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Abstract 
The famous Mohring-Harwitz theorem states that, under certain technical conditions, the 
degree of self-financing of congested infrastructure is equal to the elasticity of the capacity 
cost function in the optimum, so that under neutral scale economies exact self-financing 
applies. Although the theorem has been proven to remain valid for various extensions of the 
basic set-up for which it was originally derived, it breaks down when the infrastructure is 
used by operators with market power when competing in Cournot fashion, the case in point 
often being oligopolistic airlines at a congested airport. This paper proposes a regulatory 
scheme, not involving lump-sum payments or budget constraints in the optimal pricing 
problem, that restores self-financing for congested infrastructure for this market form. What 
is more, under the proposed scheme, exact self-financing applies independent of the elasticity 
of the capacity cost function. The result remains true both for the case where operators treat 
the tolls parametrically, and for “manipulable” tolls, designed to account for the fact that 
operators with market power can be expected to be aware of, and exploit, the fact that toll are 
not truly parametric, but instead depend on their own behaviour. 
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1. Introduction 
The celebrated theorem on self-financing of infrastructure, due to Mohring and Harwitz 
(1962), states that under certain technical conditions, the degree of self-financing of congested 
infrastructure is equal to the elasticity of the capacity cost function in the optimum. Hence, 
under neutral scale economies, where this elasticity is unity, the revenues from optimal 
pricing – following Pigou’s (1920) prescription that the congestion toll be equal to the 
marginal external cost – will be exactly equal to the capital cost associated with the supply of 
the optimal size of capacity. 

Subsequent research has shown that this theorem, originally derived in the rather basic 
context of a static model for a single road with homogeneous users, survives various 
extensions that make the setting more realistic (for reviews of this literature, see for example 
De Palma and Lindsey, 2007; and Small and Verhoef, 2007). In particular, the theorem 
remains true for full networks (Yang and Meng, 2002); with heterogeneous users (Arnott and 
Kraus, 1998a); with dynamic congestion technologies such as the bottleneck model of 
Vickrey (1969) (Arnott, de Palma and Lindsey, 1993) but also more generally (Arnott and 
Kraus, 1998a); when including maintenance and wear and tear (Newbery, 1989); when 
allowing for variable prices for inputs such as land (Small, 1999); and in present value terms 
when considering the long run (Arnott and Kraus, 1998b). But the theorem breaks down in 
other circumstances. One is where capacity is lumpy, not continuous. Another one, under 
consideration in this paper, is when infrastructure users possess market power. 

A burgeoning literature, most of which concerns aviation, has discussed how optimal 
congestion tolls for actors with market power may be far below the conventional Pigouvian 
prescription. The reason is that under Nash-Cournot behaviour, operators with market power 
internalize congestion imposed upon their own services (Daniel, 1995; Brueckner, 2002), so 
that the optimal congestion toll should include only marginal congestion effects on other 
firms’ services. Quite intuitively, Brueckner (2002) finds that for uniform values of time and 
marginal congestion effects, this implies firm-specific tolls that are proportional to a fraction 
(1 – si), with si being the firm’s market share at the airport. All else equal, larger firms should 
then face lower tolls. Because the optimal investment rule for capacity remains unaltered 
compared to the conventional model of congestion with atomistic users, while the optimal 
pricing rule is adapted, the Mohring-Harwitz rule breaks down. As a consequence, the 
prospects for fully self-financing infrastructure are reduced for such markets, compared to the 
case of atomistic users. This is reinforced when the tolls take into account the fact that profit-
maximizing Cournot competitors apply a demand-related mark-up, which increases when 
demand becomes less elastic and vanishes only in the limiting case of perfectly elastic 
demand.1

                                                 
1 Both Oum and Zhang (1993) and Brander and Zhang (1990) conclude that actual airline pricing behaviour 
appears to be closer to Cournot than to Bertrand behaviour. 

 This calls for tolls that are adjusted downward further compared to the tolls 
proposed by Brueckner (2002), and that even may become negative when the (negative) 
demand-related market power component in the toll outweighs the (positive) congestion 
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component (Pels and Verhoef, 2004). This is consistent with Buchanan’s (1969) rule for 
optimal environmental taxation of a monopolist. 

Later contributions have identified market configurations that would have better 
prospects for self-financing under market power as optimal tolls move closer to atomistic 
levels. For example, this was found for Stackelberg competition as opposed to Nash 
competition (Brueckner and Van Dender, 2008); for differentiated Bertrand competition as 
opposed to Cournot competition (Silva and Verhoef, 2011); and for dynamic bottleneck 
congestion as opposed to static congestion (Silva, Verhoef and Van den Berg, 2012). 
Obviously, these findings are of less help, the more accurately the market form is best 
described by the conventional Cournot-Nash model with static flow congestion. 

Basso and Zhang (2006) and Zhang and Zhang (2006) included the role of airports in 
modelling congestion between airlines at airports. Zhang and Zhang (2006) study how a 
budget constraint would then affect the behaviour of a welfare-maximizing airport – 
surprisingly finding that there will be overinvestment in capacity at the margin. 

This paper addresses the problem of financing congested infrastructure when operators 
have market power from a different perspective. A regulatory scheme is proposed, not 
involving lump-sum payments or budget constraints in the optimal pricing problem, that 
restores self-financing for congested infrastructure for this market form. In fact, under the 
proposed scheme, exact self-financing applies independent of the elasticity of the capacity 
cost function. What is more, a balanced net budget not only applies at the aggregate level (i.e., 
for the airport operator), but also for each firm individually. The result remains true both for 
the case where operators treat the tolls parametrically, and for “manipulable” tolls as proposed 
by Brueckner and Verhoef (2010). These are tolls that are designed to allow for the fact that 
operators with market power can be expected to be aware of, and exploit, the fact that tolls are 
not truly parametric, but instead depend on their own behaviour. 

The finding that exact self-financing holds independent of the elasticity of the capacity 
cost function makes application of the scheme probably more attractive in reality. That is, 
substantial net surpluses or deficits from airport operations seem more likely to cause political 
and social opposition than cases where an airport is close to breaking even. The same can be 
said of balanced budgets for each firm individually. The by now conventional Cournot result 
that tolls should be inversely proportional to the operator’s size is easily interpreted as 
“unfair”, making its application less attractive from the political perspective. A scheme that 
leads to a balanced budget in each operator’s contributions to infrastructure finances seems, 
seen from that perspective, more attractive. 

The basic idea behind the scheme is simple. It applies the notion that non-atomistic 
operators have an incentive to contribute voluntarily to the supply of capacity. The balanced-
budget result stems from the fact that the willingness to make such contributions naturally 
increases with the firm’s market share. The lower marginal tolls are therefore just 
compensated for through higher contributions to capacity provision. The balanced budgets, in 
turn, result from the fact that the toll revenues are just sufficient to cover the subsidies on 
capacity provision that are needed to make the firms collectively supply the first-best 
aggregate capacity. 
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The budgets will be balanced exactly only if a particular equi-proportionality 
condition is fulfilled: each firm’s share in the total capacity cost should be equal to its share in 
the total output. It will be shown that this condition, although intuitively plausible and natural, 
will not be satisfied spontaneously in the decentralized optimum. For exact self-financing to 
apply, the regulator would therefore have to make sure the condition is satisfied. 
 The paper will focus on the derivation of the theoretical result, which will be 
complemented by a simple numerical exercise for illustrative purposes only. The conceptual 
point that the scheme restores self-financing of congested infrastructure in the first-best 
optimum, now even independent of the elasticity of the capacity cost function, is the paper’s 
main message. The natural follow-up question, of whether and how this result can be put into 
practice, will be briefly considered in the paper’s concluding section. Arguably, the most 
pressing challenge in doing this is to cope with the non-stationarity of market equilibria in 
reality, while capacity investments are irreversible. This would make firms unwilling to 
contribute to the cost of capacity insofar as it concerns sunk costs from earlier investments. A 
way to reconcile this might be to tie the supply of capacity to a short-run complementary 
service, that can be credibly reduced in size if smaller contributions are made. Airport staff 
would be a good example. 
 The plan of the paper is as follows. Section 2 presents the optimality conditions that 
characterize the first-best optimum, and briefly shows how the self-financing result would 
apply with atomistic users but breaks down with market power of service operators. Section 3 
presents the scheme for parametric congestion taxes and capacity subsidies, while Section 4 
does the same for their manipulable counterparts. Section 5 concludes. 

2. The degree of self-financing with first-best pricing and central capacity provision 
It is instructive to start our exposition with a brief derivation of the classic self-financing 
result for atomistic users of a congestible facility, even though it follows standard expositions 
as given in many textbooks such as Small and Verhoef (2007). Let us consider a single 
market, where users are identical in all respects except for their willingness to pay to use the 
facility. Demand is characterized by a single inverse demand function D(N), where N is the 
number of users. Average user cost c increases in N and decreases in capacity K, and to be 
able to establish a link between toll revenues and capacity cost for general functions, we need 
to assume that c is a function of the ratio of the two: c(N/K). Besides the total user cost N·c(·), 
there are costs associated with the supply of capacity, CK(K). We thus ignore that the latter 
could be dependent on N, too; Newbery (1989) showed that the inclusion of use-dependent 
maintenance cost does not upset the classic self-financing result. We also ignore, for now, any 
other user costs than variable time losses from congestion; including these does not provide 
additional useful insights. 
 If the road operator can levy a toll τ, the equilibrium condition for users is that the 
marginal benefit D(N) be equal to the so-called generalized price c(·)+τ, and the problem of 
maximizing social surplus S can be written as: 
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where a prime denotes a derivative for a function with one argument. Equation (2a) gives the 
standard Pigouvian toll; equation (2b) states that the marginal benefit of capacity expansion 
should be equal to the marginal cost. A decisive determinant for the degree of self-financing 
is the elasticity of the capacity cost function: 

K
K

KC
C

κ ′≡ ⋅  (3) 

The other equation that is needed to derive the self-financing result is Euler’s rule, which 
implies that: 

( ) ( )c cN K
N K

∂ ⋅ ∂ ⋅
⋅ = − ⋅
∂ ∂

 (4) 

For future reference, it is useful to point out that, by using the shorthand variable /F N K≡  
for the volume-capacity ratio, equation (4) can be verified as follows: 

( ) ( ) ( )

( ) ( ) ( )

c c F c NN N
N F N F K
c c F c NK K
K F K F K

∂ ⋅ ∂ ⋅ ∂ ∂ ⋅
⋅ = ⋅ ⋅ = ⋅
∂ ∂ ∂ ∂
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− ⋅ = − ⋅ ⋅ = ⋅
∂ ∂ ∂ ∂

 (5) 

Multiplying (2b) by K, and substituting (4) into the resulting first term, and (3) in the second, 
gives: 

( )
K

K

c RR N N C
N C

κ κ∂ ⋅
≡ ⋅ ⋅ = ⋅ ⇒ =

∂
 (6) 

where R denotes total toll revenues. Equation (6) shows the classic self-financing result: in the 
first-best optimum, the degree of self-financing, R/CK, is equal to the elasticity of the capacity 
cost function, κ. 
 Next, let us consider the case of Cournot competitors providing services using the 
same congestible facility. We allow for demand functions and cost functions to be firm-
specific, but assume for convenience that firms’ outputs enter their congestion cost functions 
symmetrically: the additional delay due to an extra user is independent of the identity of the 
firm that serves this user. We denote individual firms with index i. The way in which 
congestion effects enter the firms’ optimization problems does not depend on whether these 
costs are initially incurred by the users (i.e., involves the users’ valuation of delays), by the 
firms themselves (involving the firms’ valuations), or constitute a combination of both. In any 
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of these cases we may treat Di(·) – ci(·) as the firm’s net revenue per user served.2

Max ( ) ( )
i

i i
i i i i i i i iN

N NN D N N c N
K

Π τ−+
= ⋅ − ⋅ − ⋅

 Firm i’s 
short-run optimization problem can therefore be written as: 

 (7) 

The variable N–i represents the sum of all other firms’ outputs, so that total use i iN N N−= + . 

The toll τi is now allowed to be firm-specific, and is modelled as a per-user toll that the firm 
pays. In the context of aviation, this analytical set-up implies that passenger loads per aircraft 
are treated as given. The first-order condition with respect to Ni is: 

( )( ) ( ) ( ) 0i
i i i i i i i i

i i

cD N N D N c N
N N

ιΠ τ∂ ∂ ⋅′= + ⋅ − ⋅ − ⋅ − =
∂ ∂

 (8) 

The corresponding social surplus maximization problem looks as follows: 

,
0

Max ( )d ( ) ( )
i

i

N
i i

i i i KN K i i

N NS D x x N c C K
K

−

∀

+
= − ⋅ −∑ ∑∫  (9) 

The first-order conditions are: 
( )( )( ) ( ) 0ji

i i i i j
j ii i i

ccS D N c N N i
N N N≠

∂ ⋅∂ ⋅∂
= − ⋅ − ⋅ − ⋅ = ∀

∂ ∂ ∂∑  (10a) 

( ) ( ) 0i
i K

i

cS N C K
K K

∂ ⋅∂ ′= − ⋅ − =
∂ ∂∑  (10b) 

Subtracting (10a) from (8) gives the optimal toll for operator i:  
( )

( )j
i j i i i

j i i

c
N N D N i

N
τ

≠

∂ ⋅
′= ⋅ + ⋅ ∀

∂∑  (11) 

The toll consists of two terms. The first is a congestion component, which subtracts firm-
internal congestion costs from the conventional Pigouvian congestion toll in (2a) (Brueckner, 
2002). The second is a term that corrects the demand-related mark-up that the Cournot 
operator would apply (Pels and Verhoef, 2004). Note that, with a downward-sloping inverse 
demand function, the second term is negative, reflecting that a subsidy is needed to stimulate 
a Cournot profit-maximizer to set output beyond the point where marginal revenue – which is 
below marginal benefit – is equal to marginal cost. 
 The combination of pricing according to (11) and investments according to (10b) will 
lead to a smaller surplus, or a larger deficit, than policies according to (2a) and (2b). To see 
why, first observe that given the vector of use levels Ni, the highest possible revenues occur 
when all demands are perfectly elastic, so that the second term in (11) vanishes. So let us 
consider that case. Total toll revenues RC (the superscript C is added to remind us we are 
considering the congestion component in (11) only) are then equal to: 

( ) ( )C i
i i

i

cR N N N
N

∂ ⋅
= − ⋅ ⋅

∂∑  (12a) 

                                                 
2 Note that Di(·) gives the inverse demand in terms of the generalized price; i.e., the sum of fare and other costs 
incurred by passengers such as travel time. To the extent that c(·) represents user-incurred costs, it thus reduces 
the willingness to pay for fares on a dollar-by-dollar basis, and therefore enters the firm’s profit function in the 
same way as would congestion costs incurred directly be the firm itself. 
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Substituting, from (3), /K KC C Kκ′ = ⋅  into (10b) gives: 

( )1 i
K i

i

cC K N
Kκ

∂ ⋅
= ⋅ ⋅ ⋅

∂∑  (12b) 

Because ci is a function again of /F N K≡ , the following degree of self-financing follows 
from (12ab): 

( ) ( )

2

( ) ( )1

( ) ( )1

ii i
C i i i

i i

i iK
i i

i i

N Nc cN N N N
R F K K F

c cN NC K N N
F K K F

κ

κ

−∂ ⋅ ∂ ⋅
− ⋅ ⋅ ⋅ ⋅ ⋅

∂ ∂= = ⋅
∂ ⋅ ∂ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
∂ ∂

∑ ∑

∑ ∑
 (13) 

This is below the degree implied by (6), approaching it only when each individual Ni 
approaches zero; i.e., as the atomistic case is approached asymptotically. Obviously, with 
demand not perfectly elastic, the degree of self-financing will be further below the expression 
on the right-hand side of (13), because of the further downward adjustments on tolls. 

3. The degree of self-financing with in the first-best optimum with optimally 
subsidized voluntary capacity contributions: parametric tolls and subsidies 

3.1. Analytics 
Self-financing of infrastructure may bring a number of advantages, especially if it is near 
exact self-financing. Not only would it mean that there is no need for levying distortionary 
taxes elsewhere in the economy to raise the funds needed to supply capacity, there is also a 
potentially substantial advantage in the transparency and perceived logic and fairness of 
financial flows: it is the users of the infrastructure who pay for its provision – but they are 
paying no more than that. This may be an appealing message from the political perspective. It 
therefore seems worthwhile to explore ways of restoring self-financing when it breaks down; 
in this case, due to the existence of market power of operators. Moreover, there is an 
intellectual challenge in designing such a scheme, as it provides deeper insight into the 
underlying reason why the theorem breaks down under Cournot competition. The simple 
answer is of course that the tolls are adjusted downwards in (11) compared to (2a), while the 
investment rule does not change between (2b) and (10b). A somewhat deeper answer is that, 
behind the combination of optimal policy rules (10b) and (11) for the case of operators with 
market power, there is a fundamental asymmetry in that the toll rule is adjusted to properly 
reflect market power of Cournot oligopolists, while the investment rule is not. More in 
particular, the above analysis ignores that exactly because the operators have market power, 
they also have an incentive to contribute to the provision of capacity. 
 The schemes to be considered in this paper exploit this incentive for operators to 
contribute voluntarily to capacity. The schemes thus bear resemblance to mechanisms 
designed to optimize the voluntary provision of a public good (e.g., Falkinger, 1996; see also 
Bergstrom, Blume and Varian, 1986). A quite predictable problem in such mechanisms is that 
non-rivalness and non-excludability usually causes incentives to free-ride, so that under-
provision typically results if the aggregate provision is left exclusively dependent on the 
voluntary contributions only. That is not any different in the current problem. Given that the 
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self-financing result in its original form applies to the first-best outcome, we will only 
consider schemes that effectively address this problem, and that are designed to achieve the 
first-best outcome in terms of both use levels and aggregate capacity. 
 Let us consider the case where the firm not only has to choose its output level Ni, but 
also the amount of capacity it supplies, Ki. Aggregate capacity enters the cost functions ci(·) in 
the same way as above, but is now composed of firm-specific contributions: ii

K K=∑ . 

Anticipating that free-rider behaviour would result in under-provision of capacity, we equip 
the regulator with a second instrument, namely firm-specific subsidies σi on capacity 
provision. Consider the case of simultaneous decisions on capacity and output. If 
conventional capacity is irreversible in practice, as is true for most transport infrastructures, 
this would be consistent with a practical set-up as mentioned above, where there is a critical 
variable factor that is perfectly complementary to capacity, and that has to be put into use in 
order to make capacity effective and productive. Operating staff would be a natural example. 
The consideration of simultaneous – not sequential – capacity and output decisions has the 
overriding analytical advantage that the single-stage structure of the problem as assumed in 
the conventional analysis is maintained here, thus introducing no further differences between 
the cases that would complicate the comparison. Furthermore, to prevent demand-related 
market power terms in optimal tolls from clouding the pure results on self-financing, we 
assume that all demands are perfectly elastic, so that firm-specific marginal benefits become 
constant terms Di. Under these assumptions, firm i’s profit maximization problem becomes: 

,,
Max ( ) ( ; )

i i

i i
i i i i i i i K i i i i iN K

i i

N NN D N c N C K K K
K K

Π τ σ−
−

−

+
= ⋅ − ⋅ − ⋅ − + ⋅

+
 (14) 

The arguments in the capacity cost function CK,i are written in this specific way to make sure 
that also for 1κ ≠ , capacity cost can satisfy:  

, ( ; ) ( ) ifK i i i K i
i i

C K K C K K K− = =∑ ∑  (15a) 

In other words, the aggregate (or social) capacity cost function is not altered due to the 
decomposition. Moreover, the formulation allows the marginal cost of capacity expansion to 
be treated as equal across firms, and equal to the marginal social cost of capacity, by 
assuming:  

, ( ; )
( )K i i i

K
i

C K K
C K i

K
−∂

′= ∀
∂

 (15b) 

Note that at the margin, a firm faces the full marginal social cost of capacity, reflecting that 
other firms will not make matching additional contributions in response to a marginal increase 
in this firm’s contribution. For that reason, the partial derivative in (15b), relevant to 
characterize the firm’s behaviour, will generally be different from the partial derivative of a 
function – if it would be continuous and smooth – that could be used to describe how (15a) is 
achieved over infra-marginal units of capacity. An individual firm does not assume that such a 
function would remain valid if it would change its own contribution to capacity, but instead 
the firm takes other firms’ contributions as given. 
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The first-order condition of (14) for Ni is similar to the one in (8), except for the 
vanished market power term, while also a first-order condition for Ki now applies: 

( )( ) 0i
i i i i

i i

cD c N
N N

ιΠ τ∂ ∂ ⋅
= − ⋅ − ⋅ − =

∂ ∂
 (16a) 

( ) ( ) 0i
i K i

i

cN C K
K K

ιΠ σ∂ ∂ ⋅ ′= − ⋅ − + =
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 (16b) 

Note that we assume here that tolls τi and subsidies σi are treated as parametric by firms; 
manipulable tolls and subsidies are considered in Section 4 below. To derive the optimal rules 
forτi and σi, we contrast (16ab) with the social optimality conditions. These are given by 
(10ab), with Di(Ni) in (10a) replaced with the constant Di.  As a result, the firm-specific toll 
now only contains marginal external congestion costs imposed on other firms:  

( )j
i j

j i

c
N i

N
τ

≠

∂ ⋅
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∂∑  (17a) 

Next, the investment rule (16b) implies that, for all firms to face an incentive to contribute to 
capacity in equilibrium, the subsidies σi should be allowed to vary over firms such that it can 
exactly compensate for differences in the first term, which represents the firm’s own marginal 
benefit of capacity expansions. This in fact occurs for the optimal choice of subsidies σi, 
namely those that set each firm’s subsidy equal to the marginal benefits that a capacity 
expansion brings to all other firms. It is easily verified that this turns, for each firm 
individually, the problem of optimizing capacity according to (16b), into the social problem 
with the outcome as given in (10b): 

( )j
i j

j i

c
N i

K
σ

≠

∂ ⋅
= − ⋅ ∀

∂∑  (17b) 

The question of interest is now whether a simultaneous implementation of (17ab) would lead 
to a re-establishment of the self-financing result. To investigate this, define the total toll 
revenues received from firm i as Ri, and the expenses on subsidies to firm i as Ei. 
Straightforward computations then show: 

( ) ( ) ( )j j ji i
i i i i j j j

j i j i j i

c c cN NR N N N N F N i
N K F N F

τ
≠ ≠ ≠

∂ ⋅ ∂ ⋅ ∂ ⋅
= ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ ∀

∂ ∂ ∂∑ ∑ ∑  (18a) 

2

( ) ( ) ( )j j ji i
i i i i j j j

j i j i j i

c c cK N KE K K N N F N i
K K F K F

σ
≠ ≠ ≠

∂ ⋅ ∂ ⋅ ∂ ⋅⋅
= ⋅ = ⋅ − ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ ∀

∂ ∂ ∂∑ ∑ ∑  (18b) 

The two final expressions in (18a) and (18b) are equal if the firm’s share in aggregate use, 
Ni/N, is equal to the firm’s share in aggregate capacity, Ki/K. And, naturally, if Ri=Ei is true 
for each firm, it is also true in aggregate, so that R=E. This leads to: 
 
Proposition 1: Under the assumptions made, the degree of self-financing of a congestible 
facility with optimal parametric congestion tolls and optimal parametric subsidies for 
voluntary provision of capacity by Cournot-Nash competitors is equal to unity, independent of 
the elasticity of the capacity cost function, if each competitor’s share in capacity provision is 
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the same as its share in total use. Moreover, for each competitor individually, the sum of tolls 
paid will then be equal to the sum of subsidies received.  
 
Proof: (18a) and (18b) imply the firm-specific result; summing over firms gives the aggregate 
result.□ 
 
Proposition 1 presents a remarkable result. Not only does the application of optimally 
subsidized voluntary contributions to capacity restore self-financing of congested 
infrastructure under Cournot competition; exact self-financing now applies independent of the 
elasticity (κ) of the capacity cost function. This is an attractive property, as it reinforces the 
potential political advantages of self-financing mentioned earlier, including the absence of a 
need to use distortionary taxes to raise funds, and the perceived fairness of the scheme. 
Moreover, this perceives fairness may be reinforced because there is not only a balanced 
budget in the aggregate, but also in the financial flows between the regulator and each firm 
individually. Whereas the Cournot tolls of (17a) alone would have the politically possibly 
somewhat inconvenient property that the largest operators should face the lowest tolls, and 
vice versa, there appears to be what many may perceive as a strong sense of fairness in a 
scheme where in the aggregate, for each firm the sum of tolls and subsidies exactly cancel. 
 There is one important proviso: for exact self-financing to apply, it is indeed needed 
that for each firm the share in capacity provision, Ki/K, is the same as the share in total use, 
Ni/N. Because the firm’s optimality condition (16b) involves marginal cost and benefits of 
capacity only, and is independent of the size of the firm’s own infra-marginal capacity 
contributions, there is no equilibrium mechanism that would secure this equi-proportionality 
to be spontaneously satisfied in equilibrium. If it is not satisfied, the aggregate result in 
Proposition does not necessarily break down: undoubtedly, one could construct examples 
where non-zero net budgets per firm still result in a zero aggregate net budget. But it is 
certainly no longer guaranteed to hold true. This implies that in the implementation of the 
scheme, there is a need to design additional rules of the game such that the equality of ratio’s 
will be achieved in equilibrium; at least, if the situation with zero firm-specific and aggregate 
net budgets is considered desirable. 
 A consequence of the regulator’s budget being zero also when the elasticity κ is 
unequal to unity, is that the incidence of the surplus or deficit that would otherwise occur for 
the regulator will now be shifted onto the firms. To see why, it is sufficient to observe that the 
optimum is independent of how it is achieved. System-wide use levels, capacity, fare 
revenues, user cost, consumer surplus, and capacity cost, will therefore be the same, so that 
the deficit or surplus, if no longer occurring with the regulator, must be passed on to the 
operators. 
 
3.2. Numerical example 
To illustrate the results contained in Proposition 1, let us consider a small numerical example. 
There are three operators, assumed to be asymmetric to make sure that the results do not hinge 
on any symmetry between firms. Each firm faces its own perfectly elastic demand, with 



Cost Recovery of Congested Infrastructure under Market Power 10 

marginal willingness to pay Di. Variable cost functions are also firm-specific, and take on the 
well-known BPR-form: 

( ) 1 , {1,2,3}
j

j
i i i i

N
c F N i j

K

χ

α β δ

  
  = ⋅ + ⋅ + ⋅ =  
     

∑
 (19a) 

The final term represent rising firm-internal marginal cost, which is needed in order to have 
unique interior equilibria with perfectly elastic demands. 
 We use a constant-elasticity capacity cost function, for which a composite constant 
multiplicative term is constructed that secures that the same optimum capacity (K0) is found 
when varying κ in a sensitivity analysis:  

1
0

( )KC K K
K

κ
κ

γ
κ −= ⋅
⋅

 (19b) 

Furthermore, we define a number of short-hand variables: meci gives the marginal external 
cost that firm i imposes on the other firms’ services; CV is the total variable cost or the sum of 
Ni·ci over firms; ci will be subdivided into the BPR component representing congested time, 
ct,i, and the firm-internal non-time cost, cnt,i = δi·Ni; mpci is the marginal private cost for firm i 
or ∂Ni·ci/∂Ni; pi is the perceived generalized price for the firm or mpci +τi ; cong is the 
indicator for the level of congestion and gives the ratio of equilibrium travel time over free-
flow travel time or 1+β·(N/K)χ; B is total benefits or the sum of Ni·Di over firms; msbK is the 
marginal social benefit of capacity or the sum of –Ni∙∂ci(∙)/∂K over firms; mbK,i is the 
marginal benefit of capacity for firm i or –Ni∙∂ci(∙)/∂K; and Ii is the net transfer from the 
regulator to the firm, or Ii= Ei–Ri.  

Parameters Equilibrium 
Firm 1 Firm 2 Firm 3 Other Firm 1 Firm 2 Firm 3 Other 
D1=110 
α1=9 

δ1=0.01 
 

D2=105 
α2=10 
δ2=0.015 

 

D3=100 
α3=11 
δ3=0.025 

 

β=0.15 
χ=4 

K0=5185 
κ=1 
γ=30 

N1=3719 
K1=2676 
ct,1=14.03 
cnt,1=37.19 

mpc1=98.80 
mec1=11.20 

p1=110 
mbK,1=14.44 

 
τ1=11.20 
σ1=15.56 

R1=41 655 
E1=41 655 
Π1=138 299 

Π1
#=0 

I1=0 

N2=2261 
K2=1627 
ct,2=15.59 
cnt,2=33.91 

mpc2=90.43 
mec2=14.57 

p2=105 
mbK,2=9.75 

 
τ2=14.57 
σ2=20.25 

R2=32 945 
E2=32 945 
Π2=76 655 
Π2

#=0 
I2=0 

N3=1225 
K3=882 

ct,3=17.15 
cnt,3=30.63 

mpc3=82.59 
mec3=17.41 

p3=100 
mbK,3=5.81 

 
τ3=17.41 
σ3=24.19 

R3=21 327 
E3=21 327 
Π3=37 527 
Π3

#=0 
I3=0 

N=7205 
K=5185 

cong=1.56 
B=768 955 
CV=360 921 
CK=155 554 
S=252 480 
msbK=30 

 
R=95 926 
E=95 926 
Π=252 480 
Π #=0 

Note: rounding, if applicable, is either to nearest integer or (when decimal point is included) to the second digit 

Table 1. First-best optimum for the numerical example: parametric tolls and subsidies  

For the assessment of firm profits, it is helpful to distinguish between overall profits Πi that 
do take into account that part of profits that is due to diseconomies of scale in the non-time 
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costs, and a measure Πi
# that excludes this part of profits (by subtracting the term δi·Ni

2). The 
measure Πi

#, which will be referred to as “adjusted profits”, is more relevant from the 
conceptual viewpoint, as it reflects the profits insofar as related to capacity costs, congestion 
costs, and regulatory policies. 

The base calibration creates an optimum in which firms differ substantially in their 
relative sizes, and as a consequence also the tolls differ; as expected, in reversed ranking 
compared to the outputs. The base calibration assumes that Ki/K equals Ni/N for each firm, 
and as claimed in Proposition 1, the net transfers to individual firms are zero, and so is 
therefore the regulator’s total budget. Also the adjusted profits Πi

# are all equal to zero. This 
is in hindsight perhaps not surprising, given that demands are perfectly elastic, so that the 
profit-maximizing prices are equal to marginal costs; and given that neutral scale economies 
apply in capacity costs. The regular profits Πi are greater than zero, due to the diseconomies 
of scale in the non-time costs. It is easily verified that social surplus S consists of these regular 
profits only: perfectly elastic demands imply that consumer surplus will be zero. 
 The numerical example allows us to illustrate how the abandoning of Ki/K = Ni/N 
causes exact self-financing to break down. To that end, Figure 1 shows the adjusted profit 
measures Πi

# if the optimal policy rules (17a) and (17b) remain in use to decentralize the 
social optimum, but compensating changes are made in K1 and K3 such that K remains 
constant (so does K2). The diagram also shows the firm-specific net transfers, Ii = Ei–Ri, and 
the sum of these, which gives the net deficit for the regulator. 
 

 
Figure 1. Sensitivity analysis: simultaneous compensating changes in K1 and K3 with parametric tolls 
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The base calibration is obviously in the centre of the diagram. Moving to the left, the capacity 
share of the small firm 3, requiring a high σi, decreases. As a result, Firm 3’s profits become 
positive, as the net own contribution to capacity declines. This is true even though the net 
budget that firm 3 receives from the regulator becomes negative. To the right of the centre, 
the opposite holds for firm 3. And because the capacity share of the large firm 1 moves in the 
opposite direction, the results have the opposite sign in both domains. Because Firm 2’s 
capacity share remains constant to its output share, both its adjusted profits and its net budget 
remain zero. 
 To the left of the centre capacity switches from being subsidized according to the 
needs of the small firm (with a high σi) to the needs of the large firm (with a low σi). As a 
result, the regulator’s deficit (subsidies minus taxes) becomes negative, implying a surplus. 
Because prices and costs are not affected, this surplus is exactly equal to the industry-wide 
losses. The two series perfectly overlap in the graph. 
 Finally, this sensitivity analysis was used to verify numerically that also capacity 
shares unequal to output shares may constitute an equilibrium, under the same set of taxes and 
subsidies. In other words, this confirms the earlier notion that there is no reason to expect a 
spontaneous emergence of equi-proportionality of capacities and outputs over firms.  
 

 
Figure 2. Sensitivity analysis: varying κ with parametric tolls and subsidies 

The second sensitivity analysis concerns the elasticity of the capacity cost function, κ. 
Because of the specific form of (19b), the simultaneous changes in the multiplicative constant 
and the elasticity, in the exponent, are such that the optimum occurs at exactly the same 
capacity, and therefore the same prices and outputs apply for each value of κ. Assuming that 
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Ki/K =Ni/N again applies for each firm, Proposition 1 implies the net transfers should not vary 
with κ. At the same time, because a change in the elasticity of the capacity cost function 
means that the total capacity cost will vary with κ, we expect firm-specific and industry-wide 
profits to vary with κ. Figure 2 confirms this.  

The four series representing net transfers perfectly overlap at a constant level of zero, 
confirming Proposition 1: exact self-financing applies independent of the elasticity κ, with 
zero net transfers for each firm individually. The profits that arise if there are diseconomies of 
scale (κ>1) rise with κ, and otherwise – quite naturally – increase with the size of the firm. 
Reversely, losses become bigger the stronger the economies of scale, so for lower values of κ 
when κ<1. 

4. Manipulable tolls and subsidies 
4.1. Analytics 
Brueckner and Verhoef (2010) observed that there is an inconvenient inconsistency in the 
combined set of assumptions that, on the one hand, firms in a congested Cournot oligopoly 
would take into account the fact that their own output level affects the aggregate level of 
congestion at the facility; but, on the other hand, would not be aware of the implication that 
the congestion tolls are not truly parametric, but instead depend on their own output choices 
just like the average time delay does. They demonstrate that if firms would take this into 
account, while the regulator nevertheless sets tolls erroneously assuming firms treat these tolls 
as parametric, the first-best optimum will not be achieved – quite intuitively, because the 
regulator’s assumption on the behavioural responses to the tolls are not correct. They also 
propose a solution to this problem: a “manipulable toll”, defined as a rule that specifies what 
the total toll payment will be as a function of the firm’s output, which thus allows the per-
unit-of-output toll to vary with the output level. This manipulable toll varies such that at every 
output level, the “marginal” toll (τi + Ni∙∂τi/∂Ni) satisfies (11). For a given number of firms, 
there is a constant of integration to be chosen for such a toll rule. The most natural choice for 
this constant is such that – for a duopoly – a carrier i’s total toll liability is equal to the “the 
increase in the other carrier’s congestion cost due to carrier i’s operations minus the addition 
to consumer surplus from these operations” (Brueckner and Verhoef, 2010, eq. (22), p. 320). 
 Given that the behavioural assumption underlying the manipulable toll seems a more 
natural assumption for Cournot operators than the (usually implicit) assumption underlying 
the parametric toll, this section investigates to what extent a counterpart of Proposition 1 
applies also with manipulable tolling. Because it seems inconsistent to treat tolls as 
manipulable and subsidies as parametric, or vice versa, both will be treated as manipulable. 

With two instruments, there are two ways in which the policy could be 
operationalized. The first is to assume that the subsidy on contributions to capacity and the tax 
on use of that capacity are defined independently. This would mean that the total congestion 
toll Ri(Ni) for firm i would be determined as the decrease in all other firms’ costs if firm i’s 
output Ni were removed, given all other firms’ output choices, and given all capacity choices, 
including that of firm i:  
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 (20a) 

Note that the derivative of (20a) with respect to Ni is the same as (17a) for any Ni, confirming 
that (20a) is indeed the optimal manipulable toll. The complementary capacity subsidy Ei(Ki) 
for firm i would then be determined as the increase in all other firms’ costs if firm i’s capacity 
contribution Ki were removed, given all other capacity choices, and given all output levels, 
including that of firm i:  

 (20b) 

It is also easily verified that the derivative of (20b) with respect to Ki is equal to (17b) for any 
Ki, again confirming it is the optimal manipulable rule. 
 Under the equi-proportionality assumption of Proposition 1, simultaneous application 
of (20a) and (20b) will not generally lead to exact self-financing, neither in the sense of net 
transfers at the firm level, nor at the aggregate level. To see why, define the firms’ share in the 
optimal output as ρi. Under equi-proportionality, we may then rewrite (20ab) as:  

 (20c)  

 (20d)  

Equations (20c) and (20d) will not generally be equal, and certainly not for the convex 
functional forms that are conventionally used for delay functions. In fact, they will be equal 
only if c(·) takes on a logarithmic specification such as cj(F)=γj·Log(F), because for that case 
we find: 
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∑ ∑

∑ ∑
 (20e)  

For the second possibility of operationalizing the policy, however, exact self-financing is 
restored, again independent of the functional form of c(·), and again independent of κ. And 
that is through a single transfer Ti(Ni,Ki), from the regulator to the firm if positive, which is 
determined as the increase in all other firms’ costs if firm i’s capacity contribution Ki and 
output Ni were simultaneously removed, given all other firms’ capacity choices and output 
levels:  
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 (21a) 

The partial derivative of (21a) with respect to Ni gives minus (17a), which is as required 
because (21a) is defined as a subsidy when positive, while that with respect to Ki again gives 
(17b). In other words, the firm again faces the socially optimal incentives in its choice of Ni 
and Ki. 
 It is trivial to show that under this scheme, exact self-financing again applies under 
equi-proportionality of use- and capacity shares; both in the sense of net transfers at the firm 
level, and therefore also at the aggregate level. Under equi-proportionality, we may rewrite 
(21a) as: 

 (21b) 

which is evidently equal to zero for all firms. These results are summarized in: 
 
Proposition 2: Under the assumptions made, the degree of self-financing of a congestible 
facility with an optimal manipulable transfer that simultaneously addresses congestion and 
the voluntary provision of capacity, used by Cournot-Nash competitors, is equal to unity, 
independent of the elasticity of the capacity cost function, if each competitor’s share in 
capacity provision is the same as its share in total use. Moreover, for each competitor 
individually, the size of the transfer will be zero in the optimum. With a separate manipulable 
congestion toll and manipulable capacity subsidy, exact self-financing applies only for a 
specific (logarithmic in volume-capacity ratio) congestion cost function. 
 
Proof: (21a) and (21b) imply the firm-specific result on the single transfer; summing over 
firms produces the aggregate result. Equations (20a-e) imply the result on separate 
manipulable congestion tolls and capacity subsidies.□ 
 
Because the possibility of Cournot operators attempting to manipulate tolls and subsidies 
seems far from far-fetched, it is reassuring that the self-financing result of Proposition 1 
survives in this specific context; at least, for the single transfer policy. And because it again 
applies independent of the capacity κ, and only under equi-proportionality, the advantages 
and proviso’s of this variant of the policy are similar to those for parametric tolls and 
subsidies. 
 
4.2. Numerical example 
The same numerical example as in Section 3 will be used to illustrate the analytical findings 
just presented. First, Table 2 gives the results of the policies for the base parameterization of 
the model. The results above the empty line repeat those given in Table 1, and confirm that 
the policies achieve the same first-best optimum. The first two firm-specific results give the 
marginal taxes (on output) and subsidies (on capacity provision) in the optimum. As required, 
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these are equal to the tolls and subsidies in Table 1. Next come the total transfers between 
regulator and firms. With separate instruments, in the left half of the table, and given that the 
congestion function is assumed to be convex in F, the revenues from the manipulable toll are 
smaller than for the parametric toll in Table 1. This is due to the fact that a firm’s marginal 
external congestion cost decreases as its output is reduced further. In contrast, the 
expenditures on manipulable subsidies are larger than for their parametric counterparts, 
because the marginal increase in other firms’ costs from marginal reductions in a firm’s 
capacity contributions becomes larger as its capacity is reduced further. As a result, the net 
transfers Ii and adjusted profits Πi

# are both positive now. Because both were zero in the 
optimum with parametric tolling and subsidies, and costs and consumer prices have not 
changed, they are also equal in the present case. 
  

Separate manipulable tolls and subsidies Single manipulable transfer 
Firm 1 Firm 2 Firm 3 Other Firm 1 Firm 2 Firm 3 Other 

N1=3719 
K1=2676 
ct,1=14.03 
cnt,1=37.19 

mpc1=98.80 
mec1=11.20 

p1=110 
mbK,1=14.44 

 
∂R1/∂N1= 

11.20 
∂E1/∂K1= 

15.56 
R1=19 069 

E1=348 003 
Π1=467 232 
Π1

#=328933 
I1=328 933 

N2=2261 
K2=1627 
ct,2=15.59 
cnt,2=33.91 

mpc2=90.43 
mec2=14.57 

p2=105 
mbK,2=9.75 

 
∂R2/∂N2= 

14.57 
∂E2/∂K2= 

20.25 
R2=20 428 
E2=92 119 
Π2=148 345 
Π2

#=71 691 
I2=71 691 

N3=1225 
K3=882 

ct,3=17.15 
cnt,3=30.63 

mpc3=82.59 
mec3=17.41 

p3=100 
mbK,3=5.81 

 
∂R3/∂N3= 

17.41 
∂E3/∂K3= 

24.19 
R3=16 477 
E3=34 729 
Π3=55 778 
Π3

#=18 251 
I3=18 251 

N=7205 
K=5185 

cong=1.56 
B=768 955 
CV=360 921 
CK=155 554 
S=252 480 
msbK=30 

 
R=55 975 

E=474 850 
Π=671 356 
Π #=418875 

N1=3719 
K1=2676 
ct,1=14.03 
cnt,1=37.19 

mpc1=98.80 
mec1=11.20 

p1=110 
mbK,1=14.44 

 
∂T1/∂N1= 

11.20 
∂T1/∂K1= 

15.56 
T1=0 

Π1=138 299 
Π1

#=0 
I1=0 

N2=2261 
K2=1627 
ct,2=15.59 
cnt,2=33.91 

mpc2=90.43 
mec2=14.57 

p2=105 
mbK,2=9.75 

 
∂T2/∂N2= 

14.57 
∂T2/∂K2= 

20.25 
T2=0 

Π2=76 654 
Π2

#=0 
I2=0 

N3=1225 
K3=882 

ct,3=17.15 
cnt,3=30.63 

mpc3=82.59 
mec3=17.41 

p3=100 
mbK,3=5.81 

 
∂T3/∂N3= 

17.41 
∂T3/∂K3= 

24.19 
T3=0 

Π3=37 527 
Π3

#=0 
I3=0 

N=7205 
K=5185 

cong=1.56 
B=768 955 
CV=360 921 
CK=155 554 
S=252 480 
msbK=30 

 
T=0 

Π=252 480 
Π #=0 

Note: rounding, if applicable, is either to nearest integer or (when decimal point is included) to the second digit 

Table 2. First-best optimum for the numerical example  

With a single transfer, these transfers become equal to zero again, confirming Proposition 2, 
and so do the adjusted profits, which is not overly surprising given that costs and prices are 
the same as in the parametric case, and a zero net transfer applies in both policies. 
 The profits with the separate manipulable tolls and subsidies, which are equal to net 
transfers received in that policy, depend strongly on the convexity of the congestion function. 
Figure 3 demonstrates this by showing these profits and transfers for varying levels of χ, the 
exponent of the congestion function. The variation in profits is substantial, being more than 
16 times as high for χ=6 than for χ=2. This variation is much stronger than that in N (a ratio 
of 0.89 between the values for χ=6 and χ=2), K (a ratio of 1.62 between the values for χ=6 
and to χ=2), or N/K (a ratio of 0.55 between the values for χ=6 and χ=2). This confirms the 
intuitive expectation that in particular with a more convex congestion function, the single 
manipulable transfer policy becomes relatively more attractive than the separate manipulable 
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toll and subsidy, at least when exact self-financing is desirable. Recall that this diverging 
pattern, for increasing levels of convexity, is consistent with the separate toll and subsidy 
leading to a zero profit and net transfer for the concave congestion function that results from 
the logarithmic specification, as shown in (20e). 
 

 
Figure 3. Sensitivity analysis: varying χ with manipulable tolls and subsidies 

5. Conclusion 
Common wisdom is that the Mohring-Harwitz theorem of self-financing infrastructure breaks 
down if the infrastructure is used by Cournot-Nash operators. However, the conventional 
analysis leading to this conclusion is asymmetric in the sense that it assumes that the toll rule 
is adjusted to properly reflect market power of Cournot oligopolists, while the investment rule 
is not. That is, the investment rule ignores that exactly because operators have market power, 
they also have an incentive to contribute to the provision of capacity. This paper proposed a 
regulatory scheme that utilizes this incentive. It turns out that this scheme restores self-
financing, and even stronger than before: under the proposed scheme, exact self-financing 
now applies independent of the elasticity of the capacity cost function. Moreover, a balanced 
net budget not only applies at the aggregate level (i.e., for the infrastructure operator), but also 
for each competitor individually. The result remains true both for the case where operators 
treat the tolls parametrically, and for manipulable tolls and subsidies as proposed by 
Brueckner and Verhoef (2010), at least if a single manipulable transfer is used that gives 
simultaneous incentives to optimize output and capacity. What is needed for the result to 
apply exactly, though, is that a particular form of equi-proportionality applies: each firm’s 
share in the subsidized contributions to capacity should be equal to its share in total output at 
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the facility. Irrespective of how natural and intuitive this condition may seem, there is no 
reason why it should be satisfied spontaneously. Numerical results illustrated the rather 
intuitive point that a further deviation from equi-proporionality leads to larger discrepancies 
from exact self-financing. 
 The scheme seems attractive from different viewpoints. It reinforces the absence of a 
need to use distortionary taxes to raise funds to finance infrastructure, as a balanced budget 
now applies independent of the elasticity of the capacity cost function. Furthermore, the 
scheme may be perceived as relatively “fair”, because there is not only a balanced budget in 
the aggregate, but also in the financial flows between the regulator and each firm individually. 
This may contrast with the perceived fairness of regular Cournot congestion tolls, which have 
the property that the largest operators should face the lowest tolls, and vice versa. 
 The paper emphasized the conceptual point that the scheme restores self-financing of 
congested infrastructure in the first-best optimum, now even independent of the elasticity of 
the capacity cost function. Practical implementation would raise some challenges that need 
addressing. Arguably, the most pressing of these is to cope with the non-stationarity of market 
equilibria in reality, while capacity investments are irreversible. This would make firms 
unwilling to contribute to the cost of capacity that concerns sunk costs from earlier 
investments. A way to reconcile this might be to tie the supply of effective capacity to a short-
run complementary service, that can be credibly reduced in size if smaller contributions are 
made. Airport staff would be a good example. A second challenge is how to secure that the 
equi-proportionality of output and capacity shares is guaranteed, as required for exact self-
financing. This requires a careful design of the process through which airport capacity is 
rationed across firms, and contributions to expansion can be made. An initial allocation of 
capacity contributions based on expectations of output volumes, leaving the option to make 
adjustments to these as operations commence, may make the equilibrium allocation 
sufficiently close to the theoretical case of exact self-financing to be useful in practice. But 
care should be taken not to introduce perverse incentives in such arrangements. The 
theoretical results in this paper obtained suggest that it is definitely worthwhile to think 
through such possibilities carefully. This would be a first priority for further study. Other 
natural follow-up questions would be to study the schemes for sequential capacity and output 
decisions (in a two-stage game set-up), and to consider the performance of the scheme under 
Stackelberg competition, Bertrand competition, and with dynamic congestion. 
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