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Abstract

In this paper we study international river pollution problems. We introduce a model in

which the agents (countries) located along a river derive benefit while causing pollution,

but also incur environmental costs of experiencing pollution from all upstream agents. We

find that total pollution in the model decreases when the agents decide to cooperate. The

resulting gain in social welfare can be distributed among the agents based on the property

rights over the river. Using principles from international water law we suggest ’fair’ ways

of distributing the property rights and therefore the cooperative gain.

Keywords: international river, pollution, externality, property rights, value
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1 Introduction

River water is often not only used directly for consumption (drinking water, irrigation), but

also indirectly for the discharge of agricultural, biological and industrial waste products.

The discharge of these products in a river can lead to pollution, which, in turn, can cause

environmental damage. River pollution provides a classic example of a negative externality:

when an upstream agent (e.g. country, state, city or firm) pollutes a river, this can create

external costs for the agents downstream of it. Conversely, downstream agents cannot

inflict external costs on upstream agents because water in a river, and therefore pollution,

is not able to flow up stream. Asymmetric dependence on a water resource, like this, can

cause disputes about the use of the resource, especially if property rights over it are not

clearly defined. Intranational disputes about water resources are usually settled through a

country’s legal system, but in international disputes there typically is no third party that

is able to enforce agreements. Since upstream agents obtain all the benefits but only bear

part of the social costs while polluting a river, a situation of over-pollution relative to the

social optimum is likely to arise in international rivers.

The well-known theorem of Coase (1960) states that when trade in an externality (pol-

lution caused by an upstream agent to a downstream agent) is possible and there are no

transaction costs, bargaining leads to an efficient outcome, regardless of the initial alloca-

tion of property rights. Because countries are able to bargain over agreements that would

reduce pollution in an international river, in practice, we expect to observe similar levels

of pollution in intranational and international rivers. Sigman (2002), however, finds that

at water quality monitoring stations immediately upstream of international borders the

pollution levels are more than 40 percent higher than the average levels at control sta-

tions. She concludes that, while rivers would seem to provide a good case for international

cooperation (because they involve small numbers of countries and relatively well defined

benefits and costs), cooperation on river pollution has not evolved between countries shar-

ing rivers.1 The reason for this lack of cooperation in international river pollution problems

is the absence of clearly defined property rights over the river. All countries sharing an in-

ternational river usually claim property rights over it (at least that part of the river on their

territories) and none are normally willing to reduce their pollution or pay compensation

to countries suffering from it.

In this paper we study how international water law doctrines can be used to solve

river pollution problems through cooperation. A river is considered ’international’ if it

is shared by two or more sovereign states (Barrett, 1994). International rivers fall into

1Sigman (2002) notes that the countries in the European Union seem to be an exception. See also

Barrett (1994) for an example of an agreement between Switzerland, Germany, France and the Netherlands

concerning the reduction in salt pollution of the Rhine river by a French potash mine.
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two categories: boundary (or contiguous) rivers and successive rivers. A boundary river

flows between the territories of two or more states and hence forms the border between the

states. A successive river flows from the territory of one state into the territory of another

state (Garretson, Hayton and Olmstead (1967)). It is also possible that an international

river is (partly) a boundary river and (partly) a successive river. In this paper we only

consider successive international rivers.

Several water resource issues have been modeled using models from (cooperative) game

theory, see Parrachino, Dinar and Patrone (2006) for an overview. Recently, especially

the rival consumption of water from successive international rivers has received attention.

Here the main problem is that water consumed by an upstream country can no longer be

consumed by a downstream country. It is clear that in water stressed regions this can

create tension between countries sharing a river because the population of a downstream

country might (also) depend on the water inflow in the river at an upstream country.

Kilgour and Dinar (1995, 2001), Ambec and Sprumont (2002), Ambec and Ehlers (2008),

Khmelnitskaya (2010), Wang (2011), van den Brink, van der Laan and Moes (2011) all use

game-theoretic models to investigate the distribution of water among countries sharing an

international river. In Ansink and Weikard (2011) and van den Brink, Estévez-Fernández,

van der Laan and Moes (2011) a closely related axiomatic approach is followed.

The economic literature on the non-rival use of (international) rivers appears to be lim-

ited. Apart from the above mentioned paper of Sigman (2002), there exist three empirical

papers of Gray and Shadbegian (2004), Sigman (2005) and Lipscomb and Mobarak (2007)

that study transboundary river pollution between states and counties in the United States

and Brazil. Mäler (1990), Barrett (1994), Fernandez (2002, 2009) and Dinar (2006) all

study two-country river pollution problems. Two theoretical papers that model a multi-

country setting are that of Ni and Wang (2007) and Gengenbach, Weikard and Ansink

(2010). The model of Gengenbach, Weikard and Ansink (2010) is close to ours in the

sense that there is a river with a unidirectional flow of pollution and the agents (countries)

along the river are able to choose their own level of pollution abatement (in our model

agents choose pollution levels instead of pollution abatement levels). Within this model

they analyze how voluntary joint action of the agents along the river can increase pollution

abatement. The main difference between the paper of Gengenbach, Weikard and Ansink

(2010) and ours is that their emphasis is on the stability of coalitions of cooperating agents,

while we focus on property rights and the distribution of the gain in social welfare that

arises when countries along an international river switch from no cooperation on pollution

levels to full cooperation. Our model also differs substantially from the river pollution

model of Ni and Wang (2007). In their model pollution levels are not specified. Instead,

it is assumed there is a set of agents N along an international river and each agent i ∈ N
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has exogenously given (environmental) costs Ci ∈ IR+ caused by the pollution of the agent

i itself and all agents upstream to it. The problem then is to divide the total costs of pol-

lution
∑

i∈N Ci among the agents located along the river. For this problem Ni and Wang

(2007) provide and characterize two solutions. The Local Responsibility Sharing method

holds each agent i responsible for the costs Ci on its own territory and therefore requires

that each agent i pays its own costs Ci. The Upstream Equal Sharing method recognizes

that the costs Ci on the territory of agent i are caused by i and all its upstream agents

and thus requires that Ci is divided equally among those agents.

In this paper we model the pollution problem by assuming that each agent (country)

chooses a level of pollution. Several agents are located along the river from upstream to

downstream. Each agent can perform activities that cause pollution. The higher the level

of activities, the higher the corresponding level of pollution caused by the agent. An agent

derives benefits from its level of activities, and thus its own level of pollution, but also incurs

environmental costs if polluted river water flows through its territory. An agent therefore

does not only suffer from its own level of pollution, but also from the pollution levels of all

its upstream agents.2 The agents value pollution of the river water differently in the sense

that some agents have higher needs (marginal utility) for the emission of pollutants than

others. The heterogeneous valuations of the agents are introduced by endowing each agent

with an agent specific benefit and cost function. Together these two functions determine

the utility function of the agent. The benefit function of an agent depends only on its own

pollution level, its cost function depends on the pollution emissions of the agent itself and

of all the agents that are located upstream of it. So, while in the rival consumption river

problem the water consumption of an agent is restricted by the consumption of the agents

upstream to it, in this non-rival case of pollution the use of river water by an upstream

agent enters the utility functions of all agents downstream to it.

By absence of clearly defined property rights in international river situations, typically

each country claims to have the right over the river on its own territory and therefore

also the right to choose its own level of pollution. In our model, under non-cooperative

behavior each agent chooses a pollution level that maximizes its own utility, given the

pollution levels of the others. The resulting non-cooperative Nash equilibrium is usually

inefficient, i.e., the sum of all utilities (social welfare) of agents along the river can be

increased by coordinating the pollution levels among the agents. However, coordinating

the pollution levels in order to maximize social welfare will normally result in lower utility

for some of the agents, unless the agents are able to reach an agreement on both the

optimal pollution levels as well as a distribution of the total social welfare by making

2This is, for instance, the case when river water is used in an industrial process that creates some sort of

benefit for the polluter but at the same time causes environmental damage at the locations of the polluter

and all agents downstream to it.
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monetary compensations amongst each other. Therefore we assume that the agents are

able to make monetary transfers to each other. Under well-specified property rights, the

Coase theorem then implies that the agents would be able to reach an agreement and to

determine appropriate monetary compensations. However, since typically property rights

over international rivers are not specified we have to find a way to determine them. We do

this by referring to doctrines from international water law. The doctrines that we consider

are the principle of Absolute Territorial Sovereignty (ATS), the principle of Unlimited

Territorial Integrity (UTI) and the principle of Territorial Integration of all Basin States

(TIBS). We find that each of these principles allocates the property rights over the river

in a different way, so that each of the principles provides a different answer to the question

of what monetary transfers are appropriate and necessary to establish cooperation among

agents in our international river pollution model.

In short, the main contributions of this paper are the following: we introduce a model

for international river pollution problems in which the agents choose pollution levels and

are able to make monetary compensations to each other. We find that the total level of pol-

lution is always lower under cooperation (if agents coordinate their pollution levels) than

under individual action. The gain in social welfare that results when the agents switch

from their Nash equilibrium pollution levels to the socially optimal pollution is distributed

among the agents through monetary transfers. Since in international river situations prop-

erty rights are not clearly defined, we refer to three principles from international water law

to provide solutions to the welfare distribution problem and the corresponding monetary

transfers to implement such a distribution of the cooperative gains.

The paper is organized as follows. In Section 2 we introduce the (international) river

pollution model, derive the unique Nash equilibrium and Pareto efficient pollution levels

and show that the total level of pollution is always lower in the Pareto efficient outcome

than in the Nash equilibrium. In Section 3 we investigate, for the two agent problem, how

property rights might determine ’fair’ distributions of the cooperative gain that results

when changing from Nash equilibrium to Pareto efficient pollution levels. In Section 4

we extend this analysis to an arbitrary number of agents by using the solution concept of

’value’ from cooperative game theory. In Section 5 we introduce a class of values that arise

by applying the water rights distribution principle of Territorial Integration of all Basin

States. In Section 6 we generalize the river pollution model to rivers with multiple springs

and/or multiple sinks. Finally, we conclude in Section 7.
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2 River pollution problems

2.1 The model

Consider a successive river flowing through a finite set of agents (countries). The set of

agents is denoted by N ⊂ IN. Unless stated otherwise, without loss of generality we assume

that N = {1, . . . , n} for some n ∈ IN and that the agents are labeled from upstream to

downstream, i.e., agent 1 is the most upstream agent, followed by agent 2 and so on until

the most downstream agent n. Thus, for two agents i, j ∈ N , we have that agent i is

upstream of agent j (and agent j is downstream of agent i) when i < j. For each agent

i ∈ N , write P i = {1, . . . , i} as the subset of N containing agent i and all its upstream

agents, and Qi = {i, . . . , n} as the subset of N containing i and all its downstream agents.

In the sequel, for K ⊂ IN, IRK denotes the |K|-dimensional Euclidean space with elements

x ∈ IRK having components xi, i ∈ K. The vector 0 ∈ IRK denotes the null-vector with

all components equal to zero.

Each agent i ∈ N can choose a level pi ∈ IR+ of pollution.3 We collect these individual

pollution levels in the |N |-dimensional pollution vector p ∈ IRN
+ . Because the river is

transporting the pollution caused by some agent to all its downstream agents, the pollution

experienced by agent i ∈ N depends on the levels of pollution of the agent itself and all

its upstream agents. We assume that the pollution experienced by agent i is given by the

function qi : IRN
+ → IR+ defined by qi(p) =

∑i
j=1 pj, i.e., the level of pollution experienced

by i is equal to the sum of all pollution levels of the agents in P i.

We further assume that each agent along the river derives benefit while causing pollution

but also incurs (environmental) costs of experiencing it. The benefit of an agent i only

depends on its own pollution level and is given by a function bi : IR+ → IR+, yielding benefit

bi(pi) for every pi ≥ 0. The pollution costs of an agent i depends on the total pollution

qi(p) of the agents in P i and are given by a function ci : IR+ → IR+, yielding costs ci(qi)

for every qi ≥ 0. In the sequel b′i and b′′i denote the first and second order derivatives of

bi with respect to pi, and c′i and c′′i denote the first and second order derivatives of ci with

respect to qi. We make the following assumptions about the benefit and cost functions of

the agents.

Assumption 2.1

1. For every i ∈ N : bi(0) = 0 and, for all pi > 0, bi is twice differentiable with b′i(pi) > 0

and b′′i (pi) < 0. In addition, b′i(pi)→∞ as pi → 0 and b′i(pi)→ 0 as pi →∞.

3We could also let the agents choose the level of production in some industrial process that causes river

pollution. If we would assume that pollution is strictly increasing in the production level and modify the

subsequent assumptions appropriately, this model would lead to similar conclusions.
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2. For every i ∈ N : ci(0) = 0 and, for all qi > 0, ci is twice differentiable with c′i(0) > 0

and c′′i (qi) > 0.

The first assumption states that agents obtain no benefit when there is no pollution and

that the marginal benefits of pollution are positive and (strictly) decreasing. Further, the

marginal benefits tend to infinity when pollution tends to zero and tend to zero when

pollution tends to infinity. The second assumption states that agents incur no costs when

there is no pollution and implies that the marginal costs of pollution are positive and

(strictly) increasing. Notice that under Assumption 2.1, for every i ∈ N there exists a

unique positive real number, say ri, such that b′i(ri) = c′i(ri). Let r ∈ IRN
+ be the vector of

these positive real numbers.

Pollution levels p ∈ IRN
+ result in utilities

ui(p) = bi(pi)− ci(qi(p)), i ∈ N.

That is, the utility of agent i is the difference between its pollution benefit bi(pi) and

the pollution costs ci(qi(p)) = ci(
∑i

j=1 pj). We assume that utility is transferable. This

means that agents are able to transfer utility to each other by making monetary transfers.

The monetary transfer to agent i ∈ N is equal to ti ∈ IR. When ti > 0 agent i receives

a monetary transfer and when ti < 0 agent i pays a monetary transfer. A (monetary)

compensation scheme is a vector t ∈ IRN that satisfies the restriction
n∑
i=1

ti ≤ 0, (2.1)

i.e., the sum of all monetary transfers is at most equal to zero. A compensation scheme is

said to be budget balanced if
∑n

i=1 ti = 0. Pollution levels p and a compensation scheme

t result in payoffs

zi(p, t) = ui(p) + ti, i ∈ N.

In the sequel we assume that the agents in the model are rational utility maximizers

and that all benefit and cost functions are common knowledge. The tuple (N, b, c), with

b = {bi|i ∈ N} the collection of benefit functions and c = {ci|i ∈ N} the collection of costs

functions, constitutes the input of a river pollution model. The output of the model is a

pair (p, t) of pollution levels and monetary transfers, yielding payoffs zi(p, t), i ∈ N . Given

the input of a river pollution model (N, b, c), the aim of this paper is to make both positive

and normative statements about the output (p, t) under the restriction that t satisfies (2.1).

2.2 The Nash equilibrium output

We start the analysis of the river pollution model (N, b, c) by considering the situation

in which each agent acts individually. In this situation there (clearly) are no monetary
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transfers and each agent i ∈ N maximizes its utility ui(p) with respect to the variable

pi under its control. So, each agent i chooses its pollution level pi so as to maximize its

own utility, given the pollution levels of the other agents. This behavior results in Nash

equilibrium pollution levels. The next proposition shows that in the Nash equilibrium

each agent i ∈ N sets the unique (strictly positive) optimal pollution level p̂i at which its

marginal benefit of pollution is equal to its marginal cost.

Proposition 2.2 For a river pollution model (N, b, c) that satisfies Assumption 2.1, there

exists a unique Nash equilibrium pollution vector p̂ ∈ IRN
+ in which all pollution levels are

strictly positive, p̂i > 0, i ∈ N .

Proof. When each agent i ∈ N acts individually, it maximizes its utility ui(p) = bi(pi)−
ci(qi(p)) given the pollution levels pj, j < i, of its upstream agents. We show the uniqueness

of the Nash equilibrium pollution levels by induction on the labels of the agents.

The utility of the most upstream agent 1 is independent of the pollution levels of all

other agents and is given by u1(p) = b1(p1)−c1(p1). Maximizing this with respect to p1 ≥ 0

gives the first order condition

b′1(p1)− c′1(q1(p))
∂q1(p)

∂p1
= b′1(p1)− c′1(p1) ≤ 0 ⊥ p1 ≥ 0.

By Assumption 2.1 it follows that there exists a unique solution p̂1 > 0 (note that p̂1 = r1).

By the same assumption we have that b′′1(p1) < 0 and c′′1(q1) = c′′1(p1) > 0 for every p1 > 0

and thus p̂1 satisfies the second order condition b′′1(p1)−c′′1(p1) < 0 for utility maximization.

Proceeding by induction, assume that for some 1 < i ≤ n, pj = p̂j > 0 has been

uniquely determined for all j < i. The utility of agent i is given by ui(p) = bi(pi)−ci(qi(p)).
Maximizing this utility function with respect to pi ≥ 0 gives the first order condition

∂bi(pi)

∂pi
− ∂ci(qi(p))

∂qi

∂qi(p)

∂pi
≤ 0 ⊥ pi ≥ 0.

With qi(p) = pi +
∑i−1

j=1 p̂j we obtain the system

b′i(pi)− c′i(qi) ≤ 0 ⊥ pi ≥ 0,

qi = pi +
∑i−1

j=1 p̂j.
(2.2)

By Assumption 2.1.1 b′i is strictly decreasing in pi with b′i(pi)→∞ as pi → 0 and b′i(pi)→ 0

as pi →∞. By Assumption 2.1.2 c′i(0) > 0 and c′i is strictly increasing in qi (and therefore

strictly increasing in pi). Hence, for the given pollution levels p̂j, j < i, there exists a

unique pollution level p̂i > 0 that satisfies (2.2). Since, by the same assumptions, b′′i
is negative and c′′i is positive, it follows that p̂i also satisfies the second order condition

b′′i (pi)− c′′i (qi) < 0 for utility maximization. 2

Notice that in the Nash equilibrium output all monetary transfers are equal to zero so that

the payoffs are given by zi(p̂,0) = ui(p̂) = bi(p̂i)− ci(
∑i

j=1 p̂j), i ∈ N .
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2.3 Social welfare and Pareto efficiency

In the river pollution model (N, b, c) the social welfare associated with pollution levels

p ∈ IRN
+ is measured by the difference between the total social benefit

∑
i∈N bi(pi) and the

total social costs
∑

i∈N ci(
∑i

j=1 pj). The social welfare function W : IRN
+ → IR assigns to

each vector p ∈ IRN
+ of pollution levels the social welfare4

W (p) =
∑
i∈N

bi(pi)−
∑
i∈N

ci(
i∑

j=1

pj).

In the next proposition we show that there exist unique and strictly positive pollution

levels p̂i, i ∈ N , that maximize W (p).

Proposition 2.3 For a river pollution model (N, b, c) that satisfies Assumption 2.1, there

exists a unique vector of pollution levels p̃ ∈ IRN
+ that maximizes social welfare W (p). In p̃

all pollution levels are strictly positive.

Proof. Maximization of W (p) with respect to pi ≥ 0, i ∈ N , yields the system of n first

order conditions

∂W (p)

∂pi
=
∂bi(pi)

∂pi
−

n∑
k=i

∂ck(qk(p))

∂qk

∂qk(p)

∂pi
≤ 0 ⊥ pi ≥ 0, i ∈ N.

Since qj(p) =
∑j

i=1 pi, we have that
∂qj(p)

∂pi
= 1 for every i, j ∈ N with i ≤ j and thus the

system reduces to

∂bi(pi)

∂pi
−

n∑
k=i

∂ck(qk(p))

∂qk
≤ 0 ⊥ pi ≥ 0, i ∈ N. (2.3)

First, observe that at a solution to this system pi ≤ ri for all i ∈ N because, for every

pj ≥ 0, j < i, it holds that b′i(pi) < c′i(
∑i−1

j=1 pj +pi) if pi > ri. Second, at a solution it must

hold that pi > 0 for all i ∈ N , because b′i(pi) → ∞ as pi → 0 and c′i(
∑i

j=1 pj) is bounded

from above by c′i(
∑i

j=1 rj) for all pj ∈ [0, rj], j ≤ i. So, any solution of the system (2.3) is

strictly positive (and bounded from above by the vector r). To maximize the social welfare

W (p) we thus have to find a strictly positive solution to the system

∂bi(pi)

∂pi
−

n∑
k=i

∂ck(qk(p))

∂qk
= 0, i ∈ N. (2.4)

For agent n the system yields

∂bn(pn)

∂pn
− ∂cn(qn(p))

∂qn
= 0. (2.5)

4When we want to stress that we are working within the model (N, b, c) we sometimes write W(N,b,c)(p)

for the social welfare function W (p).
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For an agent h < n we obtain

∂bh(ph)

∂ph
=

n∑
k=h

∂ck(qk(p))

∂qk
=
∂ch(qh(p))

∂qh
+

n∑
k=h+1

∂ck(qk(p))

∂qk
.

Using that

n∑
k=h+1

∂ck(qk(p))

∂qk
=
∂bh+1(ph+1)

∂ph+1

we obtain

∂bh+1(ph+1)

∂ph+1

=
∂bh(ph)

∂ph
− ∂ch(qh(p))

∂qh
, h < n. (2.6)

So, a solution of the welfare maximization problem has to satisfy the system (2.5) and

(2.6) of n equations. Now, take some p1 > 0. Since b′h is strictly decreasing in ph and c′h
is strictly increasing in qh for all h ∈ N , it follows that for each value of p1 there exists a

unique positive value p2 that solves equation (2.6) for h = 1, as long as the right hand side

of the equation is positive. Further, this value of p2 is increasing in p1. Continuing in this

way, it follows that for each value of p1 > 0 there is a sequence of unique positive values

p2, p3, ..., pn that sequentially solves equation (2.6) for h = 1, 2, ..., n − 1, as long as the

right hand sides of all equations are positive, and that all these values are increasing in p1.

Hence, there exists a unique value of p1 such that the value pn obtained from sequentially

solving the equations (2.6) for h = 1, 2, ..., n−1, solves equation (2.5). It can be concluded

that the system (2.5) and (2.6) of n equations has a unique solution p̃i, i ∈ N .

It remains to show that p̃ yields a maximum of the social welfare function W (p). Recall

that the components ri, i ∈ N , of the vector r ∈ IRN
+ satisfy b′i(ri) = c′i(ri). Since p̃ also

satisfies the system (2.4), it follows that p̃i < ri, i ∈ N . Since the objective function W (p)

is continuous in p, it follows by Weierstrass’ (extreme value) theorem that W (p) has a

maximum on the compact set {p ∈ IRN | 0 ≤ pi ≤ ri, i ∈ N}. Since ∂W
∂pi

> 0 if pi = 0 and
∂W
∂pi

< 0 if pi = ri, i ∈ N , it follows that the maximum is achieved in the interior of this set

and thus has to satisfy the first order condition (2.4). Hence, the unique solution to this

system yields the maximum. 2

The following proposition states that the total pollution in the Pareto efficient outcome

is always lower than the total pollution in the Nash equilibrium output. The proof of this

proposition is given in Appendix A.

Proposition 2.4 For the river pollution model (N, b, c), |N | ≥ 2, satisfying Assumption

2.1, it holds that
∑n

i=1 p̃i <
∑n

i=1 p̂i.
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With slight abuse of notation, in the sequel we denote the highest social welfare that

can be obtained in the river pollution model (N, b, c) by W (N, b, c). That is, W (N, b, c)

is the social welfare W (p̃) at the Pareto efficient pollution levels p̃ ∈ IRN
+ in the river

pollution model (N, b, c). Payoff vector z(p, t) ∈ IRN at pollution levels vector p ∈ IRN

and compensation scheme t ∈ IRN , is Pareto efficient if there does not exist another pair

(p′, t′) such that zi(p
′, t′) ≥ zi(p, t) for all i ∈ N with at least one strict inequality. Clearly,

z(p, t) is Pareto efficient if and only if p = p̃ and
∑

i∈N ti = 0, and thus
∑

i∈N zi(p, t) =

W (p̃) = W (N, b, c). It therefore follows that any Pareto efficient payoff vector z ∈ IRN can

be implemented by the vector p̃ ∈ IRN
+ of efficient pollution levels and the budget balanced

compensation scheme ti = zi − ui(p̃), i ∈ N . We conclude this section with an example,

which also will be used to illustrate the discussion in the subsequent sections.

Example 2.5 Let (N, b, c) be a river pollution model with N = {1, 2}, bi(pi) =
√
pi and

ci(qi) = q2i , i = 1, 2. Then the Nash equilibrium pollution levels are given by p̂1 = 0.3969

and p̂2 = 0.1847, yielding utilities u1(p̂) = 0.473 for the upstream agent 1 and u2(p̂) = 0.092

for the downstream agent 2. The social welfare in the Nash equilibrium is W (p̂) = 0.565.

The Pareto efficient pollution levels are p̃1 = 0.1621 and p̃2 = 0.2968, yielding utilities

u1(p̃) = 0.376 and u2(p̃) = 0.334. Notice that indeed p̃1 + p̃2 = 0.4589 < 0.5816 = p̂1 + p̂2.

The maximal social welfare is equal to W (p̃) = 0.710.

Observe that u1(p̃) = 0.376 < 0.473 = u1(p̂), so that without monetary transfers agent

1 prefers the Nash equilibrium output above the Pareto efficient output. When t1 = −t2
and 0.097 ≤ t1 ≤ 0.242 both agents have at least the same payoff in the Pareto efficient

output (p̃, t) as at the Nash equilibrium pollution levels p̂ without monetary compensations.

2

3 Distribution of cooperative gains

In the previous section we have seen that the agents in a river pollution model are able

to realize the maximum social welfare W (N, b, c) by choosing the Pareto efficient pollution

levels p̃i, i ∈ N . In this section we discuss, for the two agent case, what compensation

schemes t = (t1, t2) would allow the agents to sustain these Pareto efficient pollution levels.

In particular, in Example 2.5 the Pareto efficient pollution levels p̃1 and p̃2, together with

a monetary compensation scheme t = (t1, t2) such that 0.097 ≤ t1 ≤ 0.242 and t2 = −t1,
yield both agents a payoff that is at least equal to its Nash equilibrium payoff. A question

that can now be asked is the following: is it reasonable to restrict the value of t1 between

0.097 and 0.242?

According to Coase (1960) the answer to this question depends on the allocation of

10



property rights. The well-known Coase theorem states that when trade in an externality

(pollution caused by the upstream agent to the downstream agent) is possible and there

are no transaction costs, bargaining leads to an efficient outcome, regardless of the initial

allocation of property rights. It are exactly the property rights that determine how the

welfare gain from cooperation is distributed among the agents. For the two-agent river

pollution model the Coase theorem implies that cooperation leads to the Pareto efficient

pollution levels pi = p̃i, i = 1, 2. The transfers t1 and t2 then determine how the maximal

social welfare W (N, b, c) is distributed over the two agents.

When the upstream agent 1 has the property rights over the river it can cause as

much pollution as it pleases, without taking into account the harmful consequences this

might have for the downstream agent 2. It thus can be argued that when agent 1 has

the property rights over the river it has a legitimate claim to a payoff that is at least

equal to the payoff it obtains in the Nash equilibrium output z1(p̂,0) = u1(p̂). In this

case agent 1 would only be willing to cooperate with agent 2, and pollute at its Pareto

efficient pollution level, if it receives a monetary compensation t1 that is at least equal to

u1(p̂)−u1(p̃) =
(
b1(p̂1)−c1(p̂1)

)
−
(
b1(p̃1)−c1(p̃1)

)
. On the other hand, when agent 1 has

the property rights over the river, agent 2 knows that without cooperation agent 1 would

pollute at its Nash equilibrium level. Then the optimal action of agent 2 is also to pollute

at its Nash equilibrium level. Hence, agent 2 would not be willing cooperate with agent 1,

and make a monetary transfer, if this would lead to a payoff below its payoff in the Nash

equilibrium z2(p̂,0) = u2(p̂). Thus, the compensation t1 = −t2 that agent 2 is willing to

pay is at most equal to u2(p̃) − u2(p̂) =
(
b2(p̃2) − c2(p̃1 + p̃2)

)
−
(
b2(p̂2) − c2(p̂1 + p̂2)

)
.

It can be concluded that when agent 1 has the property rights over the river, the agents

are willing to bargain on a transfer t1 between
(
b1(p̂1) − c1(p̂1)

)
−
(
b1(p̃1) − c1(p̃1)

)
and(

b2(p̃2)− c2(p̃1 + p̃2)
)
−
(
b2(p̂2)− c2(p̂1 + p̂2)

)
. In Example 2.5 this bargaining interval is

0.097 ≤ t1 ≤ 0.242.

We now consider the case that the downstream agent 2 has the property rights over

the river in the sense that it has the right to claim (and the possibility to enforce) that

agent 1 does not cause any pollution, thus that p1 = 0. In this case agent 2 can claim a

minimal payoff equal to z2((0, r2),0) = u2((0, r2)) = b2(r2)− c2(r2) (recall that ri, i ∈ N , is

the optimal pollution level of agent i when all other pollution levels are zero). Now, agent

2 is only willing to cooperate with agent 1, and set its Pareto efficient pollution level p̃2,

if agent 1 pays a monetary transfer t2 = −t1 that is at least equal to u2((0, r2))− u2(p̃) =(
b2(r2) − c2(r2)

)
−
(
b2(p̃2) − c2(p̃1 + p̃2)

)
. On the other hand, when agent 2 has the

property rights over the river, without cooperation agent 1 has a payoff equal to zero

z1((0, r2),0) = u1((0, r2)) = 0. Agent 1 would therefore not be willing to pay more than

u1(p̃) − u1((0, r2)) = b1(p̃1) − c1(p̃1) to establish cooperation. It can be concluded that
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when agent 2 has the property rights over the river the agents are willing to bargain on

a transfer t2 between
(
b2(r2) − c2(r2)

)
−
(
b2(p̃2) − c2(p̃1 + p̃2)

)
and b1(p̃1) − c1(p̃1). For

Example 2.5 it follows straightforwardly that b2(r2) − c2(r2) = 0.473; so the bargaining

interval is 0.139 ≤ t2 ≤ 0.376.

When the property rights over the river are unambiguously defined it follows from the

above that, at least in the two agent case, a well-defined bargaining problem is obtained.

Every solution to such a bargaining problem results in a distribution of the cooperative

gains. However, the bargaining problem is not so obvious when the property rights over

the river are not clearly defined. For instance, what would be the output of the two agent

river pollution model when both agents claim to have the property rights over the river

and neither of the agents accepts the claim of the other agent? In this situation each agent

i ∈ {1, 2} claims a payoff that is at least equal to bi(ri)− ci(ri). In Example 2.5 this would

mean that both agents claim at least 0.473. Since the total social welfare (of cooperation)

is equal to 0.565, an outcome in which both agents obtain at least their claim is infeasible.

This leads to the question how to distribute the deficit that results when each agent claims

the property rights over the river. In the following sections we suggest answers to this

question by taking into account principles from international water law.

4 Values for the river pollution model

4.1 Preliminaries

In this section we propose and characterize two solutions for the welfare distribution prob-

lem within the river pollution model (N, b, c). To do this we use the concept of a value

from the theory of cooperative games, see e.g. Shapley (1953). Within this theory, a value

is a function on a class of (cooperative) games that assigns to each game in the class a

payoff vector, i.e., a vector that specifies a payoff to every player in the game. To apply

this notion to polluted rivers, let RPN be the class of all river pollution models (N, b, c)

with fixed set of agents N satisfying Assumption 2.1. Further, let RP = ∪N⊂IN RPN be

the class of all river pollution models over all sets N ⊂ IN. A value now is a function f

that assigns to every (N, b, c) ∈ RP a payoff vector f(N, b, c) ∈ IRN . Typically a value is

defined axiomatically, that is, a number of desirable axioms (properties) is stated and then

it is shown that there exists a unique value that satisfies these axioms.

Ideally, we would base our values for the river pollution model directly on international

watercourse law. But, since there currently is no binding international law for managing

international rivers, the only guidelines that are available to us are international water

doctrines from the (legal) literature (see for instance, Garretson, Hayton and Olmstead

(1967) or McCaffrey (2001)). Two of these principles, used by Ambec and Sprumont (2002)
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for river situations concerning the rival consumption of water and by Ni and Wang (2007)

for allocating the costs of cleaning a river from pollution, are the principle of Absolute

Territorial Sovereignty (ATS) and the principle of Unlimited Territorial Integrity (UTI).

Here, we first apply these two principles to our class RP of river pollution models.

4.2 The ATS value

The principle of Absolute Territorial Sovereignty (also known as the Harmon doctrine)

states that each country (agent) along an international river has absolute sovereignty over

the part of the river on its territory (McCaffrey, 2001). For river pollution models the ATS

principle favors upstream agents over downstream agents in the sense that it allows an

(upstream) agent to choose any pollution level it prefers, without taking into account the

consequences for downstream agents. It is not difficult to see that without cooperation, the

ATS principle would yield the Nash equilibrium output. We can, however, also apply the

ATS principle when the agents along the river do cooperate. As observed in the previous

section, the Coase theorem implies that under cooperation all agents pollute at their Pareto

efficient pollution level. It are the property rights that determine how the welfare gain

from cooperation is distributed among the agents. As in Ambec and Sprumont (2002), we

propose that the property rights over an international river are determined by international

watercourse principles.

When a group of upstream agents P i decides to cooperate5, the ATS principle implies

that such a group of agents can pollute as much as it pleases because it has absolute

sovereignty over its territory. So, every upstream set of agents P i can claim a total (com-

bined) payoff under full cooperation (of all agents) that is at least equal to the total welfare

that it can attain on its own. If it would not receive at least this welfare level, it would be

optimal for the group to cease cooperation with the downstream agents. Let pij, j ∈ P i,

i ∈ N , be a solution to the maximization problem

max
p1,...,pi

i∑
j=1

(
bj(pj)− cj(

j∑
k=1

pk)
)

(4.7)

and denote

vi(N, b, c) =
i∑

j=1

(
bj(p

i
j)− cj(

j∑
k=1

pik)
)
.

that is, vi(N, b, c) is the highest welfare that the set of upstream agents P i can obtain

without taking into account the consequences of its pollution to the downstream agents.

5Recall from Section 2 that P i = {1, . . . , i}, i ∈ N , is the set of all agents upstream of, and including,

agent i.
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Notice that vn(N, b, c) = W (N, b, c). The ATS principle thus implies that each group of

upstream agents P i, i ∈ N , can claim at least a total payoff vi(N, b, c).

We now define the ATS value, denoted by ATS, as the function on the class RP of

river pollution models that for every N ⊂ IN and every (N, b, c) ∈ RPN assigns to every

agent j ∈ N the payoff ATSj(N, b, c) equal to

ATSj(N, b, c) = vj(N, b, c)− vj−1(N, b, c),

with v0(N, b, c) = 0. So, the ATS value distributes to every upstream set of agents P i,

i ∈ N , a total payoff equal to
∑i

j=1 ATSj(N, b, c) = vi(N, b, c), i.e., every set of upstream

agents P i receives precisely the minimum payoff it can claim according to the ATS principle.

The ATS value can be implemented by the Pareto efficient pollution levels p̃i, i ∈ N , and

a budget balanced compensation scheme t such that ti = ATSi(N, b, c)− ui(p̃), i ∈ N .

In the sequel, for any river pollution model (N, b, c) ∈ RP and some agent i ∈ N ,

let (P i, b1,i, c1,i) denote the river pollution model restricted to the upstream set of agents

P i. Then, (P i, b1,i, c1,i) is a river problem in RPPi with set of agents P i, benefit functions

b1,ij = bj, j ∈ P i, and cost functions c1,ij = cj, j ∈ P i. Notice that for every i ∈ N ,

W (P i, b1,i, c1,i) = vi(N, b, c),

i.e., the worth vi(N, b, c) that the agents in P i can guarantee themselves under the ATS

principle within the river pollution model (N, b, c) is equal to the total social welfare that

P i can attain within the (sub)river problem (P i, b1,i, c1,i). Hence the ATS value satisfies

i∑
j=1

ATSj(N, b, c) = W (P i, b1,i, c1,i), for all i ∈ N. (4.8)

Using this it follows that the ATS value is characterized by an efficiency and an upstream

autonomy axiom.

Axiom 4.1 Efficiency

A value f on the class of river pollution models RP is efficient if it holds for every

(N, b, c) ∈ RP that
∑

i∈N fi(N, b, c) = W (N, b, c).

In cooperative game theory efficiency axioms are considered as such basic axioms that

some authors include them in the definition of a value. In our model efficiency follows from

the Coase theorem. As stated before, the Coase theorem implies that all agents pollute at

their Pareto efficient pollution levels and the property rights determine how the maximum

social welfare W (N, b, c) is distributed over the agents.

Axiom 4.2 Upstream autonomy

A value f on the class of river pollution models RP satisfies upstream autonomy if for

every (N, b, c) ∈ RP and any i ∈ N it holds that fi(N, b, c) = fi(P
i, b1,i, c1,i).
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When all agents downstream of i are not present, upstream autonomy implies that agent

i receives the same payoff as it would receive when these agents are present. So, it states

that the payoff of an agent does not depend on its downstream agents. We now can state

and prove the following characterization theorem for the ATS value.

Theorem 4.3 A value f on the class of river pollution models RP satisfies efficiency and

upstream autonomy if and only if f is the ATS value.

Proof. We first show that the ATS value satisfies the two axioms. Efficiency follows

straightforwardly from the definition of ATS, since
∑

i∈N ATSi(N, b, c) = W (N, b, c).

Upstream autonomy follows straightforwardly from equation (4.8), because for every i ∈ N ,

ATSi(N, b, c) =
i∑

j=1

ATSj(N, b, c)−
i−1∑
j=1

ATSj(N, b, c) =

W (P i, b1,i, c1,i)−W (P i−1, b1,i−1, c1,i−1) = ATSi(P
i, b1,i, c1,i).

Next, take (N, b, c) ∈ RP and assume that f satisfies efficiency and upstream autonomy.

We prove uniqueness by induction on the labels of the agents, starting with the most up-

stream agent 1. For i = 1 we have by upstream autonomy that f1(N, b, c) = f1(P
1, b1,1, c1,1),

thus the payoff of agent 1 in the |N |-agent river problem (N, b, c) is equal to the pay-

off of agent 1 in the 1-agent river problem (P 1, b1,1, c1,1). By efficiency we have that

f1(P
1, b1,1, c1,1) = W (P 1, b1,1, c1,1). So, f1(N, b, c) = ATS1(N, b, c). Now, assume by induc-

tion that fk(N, b, c) = ATSk(N, b, c) for all k < i ≤ n. Then

fi(N, b, c) = fi(P
i, b1,i, c1,i) = W (P i, b1,i, c1,i)−

i−1∑
k=1

fk(P
i, b1,i, c1,i),

where the first equality follows from upstream autonomy and the second from efficiency.

Since, again by upstream autonomy, fk(P
i, b1,i, c1,i) = fk(N, b, c) it follows by the induction

hypotheses and equation (4.8) that

fi(N, b, c) = W (P i, b1,i, c1,i)−
i−1∑
k=1

fk(N, b, c) = W (P i, b1,i, c1,i)−
i−1∑
k=1

ATSk(N, b, c) =

W (P i, b1,i, c1,i)−W (P i−1, b1,i−1, c1,i−1) = ATSi(N, b, c).

2

For the two agent river pollution model (N, b, c) with N = {1, 2} the ATS value gives

the payoffs

ATS1(N, b, c) = W (P 1, b1,1, c1,1) = b1(r1)− c1(r1) = u1(r)
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and

ATS2(N, b, c) = W (N, b, c)− ATS1(N, b, c) = W (N, b, c)− u1(r).

So, upstream agent 1 receives a payoff equal to its Nash equilibrium payoff and all gains

from cooperation go to the downstream agent 2. The ATS value in this instance corresponds

to the outcome discussed in Section 3 in which agent 1 has the property rights over the

river and agent 2 pays the minimum possible transfer to agent 1 in order for it to be

compensated for its loss in utility when switching from the Nash equilibrium to the Pareto

efficient pollution level. In Example 2.5 the ATS value would mean that agent 2 pays

t1 = 0.097 to agent 1.

For the case with more than two agents the upstream autonomy axiom implies that

property rights are assigned subsequently from upstream to downstream along the river.

First agent 1 has the right to choose its optimal pollution level, regardless of the other

agents. Then agents 1 and 2 cooperate and have the right to choose their joint optimal

pollution levels, without considering the other agents, and so on. The ATS value assigns

at each step the gain of cooperation between the agents in P i−1 and the next agent i to

agent i, i = 2, ..., n. So, each time an agent i joins its set of upstream agents P i−1 all the

gain of cooperation goes to agent i and the upstream agents are just compensated to keep

their payoffs equal.

The next theorem states that the ATS value gives each agent i ∈ N a payoff that is at

least equal to the payoff it would receive in the Nash equilibrium output. Each agent in a

river pollution model therefore weakly prefers its payoff according to the ATS value to its

payoff in the Nash equilibrium output.

Theorem 4.4 Let (N, b, c) ∈ RP be a river pollution model satisfying Assumption 2.1.

Then, for any i ∈ N , ATSi(N, b, c) ≥ zi(p̂,0) = ui(p̂).

Proof. For agent 1 the theorem is true by definition of the ATS value. Next consider some

agent ` ≥ 2 and take i = `−1. Note that W (P i, b1,i, c1,i) =
∑i

j=1

(
bj(p

i
j)− cj(

∑j
k=1 p

i
k)
)

,

where pij, j ∈ P i, is a solution to the maximization problem (4.7). Let p̄` be the optimal

pollution level of agent `, given that all its upstream agents j ≤ ` − 1 choose pij. This

yields utility ū` = b`(p̄`) − c`(
∑i

k=1 p
i
k + p̄`) to agent `. By definition of the ATS value it

follows that

ATS`(N, b, c) = W (P `, b1,`, c1,`)−W (P `−1, b1,`−1, c1,`−1) ≥ ū`.

Further, applying Proposition 2.4 to the river pollution model (P i, b1,i, c1,i) it follows that∑i
j=1 pij <

∑i
j=1 p̂j. Hence

ATS`(N, b, c) ≥ ū` > b`(p̂`)− c`(
∑̀
k=1

p̂k) = u`(p̂).
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2

To conclude this subsection we would like to mention that for a river model with rival

consumption of the river water, Ambec and Sprumont (2002) propose a solution similar

to the ATS value, called the downstream incremental distribution (or value). This name

refers to the fact that all the gains of cooperation between an upstream group of agents

P i, i ∈ N , and the subsequent agent along the river i + 1 are distributed to the agent

i+ 1. For the same model, Herings, van der Laan and Talman (2007) and van den Brink,

van der Laan and Vasil’ev (2007) alternatively propose the upstream incremental solution

(or value). The upstream incremental solution is also based on the ATS principle but

distributes the gains of cooperation between the set Qi = {i, . . . , n}, i > 1, of downstream

agents and the preceding agent along the river i − 1 to the agent i − 1. This approach

cannot be followed for our river pollution model with non-rival use of the water because

the welfare that a downstream group of agents can obtain without cooperating with its

upstream agents is not unambiguously defined (it depends on the behavior of the upstream

agents). Instead, we therefore consider the principle of Unlimited Territorial Integrity to

define a counterpart of the ATS value.

4.3 The UTI value

The principle of Unlimited Territorial Integrity states that each country (agent) along an

international river has the right to demand the natural flow of the river into its territory

that is both undiminished in quantity and unchanged in quality by the countries (agents)

upstream to it (McCaffrey, 2001). For river pollution models the UTI principle favors

downstream agents over upstream agents in the sense that an (upstream) agent is only

allowed to pollute the river if it has the explicit consent of all agents downstream to it.

When the downstream agents in Qi decide to cooperate, the UTI principle implies that

such a group of agents can claim a completely clean river. This means that none of the

agents upstream of the group Qi is allowed to cause any pollution. Thus, in a river pollution

model (N, b, c) ∈ RP any group of downstream agents Qi can claim a total (combined)

payoff under full cooperation (of all agents) that is at least equal to the total welfare that

Qi can attain under the condition that all upstream agents j < i set pollution level pj = 0.

If it would not receive at least this welfare level under full cooperation it would be optimal

for the group of downstream agents to cease cooperation with the upstream agents and

invoke the UTI principle. Let γij, j ∈ Qi, i ∈ N , be a solution to the maximization problem

max
pi,...,pn

n∑
j=i

(
bj(pj)− cj(

j∑
k=i

pk)
)

(4.9)
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and denote

wi(N, b, c) =
n∑
j=i

(
bj(γ

i
j)− cj(

j∑
k=i

γik)
)
.

That is, wi(b, c) is the highest welfare that the downstream group Qi can obtain under the

condition that the pollution levels of all the upstream agents are equal to zero. Notice that

w1(N, b, c) = W (N, b, c). The UTI principle implies that each group of downstream agents

Qi, i ∈ N , can claim at least a total payoff wi(N, b, c).

We now define the UTI value, denoted by UTI, as the function on the class RP of

river pollution models that for every N ⊂ IN and every (N, b, c) ∈ RPN assigns to every

agent j ∈ N payoff UTIj(N, b, c) equal to

UTIj(N, b, c) = wj(N, b, c)− wj+1(N, b, c),

with wn+1(N, b, c) = 0. So, the UTI value distributes to every downstream set of agents

Qi, i ∈ N , a total payoff equal to
∑n

j=i UTIj(N, b, c) = wi(N, b, c), i.e., every set of

downstream agents Qi receives precisely the minimum payoff it can claim according to the

UTI principle. The UTI value can be implemented by the Pareto efficient pollution levels p̃i,

i ∈ N , and a budget balanced compensations scheme t such that ti = UTIi(N, b, c)−ui(p̃),
i ∈ N .

In the sequel, for any river pollution model (N, b, c) ∈ RP and some agent i ∈ N , let

(Qi, b
i,n, ci,n) denote the river pollution model restricted to the downstream set of agents

Qi. Then, (Qi, b
i,n, ci,n) is a river problem in RPQi with set of agents Qi, benefit functions

bi,nj = bj, j ∈ Qi, and cost functions ci,nj = cj, j ∈ Qi.
6 Notice that for every i ∈ N ,

W (Qi, b
i,n, ci,n) = wi(N, b, c),

i.e., the worth wi(N, b, c) that the agents in Qi can guarantee themselves under the UTI

principle within the river pollution model (N, b, c) is equal to the total social welfare that

Qi can attain within the (sub)river problem (Qi, b
i,n, ci,n). Hence the UTI value satisfies

n∑
j=i

UTIj(N, b, c) = W (Qi, b
i,n, ci,n), for all i ∈ N. (4.10)

Using this it follows that the UTI value is characterized by the efficiency axiom and an

downstream autonomy axiom.

Axiom 4.5 Downstream autonomy

A value f on the class of river pollution models RP satisfies downstream autonomy if for

every (N, b, c) ∈ RP and any i ∈ N it holds that fi(N, b, c) = fi(Qi, b
i,n, ci,n).

6Otherwise than assumed until now, in this river problem the agents are numbered from i to n.
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When all agents upstream of i are not present, downstream autonomy implies that agent i

receives the same payoff as it would receive when these agents are present. So, downstream

autonomy states that the payoff of an agent does not depend on its upstream agents. We

now can state and prove the following characterization theorem for the UTI value.

Theorem 4.6 A value f on the class of river pollution models RP satisfies efficiency and

downstream autonomy if and only if f is the UTI value.

Proof. We first show that the UTI value satisfies the two axioms. Efficiency follows

straightforwardly from the definition of UTI, since
∑

i∈N UTIi(N, b, c) = W (N, b, c).

Downstream autonomy follows straightforwardly from equation (4.10), because for every

i ∈ N ,

UTIi(N, b, c) =
n∑
j=i

UTIj(N, b, c)−
n∑

j=i+1

UTIj(N, b, c) =

W (Qi, b
i,n, ci,n)−W (Qi+1, b

i+1,n, ci+1,n) = UTIi(Qi, b
i,n, ci,n).

Next, take (N, b, c) ∈ RP and assume that f satisfies efficiency and downstream au-

tonomy. We prove uniqueness by induction on the labels of the agents, starting with the

most downstream agent n. For i = n we have by downstream autonomy that fn(N, b, c) =

fn(Qn, b
n,n, cn,n). So the payoff of agent n in the |N |-agent river problem (N, b, c) is equal

to the payoff of agent n in the 1-agent river problem (Qn, b
n,n, cn,n). By efficiency we

have that fn(Qn, b
n,n, cn,n) = W (Qn, b

n,n, cn,n) and thus fn(N, b, c) = UTIn(N, b, c). Now,

assume by induction that fk(N, b, c) = UTIk(N, b, c) for all k > i ≥ 1. Then

fi(N, b, c) = fi(Qi, b
i,n, ci,n) = W (Qi, b

i,n, ci,n)−
n∑

k=i+1

fk(Qi, b
i,n, ci,n),

where the first equality follows from downstream autonomy and the second from efficiency.

Since, again by downstream autonomy, fk(Qi, b
i,n, ci,n) = fk(N, b, c) it follows by the in-

duction hypothesis and equation (4.10) that

fi(N, b, c) = W (Qi, b
i,n, ci,n)−

n∑
k=i+1

fk(N, b, c) = W (Qi, b
i,n, ci,n)−

n∑
k=i+1

UTIk(N, b, c) =

W (Qi, b
i,n, ci,n)−W (Qi+1, b

i+1,n, ci+1,n) = UTIi(N, b, c).

2

For the two agent river pollution model (N, b, c) with N = {1, 2} the UTI value gives

the payoffs

UTI2(N, b, c) = W (Q2, b
2,2, c2,2) = b2(r2)− c2(r2) = u2((0, r2))
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and

UTI1(N, b, c) = W (N, b, c)− UTI2(N, b, c) = W (N, b, c)− u2((0, r2)).

So, downstream agent 2 receives a payoff equal to the minimal payoff it can achieve when

it can claim (and enforce) that agent 1 does not cause any pollution. The UTI value in

this instance corresponds to the outcome discussed in Section 3 in which agent 2 has the

property rights over the river and agent 1 pays the minimum possible transfer to agent 2

in order for it to be compensated for its loss in utility when agent 2 gives up its right to

a clean river and agrees to cooperate on the Pareto efficient pollution levels. In Example

2.5 the UTI value would mean that agent 1 pays t2 = 0.139 to agent 2.

For the case with more than two agents the downstream autonomy axiom implies that

the property rights are assigned subsequently from downstream to upstream along the river.

First agent n has the right to claim clean water and choose its optimal pollution level under

the restriction that all upstream levels are zero. Then the agents n and n − 1 together

cooperate and have the right to their joint optimal pollution levels under the restriction

that all upstream levels are zero, and so on. The UTI value assigns at each step the gain

in welfare when the agents in Qi+1 share their UTI rights with the upstream neighboring

agent i, to agent i, i = 1, ..., n − 1. So, each time an agent i joins its set of downstream

agents Qi+1 all the increase in total welfare goes to agent i and the downstream agents are

just compensated to keep their payoffs equal.

In Theorem 4.4 we have seen that the ATS value assigns to each agent a payoff that

is at least equal to the utility it would receive in the Nash equilibrium output. This

does not hold for the UTI value, as can be seen from Example 2.5. The UTI value,

however, does satisfy a property that is not satisfied by the ATS value: it guarantees that

all agents receive a non-negative payoff. To see that the ATS value does not guarantee

non-negative payoffs, consider a two agent river pollution model and suppose that agent

2 has much higher costs of pollution than agent 1. Then it could be that W (N, b, c) =

[b1(p̃1)−c1(p̃1)]+[b2(p̃2)−c2(p̃1+p̃2)] is smaller than W (P1, b
1,1, c1,1) = b1(r1)−c1(r1) which

would mean that ATS2 = W (N, b, c)−W (P1, b
1,1, c1,1) < 0. Agent 2, however, would still

be willing to cooperate with agent 1 because its ATS payoff is at least equal to its Nash

equilibrium payoff. The next theorem shows the all UTI payoffs are non-negative.

Theorem 4.7 Let (N, b, c) ∈ RP be a river pollution model satisfying Assumption 2.1.

Then UTIi(N, b, c) ≥ 0 for every i ∈ N .

Proof. For agent n the theorem is true, because UTIn(N, b, c) = bn(rn) − cn(rn) > 0.

Next consider some agent i ≤ n − 1. According to the UTI value this agent receives

UTIi(N, b, c) = W (Qi, b
i,n, ci,n) −W (Qi+1, b

i+1,n, ci+1,n). Since the pollution levels pi = 0
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and pj = γi+1
j for j > i are feasible for the maximization problem (4.9) with respect to

agent i, and the levels pj = γi+1
j , j > i are a solution for the maximization problem (4.9)

with respect to agent i+ 1, it follows that W (Qi, b
i,n, ci,n) ≥ W (Qi+1, b

i+1,n, ci+1,n), so that

UTIi(N, b, c) ≥ 0. 2

As already mentioned at the end of Section 3 for the two agent case, the ATS and UTI

values are incompatible. In Example 2.5 both the ATS claim W (P1, b
1,1, c1,1) of agent 1

and the UTI claim W (Q2, b
2,2, c2,2) of agent 2 are equal to 0.473, while the social welfare is

equal to 0.565. This means that it is impossible to satisfy both claims simultaneously. In

general, it holds for every i ∈ {1, ..., n−1} that the sum of the ATS claim W (Pi, b
1,i, c1,i) of

the upstream set of agents P i and the UTI claim W (Qi+1, b
i+1,n, ci+1,n) of its downstream

complement Qi+1 exceeds the maximal total available welfare W (N, b, c). In the next

section we therefore discuss compromise solutions.

5 TIBS values

In the previous section we have seen that the ATS principle allocates the property rights

over a river to the upstream agents and that the UTI principle allocates them to the

downstream agents. In this section we propose values for river pollution models that

force both the upstream and the downstream agents along the river to make concessions.

To introduce these values, consider a river pollution model (N, b, c) ∈ RP and an agent

j ∈ N . Suppose that all agents along the river pollute at their Pareto efficient level p̃i,

i ∈ N , and that each agent upstream of agent j is given its ATS value payoff while each

agent downstream of agent j is given its UTI value payoff. Since the agents along the river

are maximally able to divide the maximum social welfare W (N, b, c) among themselves,

if one would like to obtain an efficient payoff distribution for the river pollution model

(N, b, c), it must be that agent j receives (pays) the entire surplus (deficit) W (N, b, c) −∑
k∈P j−1 ATSk(N, b, c)−

∑
k∈Qj+1

UTIk(N, b, c). More formally, for all i, j ∈ N let tji (N, b, c)

be defined as

tji (N, b, c) =


ATSi(N, b, c) if i < j,

W (N, b, c)−
∑

k∈P i−1 ATSk(N, b, c)−
∑

k∈Qi+1
UTIk(N, b, c) if i = j,

UTIi(N, b, c) if i > j.

In this way each j ∈ N induces the value tj on the class RP of river pollution models, that

assigns to each (N, b, c) ∈ RP the payoff vector tj(N, b, c) ∈ IRN .7 Note that for j = 1 it

holds that t1(N, b, c) = UTI(N, b, c) and for j = n that tn(N, b, c) = ATS(N, b, c). It is

7The value tj resembles the value for games on cycle-free graph structures of Demange (2004) in which

agent j is the top agent in a hierarchy.
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not difficult to see that the value tj can result in a very large negative payoff tjj(N, b, c) =

W (N, b, c)−
∑

k∈P j−1 ATSk(N, b, c)−
∑

k∈Qj+1
UTIk(N, b, c) for agent j. In the sequel we

are going to consider weighted averages of the values tj, j ∈ N .

Let α ∈ IRN
+ with

∑
i∈N αi = 1 and αj the weight of agent j ∈ N . Given such a vector

of weights α, the TIBSα value, denoted by TIBSα, is defined as the function on the class

RP of river pollution models that for every N ⊂ IN and every (N, b, c) ∈ RPN assigns to

every agent i ∈ N payoff TIBSαi (N, b, c) equal to

TIBSαi (N, b, c) =
∑
j∈N

αjt
j
i (N, b, c).

We call the α-weighted average of the values tj, j ∈ N , the TIBSα value because it can be

seen as reflecting a water sharing principle known as the principle of Territorial Integration

of all Basin States (TIBS).

The TIBS principle states that the water in an international river belongs to all riparian

states combined, no matter where it enters the river, and that each riparian state is entitled

to a reasonable and equitable share in the optimal use of the river water (McCaffrey, 2001).

In the (legal) literature on the subject it is also referred to as the principle of community

(of interests) in the waters, the principle of common management or the drainage basin

approach. For river pollution models the TIBS principle does not seem to favor upstream

agents over downstream agents, or vice versa. It only requires that the agents make optimal

use of the river (pollute at their Pareto efficient levels) and share the social welfare that

results in a ’reasonable and equitable’ manner.

Obviously, the terms ’reasonable’ and ’equitable’ are not precise. To make them precise,

let f be a value on the class RP of all river problems and compare the following two

situations for some agent i ∈ N \{n}. In the first situation the agents in P i are cooperating

together and the agents in Qi+1 are cooperating together, but the two sets of agents are not

cooperating with each other. That is, the agents in P i are cooperating and claim to have

the right to pollute according to the ATS principle. In this situation each agent j ∈ P i

obtains payoff fj(P
i, b1,i, c1,i) assigned by the value f to the upstream (sub)river problem

(P i, b1,i, c1,i). On the other hand, the agents in Qi+1 cooperate and claim the right of clean

water according to the UTI principle. When this claim can be enforced each agent j ∈ Qi+1

obtains payoff fj(Qi+1, b
i+1,n, ci+1,n) assigned by the value f to the downstream (sub)river

problem (Qi+1, b
i+1,n, ci+1,n). Next, suppose that the agents in P i and Qi+1 are forced to

cooperate. In this second situation, each agent j ∈ N obtains payoff fj(N, b, c) assigned

by the value f to the river problem (N, b, c).

The question can be asked which property the value f should satisfy with respect to the

change in payoffs between the first situation and the second situation? Stated differently,

how should the difference between the total available payoff in the second situation and

22



the total (claimed) payoff in the first situation be distributed amongst the two groups P i

and Qi+1? The TIBS principle would imply that for each group the change in payoffs is

’reasonable and equitable’. Assuming that a vector of weights α ∈ IRN
+ with

∑
i∈N αi = 1 is

given, we let these ’reasonable and equitable’ amounts be represented by the total weights∑
j∈P i αj and

∑
j∈Qi+1

αj of the two groups. So, the change in total payoff under full

cooperation relative to the ideal situation that both groups can realize their claims is

attributed to the two sets of agents P i and Qi+1 proportional to the total weight of each

set. We thus require for a value f on the class of river pollution models RP that∑
j∈P i

(
fj(N, b, c)− fj(P i, b1,i, c1,i)

)
∑

j∈Qi+1

(
fj(N, b, c)− fj(Qi+1, bi+1,n, ci+1,n)

) =

∑
j∈P i αj∑
j∈Qi+1

αj
,

provided that both
∑

j∈P i αj and
∑

j∈Qi+1
αj are nonzero. The above discussion holds for

all i ∈ N \ {n}. This results in the following axiom for a value f on the class of river

pollution models (that also allows for the case that some weights are zero).

Axiom 5.1 α-TIBS fairness

Given α ∈ IRN
+ with

∑
i∈N αi = 1, a value f on the class of river pollution models RP

satisfies α-TIBS fairness if for every (N, b, c) ∈ RP and any i ∈ N \ {n} it holds that∑
j∈Qi+1

αj

[∑
j∈P i

(
fj(N, b, c)− fj(P i, b1,i, c1,i)

)]
=

∑
j∈P i

αj

[ ∑
j∈Qi+1

(
fj(N, b, c)− fj(Qi+1, b

i+1,n, ci+1,n)
)]
. (5.11)

Efficiency and this α-TIBS fairness axiom characterize the TIBSα value.

Theorem 5.2 Given α ∈ IRN
+ with

∑
i∈N αi = 1, a value f on the class of river pollution

models RP satisfies efficiency and α-TIBS fairness if and only if f is the TIBSα value.

Proof. We prove in Appendix B that the TIBSα value satisfies the two axioms. Here

we prove that there exists a unique value that satisfies efficiency and α-TIBS fairness

by induction on the number of agents. Let (K, b, c) be a one-agent river problem with

K = {k} for some k ∈ IN, i.e., k is the single agent in K. Then by efficiency we have that

fk(K, b, c) = W (K, b, c), where W (K, b, c) = bk(rk)− ck(rk) with bk and ck the benefit and

cost functions of k and rk the optimal level of pollution.

Now, assume by induction that f(K, b, c) is determined uniquely by efficiency and α-

TIBS fairness for every river pollution model (K, b, c) with number of agents k = |K| < n,

and let (N, b, c) be a river pollution model with n = |N | agents. For every i ∈ N \ {n},
the (sub)river models (P i, b1,i, c1,i) and (Qi+1, b

i+1,n, ci+1,n) have at most n− 1 agents and
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so the payoff vectors f(P i, b1,i, c1,i) ∈ IRP i

and f(Qi+1, b
i+1,n, ci+1,n) ∈ IRQi+1 have been

determined already. Efficiency of f implies on the (sub)river problem (P i, b1,i, c1,i) that∑
j∈P i

fj(P
i, b1,i, c1,i) = W (P i, b1,i, c1,i)

and on the (sub)river problem (Qi+1, b
i+1,n, ci+1,n) that∑

j∈Qi+1

fj(Qi+1, b
i+1,n, ci+1,n) = W (Qi+1, b

i+1,n, ci+1,n).

So, the α-TIBS fairness property reduces to∑
j∈Qi+1

αj

[∑
j∈P i

fj(N, b, c)−W (P i, b1,i, c1,i)
]

=

∑
j∈P i

αj

[ ∑
j∈Qi+1

fj(N, b, c)−W (Qi+1, b
i+1,n, ci+1,n)

]
(5.12)

for all i ∈ N \ {n}. Since there are n− 1 equations of type (5.12) and also it must hold by

efficiency that
∑

i∈N fi(N, b, c) = W (N, b, c), we have n linearly independent equations in

n unknowns. Hence, the payoffs fi(N, b, c), i ∈ N , are uniquely determined. 2

The class of TIBSα values is very rich in the sense that it encompasses a lot of other

values. First of all, notice that by definition of the payoff vectors tj, the TIBSα(N, b, c) =

ATS(N, b, c) if αn = 1 and that TIBSα(N, b, c) = UTI(N, b, c) if α1 = 1. So, the case that

all weight is given to the last agent reflects the ATS principle and every upstream coalition

receives the payoff that it can obtain when it has the right to pollute. Reversely, the case

that all weight is given to the first agent reflects the UTI principle and every downstream

coalition receives the payoff that it can obtain when it has the right to claim no pollution

by its upstream agents. More generally, when αj = 0 for all j ≤ i, then TIBSα(N, b, c) is

a weighted average of the vectors tj(N, b, c), j ≥ i + 1 and all agents in the upstream set

P i receive their ATS-payoff. Reversely, when αj = 0 for all j ≥ i+ 1, then TIBSα(N, b, c)

is a weighted average of the vectors tj(N, b, c), j ≤ i and all agents in the downstream set

Qi+1 receive their UTI-payoff.

Some particular solutions are the following. For the weight vector αe ∈ IRN
+ with

αe1 = αen = 1
2
, the α-TIBS fairness property (5.11) reduces for every i ∈ N \ {n} to∑

j∈P i

(
fj(N, b, c)− fj(P i, b1,i, c1,i)

)
=
∑

j∈Qi+1

(
fj(N, b, c)− fj(Qi+1, b

i+1,n, ci+1,n)
)
.

Noticing that for f = TIBSα
e

we have that
∑

j∈P i TIBSα
e

j (P i, b1,i, c1,i) = W (P i, b1,i, c1,i)

and
∑

j∈Qi+1
TIBSα

e

j (Qi+1, b
i+1,n, ci+1,n) = W (Qi+1, b

i+1,n, ci+1,n), the αe-TIBS fairness

24



axiom states that, for every i < n, the total (combined) loss that the agents in P i experience

when they are forced to cooperate with the agents in Qi+1 should be equal to the total

(combined) loss that the agents in Qi+1 experience. Together with the efficiency axiom the

αe-TIBS fairness axiom characterizes the value

TIBSα
e

i (N, b, c) =
ATSi + UTIi

2
,

being the average of the ATS and UTI values.8 More generally, every weight vector α ∈ IRN
+

with α1 + αn = 1 gives a weighted average of the ATS and UTI values.

When we take weight vector αa ∈ IRN
+ with αai = 1

n
for all i ∈ N , the α-TIBS fairness

property (5.11) reduces for every i ∈ N \ {n} to

1

i

[∑
j∈P i

(
fj(N, b, c)−fj(P i, b1,i, c1,i)

)]
=

1

n− i

[ ∑
j∈Qi+1

(
fj(N, b, c)−fj(Qi+1, b

i+1,n, ci+1,n)
)]
.

Thus the αa-TIBS fairness axiom states that, for every i < n, the average loss that the

agents in P i experience when they are forced to cooperate with the agents in Qi+1 should

be equal to the average loss that the agents in Qi+1 experience. Together with the efficiency

axiom the αa-TIBS fairness axiom characterizes the value

TIBSα
a

i (N, b, c) =
1

n

∑
j∈N

tji (N, b, c),

which is the average of all values tj(N, b, c), j ∈ N .9

The discussion above shows that the vector of weights α ∈ IRN
+ can be seen as containing

information on the property rights over the river. In fact, the weights can be seen as some

sort of counterparts of the property rights; they show how the loss of welfare resulting

from enforced cooperation between an upstream set P i and its downstream complement

Qi+1 is distributed between the two groups, relative to the most ideal situations for both

groups. When α1 = 1, all the loss is taken by P i, when αn = 1, all loss is taken by Qi+1.

Further, when α = αe, both groups equally share the loss and when α = αa, the average

loss of the agents in both groups is equal. We could say that
∑

j∈P i αj and
∑

j∈Qi+1
αj

reflect the responsibilities of both groups of not polluting the water. The higher
∑

j∈P i αj

is, the larger the loss that the group of agents P i has to take relative to its total payoff∑
j∈P i ATSj(N, b, c) in its most ideal situation; respectively the higher

∑
j∈Qi+1

αj is,

the larger the loss that the group of agents Qi+1 has to take relative to its total payoff∑
j∈Qi+1

UTIj(N, b, c) in its most ideal situation. Although in this paper the weights

8The value TIBSα
e

resembles the equal gain splitting solution for sequencing problems of Curiel (1988).
9The value TIBSα

a

resembles the average tree solution for cycle-free graph games of Herings, van der

Laan and Talman (2008).
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αi, i ∈ N , are exogenous (they can be seen as reflecting, for instance, existing power

structures among countries) we could also envision a model in which they are the subject

of negotiation between the agents. In that case, agents bargain over weights αi, i ∈ N ,

that in combination with efficiency and α-TIBS fairness would lead to a unique solution

for river pollution models.

6 Rivers with multiple springs and multiple sinks

In this section we generalize the river pollution model (N, b, c) in which agents are located

along the single-stream river from upstream to downstream to river pollution models with

multiple springs and/or multiple sinks, i.e., rivers that have multiple tributaries and/or

multiple distributaries. We also define and characterize TIBSα values for such river sys-

tems. We describe a river system with multiple springs and sinks by a directed graph

(N,D), where the set of nodes of the graph N = {1, ..., n} corresponds to the set of

agents along the river, and D ⊆ {(i, j)|i, j ∈ N, i 6= j} is a collection of directed links

that represents the flow of water between the agents. That means that a directed link

(i, j) ∈ {(i, j)|i, j ∈ N, i 6= j} is in the set D if and only if j is a downstream neighbor of

i along the river (and thus i is an upstream neighbor of j). Each spring and each sink of

the river is identified by an agent, i.e., an agent i ∈ N is a spring when it has no upstream

neighbors and an agent i ∈ N is a sink if it has no downstream neighbors. We denote

by Ki ⊂ N the set of all neighbors (upstream and downstream) of i. Notice that for a

river system (N, b, c) with a single spring, a single sink, N = {1, . . . , n} and agents num-

bered successively from upstream to downstream, the collection of directed links is given

by D = {(i, i+ 1)|i ∈ N \ {n}}.
We only consider river systems that are represented by connected graphs10, i.e., for

each two different agents i and j there is sequence of k different agents (i1, ..., ik) such that

i1 = i, ik = j and, for every h = 1, . . . , k − 1, either (ih, ih+1) ∈ D or (ih+1, ih) ∈ D. We

call such a sequence a path, i.e., starting from i agent j can be reached by traveling on

the river visiting subsequently ih, h = 2, . . . , k − 1. Notice that k = 2 when i and j are

neighbors and that the journey goes downstream when (ih, ih+1) ∈ D and upstream when

(ih+1, ih) ∈ D. We say that agent j 6= i is upstream of i (and i downstream of j), when

along the full path the journey from j to i is downstream. For i ∈ N , let P i denote the set

of agents upstream of, and including, agent i in (N,D).

Finally, for (N,D) to represent a river we require that (N,D) is cycle-free, i.e., for each

pair i and j there is a unique path connecting i and j. A connected cycle-free directed

graph (N,D) gives the most general possible definition of a river, except that it does not

10Otherwise we have several river systems, which can be treated separately.
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Figure 1: River (N,D) from Example 6.1.

allow for anabranches (parts of a river where it splits into two or more separate streams

that merge again further downstream).

Example 6.1 Let (N,D) represent a river with N = {1, 2, 3, 4, 5, 6, 7, 8} and D = {(1, 4),

(2, 4), (3, 5), (4, 5), (4, 6), (5, 7), (5, 8)}, see Figure 1. Then the set of springs is {1, 2, 3} and

the set of sinks is {6, 7, 8}. The two streams originating at 1 and 2 merge together at

agent 4. There the river immediately splits again into two streams, one to agent 5 and

one to agent 6. The stream at agent 5 is joined by a stream originating at agent 3. The

resulting stream, in turn, splits into two streams, one to agent 7 and one to agent 8. For

i = 5, we have that K5 = {3, 4, 7, 8} where 3 and 4 are upstream neighbors and 7 and 8

are downstream neighbors. Further, P 5 = {1, 2, 3, 4, 5} is the set of agents upstream of 5,

including 5 itself. Notice that agent 6 is not in P 5, because along the path from 6 to 5,

one has to travel upstream when going from 6 to 4. 2

A river pollution model with multiple springs and/or multiple sinks is now given by

((N,D), b, c) with (N,D) the river system, and as before, b = {bi|i ∈ N} the collection of

benefit functions and c = {ci|i ∈ N} the collection of cost functions.

At vector p ∈ IRN
+ of pollution levels, the total pollution experienced by an agent i is

given by qi(p) =
∑

j∈P i pj; this is the total pollution of i itself and all its upstream agents.

Notice that the pollution caused by some agent i hurts all its downstream agents, thus

pollution of for instance agent 4 affects agent 4 itself and its downstream agents 5, 7 and 8.

Again, the output of the model is a pair (p, t) of pollution levels and monetary transfers,

yielding to every i ∈ N payoff

zi(p, t) = ui(p) + ti = bi(pi)− ci(
∑
j∈P i

pj) + ti.

Let p̃ be a solution to the welfare maximization problem

max
p∈IRN

+

∑
i∈N

(
bi(pi)− ci(

∑
j∈P i

pj)
)

(6.13)
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and denoteW ((N,D), b, c) =
∑

i∈N ui(p̃) as the highest social welfare that can be obtained.

The class of all river pollution models with multiple springs and/or multiple sinks is

denoted byRPM and a value is a function f onRPM that assigns to every ((N,D), b, c) ∈
RPM a payoff vector f((N,D), b, c) ∈ IRN . We now generalize the efficiency and α-TIBS

fairness axioms and the corresponding TIBSα value to the class RPM.

Axiom 6.2 Efficiency on RPM
A value f on the class of river pollution models RPM is efficient if it holds for every

((N,D), b, c) ∈ RPM that
∑

i∈N fi((N,D), b, c) = W ((N,D), b, c).

To state the α-TIBS fairness axiom on RPM, consider a connected and cycle-free river

system (N,D) and suppose that a link (i, j) ∈ D is deleted, i.e., there is no water flow

from agent i to its downstream neighbor j. We then have two separate connected cycle-

free directed graphs that, individually, again represent (part of) a river. For instance,

if we delete (4, 5) from D in Example 6.1 we obtain two separate river systems, namely

({1, 2, 4, 6}, {(1, 4), (2, 4), (4, 6)}) and ({3, 5, 7, 8}, {(3, 5), (5, 7), (5, 8)}).11 Let (N,D) be a

river system and suppose that either (i, j) ∈ D or (j, i) ∈ D. Then we denote by (N i|j, Di|j),

respectively (N j|i, Dj|i) the two subriver systems that result when deleting this link from

D, where (N i|j, Di|j) represents the part that contains agent i and (N j|i, Dj|i) the part that

contains j. Denote bN
i|j

as the set of benefit functions bN
i|j

k = bk, k ∈ N i|j. Analogously,

denote cN
i|j

as the set of cost functions for k ∈ N i|j and bN
j|i

and cN
j|i

as the sets of benefit

and cost functions for k ∈ N j|i. We are now ready to state the α-TIBS fairness axiom on

RPM.

Axiom 6.3 α-TIBS fairness on RPM
Given α ∈ IRN

+ with
∑

i∈N αi = 1, a value f on the class of river pollution models RPM
satisfies α-TIBS fairness if for every ((N,D), b, c) ∈ RPM and any (i, j) ∈ D it holds

that ∑
k∈Nj|i

αj

[ ∑
k∈N i|j

(
fk((N,D), b, c)− fk((N i|j, Di|j), bN

i|j
, cN

i|j
)
)]

=

∑
k∈N i|j

αj

[ ∑
k∈Nj|i

(
fk((N,D), b, c)− fk((N j|i, Dj|i), bN

j|i
, cN

j|i
)
)]
.

Similar as on the class RP of river problems with one spring and one sink, the two axioms

characterize a unique value on the class RPM. This value is the generalization of the

TIBSα value to RPM. To state this value, let i, j ∈ N be two different agents and let

hij be the first agent on the unique path in (N,D) from i to j that is reached after leaving

i.12 For instance, in Example 6.1 if we take i = 4 and j = 3 then hij = 5. As in Section 5,

11Observe that deleting for instance (1, 4) from D in Example 6.1 we obtain the river system ({1}, ∅)
with 1 the only agent in it, and the river system ({2, 3, 4, 5, 6, 7, 8}, {(2, 4), (3, 5), (4, 5), (4, 6), (5, 7), (5, 8)}).

12Notice that hij = j if j is a direct neighbor of i in (N,D).
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again we define for each j ∈ N a payoff vector tj((N,D), b, c). First, the payoff to j itself

is defined as

tjj((N,D), b, c) = W ((N,D), b, c)−
∑
k∈Kj

W ((Nk|j, Dk|j), bN
k|j
, cN

k|j
))

and for i 6= j the payoff to i is defined as

tji ((N,D), b, c) = W ((N i|hij , DN
i|hij

), bN
i|hij

), cN
i|hij

))−
∑

k∈Ki\{hij}

W ((Nk|i, Dk|i), bN
k|i
, cN

k|i
).

Example 6.4 We illustrate the payoff vector tj for some agents in the river pollution

model given in Figure 1. Taking j = 5, for the agents i = 3, 7, 8 we have hi5 = 5 and

i does not have other neighbors. So, N i|hij = {i} and it follows that each of these agents

receives a payoff equal the payoff that it can achieve by maximizing bi(pi)− ci(pi). Since 3

is a spring it follows that t53((N,D), b, c) is equal to the utility that 3 can attain under the

ATS principle, i.e., not taking into account the effect of its pollution on its downstream

agents. On the other hand, agents 7 and 8 are sinks and their payoffs t5i ((N,D), b, c),

i = 7, 8 are equal to the utilities these agents can attain under the UTI principle, i.e., it is

the payoff they can obtain under the condition that their upstream agents set zero pollution

levels. For the agents i = 1, 2, 6 we have hi5 = 4 and i does not have other neighbors.

Also for these agents we have N i|hij = {i} and it follows that each of these agents receives

a payoff equal to the payoff it can achieve by maximizing bi(pi)− ci(pi). Since 1 and 2 are

springs it follows that t5i ((N,D), b, c), i = 1, 2, are equal to the utilities that these agents

can attain under the ATS principle. Agents 6 is a sink and receives payoff t56((N,D), b, c)

equal to the utility it can attain under the UTI principle. For i = 4 we have h45 = 5 and

K4 \ {h45} = {1, 2, 6}. It follows that the payoff t54((N,D), b, c) is equal to the total welfare

that the agents in N4|5 = {1, 2, 4, 6} can attain on their own (so under the ATS principle,

not taking into account the effect of their pollution on their downstream agents 5, 7 and

8), minus the total payoff to the agents 1, 2, and 6. Finally, agent 5 receives a payoff

t55((N,D), b, c) equal to the total welfare minus the sum of the payoffs to the other agents.

Taking j = 8 the payoffs are the same as above for all agents, except agents 5 and

8. For agent 5 we now have h58 = 8 and K5 \ {h58} = {3, 4, 7}. It follows that its payoff

t85((N,D), b, c) is equal to the total welfare that can be obtained by the agentsN5|8 = N\{8}
under the ATS principle (not taking into account its effect on 8) minus the sum of the

payoffs to the other players in N5|8. Agent 8 receives payoff t88((N,D), b, c) equal to the

total welfare minus the sum of the payoffs to the other agents. 2

It should be noticed that, given an agent j for each k ∈ Kj it holds that∑
h∈Nk|j

tjh((N,D), b, c) = W ((Nk|j, Dk|j), bN
k|j
, cN

k|j
),
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thus each set of agents Nk|j in the part of the river containing k and that results from

deleting (k, j) from D (when k is upstream of j) or deleting (j, k) from D (when k is

downstream of j), receives the total payoff it can attain on its own, ignoring the others.

When k is an upstream neighbor of j, it means that the agents in Nk|j realize their welfare

under the ATS principle (not taking into account the effect of their pollution on their

downstream agents) and when k is a downstream neighbor of j it means that the agents in

Nk|j realize their welfare under the UTI principle (claiming zero pollution by their upstream

agents). Stated differently, the payoff vector tj((N,D), b, c) assigns to upstream sets Nk|j,

k ∈ Kj, their ATS claims and to downstream sets Nk|j, k ∈ Kj, their UTI claims.

For a given weight vector α ∈ IRN
+ with

∑
i∈N αi = 1, the TIBSα value assigns to each

river pollution model in RPM the weighted average of the payoff vectors tj((N,D), b, c),

thus

TIBSα((N,D), b, c) =
∑
j∈N

αjt
j((N,D), b, c).

The next theorem states that Efficiency and α-TIBS fairness on RPM characterize the

TIBSα value on RPM. The proof goes along the same lines as the proof of Theorem 5.2

and is therefore omitted.

Theorem 6.5 Given α ∈ IRN
+ with

∑
i∈N αi = 1, a value f on the class RPM of river

pollution models with multiple springs and sinks satisfies efficiency and α-TIBS fairness

on RPM if and only if f is the TIBSα value.

Also within the class RPM the vector of weights α ∈ IRN
+ can be seen as some sort of

counterparts of the property rights over the river. When a link (i, j) (thus j is downstream

of i) is deleted from D, the weights determine how the loss of welfare resulting from enforced

cooperation between the upstream set N i|j and the downstream set N j|i is distributed

between the two groups, relative to the most ideal situations for both groups. The higher∑
k∈N i|j αk is, the larger the loss that the group of agents N i|j has to take relative to the

total welfare it can attain without taking care of its downstream group N j|i; respectively

the higher
∑

k∈Nj|i αk is, the larger the loss that the group of agents N j|i has to take

relative to the total welfare it can attain under the claim of zero pollution by its upstream

agents.

7 Concluding remarks

In this paper we have introduced a model for international river pollution problems in which

the agents can choose pollution levels and are able to make monetary compensations to each
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other. We found that the total pollution level is always lower under cooperation (if agents

coordinate their pollution levels) than under individual action. The gain in social welfare

that results when the agents would switch from their individually optimal to the socially

optimal pollution levels can be distributed among the agents through monetary transfers.

Following Coase (1960) these monetary transfers only depend on the initial allocation of

the property rights. Since an initial allocation of the property rights is not given, we

referred to the ATS, UTI and TIBS principles from international water law to provide

an allocation of the property rights and therefore a distribution of the cooperative gains.

The ATS value allocated the property rights over the river to the upstream agents but the

gains of cooperation to the downstream agents. The UTI value, conversely, distributed

the property rights over the river to the downstream agents but the gains of cooperation

to the upstream agents. The TIBSα value allowed for compromises between the ATS and

UTI values by using an exogenous vector of weights and distributed the property rights

over the river in accordance with this vector.
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Appendix A

Proof of Proposition 2.4. We prove this proposition by induction on the number of

agents n. We first consider a river model (N, b, c) with n = 2. As noticed in the proofs

of Proposition 2.2 and Proposition 2.3, when n = 2 we have both in the Nash equilibrium

and in the Pareto efficient output that agent 2 sets it pollution level p2 so that

∂b2(p2)

∂p2
− ∂c2(q2)

∂q2

∂q2(p)

∂p2
=
∂b2(p2)

∂p2
− ∂c2(q2)

∂q2
= 0.

Because ∂c2
∂q2

is continuous and strictly increasing it has an inverse ∂c2
∂q2

−1
. It follows that in

both cases it must hold that

q2 = p1 + p2 =
∂c2
∂q2

−1∂b2(p2)

∂p2
. (7.14)
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It also follows from the proof of Proposition 2.3 that p̃1 and p̃2 are such that

∂b1(p̃1)

∂p1
− ∂c1(p̃1)

∂q1
=
∂b2(p̃2)

∂p2
.

Since b′2 > 0 at every p2 > 0 and p̃2 > 0 (see proof Proposition 2.3) it must be that

∂b1(p̃1)

∂p1
>
∂c1(p̃1)

∂q1
.

By Assumption 2.1 it follows that p̃1 < p̂1. When agent 1 chooses p1 = p̃1 < p̂1 and agent

2 would pollute at (or below) its Nash equilibrium pollution level, p2 ≤ p̂2, we would have

that

u1((p1, p2)) + u2((p1, p2)) < b1(p̂1)− c1(p̂1) + b2(p̂2)− c2(p̂2).

This would mean that agent 1 and 2 would obtain a higher social welfare in the Nash

equilibrium than in the Pareto efficient output, a contradiction. We therefore must have

that p̃2 > p̂2. Now, since p̃2 > p̂2 and b′2 is strictly decreasing in p2 it follows that
∂b2(p̃2)
∂p2

< ∂b2(p̂2)
∂p2

. Because ∂c2
∂q2

−1
is strictly increasing in its argument it follows from equation

(7.14) that

p̃1 + p̃2 =
∂c2
∂q2

−1∂b2(p̃2)

∂p2
<
∂c2
∂q2

−1∂b2(p̂2)

∂p2
= p̂1 + p̂2.

We now denote the vectors of the unique Nash equilibrium and social welfare maximizing

pollution levels for a tuple (K, b, c) with k = |K| agents by p̂k, respectively p̃k. Proceeding

by induction, assume that

k∑
i=1

p̃ki <

k∑
i=1

p̂ki . (7.15)

for every river pollution model (K, b, c) with k = |K| < n. Now, for some (N, b, c) with

|N | = n, let (N \{n}, b, c) be the model in which the last agent n is deleted. By definition,

p̃n−1i , i ∈ N \ {n} is the solution to the welfare maximization problem

max
p1,...,pn−1

n−1∑
i=1

bi(pi)−
n−1∑
i=1

ci

( i∑
j=1

pj

)
(7.16)

and p̃ni , i ∈ N is the solution to the welfare maximization problem

max
p1,...,pn

n−1∑
i=1

bi(pi)−
n−1∑
i=1

ci

( i∑
j=1

pj

)
+
[
bn(pn)− cn

(n−1∑
j=1

pj + pn

)]
. (7.17)
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Since c′n > 0 at every qn =
∑n−1

j=1 pj + pn, it follows from comparing problem (7.16) with

problem (7.17) that

n−1∑
i=1

p̃ni ≤
n−1∑
i=1

p̃n−1i . (7.18)

On the other hand we have that

n−1∑
i=1

p̂n−1i =
n−1∑
i=1

p̂ni , (7.19)

because the unique Nash equilibrium pollution levels of the agents 1, . . . , n − 1 do not

depend on the action (or presence) of agent n. From inequality (7.15) with k = n− 1, and

the (in)equalities (7.18) and (7.19) it follows that

n−1∑
i=1

p̃ni <

n−1∑
i=1

p̂ni .

As noticed in the proofs of Proposition 2.2 and Proposition 2.3, both in the Nash equilib-

rium and in the Pareto efficient output agent n sets it pollution level pn so that

∂bn(pn)

∂pn
−
∂cn(

∑n
j=1 pj)

∂qn
= 0.

Because b′n is strictly decreasing, c′n is strictly increasing and
∑n−1

i=1 p̃
n
i <

∑n−1
i=1 p̂

n
i , we would

have that

∂bn(pn)

∂pn
− ∂cn(

∑n−1
i=1 p̃

n
i + pn)

∂qn
> 0.

for any pn ≤ p̂n. So, it must be that p̃nn > p̂nn. Further, because c′n is continuous and

strictly increasing it has an inverse ∂cn
∂qn

−1
that is also strictly increasing in its argument.

Analogously as for the case n = 2 it now follows that

n∑
i=1

p̃ni =
∂cn
∂qn

−1∂bn(p̃nn)

∂pn
<
∂cn
∂qn

−1∂bn(p̂nn)

∂pn
=

n∑
i=1

p̂ni .

2

Appendix B

Proof that the TIBSα value satisfies Efficiency and α-TIBS fairness. Efficiency

follows straightforwardly from the definition of TIBSα, since∑
i∈N

TIBSαi (N, b, c) =
∑
i∈N

∑
j∈N

αjt
j
i (N, b, c) =

∑
j∈N

αj
∑
i∈N

tji (N, b, c) =
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∑
j∈N

αj W (N, b, c) = W (N, b, c).

To show the second axiom, consider an agent i ∈ N \ {n}. Then∑
j∈P i

TIBSαj (N, b, c) =
∑
j∈P i

∑
k∈N

αkt
k
j (N, b, c) =

∑
j∈P i

(∑
k∈P i

αkt
k
j (N, b, c) +

∑
k∈Qi+1

αkt
k
j (N, b, c)

)
=

∑
k∈P i

αk
∑
j∈P i

tkj (N, b, c) +
∑

k∈Qi+1

αk
∑
j∈P i

tkj (N, b, c) =

∑
k∈P i

αk

(
W (N, b, c)−

∑
j∈Qi+1

tkj (N, b, c)
)

+
∑

k∈Qi+1

αk
∑
j∈P i

tkj (N, b, c) =

∑
k∈P i

αk

(
W (N, b, c)−

∑
j∈Qi+1

UTIj(N, b, c)
)

+
∑

k∈Qi+1

αk
∑
j∈P i

ATSj(N, b, c), (7.20)

where the last two equalities follow from the definition of the payoff vectors tj(N, b, c),

j ∈ N . Substituting equations (4.8) and (4.10) into equation (7.20) yields∑
j∈P i

TIBSαj (N, b, c) =

∑
k∈P i

αk

(
W (N, b, c)−W (Qi+1, b

i+1,n, ci+1,n)
)

+
∑

k∈Qi+1

αkW (P i, b1,i, c1,i). (7.21)

By efficiency of TIBSα in the (sub)river model (P i, b1,i, c1,i) we have that∑
j∈P i

TIBSαj (P i, b1,i, c1,i) = W (P i, b1,i, c1,i) =
∑
k∈N

αkW (P i, b1,i, c1,i). (7.22)

Subtracting equation (7.22) from equation (7.21) we obtain∑
j∈P i

(
TIBSαj (N, b, c)− TIBSαj (P i, b1,i, c1,i)

)
=

∑
k∈P i

αk

(
W (N, b, c)−W (Qi+1, b

i+1,n, ci+1,n)
)

+
( ∑
k∈Qi+1

αk−
∑
k∈N

αk

)
W (P i, b1,i, c1,i) =

∑
k∈P i

αk

(
W (N, b, c)−W (Qi+1, b

i+1,n, ci+1,n)−W (P i, b1,i, c1,i)
)
. (7.23)

Analogously it follows for the agents in Qi+1 that∑
j∈Qi+1

(
TIBSαj (N, b, c)− TIBSαj (Qi+1, b

i+1,n, ci+1,n)
)

=

∑
k∈Qi+1

αk

(
W (N, b, c)−W (P i, b1,i, c1,i)−W (Qi+1, b

i+1,n, ci+1,n)
)
. (7.24)

Multiplying equation (7.23) with
∑

k∈Qi+1
αk and equation (7.24) with

∑
k∈P i αk shows

that the α-TIBS fairness property (5.11) in Axiom 5.1 is satisfied. 2
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