its elements. Similarly, there is at most one exercise date

denoted by one for each simulation path, i.e. each row of E, which is followed

by zeros till the expiration date of the option.

(d) The option value is calculated by averaging discounted current cash �ow of X ′t,j on

the exercising date across paths.

B GARCH

B.1 Unit Root Test

Table 3 exhibits the results of Phillips-Perron Unit Root Test and Dickey-Fuller Unit Root

Test.

The Phillips-Perron unit root test on Pt indicates rejecting the stationarity hypothesis of

Pt under 95% con�dence with a p-value 0.0639. While the corresponding Dickey-Fuller test

yields di�erent result and suggests no presence of unit root in the times series Pt. The problem

with Dickey-Fuller test is that if time series varies much across time, it is more likely to accept

the stationarity hypothesis. And unit root test on lnPt also rejects the hypothesis that the

price time series is stationary under 95% con�dence level. So in this case, I am more inclined

to accepting the results suggested by Phillips-Perron test that Pt has a deterministic trend.

Furthermore, observed from the unit root test, �rst di�erence of gas prices, or �rst di�er-

ence of log prices are stationary time series with p-value 0.0000. Only stochastic trend exists

in this time series. By observing Figure 4b, the log price returns series moves with gradual

upward and downward �uctuations around a long-term mean. Since the �rst di�erence series

41



T
ab
le
2:

E
x
am

p
le
s
of

E
x
er
ci
si
n
g
D
ec
is
io
n
s

(a
)
E
x
er
ci
si
n
g
D
ec
is
io
n
s

S
im
u
la
ti
on
s

t 0
..
.

t M
−
2

t M
−
1

t M
=
T
−

1
−
T
A
−
T
B

1
..
.

..
.

m
a
x
( X
′ t M

−
2
,1
,
e−

r f
X
′ t M

−
1
,1

)
X
′ t M

−
1
,1
>
e−

r f
X
′ t M
,1

E

X
′ t M
,1
>

0

E

2
..
.

..
.

m
ax
( X
′ t M

−
2
,2
,
e−

2
r f
X
′ t M

−
1
,2

)
X
′ t M

−
1
,2
<
e−

r f
X
′ t M
,2

N
E

X
′ t M
,2
>

0

E

3
..
.

..
.

m
ax
( X
′ t M

−
2
,3
,
e−

r f
X
′ t M

−
1
,3

)
X
′ t M

−
1
,3
>

0

E

X
′ t M
,3
≤

0

N
E

..
.

..
.

..
.

..
.

..
.

..
.

N
..
.

..
.

m
a
x
( X
′ t M

−
2
,N
,

0)
X
′ t M

−
1
,N
<

0

N
E

X
′ t M
,N
≤

0

N
E

(b
)
R
eg
re
ss
io
n
a
t
ti
m
e
t M

−
1

S
im
u
la
ti
on
s

Y
X

1
e−

r f
(t
M
−
t M

−
1
) X
′ t M
,1

X
′ t M

−
1
,1

2
e−

r f
(t
M
−
t M

−
1
) X
′ t M
,2

X
′ t M

−
1
,2

3
�

�

..
.

..
.

..
.

N
�

�

=
⇒

S
im
u
la
ti
on
s

C
on
ti
n
u
at
io
n

Ŷ
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Table 3: Unit Root Tests Results (p-values)

Phillips-Perron Unit Root Test Dickey-Fuller Unit Root Test

Pt 0.0639 0.0182
lnPt 0.1321 0.0740
∆Pt 0.0000 0.0000

∆ lnPt 0.0000 0.0000

is stationary and contains no trend, I proceed to investigate the logarithm return time series.

B.2 Model Estimation and Diagnostic Tests

The sample autocorrelations and partial autocorrelations are plotted as in Figure 12 to give a

�rst indication on how to choose the lag structure of a possibly adequate ARMA model.

The second order of ACF and PACF of log weekly returns are signi�cant. Both ACF and

PACF are small but slowly decaying, which implies an ARMA model might be suitable for

∆ lnPt. Note that the 20th order of ACF and PACF is also signi�cant, but this has no intuitive

meaning and might be due to random e�ect. Now we determine the choice of lag terms by

comparing several estimated models, i.e. autoregressive models, moving average models, or

mixed ARMA models as shown in Table 4.

Table 4 illustrates the results of AR, MA and ARMA models with lag terms up to 3.

Ljung-Box Q tests examine the existence of autocorrelation in the standardized residuals,

while Ljung-Box Q2 tests examine the existence of autocorrelation in the squared standardized

residuals. Of these ten models, MA(2) model is preferred according to the AIC and SIC

selection criteria. However, the squared residuals of the MA(2) model have some signi�cant

autocorrelations (for instance at lag 40, corresponding to a lag of three quarters). Thus it is

worthwhile comparing this model with other models that allow for a richer correlation pattern

in the time series. Elimination of this correlation cannot be achieved only by adding extra
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Figure 12: AC and PAC of ∆ lnPt

(a) Autocorrelation Plot of ∆ lnPt

(b) Partial Autocorrelation Plot of ∆ lnPt
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lags to the model, since the correlations still exist in MA(3). Evaluated by diagnostic tests,

current ARMA models are not able to capture the main correlations in the time series ∆ lnPt

under a con�dential level 95%, since the volatility clustering tests reject the non-existence of

GARCH e�ects. Although MA(2) minimizes the information criteria AIC and BIC, I cannot

simply apply it since the diagnostic checking of volatility clustering reveals that the variances

of residuals are correlated. Models with higher lag structures correspond to over-�tting, which

also result in even worse predictions than MA(2). In order to produce reliable forecasts, an

ARCH or GARCH factor is introduced to AR, MA or mixed ARMA model.

The evidence from Table 5 and Table 6 shows that the variance in the log returns is cor-

related and changes over time. The rejection of non-correlation of squared residuals indicates

the assumption that the innovations εt have the same variance σ2t is not realistic and the

conditional variance of the time series may have lagged e�ects. According to Ljung-Box test

results, an MA(2)-GARCH(1,1) model is preferred over an MA(2)-ARCH(1) model, since the

latter still yields variance clustering of innovations. This is also consistent with Poon and

Granger (2002) that empirical �ndings suggest GARCH model is a more parsimonious model

than ARCH model. Stentoft (2005) argues that allowing di�erent mean speci�cations generally

does not change the dynamics under the equivalent martingale measure.

Let Pt be spot gas price at time t. Suppose under risk-neutral probability measure Q, its

one-period rate of return has conditionally lognormal distribution, i.e.

ln
Pt
Pt−1

= µ− 1

2
ht + εt + β1εt−1 + β2εt−2,

ht = α0 + α1

(
εt−1 − λ

√
ht

)2
+ α2ht−1,

where εt|Ft−1 ∼ N (0, ht)

Here, Ft−1 is the information set up to and including time t − 1; α0 > 0, α1, α2 ≥ 0 so
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that non-negative variance is guaranteed. Similarly, to ensure its stationarity, α1 and α2 need

to satisfy α1 + α2 < 1.

Note that both AR(2)-GARCH(1,1) model and MA(2)-GARCH(1,1) have the smallest

AIC or BIC values. However, the coe�cients of ARCH and GARCH e�ects of the AR(2)-

GARCH(1,1) model are not signi�cant. The coe�cients of ARCH and GARCH e�ects of the

AR(1)-GARCH(1,1) model add up to bigger than one, violating the stationary condition of

GARCH model. An IGARCH model might be employed to solve the non-stationary problem.

Yet IGARCH is not covariance stationary and is not attractive from empirical point of view. So

an MA(2)-GARCH(1,1) model is chosen over AR(2)-GARCH(1,1) and AR(1)-GARCH(1,1).

B.3 Seasonal E�ects

The time series of gas price has a signi�cant seasonal component due to changes in demand.

This seasonal e�ect can be detected from Figure 4 by observing that the prices are much higher

in winter (Q1 and Q4) than in summer (Q2 and Q3). However, the existence of a seasonal

e�ect is not observable when it comes to logarithm returns instead of price levels. Table 7

shows the results of adding seasonal components to the MA(2)-GARCH(1,1) model. All the

four season dummies are insigni�cant and adding season dummies does not yield a smaller

information criteria AIC or BIC. These results lead to rejecting the existence of deterministic

seasonal e�ects and con�rming our choice of an MA(2)-GARCH(1,1) model.

B.4 EGARCH

In addition, I continue to examine the existence of asymmetric shocks, i.e. whether the gas

trading market as a whole responds di�erently to unanticipated increases in spot prices than

it does to unanticipated decreases. One of these models is Exponential GARCH (EGARCH)

model, �rst proposed by Nelson (1991). Stentoft (2005) �nds the speci�cations of EGARCH

generally have the smallest pricing errors concerning options on individual stocks.
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Table 7: Seasonality E�ect Tests

MA(2)-GARCH(1,1) MA(2)-GARCH(1,1)
Seasonality

b/se b/se

DlnP
s1 -0.017

-0.013
s2 -0.007

-0.012
s3 0.006

-0.013
-0.020 -0.015

ARCHM
sigma2ex 0.000 0.000

-0.001 -0.001

ARMA
L.ma 0.118 0.114

-0.091 -0.095
L2.ma -0.175* -0.178*

-0.079 -0.072

ARCH
L.arch 0.785* 0.735*

-0.308 -0.301
L.garch 0.232 0.232

-0.126 -0.152
cons 0.002* 0.002*

-0.001 -0.001

ll(model) 389.1714 390.3984
AIC -764.3428 -760.7968
BIC -737.0627 -721.8528

∗ 99.9% con�dence level; ∗∗ 99% con�dence level; ∗ ∗ ∗ 95% con�dence level.
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We modify the conditional variance of the GARCH model proposed above as follows:

log (ht) = α0 + α1zt−1 + α2 log (ht−1) + α3 (|zt−1| − E [|zt−1|])

where zt = εt/ht is the standardized residual, which is distributed as N (0, 1). α3 is the

asymmetric component and |α2| < 1 ensures stationarity and ergodicity for the EGARCH(1,1)

model.

Table 8 shows the results of ARMA(p,q)-EGARCH(1,1) models, where only ARMA(p,q)

models without over �tting are considered. Judging from the information criteria, MA(2)-

EGARCH(1,1) outperforms the other models, with the smallest AIC and BIC, which con�rms

the model selection above. MA(2)-EGARCH(1,1) �ts the data better in terms of the model

loglikelihood. We observe that EGARCH models yield larger loglikelihood than the GARCH

model, implying a slightly better �t. Furthermore, MA(2)-EGARCH(1,1) results in the vari-

ance

log ht = −0.588 + 0.009zt−1 + 0.873 log ht−1 + 0.672 (|zt−1| − E [|zt−1|])

(.) (−0.068) (−0.005) (−0.094)

A positive L1.earch coe�cient implies that positive innovations (unanticipated price in-

creases) are more destabilizing than negative innovations and vice versa. The e�ect appears

insigni�cant (0.009) and is substantially smaller than the symmetric e�ect (0.672) which is

signi�cantly positive. Results show that there is no strong indication for a leverage e�ect.

Therefore the data does not support this asymmetric supposition by specifying a non-linear

GARCH model that allows for asymmetric shocks to volatility. Thus despite a slightly larger

loglikelihood obtained by EGARCH model, GARCH is comparably a more appropriate model

for our gas price return data.
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Table 8: ARMA(p,q)-EGARCH

AR(2) MA(2)
EGARCH(1,1) EGACH(1,1)

b/se b/se
ARCHM
sigma2ex 0.000 -0.000***

-0.001 0.000
ARMA
L.ar 0.118

-0.073
L2.ar -0.147*

-0.069
L.ma 0.110***

-0.001
L2.ma -0.131

(.)
ARCH
L.earch 0.010 0.009

-0.076 -0.068
L.earcha 0.671*** 0.672***

-0.153 -0.094
L.egarch 0.876*** 0.873***

-0.066 -0.005
cons -0.571 -0.588

-0.322 (.)
ll(model) 397.7379 397.5245
AIC -779.4758 -783.0490
BIC -748.2985 -759.6660
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