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Abstract

Countless test statistics can be written as quadratic forms in certain random vectors, or

ratios thereof. Consequently, their distribution has received considerable attention in the

literature. Except for a few special cases, no closed-form expression for the cdf exists, and one

resorts to numerical methods. Traditionally the problem is analyzed under the assumption

of joint Gaussianity; the algorithm that is usually employed is that of Imhof (1961). The

present manuscript generalizes this result to the case of multivariate generalized hyperbolic

(MGHyp) random vectors. The MGHyp is a very flexible distribution which nests, among

others, the multivariate t, Laplace, and variance gamma distributions. An expression for the

first partial moment is also obtained, which plays a vital role in financial risk management.

The proof involves a generalization of the classic inversion formula due to Gil-Pelaez (1951).

Two applications are considered: first, the finite-sample distribution of the 2SLS estimator

of a structural parameter. Second, the Value at Risk and Expected Shortfall of a quadratic

portfolio with heavy-tailed risk factors.
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1 Introduction

The generalized hyperbolic (GHyp) distribution was introduced by Barndorff-Nielsen (1977) in

the context of describing the log size of particles, but has since found applications in a variety

of fields, notably finance: an early reference in the latter field is Eberlein and Keller (1995). Its

multivariate extension, to be referred to as the MGHyp in the sequel, has first been discussed in

Blæsild and Jensen (1981). It, too, has received considerable attention in the finance literature.

The reason for the popularity of the (M)Ghyp is its flexibility: it can model thin, heavy, and

semi-heavy tails, and nests many popular distributions as special cases, such as the Student’s

t, Laplace, Variance Gamma, Hyperbolic, and Normal Inverse Gaussian distributions and their

multivariate extensions, all of which have been applied successfully in financial modelling, see

Hellmich and Kassberger (2011) and the references therein.

The present manuscript is concerned with quadratic forms in MGHyp random vectors, or

more precisely, the sum of a quadratic and a linear form. Quadratic forms in random variables

arise in a variety of applications; in Econometrics, many testing problems in linear models lead to

statistics whose null distribution can be expressed as that of a quadratic form. Some well-known

examples are Durbin and Watson’s (1950) test for autocorrelation, Dickey and Fuller’s (1979)

test for a unit root (in its “coefficient” form), and the KPSS test for stationarity (Kwiatkowski

et al., 1992). Consequently, a number of authors have considered algorithms for evaluating the

distribution function of such random variables (see, e.g., the references in Forchini, 2002, Section

2.2). Typically, these algorithms involve inverting the characteristic function of the random

variable of interest via the inversion formula of Gil-Pelaez (1951). Among them, Imhof’s (1961)

result appears to be the most widely used.

Unfortunately, the only case in which the characteristic function of a quadratic form is

tractable is that in which the random vector entering it is Gaussian. In many applications,

this assumption is too restrictive. The only paper of which the author is aware that dispenses

with this assumption is that of Glasserman et al. (2002). In it, the authors show how to evaluate

the distribution function of a quadratic form in a multivariate t random vector. Their device is to

express the probability of interest in terms of a certain auxiliary random variable, which, unlike

the quadratic form of interest, possesses a tractable characteristic function. The first contribution

of the present paper is the generalization of their result to the entire class of MGhyp distributions.

As an application, we consider the distribution of the two stage least squares (2SLS) estimator

of a structural parameter in a simultaneous system of equations. The distribution of the 2SLS

estimator under normality has been studied intensively; see Richardson (1968), Sawa (1969),

Anderson and Sawa (1973), and Holly and Phillips (1979). In the wake of weak instrument

asymptotics, it has been realized that the finite sample distribution is of much broader use than

was originally recognized, thus spurring renewed interest in the topic, as evidenced by the work of

Nelson and Startz (1990a,b), Maddala and Jeong (1992), and Woglom (2001), and the papers by

Hillier (2006), Forchini (2006) and Phillips (2006), which comprise the entire miscellanea section

of that journal issue. To the best of the author’s knowledge, only Knight (1986) has considered

the distribution under non-Gaussianity, specifically when the error distribution is expandable
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in an Edgeworth-type expansion. Here, we express the estimator as a linear plus a quadratic

form in the innovation vector, as in Cribbett et al. (1989). The results of the present paper then

facilitate the computation of the exact sampling distribution under MGhyp innovations, and with

an arbitrary but known covariance structure.

The second contribution of the paper concerns partial moments. Consider a random variable

X with finite first moment. The quantity

E[X | X ≤ x],

that is, the expectation of X, conditional on falling in its own tail, has received considerable

interest in the literature recently. In risk management, if X denotes the return on a financial

position whose distribution is continuous at its qth quantile xq, −E[X | X ≤ xq] is known as the

expected shortfall, conditional value at risk (CVaR), or tail conditional expectation, depending

on author and context. The relevance of this quantity derives from the fact that unlike the more

widely used Value at Risk (VaR), it defines a coherent risk measure in the sense of Artzner et al.

(1999). The random variable of interest is often characterized most conveniently in terms of its

characteristic function, possibly because its distribution arises from a convolution, as occurs in

forming portfolios. Therefore, it is desirable to express the tail conditional expectation in terms

of the characteristic function directly. As such, a number of authors have obtained expressions

that facilitate such a computation; examples are Martin (2006), Kim et al. (2009), Broda and

Paolella (2009), Pinelis (2010), and Bormetti et al. (2010). The representation of the moment

generating function of a truncated random variable given in Butler and Wood (2004) can also be

used for this purpose.

The aforementioned results all require, however, that the characteristic function be analytic

in a strip containing the real axis, implying the existence of a moment generating function and

hence all moments. They therefore fail for the heavy-tailed distributions that are ubiquitous in

finance. The second contribution of the present paper is to provide an expression that is valid

without such a restriction; in fact, in Section 2.1 below, a more general result will be proven which

expresses the nth partial moment of X, provided it exists, in terms of the characteristic function.

The result is a direct generalization of the inversion formula for the distribution function derived

in Gil-Pelaez (1951), to which it collapses for n = 0.

In Section 2.2, the result is generalized to ratios of random variables. This is the third

contribution of the paper, and is of interest because numerous important distributions, such as

the Student’s t, permit a stochastic representation of this form. In particular, it allows us to

derive an expression for the partial expectation of a quadratic form in a MGhyp random vector

in Section 3, thus generalizing the results of Yueh and Wong (2010) and Broda (2011), which

deal with the Gaussian and multivariate t cases, respectively. As an application, we consider the

expected shortfall of a quadratic portfolio, as arises from a delta-gamma approximation.

The structure of the paper is as follows. Section 2 derives general inversion formulae for

partial moments. Section 3 provides computable expressions for the tail probabilities and partial

expectations of a linear plus a quadratic form in a MGhyp random vector. Section 4 details two
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applications: the distribution function of the 2SLS estimator, and the Value at Risk and Expected

Shortfall of a quadratic portfolio. Section 5 concludes.

2 Inversion Formulae for Partial Moments

2.1 General Case

Let F (x) denote the distribution function ofX. For n ∈ {0, 1, 2, . . .}, defineGn(x) ≡
∫ x
−∞ x

ndF (x),

so that F (x) ≡ G0(x), and observe that at every point of continuity of F (and hence Gn),

E[Xn | X ≤ x] =
Gn(x)

F (x)
.

The following result will be proven.

Theorem 2.1 Inversion Formula for Partial Moments. If the nth moment of X, n ∈
{0, 1, 2, . . .}, is finite and F (x) is continuous at x, then

Gn(x) =
ϕ(n)(0)

2in
− 1

π

∫ ∞
0

Im

[
e−itxϕ(n)(t)

int

]
dt,

where ϕ(n)(t) is the nth derivative of the characteristic function of X.

Proof. Denote by ϕ(t) the characteristic function of X. If the nth moment of X is finite, then

from Corollary 2 to Theorem 2.3.1 of Lukacs (1970),

ϕ(n)(t) = in
∫ ∞
−∞

xneitxdF (x).

As in Gil-Pelaez (1951), define

sign(y − x) =
2

π

∫ ∞
0

sin t(y − x)

t
dt =


−1, y < x,

0, y = x,

1, y > x,

and observe that∫ ∞
−∞

sign(y − x)yndF (y) =

∫ ∞
x

yndF (y)−
∫ x

−∞
yndF (y)

= [E [Xn]−Gn(x)]−Gn(x) =
ϕ(n)(0)

in
− 2Gn(x).
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Then for 0 < ε < T ,

1

π

∫ T

ε

e−itxϕ(n)(t)− eitxϕ(n)(−t)
in+1t

dt =
1

π

∫ T

ε

∫ ∞
−∞

eit(y−x) − e−it(y−x)

it
yndF (y)dt

=
2

π

∫ T

ε

∫ ∞
−∞

sin(t(y − x))

t
yndF (y)dt

=
2

π

∫ ∞
−∞

∫ T

ε

sin(t(y − x))

t
dtyndF (y),

where the exchange of the order of integration is permissible because for each fixed value of y,∣∣∣∣sin t(y − x)

t

∣∣∣∣ < 1

ε
.

It remains to take the limit for ε → 0 and T → ∞. Because the integral in t is a continuous

function of ε and T with a bounded modulus, it is possible to pass the limit through the integral

sign, to find

lim
ε→0
T→∞

1

π

∫ T

ε

e−itxϕ(n)(t)− eitxϕ(n)(−t)
in+1t

dt =
2

π

∫ ∞
−∞

lim
ε→0
T→∞

∫ T

ε

sin(t(y − x))

t
dtyndF (y)

=

∫ ∞
−∞

sign(y − x)yndF (y) =
ϕ(n)(0)

in
− 2Gn(x).

Thus

Gn(x) =
ϕ(n)(0)

2in
− 1

2π

∫ ∞
0

e−itxϕ(n)(t)− eitxϕ(n)(−t)
in+1t

dt.

The result follows upon noting that ϕ(n)(t)/in is the complex conjugate of ϕ(n)(−t)/in.

A few remarks are in order. First, the integral in the theorem does not, in general, converge

absolutely, and must be interpreted as an improper Riemann integral. This is similar to the

inversion integral of Gil-Pelaez (1951) for the distribution function, as remarked by Wendel (1961).

It may be shown however that the integral converges absolutely under the Rosén-type condition

(Rosén, 1961) ∫ ∞
−∞

log(1 + |x|)|x|ndF (x) <∞.

Finally, Theorem 2.1 will clearly be most useful in situations where the integral permits no

analytical solution, and must be evaluated by means of numerical quadrature schemes. In such

cases, the doubly exponential transformation of Ooura and Mori (1991) may benefit the numerics.

2.2 Ratios of Random Variables

Consider a bivariate random variable (X1, X2) and let R ≡ X1/X2. The following theorem will

be proven.

Theorem 2.2 Partial Expectation of a Ratio. If (i) the characteristic function ϕX1,X2 is
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integrable, (ii) E
[
|X1|2

]
<∞, (iii) E

[
X−22

]
<∞, and (iv) P(X2 > 0) = 1, then

E [R1R<r] =
ϕs0(0, 0)

2
− 1

π

∫ ∞
0

Im [ϕs0(s,−rs)]
ds

s
,

where

ϕs0(s, t) ≡
∫ t

−∞

∂

∂s
ϕX1,X2(s, t′)dt′.

Proof. First, observe that by Hölder’s inequality, (ii) and (iii) imply that E [|R|] < ∞. Integra-

bility of the characteristic function ensures that (X1, X2) has a density, which will be denoted as

fX(x1, x2). Using that X2 is almost surely positive,

E [R1R<r] = E
[
X1

X2
1X1<rX2

]
= E

[
(X1 − rX2)X

−1
2 1X1<rX2 + r1X1<rX2

]
= E

[
(X1 − rX2)X

−1
2 1X1<rX2

]
+ rP (X1 < rX2)

=

∫ ∞
0

∫ rx2

−∞
(x1 − rx2)x−12 fX(x1, x2)dx1dx2 + rP (X1 < rX2) . (2.1)

Consider a new random variable (Y1, Y2) with density

fY (y1, y2) =
y−12

µ−1
fX(y1, y2),

where µ−1 ≡ E[X−12 ] is finite by assumption. Then∫ ∞
0

∫ rx2

−∞
(x1 − rx2)x−12 fX(x1, x2)dx1dx2 = µ−1

∫ ∞
0

∫ ry2

−∞
(y1 − ry2) fY (y1, y2)dy1dy2

= µ−1E [Wr1Wr<0] , (2.2)

where Wr ≡ Y1 − rY2. The characteristic function of Wr is

ϕWr(s) = ϕY1,Y2(s,−rs).

Here, ϕY1,Y2 denotes the joint characteristic function of (Y1, Y2), which is

ϕY1,Y2(s, t) =

∫ ∞
0

∫ ∞
−∞

eisy1+ity2fY (y1, y2)dy1dy2

=

∫ ∞
0

∫ ∞
−∞

eisy1+ity2 y
−1
2

µ−1
fX(y1, y2)dy1dy2

=
1

µ−1

∫ ∞
0

dy1

∫ ∞
−∞

dy2fX(y1, y2)

[
eisy1+ily2y−12 + i

∫ t

l
eisy1+it′y2dt′

]
= ϕY1,Y2(s, l) +

i

µ−1

∫ t

l
ϕX1,X2(s, t′)dt′,
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for any arbitrary but finite l. Taking the limit as l→ −∞,

ϕY1,Y2(s, t) =
i

µ−1

∫ t

−∞
ϕX1,X2(s, t′)dt′

by the multivariate Riemann-Lebesgue lemma (see, e.g., Stein and Weiss, 1971, Theorem 1.2).

Thus,

ϕWr(s) =
i

µ−1

∫ −rs
−∞

ϕX1,X2(s, t)dt.

Finiteness of E[X1] implies that ϕX1,X2(s, t) is differentiable with respect to s, and an application

of Leibniz’ rule shows the derivative of ϕWr(s) to be

ϕ′Wr
(s) ≡ i

µ−1

d

ds

∫ −rs
−∞

ϕX1,X2(s, t)dt

=
i

µ−1

[
−rϕX1,X2(s,−rs) +

∫ −rs
−∞

∂

∂s
ϕX1,X2(s, t)dt

]
=

i

µ−1
[−rϕX1,X2(s,−rs) + ϕs0(s,−rs)] . (2.3)

Combining (2.1), (2.2), (2.3) and using Theorem 2.1,

E [R1R<r] = µ−1E [Wr1Wr<0] + rP (X1 < rX2)

= µ−1

[
ϕ′Wr

(0)

2i
+

1

π

∫ ∞
0

Re
[
ϕ′Wr

(s))
] ds

s

]
+ rP (X1 < rX2)

=
µ−1

i

ϕ′Wr
(0)

2
+
µ−1
π

∫ ∞
0

Re
[
ϕ′Wr

(s))
] ds

s
+ rP (X1 < rX2)

= −r
2

+
ϕs0(0, 0)

2
+
µ−1
π

∫ ∞
0

Re
[
ϕ′Wr

(s))
] ds

s
+ rP (X1 < rX2) .

Next,

µ−1
π

∫ ∞
0

Re
[
ϕ′Wr

(s))
] ds

s
= − 1

π

∫ ∞
0

Im [−rϕX1,X2(s,−rs) + ϕs0(s,−rs)]
ds

s

=
r

π

∫ ∞
0

Im [ϕX1,X2(s,−rs)]− 1

π

∫ ∞
0

Im [ϕs0(s,−rs)]
ds

s

=
r

2
− rP (X1 < rX2)−

1

π

∫ ∞
0

Im [ϕs0(s,−rs)]
ds

s
,

where the last equality follows from Theorem 2.1 with n = 0.

We immediately have the following corollary.

Corollary 2.1 Mean of a Ratio. Under the conditions of Theorem 2.2,

E [R] =

∫ ∞
0

[
∂

∂s
ϕX1,X2(s,−t)

]
s=0

dt

whenever the expectation exists.
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Proof. An argument analogous to the one which led to (2.2) shows that

E [R] = µ−1E [Wr] + r.

Set r = 0 for simplicity. Then, using (2.3),

E [R] = µ−1E [W0] = µ−1(−i)ϕ′W0
(0) = ϕs0(0, 0)

=

∫ 0

−∞

[
∂

∂s
ϕX1,X2(s, t)

]
s=0

dt.

A change of variables gives the result.

Corollary 2.1 partially generalizes Lemma 1 of Sawa (1972). Sawa’s result applies to higher

order moments, but requires the existence of the joint c.f. for purely imaginary arguments, which

is not assumed here.

3 Quadratic Forms in MGH Vectors

3.1 Tail Probabilities

Consider the random variable

L ≡ a0 + a′X +X ′AX, (3.1)

a quadratic plus a linear form in the random vector X. Suppose X ∼ MGHyp(µ,C,γ, λ, χ, ψ);

that is, X has a d-variate generalized hyperbolic distribution with stochastic representation

X = µ+ Y γ +
√
YCZ, (3.2)

where Z has a d-variate standard Normal distribution, µ and γ are constant d-vectors, C is a

d× d matrix, and Y has a univariate generalized inverse Gaussian distribution with density

fGIG(y;λ, χ, ψ) ≡ yλ−1

kλ(χ, ψ)
exp

{
−1

2

(
χy−1 + ψy

)}
,

where

kλ(χ, ψ) ≡


ψ
2

−λ
Γ(λ), if χ = 0

χ
2
λΓ(−λ), if ψ = 0

2
(
χ
ψ

)λ/2
Kλ(
√
χψ), if χ 6= 0 and ψ 6= 0.

Here, Kλ(z) is the modified Bessel function of the second kind of order ν, which, for Re(z) > 0,

has the integral representation

Kλ(z) ≡ 1

2

∫ ∞
0

tλ−1 exp

{
−1

2
z
(
t+ t−1

)}
dz. (3.3)

Unlike in the Gaussian case, the characteristic function of L is intractable, so that standard
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results concerning inversion of characteristic functions as used by Imhof (1961) fail. Instead, let

Q ≡ L− a0 − a′µ− µ′Aµ and consider the auxiliary random variable

Q0 ≡
Q

Y
= a′γ + Z ′C′ACZ + 2µ′Aγ +

1√
Y

(
a′CZ + 2µ′ACZ

)
+
√
Y (2γACZ) + Y γ ′Aγ.

It will turn out that unlike those of L and Q, the joint characteristic function of Q0 and Y −1,

ϕQ0,Y −1 say, is tractable, so that the cdf can be evaluated using the classical inversion formula of

Gil-Pelaez (1951), as follows:

P[Q ≤ x] = P[Q0Y ≤ x] = P[Q0 − xY −1 ≤ 0]

=
1

2
− 1

π

∫ ∞
0

Im
[
ϕQ0,Y −1(s,−sx)

] ds

s
. (3.4)

We begin by constructing the spectral decomposition

PΛP′ = C′AC,

where Λ is diagonal with entries λj , j ∈ {1, . . . , d}, the eigenvalues of C′AC, and P is orthogonal.

Then Z ′C′ACZ =d
∑d

j=1 λjZ
2
j . Further define, for notational convenience, c ≡ a′γ + 2µ′Aγ,

d = a′CP+ 2µ′ACP, e = 2γACP, and k = γ ′Aγ. Denote by dj and ej the individual elements

of d and e, respectively. We then have the following result.

Theorem 3.1 Distribution of Quadratic Form. Let L ≡ a0 + a′X + X ′AX, where X ∼
MGHyp(µ,C,γ, λ, χ, ψ). Then

P[L ≤ l] =
1

2
− 1

π

∫ ∞
0

Im [Ξλ(s,−xs, χ, ψ)]
ds

s
, (3.5)

where x = l − a0 − a′µ− µ′Aµ,

Ξλ(s, t, χ, ψ) ≡ kλ(χ− 2α2(s)− 2it, ψ − 2α1(s))

kλ(χ, ψ)
ρ(s),

α1(s) ≡ iks− 1

2
s2

d∑
j=1

e2j
1− 2isλj

, α2(s) ≡ −
1

2
s2

d∑
j=1

d2j
1− 2isλj

,

and ρ(s) ≡ exp

isc− s2
d∑
j=1

djej
1− 2isλj


d∏
j=1

1√
1− 2isλj

.

Proof. Combining (3.1) and (3.2),

L = a0 + a′µ+ µ′Aµ+
√
Y
(
a′CZ + 2µ′ACZ

)
+ Y

(
a′γ + Z ′C′ACZ + 2µ′Aγ

)
+ Y 3/2 (2γACZ) + Y 2γ ′Aγ.
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Write

Q0 =d c+ kY +
d∑
j=1

(
dj

1√
Y

+ ej
√
Y

)
Zj + λjZ

2
j .

The characteristic function of Q0, conditional on Y , is

E
[
eisQ0 | Y

]
= eis(c+kY )E

exp

is

d∑
j=1

(
dj

1√
Y

+ ej
√
Y

)
Zj + λjZ

2
j




= eis(c+kY )
d∏
j=1

1√
1− 2isλj

exp


−s2

(
dj

1√
Y

+ ej
√
Y
)2

2(1− 2isλj)


= eis(c+kY ) exp


−s2

∑d
j=1

(
dj

1√
Y

+ ej
√
Y
)2

2(1− 2isλj)


d∏
j=1

1√
1− 2isλj

= eα1(s)Y+α2(s)Y −1
ρ(s).

We will require the joint characteristic function of Q0 and Y −1,

ϕQ0,Y −1(s, t) ≡ E
[
eisQ0+itY −1

]
= E

[
E
[
eisQ0+itY −1 | Y

]]
= ρ(s)E

[
eα1(s)Y+[α2(s)+it]Y −1

]
.

Using the expression for the density of the generalized inverse Gaussian,

E
[
eα1(s)Y+[α2(s)+it]Y −1

]
=

∫ ∞
0

eα1(s)y+[α2(s)+it]y−1
fGIG(y;λ, χ, ψ)dy

=

∫ ∞
0

eα1(s)y+[α2(s)+it]y−1 yλ−1

kλ(χ, ψ)
exp

{
−1

2

(
χy−1 + ψy

)}
dy

=

∫ ∞
0

yλ−1

kλ(χ, ψ)
exp

{
−1

2

(
[χ− 2α2(s)− 2it]y−1 + [ψ − 2α1(s)]y

)}
dy

=
kλ(χ− 2α2(s)− 2it, ψ − 2α1(s))

kλ(χ, ψ)
,

so that

ϕQ0,Y −1(s, t) = Ξλ(s, t, χ, ψ) ≡ kλ(χ− 2α2(s)− 2it, ψ − 2α1(s))

kλ(χ, ψ)
ρ(s). (3.6)

Note that Re
(
αj(s)

)
< 0, j ∈ {1, 2}, so that together with the integral representation for Kλ(z)

given in (3.3), (3.6) is valid for all (s, t) ∈ R2.

Using (3.6) in (3.4) and undoing the location shift from Q to L gives the result.
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3.2 Partial Expectation

We now turn our attention to the partial expectation of L. The challenge in applying Theorem

2.2 is to find an analytic expression for ϕs0(s, t) ≡
∫ t
−∞

∂
∂sΞλ(s, t′, χ, ψ)dt′, where Ξλ(s, t, χ, ψ) is

as in (3.6). Let

Ξiλ(s, t, χ, ψ) ≡ kλ+i(χ− 2α2(s)− 2it, ψ − 2α1(s))

kλ(χ, ψ)
ρ(s),

so that Ξ0
λ(s, t, χ, ψ) ≡ Ξλ(s, t, χ, ψ). We will need the following result.

Lemma 3.1. The following relationships hold.

1. i

∫ t

−∞
Ξiλ(s, t′, χ, ψ)dt′ = Ξi+1

λ (s, t, χ, ψ).

2.
∂

∂t
Ξiλ(s, t, χ, ψ) = iΞi−1λ (s, t, χ, ψ).

3.
∂

∂s
Ξiλ(s, t, χ, ψ) =

d log ρ(s)

ds
Ξiλ(s, t, χ, ψ) +

dα2(s)

ds
Ξi−1λ (s, t, χ, ψ) +

dα1(s)

ds
Ξi+1
λ (s, t, χ, ψ).

Proof. See Appendix A.

With this result in hand, the following theorem follows at once.

Theorem 3.2 Partial Expectation of Quadratic Form. Let L ≡ a0 + a′X + X ′AX,

X ∼ MGHyp(µ,C,γ, λ, χ, ψ). Then

E[L1L<l] = (l − x)P[L < l] +
ϕs0(0, 0)

2
− 1

π

∫ ∞
0

Im [ϕs0(s,−xs)]
ds

s
, (3.7)

where x = l − a0 − a′µ− µ′Aµ, ϕs0(s, t) =
∑2

i=0 Ξiλ(s, t, χ, ψ)βi(s),

Ξiλ(s, t, χ, ψ) ≡ kλ+i(χ− 2α2(s)− 2it, ψ − 2α1(s))

kλ(χ, ψ)
ρ(s),

α1(s), α2(s), and ρ(s) are as in Theorem 3.1, and β0(s), β1(s) and β2(s) are defined in (3.8–3.10)

below.

Proof. Let x = l − a0 − a′µ − µ′Aµ and Q = L − a0 − a′µ − µ′Aµ as before. It is easy to see

that

E[L1L<l] = E[Q1Q<x] + (l − x)P[L < l].

Using Theorem 2.2,

E [Q1Q<x] =
ϕs0(0, 0)

2
− 1

π

∫ ∞
0

Im [ϕs0(s,−xs)]
ds

s
,
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where, using Lemma 3.1 twice,

ϕs0(s, t) ≡
∫ t

−∞

∂

∂s
ϕQ0,Y −1(s, t′)dt′

=
∂

∂s

∫ t

−∞
Ξiλ(s, t′, χ, ψ)dt′

=
∂

i∂s
Ξi+1
λ (s, t, χ, ψ)

=
2∑
i=0

Ξiλ(s, t, χ, ψ)βi(s),

and

β0(s) ≡
dα2(s)

i ds
= is

d∑
j=1

d2j
1− 2isλj

− s2
d∑
j=1

λjd
2
j

(1− 2isλj)2
, (3.8)

β1(s) ≡
d log ρ(s)

i ds
= c+ 2is

d∑
j=1

djej
1− 2isλj

− 2s2
d∑
j=1

λjdjej
(1− 2isλj)2

+
d∑
j=1

λj
(1− 2isλj)2

(3.9)

and β2(s) ≡
dα1(s)

i ds
= k + is

d∑
j=1

e2j
1− 2isλj

− s2
d∑
j=1

λje
2
j

(1− 2isλj)2
. (3.10)

Implementations in Matlab and Fortran of Expressions (3.5) and (3.7) are available from the

author upon request. Evaluating them takes typically about a millisecond.

4 Applications

4.1 Sampling Distribution of the 2SLS Estimator

Consider the simultaneous equations model

y1 = y2β + Xγ + u (4.1)

y2 = Z1π + Xδ + v, (4.2)

where y1 = (y1,1, . . . , y1,n)′, y2 = (y2,1, . . . , y2,n)′, u = (u1, . . . , un)′, v = (v1, . . . , vn)′, X is an

n×k matrix of exogenous regressors, Z1 /∈ C(X) is an n×k1 nonstochastic matrix of instruments1,

and (
ui

vi

)
∼

(
0,

[
σ2u σuv

σuv σ2v

])
,

1The assumption of nonstochastic instruments is less restrictive than it may appear; if they are indeed stochastic,
then it is standard to condition on them, and the analysis proceeds as before.
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so that

ε ≡

(
u

v

)
∼

(
0,

[
σ2uI σuvI

σuvI σ2vI

])
.

Let MX ≡ I−X(X′X)−1X′ and define Z ≡MXZ1. The 2SLS estimator for β is

β̂ =
y′2PZy1

y′2PZy2
, (4.3)

where PZ ≡ Z(Z′Z)−1Z′. Let B̂ = β̂ − β, the estimation error of the 2SLS estimator. Then

B̂ =
π′Z′u + v′PZu

π′Z′Zπ + 2π′Z′v + v′PZv
. (4.4)

As PZ is positive semidefinite, the denominator in (4.3), and hence (4.4), is almost surely positive.

Thus

P
[
B̂ ≤ b

]
= P

[
π′Z′u + v′PZu− b

(
π′Z′Zπ + 2π′Z′v + v′PZv

)
≤ 0
]

= P
[
a0 + a′ε+ ε′Aε ≤ 0

]
, (4.5)

where

a0 ≡ −bπ′Z′Zπ, a ≡

(
Zπ

−2bZπ

)
, and A ≡ 1

2

(
0 PZ

PZ −2bPZ

)
.

Equation (4.5) is in the required form, so that Theorem 3.1 is readily applied. Hence, the exact

sampling distribution of the 2SLS estimator can be evaluated for an arbitrary but known (or

consistently estimated) covariance structure, and under MGHyp errors.

4.2 VaR and ES of a Quadratic Portfolio

Consider a probability space (Ω,F ,P). The Expected Shortfall at level α ∈ (0, 1) of a position

with terminal value X : Ω→ R is defined as (Acerbi and Tasche, 2002a,b)

ES(α) ≡ − 1

α

[
E[X1X≤x(α) ]− x

(α)(P[X ≤ x(α)]− α)
]
, (4.6)

where

x(α) ≡ inf{x : P[X ≤ x] ≥ α}

is the α × 100% quantile of the distribution of X. Often α = 1%. Apart from the sign, x(α)

corresponds to the Value at Risk (VaR) at level α, which is a risk measure in its own right.

The definition in (4.6) ensures that ES(α) is a coherent risk measure in the sense of Artzner

et al. (1999) even if X is not absolutely continuous. In our setting, X is indeed absolutely

continuous, so that the Expected Shortfall, expressed in terms of the loss L = −X, reduces to

ES
(α)
L ≡ 1

α

[
E[L1L>l(1−α) ]

]
,
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where

P
[
L > l(1−α)

]
= α.

As in Broda (2011), consider a portfolio with associated loss L = −X, depending on d risk

factors S = (S1, . . . , Sd)
′. For a given time horizon τ , the portfolio loss is modeled as a quadratic

function of ∆S ≡ S − S0, the changes in the risk factors. That is,

L = a0 + a′∆S + ∆S′A∆S,

for some scalar constant a0 and, respectively, a conformable vector a and matrix A. Because

∆S′A∆ is a scalar, we can take A to be symmetric without loss of generality. A quadratic

portfolio of this type typically arises from a Delta-Gamma-Theta approximation, which is quite

popular among risk managers. In it, one takes a0 = −τΘ, a = −δ, and A = −1
2Γ. Here

δj = ∂X/∂Sj , Γjk = ∂2X/∂Sj∂Sk, and Θ = −∂X/∂τ are the so-called “Greeks”.

5 Conclusions

Quadratic forms are ubiquitous in Econometrics: according to Google Scholar, the paper of Imhof

(1961) — which provides an algorithm for evaluating their distribution function under Gaussianity

— has 859 citation., The results herein generalize Imhof’s result to the MGhyp distribution, thus

allowing for skewness and heavy tails, which is critically important in finance in particular. The

expressions provided in the paper can be quickly and reliably evaluated in a computer, with code

available from the author, making them easy to use in applied work.

There are a number of aspects that the author would like to explore in subsequent work.

The first question is whether as in Broda (2011), conditions can be established under which the

integrals in Theorems 3.1 and 3.2 can be expanded in a uniform asymptotic expansion, hence

removing the need for numerical integration. Relatedly, under the same conditions, it should

be possible to derive an importance sampling algorithm as in Glasserman et al. (2002). This

is particularly useful in the portfolio risk application of Section 4.2 above, in cases where the

quadratic approximation to the portfolio value is poor. Finally, concerning the 2SLS application

in Section 4.1, it is of interest to analyze the joint distribution of the structural estimates in a

model with two endogenous regressors.
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A Proofs

Proof of Lemma 3.1. The result is trivial if χ = 0 or ψ = 0, so we only consider the case in which

both χ and ψ are nonzero.

1.: We have that

i

∫ t

−∞
Ξiλ(s, t′, χ, ψ)dt′ = i

∫ t

−∞

kλ+i(χ− 2α2(s)− 2it′, ψ − 2α1(s))

kλ(χ, ψ)
ρ(s)dt′

=
2iρ(s)

kλ(χ, ψ)

∫ t

−∞

(
u(t′)

ψ − 2α1(s)

)λ+i
Kλ+i(u(t′))dt′,

where u(t) ≡
√

(χ− 2α2(s)− 2it)(ψ − 2α1(s)), so that dt′ = iu(ψ − 2α1(s))
−1du. Changing
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variables,

2iρ(s)

kλ(χ, ψ)

t∫
−∞

(
u(t′)

ψ − 2α1(s)

)λ+i
Kλ+i(u(t′))dt′ =

−2ρ(s)

kλ(χ, ψ)(ψ − 2α1(s))λ+i+1

u(t)∫
−∞

uλ+i+1Kλ+i(u)du

=
2ρ(s)

kλ(χ, ψ)

(
u(t)

ψ − 2α1(s)

)λ+i+1

Kλ+i+1(u(t))⇔

i

∫ t

−∞
Ξiλ(s, t′, χ, ψ)dt′ = Ξi+1

λ (s, t, χ, ψ), (A.1)

where the penultimate equality follows from Abramowitz and Stegun (1964, Eq. 11.3.18).

2.: Differentiating (A.1) immediately yields

∂

∂t
Ξiλ(s, t, χ, ψ) = iΞi−1λ (s, t, χ, ψ). (A.2)

3.: First observe that

∂

∂ψ
kλ(χ, ψ) = 2

∂

∂ψ

(
χ

ψ

)λ/2
Kλ(

√
χψ)

= 2

[
1

2ψ

(
χ

ψ

)λ/2
K ′λ(

√
χψ)

√
χψ − λ

2ψ

(
χ

ψ

)λ/2
Kλ(

√
χψ)

]

=

(
χ

ψ

)λ/2 1

ψ

[
K ′λ(

√
χψ)

√
χψ − λKλ(

√
χψ)

]
=

(
χ

ψ

)λ/2 1

ψ

[
−
√
χψKλ+1(

√
χψ)

]
= −1

2
kλ+1(χ, ψ), (A.3)

where the penultimate equality follows from Abramowitz and Stegun (1964, Eq. 9.6.28). Then,

indulging in some abuse of notation,

∂

∂s
Ξiλ(s, t, χ, ψ) =

∂

∂s

kλ+i(χ− 2α2(s)− 2it, ψ − 2α1(s))

kλ(χ, ψ)
elog(ρ(s))

=
d log ρ(s)

ds
Ξiλ(s, t, χ, ψ) +

dα2(s)

ds

∂

i∂t
Ξiλ(s, t, χ, ψ)

− 2ρ(s)

kλ(χ, ψ)

dα1(s)

ds

∂

∂ψ
kλ+i(χ− 2α2(s)− 2it, ψ − 2α1(s))

=
d log ρ(s)

ds
Ξiλ(s, t, χ, ψ) +

dα2(s)

ds
Ξi−1λ (s, t, χ, ψ)

+
ρ(s)

kλ(χ, ψ)

dα1(s)

ds
kλ+i+1(χ− 2α2(s)− 2it, ψ − 2α1(s))

=
d log ρ(s)

ds
Ξiλ(s, t, χ, ψ) +

dα2(s)

ds
Ξi−1λ (s, t, χ, ψ) +

dα1(s)

ds
Ξi+1
λ (s, t, χ, ψ),

where the final equality follows by using (A.2) and (A.3).
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