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Abstract

We describe stationarity and ergodicity (SE) regions for a recently proposed class of score

driven dynamic correlation models. These models have important applications in empirical

work. The regions are derived from sufficiency conditions in Bougerol (1993) and take a

non-standard form. We show that the non-standard shape of the sufficiency regions cannot

be avoided by reparameterizing the model or by rescaling the score steps in the transition

equation for the correlation parameter. This makes the result markedly different from

the volatility case. Observationally equivalent decompositions of the stochastic recurrence

equation yield regions with different sizes and shapes. We illustrate our results with an

analysis of time-varying correlations between UK and Greek equity indices. We find that

also in empirical applications different decompositions can give rise to different conclusions

regarding the stability of the estimated model.

Keywords: dynamic copulas, generalized autoregressive score (GAS) models, stochastic

recurrence equations, observation driven models, contraction properties.
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1 Introduction

Time-variation in correlations is an important feature of economic and financial data

and a crucial ingredient of empirical analyses, such as the assessment of risk and the

construction of investment portfolios. Available models for capturing the time-variation in

correlations include, amongst many others, the BEKK model of Engle and Kroner (1995),

the switching correlation models of Pelletier (2006), the DCC model of Engle (2002) with

its adaptation by Aielli (2013), the DECO model of Engle and Kelly (2012), the dynamic

copula models of Patton (2009) and Oh and Patton (2012), and the score driven models

of Creal et al. (2011, 2013a) and Harvey (2013); see also the overviews of Bauwens et al.

(2006) and Silvennoinen and Teräsvirta (2009).

Here, we focus on the stochastic properties of the recently proposed score driven models

of Creal et al. (2011, 2013a) and Harvey (2013), which we refer to as the generalized

autoregressive score (GAS) model. These models have been shown to be particularly useful

when modeling fat-tailed or skewed data, such as often encountered in empirical finance.

The dynamics of correlations and volatilities in these models are driven by the score of

the error distribution. If the latter is fat-tailed, the score driven dynamics automatically

correct for influential observations, see Creal et al. (2011). In this way, they share some

similarities with models from the robust GARCH literature; see for example Boudt et al.

(2013). The score driven approach used in the construction of GAS models, however,

provides a much more general and unified framework for parameter dynamics that is

applicable far beyond the volatility and correlation context; see Creal et al. (2013a,b) for

a range of other examples. In addition, from a forecasting perspective GAS models have a

similar performance to correctly specified state-space models, see Koopman et al. (2012).

Despite their proven empirical usefulness, the theoretical properties of GAS models

are less well developed. The complication lies in the highly nonlinear dynamics of the

time-varying parameter in typical GAS models. In this paper we contribute to our

understanding of the stochastic properties of GAS models for dynamic correlations. We do

so by studying which models and which parameter values generate stationary and ergodic

(or SE from now on) time series processes. This offers an important characterization of the

stochastic properties of GAS models. Furthermore, together with the existence of certain

unconditional moments, it constitutes an important ingredient in proofs of consistency

and asymptotic normality of extremum estimators; see e.g. Straumann and Mikosch (2006)

for maximum likelihood estimation of nonlinear conditional volatility models, Francq and
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Zakoian (2011) and Boussama et al. (2011) for the case of GARCH models, and Harvey

(2013) for GAS volatility models. For each correlation model we consider, we define the

parameter values that ensure the SE property and call this the ‘SE region’ of the parameter

space. To establish SE regions, we follow the classical average contraction argument

for stochastic recurrence relations as laid out in the sufficient conditions formulated by

Bougerol (1993). Given these conditions, we compute numerically the SE regions for a

range of empirically relevant models.

Our contribution is threefold. First, we are the first to derive SE regions for the class

of score driven correlation models that have been suggested recently in the literature. We

show that the SE sufficiency regions take a highly non-standard form, dissimilar to the

familiar triangle and curved triangular shape for the GARCH model, see Nelson (1990).

In an empirical example, we demonstrate that the conditions for nonlinear recurrence

equations can be used to ensure stationarity of concrete models, applied on real data.

This also extends the results in Blasques et al. (2012) for volatility and tail index models

with univariate observations to the case of time-varying parameters and multivariate

observations. Second, we show that the shape and size of the SE sufficiency region

as derived from the conditions of Bougerol (1993) depends on the way the stochastic

recurrence equation for the correlation is constructed from bivariate uncorrelated noise. In

particular, we show that the choice of the square root of the correlation matrix in this

construction has a non-trivial effect on the size of the SE sufficiency region. Third, we

show analytically why the correlation case is markedly different from the volatility case.

For the volatility case, Harvey (2013) shows that modeling the log-volatility renders the

information matrix independent of the time-varying volatility. The resulting stochastic

recurrence equation becomes linear, and we can use linear processes theory to study the

SE properties in that case. A similar feature is generally not available for the dynamic

correlation model: neither a reparameterization of the correlation, nor a scaling of the

score steps, makes the stochastic recurrence equation a linear process. The reason is that

unlike the volatility case, the GAS steps for the correlation model consist of two separate

terms with different nonlinearities in the correlation parameter.

The remainder of this paper is organized as follows. In Section 2, we introduce the

GAS model for dynamic bivariate correlations. In Section 3 we state the conditions for

the SE sufficiency regions. In Section 4, we determine the SE regions numerically for a

number of different models. We also show where typical empirical estimates are located

with respect to the SE region’s boundaries by investigating a time-varying correlation

3



model for UK and Greek equity indices. We conclude in Section 5. The Appendix gathers

the more technical results and derivations.

2 Generalized Autoregressive Score models for cor-

relations

Consider a real-valued bivariate stochastic sequence of observations {yt, t ∈ N} generated

by a zero mean elliptical conditional distribution with time-varying correlation matrix

R(ft),

yt|ft
i.i.d.∼ p(y′tR(ft)

−1yt)

|R(ft)|1/2
, R(ft) =

 1 ρ(ft)

ρ(ft) 1

 , (1)

where p : R+
0 → R+

0 denotes a real-valued density generator function in the quadratic

form y′tR(ft)
−1yt, the sequence {ft}t∈N is a real-valued sequence for the time-varying

parameter ft, ρ(ft) ∈ (−1, 1) is the dynamic correlation parameter at time t, and R(ft)

is the correlation matrix at time t. For example, if yt is conditionally normal, we have

p(x) = (2π)−1 exp(−x/2). We fully focus the exposition on the correlation case by

restricting the variances in (1) to one. Time-varying variances in score driven models

have already been dealt with in for example Creal et al. (2011) and Harvey (2013). The

formulation in (1) can also be interpreted as a copula model, see the discussion in Patton

(2009). Under the assumptions of stationary marginals and no volatility spillovers, stability

conditions for the copula then lead to stability of the whole model. The class of elliptical

models is also economically interesting, as it enables an analytic characterization of the

resulting potfolio returns and the risk-return tradeoff; see for example Chamberlain (1983),

Owen and Rabinovitch (1983), and Hamada and Valdez (2008).

Following Creal et al. (2011,2013a), the generalized autoregressive score (GAS) dynamics

for the time-varying parameter ft in (1) take the form

ft+1 = ω + βft + αs(ft, yt), (2)

s(ft, yt) = S(ft)q(yt, ft), q(yt, ft) =
∂

∂f
log

p(y′tR(f)−1yt)

|R(f)|1/2

∣∣∣∣
f=ft

, (3)

with initial condition f1 ∈ F , where (ω, α, β) ∈ R3 is a vector of time-invariant parameters,

and S is a scaling function for the score of the conditional observation density. We define

the parameter vector θ ∈ Θ as θ = (ω, α, β), with Θ ⊆ R3 denoting the parameter space.

4



The dynamic specification in (2) can easily be extended to include more lags of either

s(ft, yt) and/or ft. For the case of the bivariate correlation model (1), we obtain

q(yt, ft) =
ρ̇(ft)

1− ρ(ft)2

(
ṗ(y′tR(ft)

−1yt)

(
2ρ(ft)y

′
tR(ft)

−1yt − y′t
(

0 1

1 0

)
yt

)
+ ρ(ft)

)
(4)

with ṗ(x) = ∂ log p(x)/∂x and ρ̇(ft) = ∂ρ(f)/∂f |f=ft .

Each choice for the scaling function S in (3) gives rise to a new GAS model. An often

used choice of S relates to the local curvature of the score as measured by the information

matrix, for example

S(f) = (It(f))−a, It(f) = Et−1[q(yt, f)q(yt, f)′], (5)

where a is typically taken as 0, 1/2 or 1.

The parameter dynamics in (2) and (3) are intuitive. The time-varying parameter ft is

updated in the (scaled) direction of steepest ascent as measured by the scaled conditional

log observation density at time t. For example, standard GARCH and ACD model

are special cases of the GAS framework, see Creal et al. (2013a). The GAS set-up is

very general and can also easily be applied outside the correlation context as long as a

conditional observation density is available. For other examples, including many new

models, we again refer to Creal et al. (2013a,b).

3 Conditions for stationarity and ergodicity

We follow the approach of Blasques et al. (2012), who consider a treatment of univariate

GAS models. Our stationarity and ergodicity (SE) results build on the stochastic recurrence

relations or iterated random functions approach; see Diaconis and Freedman (1999) and

Wu and Shao (2004). In particular, we use the sufficient conditions of Bougerol (1993)

and results in Straumann and Mikosch (2006) to establish exponentially fast almost sure

convergence of the time series (yt, ft)t∈N generated by (1)–(3) with initial condition f1 ∈ F
to a unique SE sequence (ỹt, f̃t)t∈Z.

Let F ⊆ R and Y ⊆ R2 denote the domains of ft and yt, respectively. We have that

ρ : F → (−1, 1) and s : F ×Y → R and derivatives thereof are almost surely (a.s.) smooth

in ft. Also we require the measurability of s and of its derivatives with respect to ut.
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Using the model as specified in (1)–(4), we analyze the stochastic properties of yt and ft

via the stochastic recurrence equation

ft+1 = φt(ft; θ), (6)

where

φt(f ; θ) = ω + βf + αS(f) q(h(f)ut, f), h(f)h(f)′ = R(f), (7)

and {ut} is an independent and identically distributed (i.i.d.) sequence with yt = h(ft)ut.

We notice two particular features of equations (6) and (7). First, the dynamics of {ft}
are now written in terms of the innovation sequence {ut} rather than the observed data

{yt} by substituting h(ft)ut for yt. As a result, when seen as a function of f , the shape

of q(h(f)ut, f), for every ut, is markedly different from that of q(yt, f), for every yt. This

additional dependence on f may either complicate or simplify the nonlinear dependence of

ft+1 on ft as embedded in (7). Second, the functional form of (7) is not uniquely defined.

Each square root h(f) of the correlation matrix R(f) leads to an observationally equivalent

model in yt. The choice of h(f), however, is not innocuous for determining the size and

shape of the SE region, as we see later.

Continuity of φt in ut for every t can be used to ensure that {φt} is an i.i.d. sequence of

functions. Together with equations (6)–(7), it then follows directly from Bougerol (1993)

and Straumann and Mikosch (2006) that there is a unique SE solution to (1)–(3) if φt

is contracting on average, i.e., if the Lyapunov exponent of the mapping is negative. In

particular, we obtain the desired SE result if

E log sup
f,f∗∈F

|φt(f ; θ)− φt(f ∗; θ)|
|f − f ∗|

≤ E log sup
f∈F

∣∣∣∣∂φt(f ; θ)

∂f

∣∣∣∣ < 0; (8)

see Bougerol (1993). In computing the supremum in condition (8), f is treated as a

parameter rather than as the random variable ft.

For the score driven dynamic correlation model of Section 2, we prove the following

result in the Appendix.

Lemma 1. Let Ψ be a class of functions such that for every ψ ∈ Ψ, ψ ∈ C1([−1, 1],R) with

ψ̇(ρ) = ∂ψ(ρ)/∂ρ = O((1− ρ2)−1/2). Assume that E|ṗ(u′tut)ui,tuj,t| <∞ for i, j ∈ {1, 2},
with ut = (u1,t, u2,t)

′. The process {ft}t∈N generated by the dynamic correlation model
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(1)–(4) converges exponentially fast almost surely1 (e.a.s.) to a unique stationary and

ergodic process {f̃t}t∈Z for any initial condition f1 ∈ F if

inf
ψ∈Ψ

E log sup
f∈F

∣∣∣∣β + α

(
∂

∂f

(
S(f) ρ̇(f)

1− ρ(f)2

))
g(ρ(f))k(ut) + α

S(f) ρ̇(f)2

1− ρ(f)2
ġ(ρ(f))k(ut)

∣∣∣∣ < 0,

(9)

where

g(ρ) =
(
ρ , ρc2ψ(ρ)−

√
1− ρ2s2ψ(ρ) ,

√
1− ρ2c2ψ(ρ) + ρs2ψ(ρ)

)
, (10)

k(ut) =
(
ṗ(u′tut)u

′
tut + 1 , ṗ(u′tut)(u

2
1,t − u2

2,t) , −2ṗ(u′tut)u1,tu2,t

)′
, (11)

ġ(ρ) = ∂g(ρ)/ρ, c2ψ(ρ) = cos(2ψ(ρ)), and s2ψ(ρ) = sin(2ψ(ρ)).

We note several features of the result stated in Lemma 1. First, the SE region depends

directly only on the parameters α and β, on the functional forms of S(f) and q(h(f)ut, f),

and on the density of ut. The depencence on the latter enters in two ways, namely through

the expectations operator in (9) and through the functional form of k(ut) in (11). Also

note that the expectations operator in (9) does not require the second moments of ut

to exist. Rather, we only require the expectation of |ṗ(u′tut)ui,tuj,t| for i, j ∈ {1, 2} to

exist. This condition is much weaker, particularly for fat-tailed elliptical densities. For

example, it is easily satisfied for the bivariate Cauchy distribution, even though neither the

second, nor the first moment exists for this distribution. The continuity and boundedness

properties of s can be verified immediately for parametric distributional forms, notably

for the Student’s t density in Section 4.1.2 Therefore, condition (9) effectively forms a

sufficient condition for the SE property of the model.

Second, equation (9) directly reveals that the correlation case is markedly different

from the volatility case. For the volatility case, it is shown in Harvey (2013) and Blasques

et al. (2012) that through a clever choise of parameterization h or scaling S the scaled

score in recurrence relation (7) can be made independent of ft The SE condition then

reduces to the requirement that |β| < 1. In the volatility case the analogue of the function

g(ρ) is scalar valued. In the correlation case, (9) shows that through the trivariate nature

of the functions g(ρ) and ġ(ρ) the contraction condition consists of a number of different

terms, each with a different nonlinear dependence on f . It is impossible to off-set all of

1A sequence {xt} converges exponentially fast almost surely to a sequence {x̃t} if for some constant

c > 1 we have ct · |xt − x̃t|
a.s.→ 0 for t→∞.

2The functional forms for the updating equation for the particular case of the Student’s t distribution
are presented in the online appendix (http://bit.ly/12GFbro) accompanying this paper.
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these simultaneously by a single choice of scaling function or parameterization. This makes

the correlation model theoretically more interesting in its own right.

Third, the SE sufficient condition in (9) has an additional degree of flexibility provided

by the choice of ψ. As follows from the proof of Lemma 1, the function ψ determines which

square root h(f) is used for the correlation matrix R(f). For the purpose of guaranteeing

a proper correlation matrix, define φ(ρ) = arcsin(ρ)− ψ(ρ), and

h(f) =

 cos(φ(ρ(f))) sin(φ(ρ(f)))

sin(ψ(ρ(f))) cos(ψ(ρ(f)))

 , (12)

such that h(f)h(f)′ = R(f) for all ψ ∈ Ψ. Any choice of ψ and thus of h results in an

observationally equivalent model for yt. The dynamic properties of {ft} following from (8),

however, depend on the precise ψ that is chosen. We therefore obtain a sufficient condition

for SE if (8) is satisfied for any choice of ψ ∈ Ψ satisfying the conditions formulated in

Lemma 1. This yields the additional infimum in condition (9). A similar complication is

absent in the volatility case; compare Blasques et al. (2012) and Harvey (2013).

Fourth, condition (9) simplifies for particular choices of parameterizations and scale

functions. For example, if we use the familiar Fisher transformation ρ(f) = tanh(ft), the

correlation lies in the interval (−1,+1) by construction for all values of ft ∈ R. The GAS

dynamics automatically adjust to this parameterization via the use of the score in (3). The

use of the Fisher transformation has the additional advantage that its derivative is given

by ρ̇(ft) = 1− ρ(ft)
2. This simplifies the expressions in (9) considerably. If, moreover, we

choose a scaling function that is independent of ft, the entire middle term in (9) vanishes.

To conclude this section, we provide an analytic result on the optimal choice of the

function ψ that can be obtained for the special setting of the familiar Fisher transformation

ρ(f) = tanh(ft) with unit scaling S(f) ≡ 1. Using Jensen, triangle and Cauchy-Schwarz

inequalities, we then obtain a stricter sufficient condition for SE from (9) as

inf
ψ∈Ψ

E sup
f∈F

∣∣β + α(1− ρ(f)2)ġ(ρ(f))k(ut)
∣∣ ≤

|β|+ |α| inf
ψ∈Ψ

E sup
f∈F

∣∣(1− ρ(f)2)ġ(ρ(f))k(ut)
∣∣ ≤

|β|+ |α| E‖k(ut)‖ · inf
ψ∈Ψ

sup
f∈F

∥∥(1− ρ(f)2) ġ(ρ(f))
∥∥ < 1, (13)

where ‖·‖ denotes the standard Euclidean norm. Instead of the Cauchy-Schwarz inequality,
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we could also use a second triangle inequality to obtain the alternative stricter sufficient

condition

|β|+ |α| inf
ψ∈Ψ

E sup
f∈F

∣∣(1− ρ(f)2)ġ(ρ(f))k(ut)
∣∣ ≤

|β|+ |α| inf
ψ∈Ψ

3∑
i=1

sup
f∈F

∣∣(1− ρ(f)2) ġi((ρ(f)))
∣∣ · E |ki(ut)| < 1, (14)

where ġi and ki are the ith elements of ġ and k, respectively. Using either of the more

stringent SE conditions (13) or (14), we obtain the following result.

Lemma 2. Under the assumptions stated in Lemma 1, setting ψ(ρ) = cψ arcsin(ρ) with

cψ = 1/2 reaches the functional lower bound for the sufficient condition stated in either

equation (13) or (14). The condition then reduces to |β|+ |α| E‖k(ut)‖ < 1 for condition

(13) and |β|+ |α| E|k1(ut)| < 1 for condition (14), respectively, where k1(ut) is the first

element of k(ut). The link function becomes the symmetric matrix root

h(f) =

 cos(arcsin(ρ(f))/2) sin(arcsin(ρ(f))/2)

sin(arcsin(ρ(f))/2) cos(arcsin(ρ(f))/2)

 .

The result in Lemma 2 shows that we uniformly obtain the largest SE region for the

stricter conditions (13) or (14) for the symmetric matrix root h in (7). The choice of h in

setting up the dynamic equation (6) is thus far from innocuous and directly influences the

size and shape of the SE region. We illustrate our results from this section numerically in

the next section for a number of relevant dynamic correlation models.

4 Numerical and empirical results

4.1 Numerical results

Alternative choices for p, S, ρ, and h give rise to different models with different SE regions.

For each particular choice we check for every pair (α, β) whether the sufficient condition

(9) is satisfied. We plot the SE region in the (α, β)-plane by numerically identifying, for

every given α in a grid, the corresponding maximum and minimum values of β that satisfy

(9).

To fix ideas, we consider the class of Student’s t densities for ut as in Creal et al. (2011).

The Fisher transformation ρ(ft) = tanh(ft) ensures propers value for the correlation

9



parameter. As indicated in Section 3, this also simplifies the evaluation of the SE condition

in Lemma 1. For the scaling function, we adopt the three choices based on the information

matrix as presented in equation (5).

Next, we investigate the sensitivity of the SE region to the choice of matrix root h(·).
For this, we consider two prominent alternatives, both described by ψ(ρ) = cψ arcsin(ρ)

for cψ ∈ R. The first alternative is the symmetric matrix root of Lemma 2 with cψ = 1/2.

The second is the familiar (lower triangular) Choleski decomposition, which is obtained by

setting cψ = 1.

To numerically evaluate the sufficient condition for SE as formulated in (9), we need

to solve an optimization problem within an integration procedure. Due to the univariate

state equation, the integral can be evaluated via a quadrature rule. Local optima are

avoided by evaluating the function over a wide grid and by noting that (∂/∂f)is(f, yt)→ 0

as |f | → ∞ for all i > 1. The numerically cumbersome optimization required by condition

(9) for every data generating process can be circumvented by storing maximally positive

and negative values of S(f) q(h(f)ut, f) and recycling these for evaluation at different

points in the (α, β)-plane. We can further halve the computation time by noting that in

our setting |∂φt(f ; θ)/∂f | = |∂φt(f ;−θ)/∂f |.
In the left panel of Figure 1, we present the results for the normal distribution and the

symmetric root h(f). The figure contains three different regions, each one corresponding

to a different form of scaling in equation (5). Points inside each region are combinations of

(α, β) for which the sufficient condition (9) is met. The shape of the sufficient SE region is

anti-symmetric around the origin due to the absolute signs in (9). The region also shows a

non-monotonic curvature, particularly in the second and fourth quadrant. These are due

to the use of absolute values, the change in the location of the supremum in (9), and a

shift in the relevant region of integration if the derivative of S(f)q(h(f)ut, f) changes sign.

An interesting feature in Figure 1 is the behavior of the region for square root inverse

information matrix scaling, a = 1/2 in (5). First note that a = 1/2 has the property that

the direct updating via s(ft, yt) is invariant with respect to reparametrizations of ft and

with respect to data transformations. Furthermore, the steps S(f)q(yt, f) in (4) are by

construction martingale differences with unit variance; see also Creal et al. (2013). This

implies that {ft}t∈N converges to a covariance stationary process as long as |β| < 1. The

region in Figure 1 shows that |β| < 1 is necessary, but not sufficient for (9) to be satisfied.

This relates directly to discussions in the GARCH literature, where in the univariate

setting covariance stationarity is a more restrictive condition than strict stationarity, but

10



1

1

1

1

1

1
1

1

0.5

0.5

0.5

0.
5

0.5

0.5
0.5

0.
5

0

0

0

0

0

0

0
0

0

β

α

 

 

−1 −0.5 0 0.5 1
−2

−1

0

1

2

Inverse information matrix scaling (a=1)

Inverse square root information matrix scaling (a=1/2)

Unit Scaling (a=0)

(a) Symmetric root (cψ = 1/2)

1

1 1

1

1

1

1

0.5

0.5

0.
5

0.5

0.5

0.5

0.
5

0

0

0

0

0

0
0

0

β

α

 

 

−1 −0.5 0 0.5 1
−2

−1

0

1

2

Inverse information matrix scaling (a=1)

Inverse square root information matrix scaling (a=1/2)

Unit Scaling (a=0)

(b) Choleski root (cψ = 1)

Figure 1: Stationarity and Ergodicity (SE) sufficiency regions for the normal distribution
and different scaling choices S(f) = (It(f))−a for a = 0, 1/2, 1

Notes: The two panels contain different regions obtained by parametrizing the matrix roots h(f) with
ψ(ρ) = cψ arcsin(ρ). The left panel panel contains the results for the symmetric matrix root (cψ = 1/2)
and the right panel corresponds to the Choleski decomposition (cψ = 1).

the relation between the two remains an open question in a multivariate context; see for

example Boussama et al. (2011).

The right hand panel in Figure 1 shows the different SE regions for a different choice

of matrix root h(f), namely the Choleski decomposition. It is clear that the sufficiency

regions in the (α, β)-plane are smaller than the corresponding regions for the symmetric

root. As models constructed with a symmetric root and a Choleski root are observationally

equivalent, we can take the larger regions as sufficient regions for SE to hold; see also

Lemma 2. The differences make clear that the choice of root is important for determining

the size of the region either analytically or numerically.

In Figure 2, we show the results for the Student’s t distribution for different degrees

of freedom using square root information matrix scaling (a = 1/2). We see that the SE

region heavily depends on the degrees of freedom parameter. In the empirically relevant

first quadrant, for the Choleski decomposition, fatter tails imply that only smaller values

of |α| guarantee SE for given values of |β| < 1. For the symmetric root decomposition, on

the other hand, the opposite is true. In Section 4.2, we demonstrate that this difference

can crucially affect the applicability of our methodology in the empirically relevant subset

of the parameter space. Part of the discrepancy is explained by the fact that changing the

degrees of freedom parameter directly influences the magnitude of the steps S(f)q(yt, f);

see also Creal et al. (2011).
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Figure 3: Stationarity and Ergodicity (SE) sufficiency regions for the normal distribution
using unit scaling (S(f) ≡ 1) and the stricter inequalities in equation (13).

To conclude the numerical evaluation of the sufficient conditions, we highlight the

results stated in Lemma 2. Figure 3 plots the results for ψ(ρ) = cψ arcsin(ρ). The left

panel gives the result for the symmetric matrix root cψ = 1/2. The right panel is for the

Choleski decomposition, cψ = 1. Each panel presents 5 different regions. The outer region

is based on the numerical evaluation of the original condition (9), with the infimum over

ψ replaced by the choice ψ(ρ) = arcsin(ρ)/2. The next region is obtained a numerical

evaluation of (9) after applying Jensen’s inequality, interchanging the expectations and the

log operator. The next region follows after applying the triangle inequality, see the second

line of equation (13). The final two regions are obtained after applying the Cauchy-Schwarz,

or a second triangle inequality; see equations (13) and (14).

First we note that all regions are wider for the symmetric root case compared to their
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Choleski based counterparts. This is in line with Lemma 2. This not only holds for

the stricter contraction conditions in (13) and (14), but also for the less strict original

contraction conditions. A second thing to note is that for the symmetric root case the

region based on the double triangle inequality coincides with the region based on a single

application of the triangle inequality. The same does not hold for the Choleski root. It

suggests that the use of the bound in equation (14) might be the easiest and most useful

one to apply to empirical models.

4.2 Empirical illustration

In this section we study the time-varying correlation between the London and Athens

stock exchange. We take daily returns of the FTSE 100 and the Athex Composite over

the period January 1, 2002 to March 2, 2013. We are particularly interested in whether

there are indications that the correlation between these two markets changed since the

onset of the European sovereign debt crisis. To focus on the correlation part of the model,

we first filter both series using the GJR-GARCH model. Using the filtered residuals, we

estimate the copula part of the model using Gaussian GAS dynamics as an illustration.

The left graph in Figure 4 shows the dynamic correlations for the filtered series along with

a 60-day rolling window correlation estimate as a non-parametric benchmark. Though

the correlation is generally stable, there are also clear signs of short term memory in the

series and periodic swings. Interestingly, the correlation patterns suggest that the Greek

sovereign debt crisis, if anything, has reduced the correlation between the two indices.

The estimated GAS correlation model turns out to be highly persistent. The estimated

values of α and β are indicated by the cross mark in the right panel of Figure 4. The

value of β is very close to 1, which is typical for GAS scale models based on daily data.

The figure also shows the SE region boundaries based on the Choleski and the symmetric

root specification. Clearly, we confirm the importance of the choice of ψ in verifying the

SE properties. The symmetric root based region can be used to show the SE nature of

the data. In contrast, using the Choleski based region one would fail to obtain this result.

Again we stress that all of these regions are only based on sufficient conditions, and that

the actual regions may be wider. The empirical results do illustrate, however, that the

stationarity and ergodicity properties of score driven correlation models can be studied

also for real data.

To further corroborate the sensitivity of the SE region for alternative empirical models,
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Figure 4: Empirical estimation

Notes: The left panel displays filtered correlations between the FTSE 100 (UK) and Athex Composite
(Greece) equity index returns. The right panel puts the empirical estimates obtained by unconstrained
estimation into the to the zoomed in SE region perspective.

Table 1: Estimation results
Gaussian Student’s t with 5 DoF

a = 0 a = 0.5 a = 1 a = 0 a = 0.5 a = 1

ω 0.011 0.011 0.011 0.010 0.009 0.009
(0.014) (0.018) (0.014) (0.005) (0.004) (0.005)

α 0.027 0.031 0.035 0.041 0.038 0.036
(0.015) (0.022) (0.018) (0.010) (0.008) (0.008)

β 0.977 0.976 0.976 0.966 0.967 0.968
(0.028) (0.038) (0.028) (0.014) (0.011) (0.014)

Log-likelihood −7904.1 −7903.8 −7903.7 −7861.4 −7861.5 −7861.7

Inside SE region?
. . . For cψ = 1 yes yes no yes yes no
. . . For cψ = 1/2 yes yes yes yes yes yes

we estimated a range of GAS models for the filtered equity returns. The models different

in their choice of the scaling function for the score, i.e., the choice of a, and in the choice

of the error distribution. We consider a ∈ {0, 0.5, 1} and a Gaussian and a Student’s

t distribution with 5 degrees of freedom. The results are presented in Table 1. For all

models, the estimate of β is large and close to one, implying that there is strong persistence

in the correlation dynamics at the daily frequency.

In the current context with all models having the same number of parameters, the

log-likelihood value can be interpreted as information theoretic model selection criteria,

see Akaike (1974). Switching to a Student’s t specification with 5 degrees of freedom,
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the likelihood increases by more than 40 points, which indicates a strong preference for a

fat-tailed specification. The differences between the models within a distributional class

are small and the choice of information matrix scaling does not change the qualitative

nature of the paths.

The two rows at the bottom of the table indicate whether the estimated parameters

lie inside the SE region as computed using the techniques in Section 4.1. The results are

identical for the Gaussian and the Student’s t model. The time series processes implied by

the estimated empirical models are stationary and ergodic for unit (a = 0) and inverse

square root information matrix (a = 0.5) scaling. This holds irrespective of whether

the symmetric root (cψ = 1/2) or Choleski root (cψ = 1) is used to verify the average

contraction condition. For inverse information matrix scaling, however, we cannot ensure

SE properties for the Choleski root, while we can for the symmetric root; see also the right

hand panel in Figure 4. This again highlights that the use of different constructive devices

such as different matrix roots is also relevant empirically for the verification of sufficient

conditions for SE in a multivariate setting.

5 Concluding Remarks

We have derived sufficient regions for stationarity and ergodicity for a new class of score

driven dynamic correlation models. The regions exhibit a highly non-standard shape.

Moreover, we showed that the shape and size of the SE regions depends on the type

of matrix root that is chosen in checking the sufficient conditions of Bougerol (1993).

The numerical results were supported by an empirical investigation of the time varying

correlation between UK and Greek stock markets.

There are a number of possible interesting extensions of our current results. First, one

can try to generalize the results to the fully multivariate (rather than bivariate) setting of

score driven correlation models proposed in Creal et al. (2011). The challenge here is to

limit the number of parameters describing the dynamics of time-varying volatilities and

correlations. Second, one can try to relax the uniform bounds on the average contraction

propery. Third, one can try to apply the current stationarity and ergodicity results

in a proof of the asymptotic properties of the maximum likleihood estimator for GAS

correlation models, such as consistency and asymptotic normality. This would require us

to also establish the existence of nonlinear moments of ft. We leave this for future work.
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A Proofs

We first state Theorem 3.1 of Bougerol (1993). Denote by log Λ(φ0) the term inside the expectation

on the left hand side of (8).

Theorem 1 (Bougerol (1993, Theorem 3.1)). Let {φt} be a stationary and ergodic sequence of

endomorphic Lipschitz maps. Assume

1. There exists a f ∈ F and distrance measure d such that E[log+ d(φ0(f), f)] <∞;

2. E[log+ Λ(φ0)] <∞;

3. E[log Λ(φ
(r)
0 )] < 0, where φ

(r)
0 denotes the r-fold backward iterates.

Then the stochastic recurrence equation (6) admits a stationary ergodic solution {ft}.

Proof of Lemma 1:

The SE property of {ft} follows from the measurability with respect to {ut}. The Lips-

chitz property is obtained from the boundedness of the terms in equation (A6) below. Con-

dition 1 is then ensured by the definition of the GAS transition equation and the assumed

moments in Lemma 1, as we can write E[log+ d(φ0(f), f)] ≤ E|φ0(f) − f | = E|ω + (β − 1)f +

αS(f)q(h(f)u0, f)| ≤ |ω|+ |(β − 1)f |+ αE|S(f)q(h(f)u0, f)|. As requirement 2 is implied by 3,

we can now turn our main interest towards the study of the latter, non-trivial, condition 3.

We write φ and ψ for φ(ρ) and ψ(ρ), respectively. Define the shorthand notation cw =

cw(ρ) = cos(w(ρ)) with w : [−1, 1]→ R, and similarly sw = sw(ρ) = sin(w(ρ)). Each matrix root

h of the correlation matrix can be written as

h(f) =

 cφ(ρ(f)) sφ(ρ(f))

sψ(ρ(f)) cψ(ρ(f))

 . (A1)

Using (A1), we obtain  cφ sφ

sψ cψ

 cφ sψ

sφ cψ

 =

 1 sφ+ψ

sφ+ψ 1

 ,

such that we require sin(ψ + φ) = ρ or φ(ρ) = arcsin(ρ)− ψ(ρ) for some arbitrary function ψ(ρ).
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It follows that sφ = ρcψ −
√

1− ρ2sψ, and cφ =
√

1− ρ2cψ + ρsψ. From this we obtain cφ sψ

sφ cψ

 0 1

1 0

 cφ sφ

sψ cψ

 =

 2cφsψ sφsψ + cφcψ

sφsψ + cφcψ 2sφcψ

 =

 2cφsψ cφ−ψ

cφ−ψ 2sφcψ

 =

 −ρc2ψ +
√

1− ρ2s2ψ + ρ
√

1− ρ2c2ψ + ρs2ψ√
1− ρ2c2ψ + ρs2ψ ρc2ψ −

√
1− ρ2s2ψ + ρ

 =: H(ρ) + ρI.

Using yt = h(f)ut, we can rewrite (4) as

(1− ρ(f)2)q(h(f)ut, f)/ρ̇(f) =

2ṗ(u′tut)ρ(f)u′tut − ṗ(u′tut)u′t (H(ρ(f)) + ρ(f)I)ut + ρ(f) =

ṗ(u′tut)ρ(f)u′tut − ṗ(u′tut)u′tH(ρ(f))ut + ρ(f) =

ρ(f)
(
ṗ(u′tut)u

′
tut + 1

)
− ṗ(u′tut)u′tH(ρ(f))ut = g(ρ)k(ut), (A2)

with

g(ρ) =
(
ρ , ρc2ψ −

√
1− ρ2s2ψ ,

√
1− ρ2c2ψ + ρs2ψ

)
,

k(ut) =
(
ṗ(u′tut)u

′
tut + 1 , ṗ(u′tut)(u

2
1,t − u2

2,t) , −2ṗ(u′tut)u1,tu2,t

)′
,

and ut = (u1,t, u2,t)
′. Defining ġ(ρ) = ∂g(ρ)/ρ as the derivative of g(ρ), it holds that

ġ(ρ) =
(

1 , c2ψ(ρ) + ρ · (1− ρ2)−1/2s2ψ(ρ) , −ρ · (1− ρ2)−1/2c2ψ(ρ) + s2ψ(ρ)
)

+

2ψ̇(ρ)
(

0 , −ρs2ψ(ρ)−
√

1− ρ2c2ψ(ρ) , −
√

1− ρ2s2ψ(ρ) + ρc2ψ(ρ)
)
, (A3)

= (1, 0, 0) +
(

(1− ρ2)−1/2 − 2ψ̇(ρ)
)
·(

0 ,
√

1− ρ2c2ψ(ρ) + ρ · s2ψ(ρ) ,
√

1− ρ2s2ψ(ρ)− ρ · c2ψ(ρ)
)
. (A4)

The definitions in (7) and (A2) then imply that (8) can be written as

∂φt(f ; θ)

∂f
= β + α

(
∂

∂f

(
S(f) ρ̇(f)

1− ρ(f)2

))
g(ρ(f))k(ut) + α

S(f) ρ̇(f)

1− ρ(f)2

∂g(ρ(f))

∂f
k(ut). (A5)
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Proof of Lemma 2: Using (A4), we can rewrite ‖ġ(ρ)‖2 as

1 +

∣∣∣∣∣ 1√
1− ρ2

− 2ψ̇(ρ)

∣∣∣∣∣
2

·
(
c2ψ(ρ)2 + s2ψ(ρ)2

)
= 1 +

∣∣∣∣∣ 1√
1− ρ2

− 2ψ̇(ρ)

∣∣∣∣∣
2

≥ 1. (A6)

For ψ(ρ) = arcsin(ρ)/2 the second term vanishes and we obtain the functional lower bound

(1 − ρ2) · ‖ġ(ρ)‖2 = 1 − ρ2, which reaches its supremum of 1 at ρ = 0. The rest of the result

follows directly from the definition of φ(ρ) = arcsin(ρ)− ψ(ρ) = arcsin(ρ)/2. For computational

reasons, it may be useful to note that

‖k(ut)‖2 = 2ṗ(u′tut)
2(u′tut)

2 + 2ṗ(u′tut)(u
′
tut) + 1.

which only depends on the quadratic form u′tut.

An analogous line of reasoning holds for condition (14) based on the double triangle inequality.
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