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Optimal pricing of flights and passengers at congested airports and the
efficiency of atomistic charges

Hugo E. Silva∗, Erik T. Verhoef∗∗

Department of Spatial Economics, VU University Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Abstract

This paper investigates and compares airport pricing policies under various types of competition, con-

sidering both per-passenger and per-flight charges at congested airports. We show that an airport requires

both pricing instruments to achieve the first-best outcome, and we distinguish their role by showing that

congestion externalities need to be addressed through per-flight tolls whereas the inefficiency caused by

airlines’ market power exertion must be corrected with per-passenger subsidies. We also show that Bertrand

competition with differentiated products, a type of behavior recently pointed out by the empirical literature

as pertinent, has policy implications that diverge from analyses that assume Cournot competition. The

welfare gains and congestion reductions of congestion pricing would be higher than what has been advanced

before; the degree of self-financing of airport infrastructure under optimal pricing would be increased and

may approach exact self-financing; and the implied differentiation of charges between (asymmetric) airlines

would be significantly smaller, presumably enhancing the political feasibility of welfare maximizing conges-

tion pricing, as the potential distributional concerns would be decreased. Finally, we numerically analyze

second-best policies, and find that atomistic pricing may offer a relatively attractive alternative to first-best

congestion pricing.

Keywords: Airport pricing, Congestion internalization, Airline conduct

1. Introduction

Delays at airports have been consistently increasing over the past years, becoming a major problem

worldwide (see, for example, Rupp (2009) and Santos and Robin (2010)). Besides capacity enlargements,

the price mechanism has been widely discussed and proposed to manage congestion. This approach involves

an airport authority setting user charges, with the possibility to charge passengers, airlines or both.1 The
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1Another approach to manage airport congestion is to use slot sales and slot trading; see Brueckner (2009), Basso and Zhang

(2010) and Verhoef (2010).
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basic economic motivation for such charges is the congestion externality, as already identified by Pigou

(1920) in the context of road traffic. What makes the airport literature different is its focus on congestion

pricing when there is market power. This, obviously, introduces a second distortion into the analysis, namely

non-competitive pricing. Many papers have studied optimal airport pricing: for example, Brueckner (2002)

first showed that in oligopoly, airlines competing in a Cournot fashion internalize congestion imposed on

themselves; therefore, the optimal charge should account only for the fraction of congestion that is imposed

on competitors. We will refer to this as the “Cournot toll”, as opposed to the “atomistic toll” that considers

marginal congestion costs imposed on all flights and passengers, regardless of the operator. One important

implication of a Cournot toll is that a dominant airline should pay a lower congestion charge per flight than

small airlines (Brueckner, 2005), which is likely to decrease its political feasibility due to distributional issues.

Furthermore it would imply that self-financing of airport capacity from the revenues from optimal congestion

charges, would become less realistic than in the benchmark case considered originally by Mohring and

Harwitz (1962), who showed that with atomistic congestion charges and neutral scale economies in capacity

supply, as well as some other technical assumptions, exact self-financing is obtained. Pels and Verhoef (2004)

extend the analysis by explicitly considering market power distortions. They show that a welfare maximizing

airport has to deal with two inefficiencies: airlines’ market power, that has to be corrected by subsidizing

them, and congestion externalities, that requires charging of the Cournot toll. Further extensions have this

congestion pricing rule intact, a consequence of these theoretical works assuming that Cournot competition

is representative for airline markets.2

However, the Cournot assumption has recently been questioned from the empirical side. Fischer and

Kamerschen (2003) estimate airlines conduct parameters with U.S. data, finding substantial deviations from

Cournot behavior. Fageda (2006) rejects the suitability of the Cournot assumption as representative of the

Spanish airline market. Perloff et al. (2007) study airlines’ conduct in a duopoly market using the dataset

of Brander and Zhang (1990) and Oum et al. (1993), that has traditionally been used to support Cournot

behavior. They, allowing airlines to provide differentiated services on a route, show that in some routes the

outcomes implied by Bertrand behavior are virtually the same as the observed outcomes, while Cournot

predictions lie in a less competitive region, not consistent with the data.3 Finally, Nazarenus (2011) revisit

Brander and Zhang’s (1990) study, using data from 2007, concluding that the industry has experienced

a regime change from Cournot towards more competitive behavior.4 This, at least, indicates that other

behavioral assumptions, such as Bertrand competition with differentiated products, may be as relevant for

2Zhang and Zhang (2006) explicitly incorporate airport’s costs and capacity decisions, and Basso (2008) includes airline

differentiation, origin and destination airports and schedule delay costs. Basso and Zhang (2007) analyze rivalry between two

congestible facilities, which again could be airports.
3Recall that with differentiated products, the Bertrand outcome no longer entails marginal cost pricing.
4Empirical evidence for leadership behavior also exists. See for example Morrison and Winston (1995).
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aviation markets as the traditional Cournot view.

The purpose of this paper is to contribute to an ongoing aviation policy debate which focuses on the

extent to which airlines indeed internalize congestion effects imposed upon their own flights. Notably, Daniel

(1995) and Daniel and Harback (2008) have questioned this feature in Cournot models, while Brueckner

and Van Dender (2008) showed how airline behavior approaches atomistic-like non-internalization when

there is a Stackelberg leader. Our paper contributes on a number of respects. First, we derive the optimal

pricing policy at congested airports when consumers perceive airlines as imperfect substitutes, and airline

behavior follows the Bertrand assumption. Although, as argued above, this case has been shown to be

empirically relevant, it has received almost no attention in the theoretical literature. Our aim is to fill this

void, by providing the pertinent policy analysis. Second, we distinguish between the role of per-flight and

per-passengers tolls for welfare maximization, in order to understand the policy implications of using the

one versus the other. To do this, we model the long-run choice of seat capacity as made by airlines, and

thus endogenously differentiate between charges per flight and charges per passenger. Third, we assess the

relative efficiency of second-best policies, such as atomistic charges, with numerical examples.

We show that, in a duopoly setting where outputs are imperfect substitutes, Bertrand behavior implies

that airlines internalize less than the self-imposed congestion, because they take into account the fact that

an extra flight imposes congestion on its competitor’s passengers, affecting positively its own demand and

profit. This yields an optimal congestion toll that lies between the marginal congestion cost imposed on

the competitors’ passengers (the Cournot toll) and the atomistic toll. We also find that the size of the

deviation from the self-imposed internalization result of Cournot competition depends on the degree of

product substitutability. The entire range of tolls can be optimal: when the substitutability is low, the

optimal congestion charge is close to the Cournot toll. Conversely, if the substitutability is high, airlines

should be charged a toll very close to the atomistic one, even when they fully recognize the impact of their

flight scheduling on airport congestion and even when one of them is a dominant airline with a high market

share. We also reproduce the result of Brueckner and Van Dender (2008) for a Stackelberg leader with a

Cournot follower, and extend it to the case of a Stackelberg leader with a Bertrand follower, finding optimal

tolls that lie between the Cournot toll and the atomistic toll for both players. In this last setting, the optimal

toll again approaches the atomistic toll more closely as the substitutability is higher.

Various policy conclusions follow from the analysis. We show that a welfare maximizing airport can

only reach the first-best outcome by using two tax instruments, namely per-flight and per-passenger tolls.

Moreover, congestion and market power effects are separate: the market power exertion can only be corrected

by means of a per-passenger subsidy, while the optimal congestion charge should only be charged with a

per-flight toll. As a consequence, the welfare maximizing per-passenger toll is below the airport’s marginal

cost per passenger (due to the subsidy) and the welfare maximizing toll per flight is above airport’s marginal

cost per flight (due to the congestion charge). This finding, common to all studied behavioral assumptions,
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provides important insights on the role of each of the two mentioned instruments and directions on how they

should be set. In addition, this result conflicts with a growing tendency of replacing per-movement charges

by per-passenger charges, and also with the International Air Transport Association (IATA) position of

recovering costs through passenger based charges instead of other aeronautical based charges (IATA, 2010).

We further find that the optimal pricing strategy, in the cases where the Cournot assumption is not

representative of the market, includes a congestion charge that is above the marginal congestion cost imposed

on the competitors’ passengers, and is likely to be close to the atomistic toll. This has significant policy

implications. First, optimal congestion pricing would bring more significant welfare gains and congestion

reductions than what has been advanced before on the basis of Cournot assumptions, hence increasing its

relevance and efficiency. Second, the degree of self-financing of congested airports would be higher and,

in absence of subsidies, it may be close to exact self-financing. Third, the political feasibility of welfare

maximizing congestion pricing would be enhanced as the implied differentiation of charges is considerably

smaller. For instance, under the Cournot assumption, a firm with 75% market share should pay a congestion

toll equal to 25% of the total marginal congestion cost, whereas we find that, considering the behavior and

parameters implied by the empirical study of Perloff et al. (2007) for Chicago-based markets, a firm with

75% of market share should pay between 55% and 77% of the total marginal congestion cost. This decreases

significantly the potential distributional concerns of optimal congestion pricing.

Finally, we present numerical examples to assess the relative efficiency of second-best policies, and, for

example, find that only using a per-flight congestion charge and levying atomistic tolls yield substantial

and similar benefits when airlines do not behave in a Cournot fashion, and when the degree of product

substitutability is not too low. This complements the findings of Morrison and Winston (2007), who argue

in favor of levying atomistic tolls at congested airports, because they find a small net benefit loss when an

airport charges the atomistic toll instead of the Cournot toll.

We also believe that our results may help explaining why the empirical and simulation studies provide a

wide range of estimations regarding internalization of congestion at airports. In contrast to the road case,

where users behave atomistically, the relevant question in aviation markets is what share of congestion airlines

actually do internalize when making scheduling decisions of flights. If they internalize a high proportion

of congestion costs, charges that optimally account for this will be relatively low and thus should have a

small impact on flight patterns and social welfare. The internalization hypothesis, based on Brueckner’s

analysis, is supported by empirical evidence by Mayer and Sinai (2003) with U.S. data and by Santos and

Robin (2010) with European data, who show that delays are lower at highly concentrated airports. On the

other hand, Daniel (1995), who first identified the potential for internalization of congestion, argues—with

a simulation model—that atomistic behavior may in fact be more pertinent from an empirical point of view;

i.e., that airlines do not take into account self-imposed congestion when making scheduling decisions. As

a consequence, the optimal toll should be the so-called atomistic toll that ignores any internalization, and
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that is equal to total marginal congestion costs. The atomistic behavior of airlines is further supported

by empirical evidence by Daniel and Harback (2008) and by Rupp (2009). While the outcome of Cournot

competition is in conflict with this evidence, the outcome of the Bertrand setting predicts both a negative

relationship between delays and concentration, as well as congestion levels that can be significantly close to

the atomistic level.5

The paper is organized as follows. First, in Section 2, we introduce the model that includes aircraft size,

fare and frequency decisions in an oligopolistic airline market, and that formally takes into account market

power exertion and (potential) congestion internalization. In Section 3 we derive analytical solutions for the

airports’ problem, specifically first-best tolls and optimal capacity investment. Section 4 presents numerical

exercises to quantify the analytical results, to assess the efficiency of second-best policies, and to study the

performance of levying atomistic tolls. Finally, Section 5 concludes.

2. Airlines’ duopoly model

For the analysis, we consider a vertical setting on a single market, i.e., a single origin-destination pair. In

the first stage an airport chooses capacity, toll per flight and toll per passenger charged to the carriers that

use the facility. In the second stage, a duopoly of airlines compete with aircraft size and frequency as decision

variables, in addition to the fare or number of passengers. We choose to analyze analytically a duopoly of

carriers in order to keep the simplest and most transparent possible focus on congestion internalization

results, the effects of endogenous aircraft size, and the comparison between airlines’ behavioral assumptions;

leaving the extension of more than two airlines for the numerical analyses of Section 4. Following Zhang

and Zhang (2006), we model only one airport for analytical simplicity, but the conclusions remain the same

if the other airport is included, as long as the airports share the objective function (this is, in our case, they

perform joint welfare maximization).6

For the airlines’ market, we consider the differentiated duopoly proposed by Dixit (1979), assuming that

5This divergence between views on the extent to which atomistic versus Cournot tolls are more desirable has been addressed

before. For example, Brueckner and Van Dender (2008) present a theoretical analysis showing that when one airline acts as a

Stackelberg leader and interacts with a large number of fringe carriers, the leader behaves atomistically as long as the products

are perfect substitutes. Czerny and Zhang (2011) present a different argument and state that, when travelers with different

values of time are considered, and in absence of price discrimination by carriers, it might be useful to increase the airport

charge towards the atomistic toll. This is to protect passengers with a relatively high value of time from congestion caused by

passengers with a relatively low value of time. Obviously, these analyses cannot explain differences in findings between models

that consider homogeneous values of time or Nash competition.
6If airports are not regulated by the same authority or if airports independently maximize profits both airports have to be

formally modeled. For a discussion on the implications of two local welfare maximizing airports see Pels and Verhoef (2004)

and for a discussion on independent profit maximization see Basso (2008).
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demands arise from the following quadratic utility function:

U(qi, qj) = A · (qi + qj)− (B · q2i + 2 · E · qi · qj +B · q2j )/2 , (1)

where qi is the amount of good i (hereafter, when subscript j appears in the same expression with i, it

refers to the rival airline), A, B and E are positive parameters with B ≥ E ≥ 0 so that goods are imperfect

substitutes typically, with the special cases of perfect substitutes ocurring when B = E, and independent

goods when E = 0. We consider airlines as imperfect substitutes to account for the fact that not all

passengers choose the airline with the most attractive fare-delay combination, therefore allowing airlines

with different generalized prices having passengers in equilibrium. This is motivated by the fact that there

are other factors such as loyalty (e.g. due to frequent flyer programs), service levels (e.g. meals and drinks),

and consumer preferences for other particular aspects of airlines (e.g. language) that may differ across

carriers and make passengers perceive airlines as imperfect substitutes.7

This utility function gives rise to a linear demand structure, with equivalent inverse and direct demands:

θi = A−B · qi − E · qj , (2)

qi = a− b · θi + e · θj , (3)

where θi is the full price of good i and parameters a, b and e satisfy a = A/(B + E), b = B/(B2 − E2)

and e = E/(B2 −E2). Note that the ratio e/b directly measures the substitutability between airlines, as it

ranges from 0 when products are completely independent, to 1 when products are perfect substitutes.

The full price of traveling with airline i is assumed to be:

θi = pi +D + gi . (4)

The first term, pi, is the fare. D is the passengers’ cost of congestion delays experienced at airports and

depends on airport capacity (K) and on the total number of take offs and landings at the congested airport

(F = fi + fj). Finally, gi is the schedule delay cost faced by a passenger that travels with airline i, which

depends only on the flight frequency of the airline (fi). The fact that schedule delay does not depend on

rival’s frequency, as congestion does, reflects our assumption that in the differentiated duopoly, frequency is

perceived as an airline-specific attribute.

We make the plausible assumptions that D is differentiable in F , that gi is differentiable in fi and that:

∂D

∂fi
> 0,

∂2D

∂f2i
≥ 0,

∂2D

∂fi∂fj
≥ 0,

∂D

∂K
< 0, (5)

∂2D

∂K∂fi
< 0,

∂gi
∂fi

< 0,
∂2gi
∂f2i

> 0, ∀i .

7The fact that an airline can have demand despite having a higher generalized price than the competitor has been also

modeled with a brand-loyalty variable that gives the additional gain from traveling with a specific airline relative to travel with

the other airline (Brueckner and Flores-Fillol, 2007; Flores-Fillol, 2010). In our model it is also possible to model a preference

for a specific carrier by letting the demand parameters (A, B and E) vary across carriers.

6



Congestion thus increases with the number of flights and the marginal effect is stronger when congestion is

more severe; congestion decreases with airport’s capacity; schedule delay cost decreases with airline-specific

frequency, and that effect is smaller when frequency is higher.8

Following Brueckner (2004), we model airlines’ cost (Ci) as a function of aircraft size and frequency in

the following way:

Ci = fi ·
(
γfi + γsi · si

)
, (6)

where γfi and γsi are positive cost parameters and si is the number of seats per flight. The underlying

assumption is that cost per flight is a linear function of the number of seats, a relation that has been also

found in a cost-engineering study for airlines by Swan and Adler (2006).9 Congestion costs for airlines are

not considered in the analysis because we focus on passengers’ congestion, but including them would not

change the results in any essential way.10

With the cost function defined, we can now write the profit of airline i as:

πi = qi · pi − fi ·
(
γfi + γsi · si

)
− fi · τfi − qi · τ

q
i , (7)

where τfi is the per-flight toll charged by the airport and τ qi the toll per passenger.

One of the goals of this paper is to assess the impact of different kinds of strategic interaction on optimal

pricing policy at congested airports. In modeling the airlines’ competition, we study the traditional setting

for the airlines market, namely Cournot competition, where airlines simultaneously choose aircraft size,

frequency and number of passengers taking the rivals decision as given. We thereafter look at game with

airlines as Bertrand oligopolists, where fare (besides aircraft size and frequency) is the strategic variable

instead of quantity. Finally, we study two Stackelberg settings, where the leader chooses all the relevant

variables prior to a follower who takes the rival’s number of passengers (output) as given, or the rival’s fare

as given.

8This set of assumptions is common in the literature: the linear delay function used by Pels and Verhoef (2004) and the

convex function used by Zhang and Zhang (2006) satisfy the assumptions regarding D. The schedule delay function that

is inversely proportional to the airline frequency satisfies the conditions for gi (see Brueckner (2004) and Basso (2008) for a

discussion).
9In this work, a cost function per trip is calibrated using distance and aircraft size as explanatory variables; then, holding

distance fixed, the function is linear in number of seats.
10Congestion imposed on airlines works out in a way similar to congestion imposed on passengers. The intuition is that

passenger congestion costs reduce fare that can be charged at given output levels on a dollar by dollar basis. Therefore, the

firm weighs “own” passenger congestion costs as heavily as it would weigh “own” congestions costs, and the two types of

congestion costs would enter the optimization problem in identical ways. If congestion costs are included, airlines would not

internalize congestion costs imposed on the competitors’ flights and this should be corrected in first-best tolls, as found by

Basso (2008), Brueckner (2009) and Verhoef (2010).
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2.1. Cournot behavior

In this game setting, we assume that airlines are Cournot oligopolists in that they choose aircraft size,

frequency and number of passengers. Because having idle seat capacity only decreases profit in our model,

it is straightforward that an airline will set the number of seats such that the aircrafts are filled (si = qi/fi);

this allows us to express profit in terms of number of passengers and frequency. Rewriting equation (7),

using (2) and (4) we get:

πi = qi · (A−B · qi − E · qj −D − gi)− fi ·
(
γfi + τfi

)
− qi · (γsi + τ qi ) , (8)

Then, first-order conditions with respect to number of passengers and frequency yield:

∂πi
∂qi

= 0⇒ pi = γsi + τ qi + qi ·B , (9)

∂πi
∂fi

= 0⇒ γfi + τfi = −qi ·
(
∂D

∂fi
+
∂gi
∂fi

)
, (10)

Equation (9) states that the fare charged by an airline has three terms: (i) the marginal cost per capacity

unit (γsi ); (ii) the airport charge per passenger (τ qi ); and (iii) a conventional monopolistic markup reflect-

ing carrier’s market power, which is related to the sensitivity of demand and own number of passengers

(qi · B). Equation (10) states that airline’s marginal cost per flight equals marginal benefits for own pas-

sengers (marginal congestion savings plus marginal schedule delay benefits); therefore, airlines internalize

own-passenger congestion. These rules basically describe that airlines internalize congestion on their own

passengers and charge a markup which equals qi ·∂θi/∂qi, a result analogous to the rules obtained previously

in Cournot competition (e.g. Pels and Verhoef, 2004; Zhang and Zhang, 2006; Basso, 2008).11 From now

on, to simplify notation, we refer to this game as Cournot competition and we refer to Cournot internal-

ization to the result obtained in this game setting, i.e. perfect internalization of congestion imposed on

own-passengers.

It is worth noting at this point that this reduced form of Cournot competition can also be interpreted as

a two-stage game where airlines first simultaneously choose aircraft size and frequency and, in the second

stage, they compete on fares. As an airline can transport at most fi · si passengers, in the first stage

they are also making a capacity decision, thus the well-known result that a two-stage capacity-constrained

competition leads to Cournot outcomes holds.12

11The second term in the right-hand side of equation (10) is present in previous studies including schedule delay cost. It is

in Brueckner (2004) for a monopoly and it is in Basso (2008), but does not appear in the pricing rule of airports because it is

set optimally by a private airline from a social welfare perspective.
12For this result to hold, we only need to assume that when a price-setting firm is capacity constrained, it adjust prices

so that the demanded quantity equals its capacity. The intuition comes from the seminal paper of Kreps and Scheinkman

(1983), but does not apply directly with imperfect product differentiation. A formal proof and textbook treatment in absence

of externalities can be found in Martin (2002), and the formal proof accounting for congestion is available from the authors

upon request.
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It is interesting to note some aspects about airlines’ behavior that arise from this model. Airlines do not

charge passengers directly for congestion because they set frequency and number of passengers separately;

for any given demand, they internalize own-passengers congestion by setting frequency according to (10)

and adjusting aircraft size to accommodate the passengers. In a fixed-proportions model, an additional pas-

senger necessarily increases delays and the only way to internalize this is by charging self-imposed marginal

congestion costs to passengers. But, when aircraft size is a strategic variable, this is no longer desirable,

because they can accommodate a new passenger, without raising delays, by increasing aircraft size by 1/fi

at a cost of γsi (which they do charge to passengers, see (9)). This also explains why the per-flight toll

(τfi ) is absent in the airlines’ fare: it affects frequency and aircraft size setting, while keeping the cost per

passenger constant at γsi + τ qi .

2.2. Bertrand behavior

In this game, the problem faced by an airline is to maximize profit (equation 7) with strategic variables

being frequency, aircraft size and fare. Again, having idle seat capacity only decreases profit, so that

si = qi/fi holds and we can rewrite profit in terms of fare and frequency. Rewriting equation (7) and

explicitly including the functions’ arguments (without including rival’s variables since they are taken as

given) we get:

πi(pi, fi) = qi(pi, fi) · (pi − γsi − τ
q
i )− fi · (γfi + τfi ) . (11)

Then, first-order conditions with respect to fare and frequency yield:

∂πi
∂pi

= 0⇒ pi = γsi + τ qi +
qi
b
, (12)

∂πi
∂fi

= 0⇒ γfi + τfi = (pi − γsi − τ
q
i ) · ∂qi

∂fi
. (13)

Again, the fare charged by an airline includes the marginal cost per capacity unit (γsi ), the airport charge

per passenger, and a market-power markup. The difference with the Cournot game is that the market

power effect is now weaker (1/b < b/(b2 − e2) = B). The intuition of this comes directly from the type of

game: when airlines take rival’s price as given, the outcome is more competitive than when they take rival’s

quantity as given (see Singh and Vives (1984) for a discussion in a general context).

From the frequency first-order condition (13), we get that frequency is set optimally by equating marginal

cost per flight to the revenue gain from an extra flight. For further interpretation, note that using equation

(3) we can rewrite ∂qi/∂fi as:

∂qi
∂fi

= −b · ∂θi
∂fi

+ e · ∂θj
∂fi

= −b ·
(
∂D

∂fi
+
∂gi
∂fi

)
+ e · ∂D

∂fi
. (14)

This expression shows that the effect of an increase in the airline’s number of flights, has two effects on

its demand: it changes both schedule delay cost and congestion for own passengers, but it also increases
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the congestion experienced by competitor’s passengers when its frequency is fixed (or taken as given). The

second effect has a positive impact for the airline, since increasing competitor’s congestion raises own demand

due to the fact that airlines offer (imperfect) substitute outputs.

Using pi − γsi − τ
q
i = qi/b from equation (12) and equation (14), we can rewrite (13) as:

γfi + τfi = −qi ·
(
∂D

∂fi
·
(

1− e

b

)
+
∂gi
∂fi

)
. (15)

This equation defines how an airline sets frequency. It differs from equation (10) for the Cournot case in the

term multiplying marginal congestion costs. In this game, an airline internalizes congestion imposed on its

own passengers but also takes into account the congestion imposed on its competitor, as explained above.

This is represented by the degree of substitutability e/b that appears in equation (15).

This term causes a difference with the common internalization finding, because now airlines are not

taking the competitor’s output as given. In Cournot competition, airlines believe that they are not able to

influence the competitor’s number of passengers by raising congestion, simply because they do not “see”

the effect by assumption. On the other hand, when taking the competitor’s fare together with frequency

as given, output is the result of setting the generalized price through the two variables. Therefore, airlines

realize that they can influence competitor’s output, or increase own demand, by raising the rival’s congestion.

The size of the deviation from the traditional result of internalization depends directly on the degree of

substitutability e/b. Recall that this ratio ranges from 0 when products are completely independent to 1

when products are perfect substitutes. The fraction of runway congestion internalized by an airline, when

setting frequency, is given by the ratio of congestion terms from equation (15) and total marginal congestion

costs:
qi ·D

′ · (1− e/b)
(qi + qj) ·D′ =

qi
qi + qj

·
(

1− e

b

)
. (16)

As e < b, carriers act as if they internalize less congestion than what is imposed on their own passengers, as in

the Cournot model. Only when products are close to be independent, the effective internalization approaches

the market share. When they are close to be homogeneous, airline behavior approaches atomistic behavior.

For example, if the output is symmetric and the ratio of substitutability is 0.5, airlines internalize only 25

percent of congestion costs, instead of one half.

As in the previous case, the Bertrand reduced form used in this section to represent the airlines market

has alternative interpretations. This game setting is equivalent to a two-stage game where airlines first

choose aircraft size and, in a second stage, they compete on frequency and fares, as long as they do not

directly care about rival’s aircraft size. It is also equivalent to the two-stage game where airlines first choose

aircraft size and frequency, and in the second stage they compete on fares, as long as they cannot observe

the rival’s actions. In other words, the open-loop equilibrium of the latter two-stage game corresponds to

the Bertrand setting analyzed here, and the closed-loop equilibrium to the Cournot setting of Section 2.1.
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From now on, to simplify notation we refer to this game as Bertrand competition and the result regarding

internalization in this setting as Bertrand internalization.

Which one of the two closed form settings is more appropriate to describe the airline market depends,

obviously, on market-specific conditions. Estimations by Brander and Zhang (1990) and Oum et al. (1993)—

which have been used to support Cournot behavior—are well summarized by the latter’s conclusion that

“the overall results indicate that the duopolists’ conduct may be described as somewhere between Bertrand

and Cournot behavior, but much closer to Cournot, in the majority of the sample observations” (p. 189).

As their estimations assume perfect substitutability, the Bertrand outcome would correspond to perfectly

competitive conditions. Therefore, their conclusion is that fares generally exceed marginal costs, and by less

than the “Cournot markup”. This statement is consistent with the Bertrand outcome with differentiated

products described above.

In addition, as we discuss in Section 1, there are empirical studies that support the internalization

hypothesis as well as studies that reject it. We believe that our model helps in explaining such a wide range

of findings. As we discuss above, the degree of internalization depends on demand-structure parameters (the

ratio of substitutability e/b) and, therefore, it is possible that in some markets an airline behaves almost

atomistically regarding frequency setting, even if it has a large market share, while in others it internalizes

a big share of congestion. Importantly, this still predicts a negative relationship between airport delays and

concentration.

Naturally, the suitability of the settings above still remains an empirical question and it can perfectly vary

across markets. As suggested by Perloff et al. (2007) with 1980s data, the appropriate setting for the Chicago-

Wichita and Chicago-Providence markets is Bertrand competition, analyzed in this Section. In addition,

Nazarenus’s (2011) analysis of 37 Chicago-based routes with 2007 data rejects the Cournot hypothesis as

representative on average (in contrast to Brander and Zhang (1990)), suggesting that Bertrand behavior

with imperfect substitution is more appropriate.13

2.3. Stackelberg behavior with a Cournot follower

In the next setting we consider a Stackelberg model, where we suppose that airline i is a leader and airline

j the follower that chooses output (qj), frequency (fj) and aircraft size (sj) viewing the leader’s strategic

variables (qi, fi and si) as parametric. We refer to this game as Stackelberg-Cournot as a convenient

shorthand. As a result of the assumptions, the follower’s behavior is characterized by first-order conditions

(9)-(10). The leader maximizes profit knowing the response of the follower to its own decisions. As in

13They reject Cournot behavior as representative in most of the cases, and sometimes the Bertrand behavior as well, because,

as they do not consider product differentiation, it is equivalent to reject the perfectly competitive outcome. They conclude that

the change of regime is from Cournot towards a more competitive one without reaching perfect competition, which is again

consistent with our Bertrand model.
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previous settings, it is not optimal to have idle capacity, so the profit function of the leader is:

πi(qi, fi) = qi · [pi(qi, fi, qj , fj)− γsi − τ
q
i ]− fi · (γfi + τfi ) , (17)

where both qj and fj depend on the leader’s choice variables.

First-order conditions with respect to output and frequency yield:

∂πi
∂qi

= 0⇒ pi = γsi + τ qi + qi ·
(
B + E · ∂qj

∂qi
+
∂D

∂fi
· ∂fj
∂qi

)
, (18)

∂πi
∂fi

= 0⇒ γfi + τfi = −qi ·
[
∂D

∂fi
·
(

1 +
∂fj
∂fi

)
+
∂gi
∂fi

+ E · ∂qj
∂fi

]
. (19)

Since the follower’s responses are downward-sloping (the proof is in Appendix A), the leader sets a higher

quantity than an airline that takes rival’s output as given (like the follower does). As a consequence, the

leader’s market power effect is weaker (for a given frequency, a higher number of passengers implies a lower

fare).

As the leader anticipates the way the follower reacts, the incentives to reduce frequency (first-order

condition 19) are different from those in the Cournot case, because of two effects. First, the leader pre-

dicts that any frequency reduction is partially offset by an increase in the number of flights by the follower

(∂fj/∂fi < 0). As can be seen in (19), the term involving marginal congestion is reduced by this expression.

This situates the leader’s internalization in between the Cournot case of self-imposed congestion and atom-

istic behavior, just as pointed out by Brueckner and Van Dender (2008). The second effect—not directly

related to marginal congestion—is the last term multiplying qi on the right hand-side of equation (19),

which further reduces internalization. The leader realizes that any frequency increase induces a reduction

on follower’s output, therefore the frequency reduction incentive is diminished. The overall effective inter-

nalization is in between congestion imposed on own passengers and atomistic behavior. The exact degree,

however, depends, among other things, on the degree of substitutability. In Section 4, we expand more on

this.

2.4. Stackelberg behavior with a Bertrand follower

Finally we solve a Stackelberg game with airline i as a leader and airline j as a follower that chooses fare

(pj), frequency (fj) and aircraft size (sj). The only difference with the previous setting is that the follower

takes the leader’s fare as given, instead of output. We refer to this setting as the Stackelberg-Bertrand game.

The problem for the follower is the same as in the Bertrand game, i.e. maximize profit (equation 11)

with respect to fare and frequency, yielding the same first-order conditions (equations 12 and 13). For the

leader, the profit function now is:

πi(pi, fi) = qi(pi, fi, pj , fj) · (pi − γsi − τ
q
i )− fi · (γfi + τfi ) . (20)
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First-order conditions with respect to fare and frequency yield:

∂πi
∂pi

= 0⇒ pi = γsi + τ qi +
qi

b̃
, (21)

∂πi
∂fi

= 0⇒ γfi + τfi = −qi ·
[
∂D

∂fi

(
1− e

b

)(
1 +

∂fj
∂fi

)
+
∂gi
∂fi
− e

b

(
∂pj
∂fi

+
∂gj
∂fj

∂fj
∂fi

)]
· b
b̃
, (22)

where b̃ ≡ b− e · ∂pj/∂pi − ∂qi/∂fj · ∂fj/∂pi.

In this game, the follower’s responses to an increase of frequency by the leader (∂pj/∂fi, ∂fj/∂fi) are

downward-sloping while the responses to fare increases (∂pj/∂pi, ∂fj/∂pi) are upward-sloping (see Appendix

A). This feature prevents us from quantifying analytically whether the market power effect and the congestion

internalization are higher or lower in comparison with the Bertrand game of Section 2.2. This is because,

with general functional forms, the sign of b̃ − b and the sign of the last term in brackets on the right-hand

side of equation 22 cannot be determined analytically. In Section 4 we study the magnitude of these effects

with numerical examples, suggesting that the leader’s internalization can be less than in the Bertrand game,

but still in between what is found for Cournot and atomistic behavior.

With the airlines’ market characterized, we now analyze airport pricing and capacity investments.

3. Airport pricing and capacity investment

We consider the first-best case of a (unweighted) welfare maximizing airport, with capacity and per-flight

as well as per-passenger tolls as instruments. We solve the airport maximization problem analytically in

this section, and numerically in Section 4. The derivation of first-order conditions presented in this section

is in Appendix B.

Social welfare is defined as the sum of net benefits for all agents: consumer surplus, airlines’ profits and

airport’s profit. The first of this, with quantities and full-prices being qi, qj , θi and θj , is just U(qi, qj)− θi ·

qi − θj · qj . Using (1) and (2), straightforward calculations yield the following expression:

CS =
B

2
· (q21 + q22) + E · q1 · q2 . (23)

We assume that airport’s costs are separable and proportional to number of passengers, frequency and

capacity, shaping airport profit in the following way:

Π =
∑
i

(
qi · (τ qi − cq) + fi · (τfi − cf )

)
−K · r , (24)

where cq is the (constant) operating cost per-passenger, cf the (constant) operating cost per-flight, r the

cost of capital and K the capacity of the airport.

Adding airlines profit (equation 7) we can express social welfare as a function of traffic, frequencies,

aircraft sizes, and fares:

SW =

[
B

2
(q21 + q22) + E · q1 · q2

]
+

[∑
i

qi · (pi − cq)

]
−

[∑
i

fi · (γfi + si · γsi + cf )

]
− [K · r] , (25)
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where the first bracketed term is consumer surplus, the second bracketed term is airlines’ and airport’s per-

passenger revenues minus costs (airport’s revenues from tolls cancel out against airlines’ costs from tolls),

the third is per-flight revenues minus costs (again airport’s tolls cancel out) and the last bracketed term

is capacity costs. Both numbers of passengers are a function of fares and frequencies, but we omit the

arguments here.

Straightforward calculations lead to the following conditions for optimal fares:

pi − γsi − cq = 0 , ∀i . (26)

This result states that optimal fare must equal airlines’ marginal cost per capacity unit plus airport marginal

operating cost per passenger. The welfare maximizing fare that should be charged to passengers does not

include any congestion term because—as explained in the previous section—airlines take congestion into

account only in their frequency setting. From first-order conditions for frequency we obtain the following:

−(qi + qj) ·
∂D

∂fi
− qi ·

∂gi
∂fi

= cf + γfi , ∀i . (27)

This means that the optimal frequency must be such that the marginal cost per flight (right-hand side) equals

marginal net benefits of all passengers from congestion, plus schedule delay savings (left-hand side). We

define “total marginal congestion costs” as the congestion cost that an extra flight imposes on all passengers

(∂D/∂fi · (qi + qj)). If airlines do not internalize any congestion at all, they should be charged this amount

plus the airport’s marginal operating cost per flight (cf ), the so-called atomistic toll.

Finally, the optimal investment rule for the airport is:

−(qi + qj) ·
∂D

∂K
= r . (28)

This shows that airport capacity should be increased until marginal cost equals marginal benefits from

congestion reductions. Having established the first-order conditions for social optimal fares and frequencies,

we can now derive the optimal tolls per passenger (τ qi , τ
q
j ) and per flight (τfi , τ

f
j ), by using airlines’ first-

order conditions for each game (e.g., for Bertrand competition, we use equations (12), (15), (26) and (27)).

Results now follow, ordered by game type.

• Cournot behavior

For the simultaneous game of Cournot behavior, it can be expected that optimal tolls are consistent with

the earlier airport pricing literature. Indeed, the per-passenger toll in (29) is marginal operating cost plus

a subsidy equal to market power markup, and the per-flight toll in (30) equals marginal operating cost plus

congestion imposed on the rival airline passengers.

τ qi = cq − qi ·B , (29)
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τfi = cf + qj ·D
′
. (30)

However, the subsidy is separate from the congestion toll, and the per-passenger first-best toll is negative

when the market power effect is bigger than airport per-passenger marginal operating cost. Hereafter, we

use the term “Cournot toll” for the per-flight charge that accounts only for the congestion costs imposed on

the competitor’s passengers (equation (30)).

• Bertrand behavior

For the simultaneous game of Bertrand behavior, we find:

τ qi = cq − qi ·
1

b
, (31)

τfi = cf +
(
qj +

e

b
· qi
)
·D

′
. (32)

The per-passenger toll in this game is marginal operating cost plus a subsidy equal to the market power

markup. For the per-flight toll, we obtain that it is marginal operating cost per flight plus a congestion

toll, which is, however, different to the traditional Cournot toll. A first-best airport charges the congestion

costs imposed on rival’s passengers (qj ·D
′
) plus an additional term. This new term is the own-passengers

marginal congestion cost (qi · D
′
) times the degree of substitutability (e/b). When this ratio is zero, the

goods are independent and the optimal per-flight toll is the congestion imposed on the rival’s passengers, as

it is in the Cournot game. When it is one, goods are perfect substitutes, and the first-best toll is the so-called

atomistic toll. Any other feasible value of e/b (between zero and one) yields a charge that is somewhere in

between the atomistic toll and the Cournot toll. The toll reflects that airlines are internalizing less than

self-imposed congestion. Hence, first-best tolls are closer to the atomistic toll than in Cournot competition;

and, the higher the degree of substitutability, the higher the first-best toll should be.

The intuition of this result, which to the best of our knowledge is new in the airport pricing literature,

is that when goods are independent, there are two monopolies using the same facility in order to serve two

independent markets. Therefore, a global welfare maximizing airport charges to each carrier the congestion

imposed on the competitor, which was entirely ignored by the operators because of the independence. In the

other extreme, where the ratio equals one, goods are perfect substitutes and—since airlines take the rival’s

fare as given—the Nash equilibrium is the perfectly competitive outcome (as in Bertrand competition with

homogeneous goods). In this extreme case, an airline will expect that any reduction in its own flight volume

will be offset by an equally big increase in the competitor’s flight volume. As a consequence, the total

number of flights, thus airport congestion, will remain unchanged, and internalization of own congestion

makes no sense.

This new result on optimal congestion pricing suggests that welfare maximizing per-flight tolls may be

higher than what is suggested by the Cournot model, hence have a more substantial impact in airlines’
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decisions, and therefore may yield more sizable welfare gains. Even if the market is highly concentrated,

the dominant airline has to be charged for a high proportion of total marginal congestion costs if the

substitutability between the airlines is not too low.

• Stackelberg leader and Cournot follower game

Since the first-order conditions for the follower are the same as in the simultaneous setting with Cournot

behavior, the first-best tolling rules also coincide. The per-passenger toll is marginal operating cost plus the

market power subsidy (see equation 29) and the per-flight toll is marginal operating cost plus congestion

imposed on the rival (equation 30). For the leader (i), the first-best tolls are:

τ qi = cq − qi · B̃ , (33)

τfi = cf +

(
qj + qi ·

∣∣∣∣∂fj∂fi

∣∣∣∣) ·D′
+ qi · E ·

∣∣∣∣∂qj∂fi

∣∣∣∣ , (34)

where B̃ = B +E · ∂qj/∂qi +D
′ · ∂fj/∂qi and derivatives in absolute value are negative (see Appendix B).

The interpretation of these tolls is the same as in previous settings. The first-best per-passenger toll

is the marginal operating cost plus a subsidy equal to the market power markup, and the per-flight toll

corrects for uninternalized congestion. Because the leader—when considering the effect of its own decisions

on the followers—alters internalization, the optimal congestion toll charged is in between the Cournot and the

atomistic toll. This optimal congestion toll conceptually reproduces the result of Brueckner and Van Dender

(2008) in their Stackelberg behavior with a Cournot follower game (note that the last term in (34) is not

present in their analysis due to the assumptions of perfectly elastic demand and perfect substitution).14

• Stackelberg leader and Bertrand follower game

The optimal tolling rules for the follower are identical to the tolling rules with Bertrand behavior (equa-

tions 31 and 32). On the other hand, the optimal tolls charged to the leader (i) are:

τ qi = cq − qi ·
1

b̃
, (35)

τfi = cf +

(
qj + qi

e

b̃

)
·D

′
+ qi

[
b̃− b
b̃

(
D

′
+ g

′

i

)
+
e− b
b̃

D
′ ∂fj
∂fi
− e

b̃

(
∂pj
∂fi

+ g
′

j

∂fj
∂fi

)]
, (36)

where b̃ ≡ b− e · ∂pj/∂pi − ∂qi/∂fj · ∂fj/∂pi.

The optimal toll per passenger is airport’s marginal operating cost per passenger plus the subsidy that

corrects market power. Since b̃ is the derivative of own traffic with respect to own fare (taking into account

14They relax both assumptions but only in the case of a firm acting as a Stackelberg leader and interacting with a competitive

fringe.
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the effect on the follower) the interpretation is the same as usual for pricing with market power. The per-

flight toll corrects the frequency setting so that the leader sets the welfare maximizing frequency. As the sign

of b̃−b cannot be determined a priori, the per-flight toll for the leader has to be studied numerically. In Sec-

tion 4 we do this, finding that in the numerical examples the optimal toll is in between the Cournot and the

atomistic toll, and that it can be above or below the Bertrand toll depending on the degree of substitutability.

For each of the four game types we considered, we found that a welfare maximizing airport needs to

use two taxes, namely per-passenger and per-flight tolls, to reach the first-best outcome. It corrects the

market power effect with a per-passenger toll and the frequency inefficiency with a per-flight charge. The

former (τ qi ) is below airport marginal operating cost per passenger, because it counteracts the airline market

power exertion by means of a subsidy. As a consequence, this toll is negative when airlines’ markups exceed

airport’s marginal operating costs. Conversely, the first-best per-flight toll is always above airport marginal

operating cost, because airlines do not fully internalize congestion. If only one tax can be applied, the

airport is facing a second-best problem, and which instrument is better to apply depends on market specific

conditions. The stronger the airlines’ market power effect compared to the congestion effect, the more likely

is that using only per-passenger subsidies is more efficient than charging only per-flight. In the extreme case

of monopoly operation, the per-flight toll is unnecessary, and the first-best is attained with per-passenger

subsidies only.

The results also imply that the first-best outcome cannot be reached by only charging passengers, because

also charges per movement are necessary. If the authority or the facility wants to charge airlines per flight

and passengers per trip, a per-passenger tax above the operating costs per passenger is not consistent with

welfare maximization. We further expand on this in the numerical analysis below.

Two recent analyses have put a question mark on the desirability of the traditional Cournot congestion

toll, i.e. total marginal congestion costs times the market share of each airline (in our model the Cournot

per-flight toll in equation 30). Morrison and Winston (2007) find a small difference between the net benefits

of charging the Cournot toll versus the atomistic toll that ignores any internalization. Then, Brueckner and

Van Dender (2008) shows that Stackelberg behavior with a Cournot follower yields optimal airport tolls

that lie in between of both policies.

The results of this model give new insights into the debate concerning the desirability of the traditional

Cournot congestion toll: first, the optimal toll might well be close to the atomistic toll even without assuming

leadership behavior and without abstracting from airlines’ market power exertion. This is the case with

Bertrand behavior, simultaneous competition with aircraft size, fare and frequency as strategic variables,

and the related two-stage setting. From equation (32), it is straightforward that the closeness of the optimal

toll to the atomistic toll depends on market-specific characteristics (ratio of substitutability e/b). Therefore,

within the same setting but with conditions varying over a network, the entire range of tolls can be optimal.
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We also confirm the internalization result of Brueckner and Van Dender (2008) for a Stackelberg leader with

a Cournot follower, and extend it to the case of a Stackelberg leader with a Bertrand follower, finding even

higher optimal tolls. These findings may lead to optimism on the relative efficiency of atomistic congestion

pricing in aviation markets. As we cannot compare welfare and equilibrium values analytically, in Section 4

we solve numerically the equilibrium for an airport charging the atomistic toll, and make the comparisons

with the first-best to assess the relative efficiency.

4. Numerical analysis

In this section we present a numerical analysis that allows making comparisons that are not possible

analytically. We also analyze the performance of second-best policies. Despite the simplified structure of

the model, we use parameters that are as much as possible calibrated so as to reflect realistic values. We

use the following functional forms for the schedule delay cost (gi) and passengers’ congestion cost (D):

gi = γ · 1

fi
, (37)

D = α ·
(
fi + fj
K

)β
, (38)

where the schedule delay cost in (37) is inversely proportional to the airline frequency, and γ is a constant

representing the monetary value of a unit of schedule delay time. The functional form in (37) would be

consistent with uniformly distributed desired departure times, and equally spaced flights, and is often used in

the literature (e.g. Brueckner, 2004; Basso, 2008). The congestion delay at the airport in (38) is a function of

the volume capacity ratio, with α being proportional to the passengers’ value of travel time, K the capacity,

and β the power of the function.

Our reference scenario for calibration has symmetric airlines and assumes a marginal-operating-cost

pricing airport, i.e. a toll per passenger of cq and a toll per flight of cf . The parameter calibration

considered equilibria in the Cournot and Bertrand settings, and the following tables summarize parameters

and equilibrium outputs of the calibration case.

Table 1: Parameter values.

Demand Cost parameters

parameters Airlines Airport

A 1250 a 750 γ 30 c0 4390.7 cq 10

B 1.04 b 1.5 α 26 c1 337.7 cf 1000

E 0.63 e 0.9 β 3 r 6000

18



Table 2: Equilibrium outputs, marginal operating cost pricing airport.

Game Total Fare Total Aircraft K Airlines

setting traffic Frequency size Profit

Bertrand 745 596 2.5 295 3.6 171,452

Cournot 639 680 2.1 311 3.0 201,493

Table 3: Demand elasticities, generalized price and share of generalized price due to fare and delays.

Game Gen. Fare Congestion Schedule Demand

setting price share share delay share Elasticity

Bertrand 629 0.95 0.014 0.036 -1.01

Cournot 718 0.95 0.011 0.039 -1.35

Airlines’ operating cost parameters are from Swan and Adler (2006), using a reference distance of 1.500

km and an adjustment in the per-passenger cost as suggested by the authors. Values of time are from

Morrison and Winston (1989), while congestion, delay and demand parameters are set such that equilibrium

elasticity with respect to generalized price in both settings is close to -1.146, the mean value of 204 observa-

tions reported by Brons et al. (2002). Values are set to the same monetary units (U.S. dollars) throughout

the calibration process.

We provide numerical examples below for the duopoly setting considered analytically in the previous

sections, and also extend the analysis to the case with several airlines. Throughout the analysis, we il-

lustrate possible policy implications of our results by considering the substitutability ratios estimated by

Perloff et al. (2007) for the Orlando-Wichita and the Orlando-Providence markets. According to their data,

United Airlines and American Airlines had a combined share of passengers above 98% in both markets,

and their estimations indicate that the markets are well represented by a Bertrand differentiated duopoly

with substitutability ratios between 0.4 and 0.7. Nazarenus (2011), using data from 2007, finds that 37

Orlando based markets fit a duopoly criteria and conclude that the outcome is more competitive than what

Cournot behavior implies and less competitive than perfect competition, which is exactly the outcome of

differentiated Bertrand competition.15

15The duopoly criteria they use is the one proposed by Brander and Zhang (1990), which considers a market as duopolistic

when United Airlines and American Airlines together had a market share exceeding 75%, and each carrier had at least 100
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4.1. Internalization

We first solve the problem with a welfare maximizing airport and a duopoly of symmetric airlines, to

assess the equilibrium share of congestion that is internalized by each player. In this case, each carrier

has an equilibrium share of 50 percent of passengers. Figure 1 shows the percentage of congestion that is

internalized by each agent for a feasible range of the ratio of substitutability, e/b. Recall that a value of

0 means independent goods, whereas 1 represents pure substitutes. According to the first-order conditions

derived in Section 2, in the Cournot case each airline internalizes half of the total marginal congestion cost

(see equation 10). For the Bertrand case, internalization is in between one half and zero, and decreases

linearly in the ratio of substitutability; see (16). For the game with a Stackelberg leader and a Cournot

follower, the leader internalizes less than half of total marginal congestion and the follower acts as in the

simultaneous Cournot game, internalizing exactly half of total marginal congestion costs. Finally, Bertrand

follower’s internalization is the same as in the simultaneous Bertrand game, while the leader behavior cannot

be quantified a priori.

The self-imposed internalization of Cournot behavior and the linear decrease of the internalization for

airlines in the Bertrand setting are shown in Figure 1 in black lines. To illustrate the possible implications

of our results, we may look at parameters estimated by Perloff et al. (2007) for a linear demand structure

(as in equation (3)) in a duopolistic competition. They find values for the ratio e/b between 0.4 and 0.7,

which implies that airlines would internalize between 12 and 30 percent of congestion costs, and therefore

should be charged for a remaining 70 to 88 percent of the total marginal congestion costs.

For both Stackelberg games, we find that the leader internalization is less than the self-imposed conges-

tion, and decreases towards atomistic behavior as the substitutability as measured by the ratio e/b increases.

In the Stackelberg-Cournot case (the two solid lines), the leader always internalizes less than the follower,

whose internalization is always the congestion imposed on own passengers. For the Stackelberg-Bertrand

setting (the two dashed lines), we find that the leader internalizes roughly the same congestion as the fol-

lower, both being less than the self-imposed and approaching to zero as the ratio of substitutability grows.

Brueckner and Van Dender (2008) also analyze Stackelberg behavior with a Cournot follower, but sup-

pressing market-power by assuming perfectly elastic demand, and assuming that the outputs of the carriers

are perfect substitutes. We extend this to the case of price-sensitive demand and imperfect substitution,

finding similar results regarding internalization of congestion: the leader internalizes less than self-imposed

congestion, but does not fully reach atomistic behavior. This is represented in Figure 1 by the solid gray

line.

passengers in the 10% sample available. Nazarenus (2011) finds that the combined market share of the two airlines is higher

that 91% in 29 markets in the third quarter of 2007. Unfortunately the literature on conduct parameters is scarce, and we are

not aware of other estimations for the degree of substitutability in the airline industry (following Brander and Zhang (1990),

Nazarenus (2011) does not allow for imperfect substitutability).
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Figure 1: Internalization.

From this analysis it follows that, for Bertrand behavior both in simultaneous competition as well as

in Stackelberg competition, optimal congestion charges are close to the atomistic charge when the substi-

tutability is not too low (near the right-hand end of Figure 1). For this reason, optimal per-flight congestion

tolls might have a more significant impact on airlines’ scheduling decisions and, therefore, in alleviating

congestion, than what was suggested by earlier Cournot models.

4.2. Alternative policies

We next study the following alternative policies: (i) the second-best cases where an airport can use only

one tax instrument, and (ii) the relative performance of atomistic pricing. The motivation of studying one

instrument is to gain insight on the impact of each tolling instrument separately. The purpose of assessing

the performance of atomistic pricing is to better understand to what extent this policy is attractive from an

efficiency point of view.

4.2.1. Using one tax instrument

As shown in Section 3, a welfare maximizing airport needs two pricing instruments to reach the first-best

outcome. It corrects the market power effect with a per-passenger subsidy and the frequency inefficiency

with a per-flight charge. We now look at what happens when it can use only one instrument. For this

purpose, we define the relative efficiency Ωp as the welfare gain due to a policy (p), relative to the first-best

gain:

Ωp =
SW p − SWmc

SW fb − SWmc
, (39)

where superscript fb refers to the first-best case, and mc to an airport charging marginal operating costs

(as in the reference scenario for calibration).
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Figure 2: Relative efficiency by game type.

Figure 2 shows the relative efficiency of both second-best policies for the base calibration. The results

show that, in our calibration, the market power effect dominates the congestion effect, yielding a high

relative efficiency for a per-passenger subsidy and a low one for the per-flight toll. The results also show

a significant effect of game type on the performance of a policy. As we discuss in Section 2, the market

power exertion and the amount of internalized congestion are always higher in a Cournot setting than in

an Bertrand setting. This leads to a higher relative efficiency of the per-passenger subsidy, and a lower

efficiency of the per-flight charge, in the Cournot competition than in the Bertrand competition. For the

Stackelberg games, the relative efficiency lies in between the Cournot and Bertrand cases, but the ranking

is sensitive to the parameters (as is the degree of internalization). The results furthermore show that, for

the chosen parametrization, the social gains for the two instruments are nearly additive. That is, the gains

from introducing the one instrument are almost insensitive to the other instrument being in place already.

This underlines the lack of substitutability between the two instruments.

The second analysis we perform has the purpose of assessing the relative efficiency of both second-best

policies when the market power and the congestion effect have a different comparative importance. We do

this by increasing the number of (symmetric) airlines that participate in the market, for a given demand

structure, because it captures in one parameter the relative importance of both effects: increasing the

number of firms makes the market power effect weaker because of the increased competition and, for the

same reason, the congestion externality becomes more severe. As Figure 3 shows, the number of firms

participating in the market affects the policies in a different manner: the relative efficiency of the per-flight

toll increases with the number of airlines, while the opposite occurs for the per-passenger subsidy. The

intuition is straightforward: when the number of airlines increases, each airline’s market share of passengers

decreases, which leads to less internalization as well as to less ability for exerting market power. Both effects

explain the performance improvement of the per-flight toll and the reduction of gains from counteracting

the airlines’ markup with a per-passenger subsidy. The negative relative efficiency of the per-passenger toll,
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Figure 3: Relative efficiency for multiple firms.

in Bertrand competition for 5 or more airlines, is because congestion inefficiencies are significantly more

important than market power exertion in those cases. Therefore, the positive per-flight toll (τf = cf ) of the

reference scenario, which is removed in the per-passenger toll scenario, gives higher social welfare gains than

the second-best per-passenger toll, with a zero per-flight toll.

Which second-best option is better clearly depends on the balance between the inefficiencies and the

market structure. The relative efficiency of per-passenger subsidies is higher than the per-flight toll efficiency

for Cournot competition up to 8 airlines; on the other hand, in Bertrand competition, the per-flight toll

outperforms the per-passenger subsidy already with 4 airlines, and exceeds 70 percent of the first-best with

6 airlines.

We illustrated these points by means of increasing the number of firms, but the increasing performance

of the per-flight toll in the Bertrand case can also be found with an increase of the ratio of substitutability

e/b. As the substitutability increases, a smaller share of congestion is internalized spontaneously, and the

performance of the per-flight toll rises.16

This exercise provides some useful insights into the performance of second-best policies. When the

market power effect is stronger than the congestion effect, it is better for social welfare to give a per-

passenger subsidy instead of charging a per-flight toll, and vice versa. If negative tolls are not feasible, it is

attractive to charge only a per-flight congestion toll, which will perform better if the internalization is low,

because of small market shares, or because substitutability is not too low when airlines behave as in the

Bertrand setting. Finally, a positive per-passenger toll cannot be supported from an efficiency perspective,

unless the per-flight toll is not feasible and the airlines’ market power markup is small compared to the

16We assess this numerically, finding that for a ratio e/b of 0.9, Ωf reaches 67 percent for a Bertrand duopoly.
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Figure 4: Atomistic pricing performance relative to second-best case.

airport’s marginal operating cost per passenger.

4.2.2. Atomistic pricing

Finally, we assess the efficiency of levying atomistic congestion tolls to airlines. For this purpose, we

look at the welfare gain due to atomistic tolls relative to the second-best case of only having per-flight

tolls (SW f ), and having a marginal-operating-cost pricing airport as a reference (SWmc). The aim of

measuring the efficiency relative to this second-best policy, is to isolate the welfare gain that comes from

the per-passenger subsidy.17 The performance measure, for this case, is defined in the following way (using

superscript atom for atomistic tolls):

Ω̃atom =
SW atom − SWmc

SW f − SWmc
. (40)

Figure 4 shows that Ω̃atom has an intuitive relationship with the amount of congestion internalized by

carriers. This policy achieves the lowest benefits when airlines behave as Cournot oligopolists, where the

first-best toll is half of total marginal congestion costs. Moreover, the performance of atomistic pricing in

Cournot competition is only moderately sensitive to the substitutability ratio, as it varies between 77 and

79 percent.

17When the comparison is carried out with respect to the first-best, the welfare gains of charging atomistic tolls are also

almost as high as the gains of using the (optimal) per-flight toll. On the other hand, the relative efficiency of atomistic tolls

together with (second-best) per-passenger (negative) tolls varies between 99 and 100 percent. This is because market power

effect is dominating.
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Figure 5: Relative efficiency for multiple firms relative to first-best.

When the airlines market is characterized by Bertrand behavior, the performance of atomistic pricing

rapidly improves as the substitutability is higher (e/b approaches 1). This is because the amount of conges-

tion that is internalized diminishes (see Figure 1) and, therefore, the first-best toll approaches the atomistic

toll as we showed analytically in Section 3. Figure 4 also shows that the efficiency measure used (Ω̃atom) is

close to 1 when the degree of substitutability is not too low. Using again the ratios e/b obtained by Perloff

et al. (2007), atomistic pricing would yield roughly between 85 and 95 percent of the maximum social benefit

that can be obtained with per-flight tolls.

The benefits that atomistic pricing generates in Stackelberg games follow the internalization patterns;

for the Stackelberg-Bertrand game, Ω̃atom is almost the same as in Bertrand competition, because carriers

are internalizing approximately the same amount of congestion in both games. For the Stackelberg-Cournot

game, we showed, both analytically as well as numerically, that the follower internalizes the same amount

of congestion as in the static game with Cournot behavior, and that the leader’s internalization is similar

to the one observed in the Bertrand static game. As a consequence, the performance of atomistic pricing,

in the Stackelberg-Cournot setting, is lower than in the Bertrand setting, and higher than in the Cournot

setting.

In Figure 5, we show the relative efficiency of atomistic pricing compared to the first-best (i.e. using

Ωatom from (39) as the performance measure), when the number of symmetric firms increases in the Bertrand

and Cournot cases. The performance of atomistic pricing, in this case, is also very similar to the performance

of the second-best policy of charging only per-flight tolls, as can be seen by comparing Figure 3 and Figure 5.

As the number of airlines increases, the performance of atomistic pricing is better, reaching high values when
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airlines behavior is well represented by the Bertrand assumption. This implies that atomistic congestion

pricing can perform, in terms of social welfare, in a way comparable to the optimal per-flight toll.

These results also give new insights to the airport pricing literature: if congestion is a major issue and the

industry is more adequately described as in the Bertrand case, atomistic pricing may offer a more attractive

instrument. When per-passenger subsidies are given or, as a second-best policy, per-passenger tolls are set to

zero, an airport’s financial deficit can then be reduced without significant welfare losses. If Cournot behavior

is more adequate, then naive atomistic pricing for a duopoly can be less attractive. For the Stackelberg

games, where first- and second-best tolls differ among carriers, the uniform atomistic toll still produces a

small welfare loss with respect to the maximum benefit that can be obtained with a per-flight charge.

5. Conclusion

The present analysis shows that the amount of congestion that airlines internalize may be smaller than

the simple market shares formulae from Cournot models, and more so if firms are closer substitutes. As a

consequence, the welfare gains and congestion reductions from optimal congestion pricing may be higher.

We also show that the airport revenue may be increased and, as a result, a congested airport would be

closer to exact self-financing under optimal congestion pricing. Furthermore, the optimal congestion charges

may be less differentiated than what has been advanced before, hence diminishing the perception of charges

being unequitable and enhancing its implementation feasibility. To what extent these results apply depends

on the prevailing type of strategic interaction in a particular market and on the degree of substitutability

between airlines. In addition, the paper differentiates between per-passenger and per-flight charges, showing

their unique and non-interchangeable roles in welfare maximization.

We also provide numerical examples to assess the performance of levying atomistic tolls and the relative

efficiency of second-best policies. The analysis confirms that when the airlines’ market power effect is larger

than the congestion effect, it is wiser to give a per-passenger subsidy instead of a per-flight charge, and vice

versa. Numerical examples also suggest that only using a per-flight charge and levying atomistic tolls can

yield similar and substantial benefits when the degree of substitutability is not too low, and airlines do not

behave in a Cournot fashion. This is, in our framework, when they behave as Bertrand oligopolists, either

competing simultaneously (Nash) or in a Stackelberg-Bertrand fashion. The good performance of atomistic

pricing, although to a lesser extent, is also found numerically in the Stackelberg-Cournot setting.

From the analysis, a number of issues emerge for future research. As airline behavior determines the

optimality of congestion charges, and in some settings the degree of substitutability also has a major influence

on the size of optimal tolls, estimation of airline conduct parameters stands as an important topic for future

research. This is of particular relevance as airlines’ conduct is likely to vary across markets and, in order to

implement the correct policy, it is necessary to know which behavior is representative of the market in study.
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Our approach abstracts from studying entry barriers, which might yield different incentives and outcomes

for existent firms, and this framework can be used for studying such potential incentives from a dual tax

perspective. Another qualification of our model is that it relies on symmetric product differentiation and,

although this does not critically affects our main conclusions, a more realistic demand structure should

be considered especially for studying interactions between asymmetric airlines. For example, studying the

interactions between legacy and low-cost carriers may require a more elaborate specification of the demand

structure.

We see regulation of private airports and the role of commercial (concession) operations in airport pricing

as another natural extension of the present analysis. Finally, we perform the analysis in a single market,

with one airport for analytical simplicity and to focus on the main insights, but network effects and airports

having different objective functions are also seen as a logical extension for future research.
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Appendix A. Reaction functions

• Stackelberg-Cournot

First-order conditions for the follower j can be written as:

A− 2 ·B · qj − E · qi −D − gj − γsj − τ
q
j = 0 , (A.1)

−qj ·
(
∂D

∂fj
+
∂gj
∂fj

)
− γfj − τ

f
j = 0 . (A.2)

To derive how the follower outputs vary when the leader changes quantity and frequency, we differentiate

the system, write the result in matrix notation, and apply Cramer’s rule. After some straightforward

calculations, we get:

∂qj
∂qi

=
−E · qj · (D

′′
+ g

′′

j )

R
≤ 0 , (A.3)

∂fj
∂qi

=
E · (D′

+ g
′

j)

R
≤ 0 , (A.4)

∂qj
∂fi

=
−qj · (D

′ · g′′

j −D
′′ · g′

j)

R
≤ 0 , (A.5)
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∂fj
∂fi

=
−2 ·B · qj ·D

′′
+D

′ · (D′
+ g

′

j)

R
≤ 0 , (A.6)

where R = 2 · B · qj · (D
′′

+ g
′′

j ) − (D
′

+ g
′

j)
2 is, by definition, the determinant of the Hessian matrix of

airlines profit. Since we assume existence of a maximum, R > 0. Because of assumptions (5), and the fact

that an equilibrium with positive traffic implies D
′
+ g

′

j < 0, it is clear that all the reaction functions in this

case are non-positive.

• Stackelberg-Bertrand

We proceed in the same way as above to calculate the reaction functions. First-order conditions for the

follower j are:

pj − γsj − τ
q
j −

qj
b

= 0 , (A.7)

γfj + τfj − (pj − γsj − τ
q
j ) · ∂qj

∂fj
= 0 . (A.8)

And denoting p̂j = pj − γsj − τ
q
j , we obtain:

∂pj
∂pi

=

−e
b
· ∂

2qj
∂f2j

· p̂j

R
≥ 0 , (A.9)

∂pj
∂fi

=

−1

b
· ∂qj
∂fi
· ∂

2qj
∂f2j

· p̂j +
1

b
· ∂qj
∂fj
· ∂2qj
∂fi∂fj

· p̂j

R
≤ 0 , (A.10)

∂fj
∂pi

=

e

b
· ∂qj
∂fj
R

≥ 0 , (A.11)

∂fj
∂fi

=

2 · ∂2qj
∂fi∂fj

· p̂j +
1

b
· ∂qj
∂fj
· ∂qj
∂fi

R
≤ 0 , (A.12)

where R = −2 · ∂
2qj
∂f2

j
· p̂j − 1

b · (
∂qj
∂fj

)2 > 0, as we assume existence of a maximum. Because of assumptions (5),

∂qj/∂fi < 0, ∂2qj/∂f
2
j < 0 and ∂2qj/∂fi∂fj < 0. An equilibrium with positive traffic implies ∂qj/∂fj > 0,

therefore we can show that reaction functions have the sign that is presented above.

Appendix B. Welfare maximizing airport first-order conditions

Since airlines choose aircraft size such that qi = si · fi, we use this relation before maximizing welfare.

Then, first-order condition with respect to fare is:

∂SW

∂pi
= Bqi

∂qi
∂pi

+Bqj
∂qj
∂pi

+ Eqi
∂qj
∂pi

+ Eqj
∂qi
∂pi

+ (pi − γsi − cq) ·
∂qi
∂pi

+ qi + (pj − γsj − cq) ·
∂qj
∂pi
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= qi

(
B
∂qi
∂pi

+ E
∂qj
∂pi

+ 1

)
+ qj

(
B
∂qj
∂pi

+ E
∂qi
∂pi

)
+ (pi − γsi − cq) ·

∂qi
∂pi

+ (pj − γsj − cq) ·
∂qj
∂pi

= 0 . (B.1)

And noting that

B
∂qi
∂pi

+ E
∂qj
∂pi

= B · −b+ E · e =
−b2

b2 − e2
+

e2

b2 − e2
= −1 , (B.2)

B
∂qj
∂pi

+ E
∂qi
∂pi

= B · e+ E · −b =
b · e

b2 − e2
+
−b · e
b2 − e2

= 0 , (B.3)

we obtain, using the analogous calculations for ∂SW/∂pj , first-order conditions for fares:

∂SW

∂pi
= (pi − γsi − cq) ·

∂qi
∂pi

+ (pj − γsj − cq) ·
∂qj
∂pi

= 0 , (B.4)

∂SW

∂pj
= (pi − γsi − cq) ·

∂qi
∂pj

+ (pj − γsj − cq) ·
∂qj
∂pj

= 0 . (B.5)

Both conditions can only be satisfied if fares fulfill:

(pi − γsi − cq) = 0 , ∀i . (B.6)

For the frequency first-order conditions, let pi = pi − γsi − cq and pj = pj − γsj − cq. Then, the derivative of

SW with respect to fi is:

∂SW

∂fi
= Bqi

∂qi
∂fi

+Bqj
∂qj
∂fi

+ Eqi
∂qj
∂fi

+ Eqj
∂qi
∂fi

+ pi ·
∂qi
∂fi

+ pj ·
∂qj
∂fi
− (γfi + cf ) . (B.7)

Using pi = pj = 0 from equation (26), we can write,

∂SW

∂fi
= qi

(
B
∂qi
∂fi

+ E
∂qj
∂fi

)
+ qj

(
B
∂qj
∂fi

+ E
∂qi
∂fi

)
− (γfi + cf ) . (B.8)

Note that,

∂qi
∂fi

= −b∂D
∂fi
− b∂gi

∂fi
+ e

∂D

∂fi
, (B.9)

∂qj
∂fi

= −b∂D
∂fi

+ e
∂D

∂fi
+ e

∂gi
∂fi

. (B.10)

And using these equations, first-order condition can be written as,

∂SW

∂fi
= −(γfi + cf ) + qi

(
∂D

∂fi
(−bB + eE) +

∂D

∂fi
(eB − bE) +

∂gi
∂fi

(−bB + eE)

)
+qj

(
∂D

∂fi
(−bB + eE) +

∂D

∂fi
(eB − bE) +

∂gi
∂fi

(eB − bE)

)
. (B.11)

Finally, because −b ·B + e · E = −1 and e ·B − b · E = 0, the first-order condition is:
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−(qi + qj) ·
∂D

∂fi
− qi ·

∂gi
∂fi

= cf + γfi . (B.12)

The derivative of social welfare with respect to capacity is:

∂SW

∂K
= Bqi

∂qi
∂K

+Bqj
∂K

∂fi
+ Eqi

∂qj
∂K

+ Eqj
∂qi
∂K

+ pi ·
∂qi
∂K

+ pj ·
∂qj
∂K
− r . (B.13)

Noting that,

∂qi
∂K

= −b ∂D
∂K

+ e
∂D

∂K
, ∀i , (B.14)

and using pi = pj = 0 from equation (26), −b ·B + e ·E = −1 and e ·B − b ·E = 0, we can write first-order

condition for capacity as:

−(qi + qj) ·
∂D

∂K
= r . (B.15)
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