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Abstract

Strong consistency of least squares estimators of the slope parameter in simple
linear regression models is established for predetermined stochastic regressors. The
main result covers a class of models which falls outside the applicability of what is
presently available in the literature. An application to the identification of economic
models with adaptive learning is discussed.

1 Introduction

In this paper, we revisit the simple linear regression model

yi = α+ βxi + εi, i = 1, 2, . . . , (1.1)

where the εi are unobservable random errors with zero means, α, β are unknown param-
eters and yi is the observed response to the deterministic or stochastic scalar regressors
xi. Our interest is in the consistency of the ordinary least squares estimator (OLSE)
for the parameters based on the first n pairs of observations x1, y1, . . . , xn, yn, and in
particular of the OLSE for the slope parameter β. The latter is given by

β̂n =

∑n
i=1 (xi − xn) (yi − yn)∑n

i=1 (xi − xn)2
, (1.2)

where xn = 1
n

∑n
i=1 xi. Inserting (1.1) into (1.2) yields the representation

β̂n − β =

∑n
i=1 (xi − xn) εi

An
, (1.3)

where we have introduced

An =

n∑
i=1

(xi − xn)2 = n
[
x2n − (xn)2

]
. (1.4)

In section 2, we shall give a brief review of the main results on the strong consistency
of the OLSE available in the literature. Actually, most of the work done is related to
the general multivariate regression model

yi = θ′xi + εi, (1.5)
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where now xi = (x1i, . . . , xpi)
′ are p-dimensional regressors and θ = (θ1, . . . , θp)

′ is a

vector of unknown parameters. In this case, the OLSE θ̂n is given by

θ̂n − θ = M−1n

n∑
i=1

xiεi, (1.6)

where

Mn =

n∑
i=1

xix
′
i.

The conditions to be imposed on the regressors to ensure consistency depend heavily
on whether the latter are deterministic or stochastic. Our main results to be presented
in section 3 concern model (1.1) with predetermined stochastic regressors and i.i.d.
Gaussian error terms. The proofs will be given in section 4. In section 5, we apply these
results to an economic model with adaptive learning, for which the conditions provided
by the available literature are not met. The associated proof follows in section 6.

2 Review of existing results

In this section, we will give a brief overview of known results on consistency of the
OLSE. As pointed out in the Introduction, it will be necessary to distinguish the cases
of deterministic and stochastic regressors. For a recent account of this subject in the
context of stochastic approximation see Lai (2003).

2.1 Deterministic regressors

When the regressors xi are deterministic, the OLSE θ̂n is unbiased. For uncorrelated
error terms with common variance Eε2i = σ2, i.e. for white noise errors (the so-called
Gauß-Markov model),

cov(θ̂n, θ̂n) = σ2M−1n .

It is thus plain that the condition

lim
n→∞

M−1n = 0 (2.1)

is both necessary and sufficient for L2-consistency. Equivalently,

λmin(Mn)→∞. (2.2)

Hence (2.1) is also sufficient for weak consistency, i.e. convergence θ̂n → θ in probability.
Actually, as shown by Eicker (1963) (for normal disturbances) and Drygas (1976), it is
also necessary for weak consistency. Needless to say that (2.1) is much weaker than the
classical textbook condition

1

n
Mn →M,

where M is some positive definite matrix.
The analysis is more involved when it comes to strong consistency, i.e. almost sure con-
vergence θ̂n → θ. For independent normally distributed εi, Anderson and Taylor (1976)
show that (2.1) is indeed necessary and sufficient. Without the normality assumption,
but uniformly bounded variances, additional restrictions like

M−1n diag
(
d2n1, . . . , d

2
np

)
= O(1), (2.3)
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where d2nk =
∑n

i=1 x
2
ik is the sum of squares of the k-th regressor, have been imposed,

cf. Drygas (1976). This assumption is, however, much stronger than (2.1). A sufficient
condition for (2.3) is

λmax(Mn) = O [λmin(Mn)] ,

see Christopeit (1986).
The ultimate affirmative answer is given in Lai, Robbins, and Wei (1978), who prove
that (2.1) is indeed sufficient for strong consistency. Actually, all that is required of the
error terms εi is that they are independent with Eεi = 0 and supiEε

2
i < ∞. In Lai,

Robbins, and Wei (1979), this result is extended to a more general class of εi.
Returning to the simple regression model (1.1), if one is only interested in the estimation
of the slope β, then the complete answer is given in Lai and Robbins (1977). For white
noise errors, they show that the condition

lim
n→∞

An =∞ (2.4)

is necessary and sufficient for weak consistency. If one assumes that the εi are i.i.d.
with E

[
ε2i (log (1 + |εi|))r

]
< ∞ for some r > 1, then (2.4) is even sufficient for strong

consistency. Indeed, Lai and Robbins (1977) show that

lim
n→∞

√
An

(logAn)1+δ
(β̂n − β) = 0 a.s. (2.5)

for every δ > 0.

2.2 Stochastic regressors

For stochastic regressors, the situation presents itself less clearcut. There seems to be
no ‘minimal’ condition like (2.1). After some intermediate results obtained by Anderson
and Taylor (1979) and Christopeit and Helmes (1980), involving the condition

λrmax(Mn) = O [λmin(Mn)]

for some r > 0, the best available result at present seems to be the one obtained in Lai
and Wei (1982a). It states that, for predetermined regressors and martingale difference
errors, both with respect to some filtration (Fn) and the latter satisfying in addition
supnE

(
ε2n|Fn−1

)
< ∞ a.s., a sufficient condition for strong convergence of the least

squares estimator of α and β is the following:

λmin (Mn) → ∞, (2.6a)

[log λmax (Mn)]1+δ = o(λmin (Mn)) a.s. (2.6b)

for some δ > 0. If, in addition, supnE (|εn|α |Fn−1) <∞ for some α > 2, then is suffices
to require (2.6b) for δ = 0. Lai and Wei (1982a) give an example which shows that
even a marginal violation of (2.6b), viz. replacing the o (·) by an O (·), is destructive
to consistency. With a good deal of more effort, one can obtain some refinements of
the condition (2.6b), see Lai and Wei (1982b). Applied to the simple regression model
(1.1) with supnE (|εn|α |Fn−1) <∞ for some α > 2, the following sharpened version of
condition (2.4) turns out to be sufficient for strong consistency of the slope estimator
bn :

An
log n

→∞ a.s.. (2.7)

3



If limn→∞x2n ≤ 1, then (2.7) is also sufficient for consistent OLS estimation of α. Oth-
erwise, additional conditions have to be imposed. As is shown in Lai and Wei (1982b),
(2.6b) (with δ = 0) implies the conditions of their Theorem 2.

3 Main results

The main result in this paper is an extension of the minimal condition (2.4) for almost
sure convergence of the OLSE of the slope parameter to predetermined stochastic re-
gressors. In particular, it will turn out to be applicable to situations in which conditions
(2.6b) or (2.7) are not satisfied. The price to be paid is a somewhat restrictive measur-
ability condition to be imposed on the regressors as well as the restriction to Gaussian
noise.
In order to formulate the result, introduce the processes

un =

n∑
i=1

(xi − xn) εi, n ≥ 1, (3.1)

and
vn = εn − εn−1, n ≥ 2, (3.2)

as well as the filtration Fn = Fvn = σ (v2, . . . , vn) , n ≥ 2. In section 4 an alternative
description of Fn will be given, namely Fn = σ (εn − εn−1, . . . , εn − ε1) , which is often
easier to handle. The OLSE (1.3) may then be written in the form

β̂n − β =
un
An

. (3.3)

The basis of our approach will be the observation that, for i.i.d. Gaussian εn, the vn
are independent Gaussian with variance n

n−1σ
2. In particular, (vn)n≥2 is a martingale

difference sequence (MDS) with respect to the filtration (Fn)n≥2 . Gaussianness seems
to be essential for this property (cf. Remark 2 below). Making use of the algebraic
identity

un =
n∑
i=1

i− 1

i
(xi − xi−1) vi (3.4)

(cf. section 4), it turns out that (un)n≥3 is a martingale transform, provided the centered
regressors xi−xi−1 are measurable with respect to Fi−1, i.e. the process (xn − xn−1)n≥3
is predictable with respect to the filtration (Fn)n≥2 . This observation makes it possible
to approach the question of consistency by martingale convergence methods.
Our main result is the following.

Theorem 1. Suppose that the εi are independent N(0, σ2)-distributed random vari-
ables and that the centered regressors xn−xn−1 are Fn−1-measurable for n ≥ 3. Assume
further that

lim
n→∞

An =∞ a.s.. (3.5)

Then,

lim
n→∞

√
An

2 log2An

∣∣∣β̂n − β∣∣∣ = σ. (3.6)
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Corollary 1. Under the assumptions of Theorem 1,√
An

logAn
(β̂n − β)→ 0 a.s.

In particular, the OLSE for β is strongly consistent, i.e.

β̂n → β a.s.. (3.7)

In contrast to the setting with deterministic regressors, condition (3.5) will generally
not be necessary in the presence of stochastic regressors. However, a restricted version
of the negation of (3.5) rules out consistency:

Proposition 1. Under the assumptions of Theorem 1, the condition

EA∞ <∞ (3.8)

implies (weak and hence strong) inconsistency of the OLS estimator for the slope coef-
ficient.

Remark 1. In situations in which the regressors do not satisfy the measurability con-
dition of Theorem 1, it is often possible to split the centered regressors xi − xi−1 into
two parts:

xi − xi−1 = w′i + w′′i , (3.9)

such that the sequence (w′n) is predictable with respect to the filtration (Fn) , whereas
the w′′n do not affect the asymptotic behavior. More details will be provided in section
4.2, Remark 3.

4 Proof of main results

4.1 Some preliminaries

Define
eni = εn − εi

for n ≥ 2, i = 1, . . . , n − 1. As usual, let zn = 1
n

∑n
i=1 zi. Consider the filtrations

(Fvn)n≥2 and (Fen)n≥2 , where Fvn = σ (v2, . . . , vn) and Fen = σ (en1, . . . , en,n−1) . Note
that Fvn ⊂ Fεn = σ (ε1, . . . , εn) and Fen ⊂ Fεn, the inclusions being proper.

Lemma 1.

(i) Fvn = Fen.

(ii) The vn, n ≥ 2, are independent Gaussian with variance Ev2n = n
n−1σ

2.

Proof.

(i) Denote, for n ≥ 2,

v(n)
(n−1)×1

=


v2
v3
...
vn

 =


ε2 − ε1
ε3 − ε2

...
εn − εn−1

 ,

e(n)
(n−1)×1

=


en1
en2
...

en,n−1

 =


εn − ε1
εn − ε2

...
εn − εn−1

 .
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By simple calculation,
v(n) = Cne(n)

with

Cn
(n−1)×(n−1)

=



1 −1 0 0 · · · 0
1
2

1
2 −1 0 · · · 0

1
3

1
3

1
3 −1 · · · 0

...
. . .

...
1

n−2
1

n−2
1

n−2 · · · 1
n−2 −1

1
n−1

1
n−1

1
n−1 · · · 1

n−1
1

n−1


.

Since Cn is regular,
Fvn = σ

(
v(n)

)
= σ

(
e(n)

)
= Fen.

(ii) By direct calculation,
v(n) = − (Cn,−en−1) ε(n),

where ε(n) = (ε1, . . . , εn)′ and en−1 denotes the (n− 1)-th unit vector of dimension
n− 1. Since

(Cn,−en−1) (Cn,−en−1)′ = diag

[
2,

3

2
, . . . ,

n

n− 1

]
,

the assertion follows.

Henceforth, denote Fn = Fvn = Fen.

4.2 Proof of Theorem 1

Remark 2. As a consequence of Lemma 1, (vn)n≥2 is a martingale difference sequence
(MDS) with respect to the filtration (Fn)n≥2 . However, (vn) is not a MDS with respect
to the filtration (Fεn) . This is immediate from

E
(
vn|Fεn−1

)
= E

{
εn −

1

n− 1
Sn−1

∣∣∣∣ Fεn−1} = − 1

n− 1
Sn−1,

where Sn =
∑n

i=1 εi. Also, Gaussianness is essential for the vn to be a MDS with respect
to (Fn) , as can be seen by considering εn taking values ±1 with probability 1/2.

Remember the definition of un in (3.1):

un =
n∑
i=1

(xi − xn) εi =
n∑
i=1

(xi − xn) (εi − εn) . (4.1)

We shall make use of the following elementary algebraic identity.

Lemma 2. For n ≥ 2,

n∑
i=1

(ai − an)
(
bi − bn

)
=

n∑
i=2

i− 1

i
(ai − ai−1)

(
bi − bi−1

)
. (4.2)
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Applying this to (4.1), we may write

un =
n∑
i=2

i− 1

i
(xi − xi−1) (εi − εi−1)

=
n∑
i=2

i− 1

i
(xi − xi−1) vi. (4.3)

Or, introducing

ξi =

√
i− 1

i
(xi − xi−1) , wi =

√
i− 1

i
vi,

we have the representation

un =
n∑
i=2

ξiwi. (4.4)

Note that the wi are independent N (0, σ2)-distributed and generate the same filtration
(Fn) as the vi. By assumption, ξi is measurable with respect to Fi−1 for i ≥ 3. ξ2 =
(x2 − x1) /

√
2 will generally not be F1-measurable (F1 being the trivial σ-algebra).

Since the first value x1 affects neither the asymptotic behavior of un nor that of An,
we may as well put x1 = x2 and thus achieve full predictabilty of the process (ξn)
with respect to (Fn) . Then un is a martingale transform (or local martingale) with
predictable quadratic variation

〈u〉n = σ2
n∑
i=2

ξ2i = σ2An. (4.5)

For the last step we have again made use of (4.2), now in the form

n∑
i=2

ξ2i =
n∑
i=2

i− 1

i
(xi − xi−1)2 =

n∑
i=2

(xi − xn)2 ,

so that

An =
n∑
i=2

i− 1

i
(xi − xi−1)2 . (4.6)

This representation also shows that An is monotone increasing.
From now on let us suppose that the wi are of the form

wi = σ [W (i)−W (i− 1)] ,

where W is a standard Brownian motion (enlarging the probability space if necessary).
Define a continuous time process

ξ(s) =
∞∑
i=1

ξi1(i−1,i](s), s ≥ 0,

where we put ξ1 = ξ2 = 0. Then the stochastic integral

Mt =

∫ t

0
ξ(s)dW (s)
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is well defined for all t ≥ 0, and is a continuous local martingale with quadratic variation

〈M〉t =

∫ t

0
ξ(s)2ds.

Also, it is plain to see that
un = σMn

and

〈M〉n =
n∑
i=2

ξ2i = An.

If A∞ =∞ a.s., we may represent Mt as

Mt = W̃ (〈M〉t),

where W̃ a Brownian motion obtained from W by the time transformation 〈M〉−1t . It
then follows from the law of the iterated logarithm for Brownian motion that

lim
n→∞

|Mt|√
2 〈M〉t log2 〈M〉t

= 1.

For un, this means that

lim
n→∞

|un|√
2An log2An

= σ.

Or, put differently,

lim
n→∞

√
An

2 log2An

∣∣∣∣ unAn
∣∣∣∣ = σ. (4.7)

Since
β̂n − β =

un
An

by (1.3) and (4.1), (3.6) is an immediate consequence. �

4.3 Proof of Proposition 1

We shall mimic the proof of Lai and Robbins (1977) for deterministic regressors. If (3.8)
holds, then, in particular, A∞ <∞ with probability one, such that it follows from (4.5)
that

un → u a.s. (4.8)

for some finite random variable u. Since

sup
m≥0

E (un+m − un)2 = σ2 sup
m≥0

n+m∑
i=n+1

Eξ2i = σ2 (EA∞ −EAn)→ 0

by monotone convergence, convergence in (4.8) also takes place in L2. Hence

Eu2 = lim
n→∞

Eu2n = σ2 lim
n→∞

EAn = σ2EA∞.

Therefore u must be different from 0 on a set of positive measure, and, a forteriori, this
is also true for

lim
n→∞

(
β̂n − β

)
=

u

A∞
.

This completes the proof. �
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Remark 3. Coming back to Remark 1 in section 3, if we can find w′i, w
′′
i such that

(3.9) holds, then, making use of the representation (4.3), we can write

un =
n∑
i=2

i− 1

i
w′ivi +

n∑
i=2

i− 1

i
w′′i vi = u′n + u′′n. (4.9)

Hence, denoting the corresponding parts of An by A′n and A′′n, i.e.

A′n =
n∑
i=1

i− 1

i
w′2i , A

′′
n =

n∑
i=1

i− 1

i
w′′2i (4.10)

(cf. (4.6)), it follows that

un
An

=
u′n
An

+
u′′n
An

=
u′n
A′n

A′n
An

+
u′′n
An

.

If the w′i, w
′′
i can be chosen in such a way that

u′′n
An
→ 0 a.s.. (4.11)

together with

A′∞ =∞ and lim
n→∞

A′n
An

<∞ a.s., (4.12)

then we can apply (3.7) to the u′-part of u to obtain

β̂n − β → 0 a.s..

Note that (4.12) implies that A∞ =∞ a.s..

Remark 4. The procedure described in Remark 2 is especially promising if the xn are
linear combinations of the past error terms, i.e.

xn =

n−1∑
i=1

hniεi.

In this case, they are themselves Gaussian, and condition (3.8) is equivalent to

A∞ <∞ a.s.

cf. Shiryaev (1996, Chapter VII, §6, Lemma p. 533).

5 An economic model with forecast feedback

In economic theory, there has been considerable interest in models of the form

yt = βyet|t−1 + δ′xt + εt, t = 1, 2, . . . (5.1)

where yet|t−1 denotes agents’ expectations about yt based on the information available
at time t− 1 and the driving variables xt are p-dimensional exogenous random vectors.
Models of this type have a long tradition in economics. For instance, the classical cobweb
model fits into this form, see e.g. Bray and Savin (1986), as does the Lucas (1973)
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aggregate supply model. The basic issue is the way in which the expectations yet|t−1
are modelled. The traditional approach to modelling yet|t−1 is via rational expectations,

cf. Muth (1961) or Sargent (2008). There it is assumed that the agents, in building
up there expectations at time t, have complete knowledge of the model and the past
Ft−1 = σ (ys, s ≤ t− 1;xs, s ≤ t) and make best use of it, i.e. form the conditional
expectations

yet|t−1 = E (yt|Ft−1) .

Taking conditional expectations in (5.1) yields

E (yt|Ft−1) = δ′xt + βyet|t−1,

so that

yet|t−1 =
δ′xt

1− β
= α′xt,

with

α =
δ

1− β
. (5.2)

The so-called rational expectations equilibrium (REE) model is then

yt = α′xt + εt. (5.3)

Consequently, under the assumption of rational expecations, only α is identified, not,
however, δ and β separately.
More recently, however, economic agents are frequently assumed to be boundedly ra-
tional and to form their expectations via adaptive learning. The basic idea underlying
all adaptive learning procedures is that agents employ an auxiliary model, or so-called
perceived law of motion (PLM), to form their expectations yet|t−1. One way to specify

the PLM is to assume that its functional form corresponds to that of the REE in (5.3).
Generally, the agents will not know the parameter α and therefore replace it by some
estimate at−1, based on the information Ft−1. Typically, the parameter α will be esti-
mated by some recursive prodedure. In general, this will have the form of a stochastic
approximation algorithm:

at = at−1 + γtR
−1
t xt

(
yt − a′t−1xt

)
, (5.4a)

Rt = Rt−1 + γt
(
xtx
′
t −Rt−1

)
, (5.4b)

where (γt) is a general weighting, or gain, sequence. With this learning scheme, agents’
expectation will be given by yet|t−1 = a′t−1xt, and the resulting so-called actual law of

motion (ALM), or data generating process (DGP), is

yt = βa′t−1xt + δ′xt + εt. (5.4c)

It is thus plain that, in models with adaptive learning, the expectational term yet|t−1
creates a forecast feedback, resulting in a self-referential, and thus highly complex, DGP.
Moreover, the stochastic behaviour of the DGP depends crucially on the specification
of the gain sequence (γt).
In the context of (5.4), two issues arise:

(i) The internal forecasting problem: Will the estimated at converge to the REE α?
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(ii) The external estimation problem: Can the structural parameters β, δ in (5.4c) be
consistently estimated, e.g. by least squares?

As to (i), (5.4a)-(5.4b) is a special case of a general class of recursive algorithms,
for which there is a rich literature. A good account of the state of the art can be
found in Benveniste, Métivier, and Priouret (1990), Evans and Honkapohja (2001), and
Kottmann (1990). The main results are that, for the case of constant gain learning,
i.e. with γt = γ, convergence at → α will generally not hold. As opposed to that,
for decreasing gain sequences, i.e. with γt → 0, convergence at → α does hold with
probability one under suitable summability assumptions on γt and provided that β < 1.
For details, see Christopeit and Massmann (2010). If, however, β ≥ 1, it can be shown
that at diverges.
As to (ii), results are scarce, and pertain mainly to the case of constant gain learning,
see Chevillon, Massmann, and Mavroeidis (2010). Since at 9 α, the regressors possess
all nice properties of a stationary ergodic sequence so that consistent OLS estimation
is possible. On the other hand, if at → α, say with probability one, as is the case in
decreasing gain learning then the regressors in (5.4c) will be asymptotically collinear

yt ∼ βα′xt + δxt + εt,

i.e. the asymptotic moment matrix

M =

(
α′

I

)
xtx
′
t

(
α I

)
will be singular. In the econometrics literature, singularity of M is generally referred to
as absence of strict, or strong, asymptotic identification, see e.g. Davidson and MacK-
innon (1993) or Newey and McFadden (1994). As strict asymptotic identification is
only sufficient but not necessary for the asymptotic identification of the parameters,
the non-singularity of M need of course not preclude the OLSE from being consistent,
and, in fact, does not. There is, indeed, a trade-off between the convergence of agents’
expectations to the REE and desirable properties of the OLSE.
The focus of this paper will be on problem (ii) and, in particular, on OLS estimation of
the model with the decreasing gain coefficients specified as γt = γ/t for some constant
γ > 0. In view of the discussion of problem (i) above, we restrict ourselves to the case
of β < 1. For simplicity and in order not to obscure the main ideas, we will restrict
ourselves to the one-dimensional case with xt = 1 (note that any other constant value
of xt results in an obvious linear transformation of the condition on γ to be imposed in
Theorem 1). Then the dynamics in (5.4) simplify to

yt = δ + βat−1 + εt, (5.5a)

at = at−1 +
γ

t
(yt − at−1) . (5.5b)

Inserting (5.5a) into (5.5b) and introducing

c = (1− β) γ, (5.6)

we obtain
at =

(
1− c

t

)
at−1 +

γ

t
(δ + εt) . (5.7)

Note that the condition β < 1 corresponds to c > 0.

11



Remark 5. For (5.5b), we have assumed that we start with the stationary value R0 = 1.
Actually, for any starting value R0 it will hold that limt→∞Rt = 1.

(5.5a) is a simple linear regression model with predetermined stochastic regressors at−1
as considered in section 3. Returning for a moment to the notation used there (with
index t instead of i), we have that xt = at−1 (not to be confused with the x-variables
in (5.4c), which we have assumed to be equal to 1). In particular, since now

xT =
1

T

T∑
t=1

at−1 =
1

T

T−1∑
t=1

at−1 =
T − 1

T
aT−1,

xt − xt−1 = at−1 −
t− 2

t− 1
at−2

(for initial value a0 = 0), the OLSE is given by

β̂T − β =
uT
AT

, (5.8)

with

uT =
T∑
t=1

(
at−1 −

T − 1

T
aT−1

)
εt (5.9)

and

AT =
T∑
t=1

(
at−1 −

T − 1

T
aT−1

)2

=
n∑
i=2

t− 1

t

(
at−1 −

t− 2

t− 1
at−2

)2

(5.10)

cf. (4.6). As mentioned in the introduction, none of the conditions provided in the
literature for strong consistency is satisfied. Actually, considering the moment matrix

MT =

(
T

∑T
t=2 at−1∑T

t=2 at−1
∑T

t=2 a
2
t−1

)
,

it is shown in Christopeit and Massmann (2012b) that

lim
T→∞

log λmax(MT )

λmin(MT )
=∞ a.s.

and in Christopeit and Massmann (2012a) that

AT
log T

= OP (1).

Hence both (2.6b) and (2.7) are violated.

Proposition 2. Consider the model (5.5) and assume that the εt are independent
Gaussian with Eεi = 0 and Eε2i = σ2. Then, for c > 1/2, the OLS estimator for β is
strongly consistent.
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Note that the condition c > 1/2 corresponds to γ > 1/2(1 − β).
Christopeit and Massmann (2012a) show that, under this condition, the OLSE for β
is asymptotically normal at rate

√
log T even if the εt are not Gaussian. In particular,

this implies weak consistency. While the proof in Christopeit and Massmann (2012a)
is based on examining second and third moments, the proof of strong consistency in
section 6 below draws on martingale limit theory. It is, therefore, not clear a priori
whether one can do without Gaussianness for strong consistency.
The analysis of the OLSE’s behaviour when c ≤ 1/2 is left for future research. Pre-
liminary calculations indicate that, if asymptotic normality holds, it should be at rate
T 1/2−c, so that convergence would be much faster than when c > 1/2. The analysis is,
however, complicated by the fact that all the terms ζ, η and ξ into which we decompose
a in section 6.3 below are of the same order of magnitude and thus would have to be
considered jointly in the analysis of the limit behavior of AT . This seems to be chal-
lenging since the O (1)-terms appearing in the approximations can hardly be qualified
any further. Therefore, an approach different from the one adopted here may have to
be considered.

6 Proof of Proposition 2

6.1 Some preliminaries

It is intuitively clear and can, indeed, be easily shown that the choice of initial value
a0 has no influence on the asymptotic behavior. For simplicity of exposition, we shall
therefore suppose that a0 = 0. It then follows from (5.7) that

at =

t∑
i=1

φti (δ + εi) , (6.1)

where

φti =
γ

i

(
1− c

i+ 1

)
· · ·
(

1− c

t

)
, i = 1, . . . , t− 1, (6.2)

φtt =
γ

t
.

In particular, for c = 1,

φti =
γ

t

for all i. Taking logarithms and using a second order Taylor expansion, it is shown in
Christopeit and Massmann (2010) that

φti = γ
1

tc
1

i1−c
exp

[
Oti(1)

i

]
= γ

1

tc
1

i1−c

[
1 +

Oti(1)

i

]
(6.3)

for c 6= 1 and i0 = max {i : i ≤ c} ≤ i ≤ t. The Oti(1) are uniformly bounded in t and
i ≤ t. For i < i0,

φti =
γ

i

∏i0

j=i+1

(
1− c

j

)∏t

j=i0+1

(
1− c

j

)
= λiφti0

with

λi =
i0
i

∏i0

j=i+1

(
1− c

j

)
.

13



Hence, since maxi<i0 |λi| ≤ K, we have that φti = O (t−c) for i < i0. Therefore, denoting
by φ̃ti the rightmost expression of (6.3) for a moment (so that φ̃ti = φti for i ≥ i0),∑i0−1

i=1
φti = O

(
t−c
)
,∑i0−1

i=1
φtiεi = O

(
t−c
)

a.s.,

the same holding for φ̃ti. As a consequence,

t∑
i=1

φti =
t∑
i=1

φ̃ti +

i0−1∑
i=1

(
φti − φ̃ti

)
= ζt +O

(
t−c
)
, (6.5)

∑t

i=1
φtiεi =

t∑
i=1

φ̃tiεi +

i0−1∑
i=1

(
φti − φ̃ti

)
εi = zt +O

(
t−c
)
, (6.6)

where we have put

ζt =
1

tc

∑t

i=1

1

i1−c

[
1 +

Oti(1)

i

]
, (6.7)

zt =
1

tc

∑t

i=1

1

i1−c

[
1 +

Oti(1)

i

]
εi. (6.8)

(6.1) may be then written in the form

at = δγζt + γzt +O
(
t−c
)
. (6.9)

As announced in Remark 3, we shall show in section 6.2 that the centered regressors
can be decomposed into two parts:

wt = at −
t− 1

t
at−1 = w′t + w′′t , (6.10)

of which the first is measurable with respect to Ft = σ (εt − ε1, . . . , εt − εt−1), while the
second satisfies

u′′T =

T∑
t=2

t− 1

t
w′′t−1 (εt − εt−1) = O (1) a.s., (6.11)

see (4.9). Noting that

AT =
T∑
t=2

t− 1

t

(
w′t−1 + w′′t−1

)2
,

(cf. (4.6)) and defining A′T , A
′′
T as in (4.10), we then show in section 6.3 that

A′′∞ <∞ and A∞ =∞ a.s.. (6.12)

It will then follow from the Cauchy-Schwarz inequality that

A′∞ =∞ and
A′T
AT

= O (1) a.s..

In accordance with Remark 2 in section 4, we can then apply Theorem 1 to the w′-part,
showing that

lim
T→∞

β̂T = β a.s.

as desired.
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6.2 Proof of (6.10)

We go back to the basic representation (6.1). Then

t− 1

t
at−1 =

1

t

t−1∑
s=1

as =
1

t

t−1∑
s=1

s∑
i=1

φsi (δ + εi)

= δ
1

t

t−1∑
i=1

t−1∑
s=i

φsi +
1

t

t−1∑
i=1

εi

t−1∑
s=i

φsi

= δ
1

t

t−1∑
i=1

gti +
1

t

t−1∑
i=1

gtiεi,

where we have put

gti =

{ ∑t−1
s=i φsi, for 1 ≤ i ≤ t− 1,

0, for i = t.
(6.13)

Hence

wt = δ

[
t∑
i=1

φti −
1

t

t−1∑
i=1

gti

]
+

t∑
i=1

φtiεi −
1

t

t−1∑
i=1

gtiεi

= δ
t∑
i=1

hti +
t∑
i=1

htiεi, (6.14)

with

hti = φti −
1

t
gti =

(
1 +

1

t

)
φti −

1

t

t∑
s=i

φsi. (6.15)

Write the second term in (6.14) in the form

t∑
i=1

htiεi = εt

t∑
i=1

hti −
t∑
i=1

hti (εt − εi)

and put

w′t = −
t∑
i=1

hti (εt − εi) , (6.16)

w′′t = (δ + εt)µt (6.17)

with

µt =
t∑
i=1

hti.

Then (6.10) will hold, and (w′t) is clearly adapted to (Ft) .
We now have to show that (6.11) holds. To this end, write

µt =

t∑
i=1

φti −
1

t

t−1∑
i=1

gti =

t∑
i=1

φti −
1

t

t−1∑
i=1

t−1∑
s=i

φsi

=

t∑
i=1

φti −
1

t

t−1∑
s=1

s∑
i=1

φsi

= ζt −
1

t

t−1∑
s=1

[
ζs +O

(
s−c
)]

+O
(
t−c
)
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(cf. (6.5)). By (6.7), making use of the integral comparison theorem,

ζt =
1

tc

∑t

i=1

1

i1−c
+O (1)

1

tc

∑t

i=1

1

i2−c

=
1

tc

[
1

c
tc +O (1) tc−1 +O (1)

]
=

1

c
+O (1/tc) +O (1/t) . (6.18)

Also,

1

t

t−1∑
s=1

ζs =
1

c
+

1

t

[
t1−c

1− c
+ log t+O(1)

]
=

1

c
+O

(
1

tc

)
+O

(
log t

t

)
, (6.19)

so that

µt = O

(
1

tc

)
+O

(
log t

t

)
. (6.20)

As a consequence,

E
[
w′′t
]2

=
(
δ2 + σ2

)
µ2t = O(1)

[
1

t2c
+

log2 t

t2

]
. (6.21)

Hence, for c > 1/2,
∞∑
t=1

E
[
w′′t
]2
<∞.

By monotone convergence, the latter implies that

∞∑
t=1

(
w′′t
)2
<∞ a.s. (6.22)

for c > 1/2. Going back to (6.11), write u′′T in the form

u′′T =
T∑
t=2

t− 1

t
w′′t−1εt −

T∑
t=2

t− 1

t
w′′t−1εt−1. (6.23)

The first term on the right hand side is a martingale transform MT , with quadratic
variation

〈M〉T = σ2
T∑
t=2

(
t− 1

t

)2 (
w′′t−1

)2
. (6.24)

By (6.22), 〈M〉∞ < ∞ a.s. for c > 1/2, so that MT converges with probability one to
some finite random variable. As to the second term in (6.23), call it NT for a moment,
choose any 1/2 < ρ < c ∧ 1. Then, by (6.20),

tρµt = O

(
1

tc−ρ

)
+O

(
log t

t1−ρ

)
. (6.25)

Also,

tρµtεt = O (1)

[
1

tc−ρ
+

log t

t1−ρ

]
εt = o (1) a.s.. (6.26)
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This follows from the fact that
εt
tp

= o (1) a.s. (6.27)

for every p > 0. (6.27), in turn, can be seen from Chebychev’s inequality

P

(
|εt|
tp

> η

)
≤ 1

ηmtmp
E |εt|m

(for every η > 0), observing that for mp > 1 the right hand side is summable and
therefore, by the Borel-Cantelli lemma,

P

(
|εt|
tp

> η i.o.

)
= 0.

But this is equivalent to (6.27). From (6.25) and (6.26), together with (6.17), it follows
that

tρw′′t = o (1) a.s..

On the other hand, by the law of the iterated logarithm,√
t

log2 t
εt = O(1) a.s..

As a consequence,

tρw′′t ·

√
t

log2 t
εt = o(1) a.s.

and therefore

NT ∼
T∑
t=1

[√
log2 t

t1+2ρ
o(1)

]
= o (1) a.s.. (6.28)

Summarizing, we find that, for c > 1/2, u′′T is bounded with probability one, thus
proving (6.11).

6.3 Proof of (6.12)

As before, we shall assume throughout that c > 1/2. From (6.22), we already know that

A′′∞ <∞ a.s..

In order to show that A∞ = ∞, it turns out advantageous to go back to the original
definition

AT =
T∑
t=1

(
at−1 −

T − 1

T
aT−1

)2

and use the representation

at = δγζt + γzt +O
(
t−c
)
,

see (6.9), with ζ and z given by (6.7) and (6.8). For the further analysis, we split the
z-term into two parts:

zt = ξt + ηt, (6.29)
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with

ξt =
1

tc

t∑
i=1

1

i1−c
εi, (6.30)

and

ηt =

{
1
tc
∑t

i=1
Oti(1)
i2−c εi, for c 6= 1,

0, for c = 1.
(6.31)

Our procedure will be to consider the various components of AT corresponding to the

decomposition (6.9) and (6.29) separately. Denoting by A
(ζ)
T , A

(η)
T and A

(ξ)
T the corre-

sponding parts of AT , e.g.

A
(ζ)
T =

T∑
t=1

(
ζt−1 −

T − 1

T
ζT−1

)2

and similarly for the other components, it will turn out that A
(ζ)
T and A

(η)
T are O (1)

with probability one, while limT→∞A
(ξ)
T =∞ a.s.. From this it follows

A∞ =∞ a.s.. (6.32)

6.3.1 Ad ζ

By (6.18) and (6.19),

A
(ζ)
T = O (1)

T∑
t=1

[
1

t2c
+

1

t2

]
+O(1)T

[
1

T 2c
+

log2 T

T 2

]
= O(1). (6.33)

6.3.2 Ad η

This term vanishes for c = 1, so that we may assume c 6= 1. For c 6= 3/2, noting that
the Oti(1)-terms are deterministic,

Eη2t = O(1)
1

t2c

t∑
i=1

1

i2(2−c)
= O(1)

1

t2c

[
1

2c− 3
t2c−3 +O(1)

]
= O(t−3) +O

(
t−2c

)
,

while, for c = 3/2,

Eη2t = O(1)
1

t3

t∑
i=1

1

i
= O

(
ln t

t3

)
.

Therefore, for c > 1/2,
∞∑
t=1

Eη2t <∞.

Since (ηt) is a Gaussian sequence, this is equivalent to

∞∑
t=1

η2t <∞ a.s. (6.34)

18



cf. Shiryaev (1996, Chapter VII, §6, Lemma p.533). As to ηT , some tedious but straight-
forward calulation, making repeated use of the integral comparison theorem, shows that

Eη2T = O

(
1

T 2
+

1

T 2c
+

1

T 1+c

)
. (6.35)

As a consequence, Tη2T = oP (1), so that

A
(η)
T =

T∑
t=1

(
ηt−1 −

T − 1

T
ηT−1

)2

≤ 2

[
T∑
t=1

η2t + Tη2T−1

]
= O(1) a.s.. (6.36)

Actually, (6.34) and (6.35) imply only that A
(η)
T = OP (1). But since A

(η)
T is monotone

increasing, this is equivalent to a.s. finiteness of the limit.

6.3.3 Ad ξ

We finally come to the dominating term

A
(ξ)
T =

T∑
t=1

(
ξt−1 −

T − 1

T
ξT−1

)2

. (6.37)

As to the ξ-term, a similar calculation as for η shows that

Eξ
2
T = O(1)

{
log T

T 2
+

1

T 2c
+

1

T c+1

}
. (6.38)

Hence, Tξ
2
T = oP (1). Therefore, since

A
(ξ)
T =

T∑
t=1

ξ2t−1 −
(T − 1)2

T
ξ
2
T−1, (6.39)

it follows that

A
(ξ)
T =

T∑
t=1

ξ2t−1 + oP (1). (6.40)

If it can be shown that
∞∑
t=1

ξ2t =∞ a.s., (6.41)

then, since A
(ξ)
T is monotone increasing, it will follow that

A(ξ)
∞ =∞ a.s. (6.42)

and hence A∞ =∞ a.s..
The crucial condition (6.41) has been verified in Christopeit and Massmann (2010) by
embedding the discrete time scenarion into a continuous time framework and applying
methods from stochastic analysis. A different approach is taken in Christopeit and
Massmann (2012a), where it is shown by direct calculation that

α−2T

T∑
t=1

ξ2t
L2

→ 1,
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the sequence αT being given by

αT =

√
σ2γ2

2c− 1
log T .

As a byproduct, Christopeit and Massmann (2012a) also prove the asymptotic normality
of the OLSE at rate

√
log T . Here, we give a new proof which makes explicit use of the

Gaussianness of the error terms. It is based on the theorem in Shiryaev (1996) cited
above and on a zero-one law.

6.3.4 Proof of (6.41).

Denote

XT =

T∑
t=1

ξ2t and XsT =

T∑
t=s

ξ2t .

For fixed s ≥ 2, decompose ξt, t ≥ s, in the form

ξt =
1

tc
[ws + wst] ,

with

ws =

s−1∑
i=1

1

i1−c
εi and wst =

t∑
i=s

1

i1−c
εi.

Then, for T ≥ s,

XsT = w2
s

T∑
t=s

1

t2c
+ 2ws

T∑
t=s

1

t2c
wst +

T∑
t=s

1

t2c
w2
st. (6.43)

Denote

ηsT =
T∑
t=s

1

t2c
wst, X ′sT =

T∑
t=s

1

t2c
w2
st.

Since, for t ≥ s+ 1,

wst = ws+1,t +
εs
s1−c

,

it follows that, for ηsT for T ≥ s+ 1,

ηsT = ηs+1,T + ρsT ,

where

ρsT =
εs
s1−c

[
1 +

T∑
t=s+1

1

t2c

]
.

Since, for all s, supT≥s |ρsT (ω)| <∞ for all ω, the set Γ0 =
{

supT≥s |ηsT | <∞
}

is the
same for all s, and coincides with the set

{
supT≥s |wsηsT | <∞

}
. Since the first term

on the right hand side of (6.43) is uniformly bounded in T for all s, and apparently
Γs = {Xs∞ =∞} = Γ = {X∞ =∞} for all s, it follows a forteriori that the sets
Γ′s = {X ′s∞ =∞} coincide for all s : Γ′s = Γ′. Since X ′sT involves only εt, t ≥ s, so
does X ′s∞. Hence Γ′ ∈

⋂∞
s=1 σ (εs, εs+1, . . .) . In other words, Γ′ is a tail event. By
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Kolmogorov’s zero-one law, either P (Γ′) = 0 or P (Γ′) = 1. Since Γ ∩ Γ0 ⊂ Γ′, it holds
that

P (Γ ∩ Γ0) ≤ P
(
Γ′
)
. (6.44)

We will show that
P (Γ0) = 1 (6.45)

and
P (Γ) > 0. (6.46)

Then it will follow from (6.44) that P (Γ′) = 1 and hence P (Γ) = 1.

Ad (6.45) Consider

ηsT =
T∑
t=s

1

t2c

t∑
i=s

εi
i1−c

=
T∑
i=s

εi
i1−c

T∑
t=i

1

t2c

=
1

1− 2c

T∑
i=s

εi
i1−c

[
1

T 2c−1 −
1

i2c−1
+OT i(1)i−2c

]

=
1

1− 2c

[
1

T 2c−1

T∑
i=s

εi
i1−c

−
T∑
i=s

εi
ic

+
T∑
i=s

OT i(1)εi
i1+c

]
.

The (deterministic) OT i(1)-terms are uniformly bounded in T, i. By Kolmogorov’s the-
orem, the second term in brackets converges with probability one to some finite random
variable as T →∞. As to the third term, call it vT for a moment, write

|vT | ≤ O(1)
T∑
i=s

|εi| −m
i1+c

+O (1) ,

with m = E |εi| . To the first term on the right hand side, again Kolmogorov’s theorem
applies to show that it converges with probability one to some finite random variable
as T →∞. Therefore, vT = O (1) with probability one. As to the first term,

MT =
T∑
i=s

εi
i1−c

is a martingale with quadratic variation

〈M〉T = σ2
T∑
i=s

1

i2(1−c)
=

σ2

2c− 1
T 2c−1 +O(1).

Hence, by the standard martingale convergence theorem, the first term tend to zero
with probability one. Summarizing, we find that

ηsT = O(1) a.s.,

which shows (6.45).
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Ad (6.46) For this, we evoke again the result already cited in Remark 4, namely the
equivalence

P (X∞ <∞) = 1 ⇔ EX∞ <∞.

But

Eξ2t =
σ2

t2c

t∑
i=1

1

i2(1−c)
=

σ2

2c− 1

1

t2c
[
t2c−1 +O(1)

]
=

σ2

2c− 1

1

t
+O

(
1

t2c

)
,

so that

EXT =
σ2

2c− 1
log T +O(1).

Therefore, EX∞ = ∞, implying that P (X∞ <∞) < 1. Equivalently,
P (Γ) > 0. �
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