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Abstract

We explore how public opinion polls affect candidates’ campaign spending in political compe-

tition. Generally, polls lead to (more) asymmetric behavior. Under a majority rule there always

exists an equilibrium in which the initially more popular candidate invests more in the campaign

and thereby increases her lead in expectation: polls create momentum. When campaigning is very

effective and the race is very close, a second type of equilibrium may exist: the trailing candidate

outspends and overtakes his opponent. Regardless of the type of equilibrium, polls have a tendency

to decrease expected total campaigning expenditures by amplifying ex-ante asymmetries between

candidates and thus defusing competition. When candidates care also for their vote share in addi-

tion to having the majority, candidates’ incentives crucially depend on the distribution of voters’

candidate preferences.
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1 Introduction

While an informed electorate is generally considered essential for a well-functioning democracy, one

exception concerns polls of candidates’ relative standing. Critics claim that polls undermine both the

incentive to vote as well as the vote itself; thus distorting voting decisions. As a consequence the

preferences of the populace are warped by the echo chamber of opinion polls. For this reason, many

countries have imposed a ban on the publication of pre-election polling results. This ban can range from

one day before the election, as in France, to a whole month before the election, as in Luxembourg.1

Candidates, however, are still allowed to commission opinion polls, even if the general public is not

allowed access to the results. In this paper we study the effect of opinion polls on candidates’ incentives

to invest in their campaign. These investments in turn influence the voters’ ballot choice on election

day and thus the final election outcome.

Polls are ubiquitous. In addition to traditional providers like Gallup and Rasmussen Reports, news-

papers and TV stations conduct their own polls. Poll aggregator websites, such as realclearpolitics.com

collect the plethora of poll results and offer a structured overview to the public. In addition, prediction

markets such as politicalbetting.com and oddschecker.com offer alternative sources of voters’ approval

(Berg, Nelson, and Rietz, 2008). Given the relevance of polls, numerous studies have analyzed the

various channels through which information about candidates’ relative standing might affect voters’

behavior. A prominent hypothesis is the existence of a bandwagon effect, which posits that voters

increasingly cast their vote for candidates doing well in the polls. This suggests that polls create mo-

mentum in the sense that the front-runner improves his position over time. However, there are also

studies predicting anti-momentum, for example due to a mobilization effect, with the consequence that

the front-runner in the polls experiences a loss of support in the election.

While scholars show a strong interest in the analysis of voters’ reaction to polls, the other side of the

political market – the politicians and parties – has been virtually neglected. To increase their chances of

election, political candidates invest aggressively into their campaigns: Total campaign spending during

the 2012 Presidential Campaign in the United States amounted to more than USD 2 billion.2 Because

the fraction of partisan voters has been shrinking in many countries (e.g. Dalton and Wattenberg

1Source: http://aceproject.org. Accessed: September 10, 2013.
2Source: http://www.opensecrets.org/pres12. Accessed: September 10, 2013.
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(2001)), there are more swing voters to be swayed in a campaign, making campaigning increasingly im-

portant in determining the election outcome. Advances in social media and communication technology

offer a plethora of new channels to target specific voter groups more effectively and thus increase the

impact of a campaigning dollar.

Voter preferences and voting intentions are not directly observable to the political candidates and

typically change over the course of time due to taste or information shocks. The possibility of reliable

up-to-date information about candidates’ relative standing is thus at the heart of our analysis. We

analyze how this information influences the incentives of candidates to spend in the course of their

political campaign. In particular, we are interested in how candidates’ relative incentives to compete

are affected and whether polls affect the likelihood of an incumbent winning the election. We construct

a model in which candidates for political office may spend resources early and late in the campaign to

gain voters’ support. If there is no poll, candidates a priori have a common belief about the median

voter’s candidate ranking and cannot update their beliefs as the election day comes closer. If there is

a poll, candidates know the median’s candidate ranking when making their investment decisions. Our

main results are as follows:

• If candidates are mainly concerned with winning the election, polls give the front-runner an

incentive to campaign harder than her opponent and thereby create momentum. Thus, there

always exists an equilibrium where the front-runner increases her lead in expectation.

• In an environment where candidates’ campaign expenditures are highly effective in influencing

voters, polls may also create anti-momentum. The trailing candidate may run a more costly

campaign than his adversary, but only if candidates have relatively similar popularity. Equilibria

with momentum and anti-momentum co-exist.

• Increasing the precision of polls has an ambiguous effect. In close races more precise polls lead to

stronger momentum. In very lopsided races momentum decreases as polls become more precise,

because candidates slack off in a mostly decided race.

• Polls can make a campaign both more and less wasteful in terms of aggregate expenditures. If

(but not only if) the spending elasticity of campaigning costs decreases polls decrease aggregate

spending and thus wastefulness.
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• When candidates are sufficiently interested in their vote shares and not only in gaining a majority,

unique equilibria exhibiting anti-momentum may occur in a polarized electorate.

To illustrate the intuition behind our results consider two ex-ante equally popular candidates. They

campaign over a certain period of time and during this time random (unobservable) shocks to their

popularity occur. Without a poll, candidates never learn about their current standing with the voter

and thus at any point in time incentives are completely symmetric. With polls on the other hand,

candidates receive updates about their current relative standing. This alters their incentives in the

following way. A candidate who receives the information that she is ahead, now has an additional

incentive to invest. The reason is that any additional investment now affords her an even greater lead

in expectation in the next poll. This in turn decreases the expected intensity and thus expected costs

of future competition. A trailing candidate on the other hand has a weaker incentive to invest. Any

additional unit of investment now brings him closer in expectation to his opponent in the next poll

and thus it makes future competition more fierce and costly in expectation. Consequently polls drive

a wedge between the investment incentives of the trailing and leading candidate and thereby create

momentum.

When campaigning is relatively effective and the candidates are relatively close, this intuition is

valid for the trailing candidate as well. A large investment helps him overtake his opponent and at

the same time defuse future competition in expectation. In these situations both candidates have an

incentive to preempt the other with the objective to save costs in the future. In terms of aggregate

expenditures of the candidates, note that initial asymmetries are amplified through a poll. This tends to

defuse competition and thus lower investments into the campaigns. In addition though, the candidates

also face a less noisy decision environment, which has a differential effect on expenditures. The overall

effect of polls on wastefulness is thus ambiguous.

The paper is organized as follows. In the remainder of this section we review the relevant literature.

Section 2 sets up and explains the basic model. In Section 3 we explore the effect of providing informa-

tion through polls in a system of pure majority voting. We discuss the effect of polls on the intensity

of political competition in Section 4 and candidates’ expected spending profiles in Section 5. Section

6 contains extensions of the basic model. First we show that our technical assumptions are not too

restrictive and that in a more general model our findings will be qualitatively preserved. In the second
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part of the section we study the effects of polls when candidates care not only about majorities but

also about their actual vote shares. In the third part we study imprecise polls. We conclude the section

with a discussion of the costs of campaigning. Section 7 concludes. We relegate all formal proofs to

the appendix.

Related Literature Other scholars have directed their attention to the effect of polls on election out-

comes. The incentives to conduct polls about voters’ policy preferences to inform campaign positioning

choices are analyzed for example in Bernhardt, Duggan, and Squintani (2009) and Jacobs and Shapiro

(1994). In contrast, we focus on the financial aspect of campaigning. In our paper polls inform about

candidates’ relative standing and we study how polls inform campaign expenditure decisions. Earlier

models of how candidates use their money and time during an electoral contest were studied for example

by Brams and Davis (1973, 1974), Snyder (1989), Skaperdas and Grofman (1995), Stromberg (2008),

Iaryczower and Mattozzi (2013), Denter (2013), and Meirowitz (2008). To be able to study polls and

the associated repercussions for electoral outcomes, we study candidate incentives in a dynamic cam-

paigning model. The dynamic nature of the model is essential, since the effects we are interested in can

only emerge if candidates can learn over time. The only other paper we are aware of studying dynamics

in a strategic model of campaign spending is Klumpp and Polborn (2006). While the authors study

incentives in sequential electoral contests during the primaries, we consider spending dynamics and the

role of informational feedback within a single contest.

Also the effect of polls on voters’ decisions has been investigated. Among others Hong and Konrad

(1998), Straffin Jr. (1977), Bikhchandani, Hirshleifer, and Welch (1992), Callander (2007), as well as

Ali and Kartik (2012) show how polls can distort voters’ decisions at the ballot in favor of the more pop-

ular/leading candidate. Rationales for this bandwagon effect include information cascades, the desire to

vote for the winner, and voters’ aversion to uncertainty. Other authors, e.g. Goeree and Großer (2007),

argue in the opposite direction, claiming that leading in the polls might actually be harmful, due to a

negative mobilization effect. A number of empirical papers have tried to falsify one or the other hypoth-

esis, but by now evidence is at best inconclusive (see for example Blais, Gidengil, and Nevitte (2006);

McAllister and Studlar (1991); Nadeau, Cloutier, and Guay (1993); Vowles (2002); Knight and Schiff

(2010)). Our paper also addresses the effect of polls on voting decisions and election outcomes, but

through an indirect channel: the strategies of political candidates. Candidates vie for voters by spending
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time and money on their campaign. We study how candidates’ incentives to engage in such persuasive

efforts are affected by polls.

Showing that polls may cause momentum in favor of the front-runner, our paper also adds to the

literature identifying and explaining an incumbency advantage in political competition. For some early

empirical evidence on the existence of an incumbency advantage see for example Erikson (1971) or

Gelman and King (1990). A textbook justification for this phenomenon are political business cycles as

studied by Nordhaus (1975) or Drazen (2001). A consequence of these theories is that incumbents are

likely to have popularity advantages at the outset of a campaign. Our paper shows that this advantage

is likely to be amplified through opinion polls.

The momentum effect we identify is closely related to the so-called “discouragement effect” found

in dynamic sequential contests (Konrad, 2012). The main intuition here is that the outcome of the

present contest or battle affects the perceived value of future contests through its effect on the expected

future effort costs. In some cases, such as in Klumpp and Polborn (2006) this effect can also magnify

initial advantages. Konrad (2012) illustrates this effect for models of the “tug-o-war” and the “race”

class. We show that this effect is also relevant for a different class of models, where competition takes

place over a fixed time horizon.

Finally, a literature that is related because of the class of models employed analyzes workers’

incentives in labor market tournaments. Aoyagi (2010), Ederer (2010), Gershkov and Perry (2009)

as well as Klein and Schmutzler (2013) study the optimal feedback policy of a principal in a dynamic

promotion tournament, where the principal’s goal is the maximization of aggregate effort. We add to

this literature in two ways. First, in order to study momentum in a campaign we depart from the

modeling practice of this literature by looking at multiple feedback stages and ex-ante asymmetric

candidates. Second, we study the effect of two different “reward schemes:” promotions (concern for

winning) and sharing of a bonus (concerns for vote share). Empirical evidence on dynamic tournaments

with and without feedback is discussed for example in Fershtman and Gneezy (2011). They find that

feedback about relative performance increased the quitting rate among 10th graders in a 60m race.

This is in line with our theoretical findings.
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Figure 1: Timing.

2 The model

Two candidates, i ∈ {F, T} compete for voters’ approval over two stages, t = 1 and t = 2. We assume

that policy platforms were chosen and committed to before t = 1. Campaigning in t = 1 and t = 2 is

thus purely persuasive and candidates sway voters by choosing investments xti ≥ 0, i = F, T , t = 1, 2,

which can for example be thought of as TV advertisements or public appearances. Throughout the

campaign, candidates experience random shocks to their popularity. Polls inform candidates about

their relative standing. In stage three, t = 3, the election takes place. Figure 1 summarizes the timing

of the game.

We assume that a simple majority rule is used (“first past the post”-system, FPTP). This implies

that candidates vie for the median voter. The median voter votes for the candidate which affords her

the highest expected utility. Formally, we define the (perceived) difference in utilities between candidate

F and T on election day (t = 3) as3

d3 = a+

2
∑

t=1

(

xtF − xtT
)

−
2
∑

t=1

et (1)

The first term, a represents the realized utility difference at the outset of the campaign before any

campaign effort was chosen. In case the election were held just before period 1 a would solely determine

the election outcome. This parameter can be interpreted as containing the prior decisions on policy

3In many situations, e.g. with a multi-dimensional policy space, a median voter may fail to exist. In these situations,
our so called median voter may also be interpreted simply as a decisive voter. For example, if there are n issues, let
preferences of voter v be of the following form:

d
3
v =

2
∑

t=1

(

x
t
F − x

t
T

)

−

2
∑

t=1

e
t
−

n
∑

m=1

w
m
[

(bmv − p
m
F )2 − (bmv − p

m
T )2

]

,

where wm
v ≥ 0 are issue weights, pmi candidate i’s position in issue m, and voters’ bliss points bmv are distributed on

some n-dimensional policy space. Then it is always possible to choose xi in such a way that the electorate is split evenly
between candidates and each receives a popular vote of 50 percent. The type of voter (identified by her bliss point) that
is indifferent between candidates in such a situation is the decisive voter that we are referring to as median voter.
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platforms, the valence of the candidates, an incumbency advantage or random events prior to t =

1. From the candidates’ perspective a is the realization of a random variable α, which is normally

distributed with mean µα and variance σ2
α. The second term represents the difference in campaigning

efforts between F and T in period 1 and 2. Thus, if F outspends T , she will, ceteris paribus, increase her

popularity with the median voter. Finally, et is the realization of a (macro)-shock after the investment

decision in period t = 1 and t = 2. This shock is common to the whole populace and thus the identity

of the median does not change over time.4 An example for such a shock is a blunder in a publicly

broadcasted speech. For example in the midst of economic turmoils 2008 Republican U.S. presidential

nominee John McCain claimed that “the fundamentals are strong”, making him look extremely out of

touch with reality5. We denote the respective random variables corresponding to realizations e1 and e2

as ǫ1 and ǫ2 and assume that they are independently drawn from a normal distribution with mean zero

and variance σ2
ǫ .

6 On election day, the median voter votes for candidate F if d3 > 0, while he votes for

candidate T if d3 < 0. If the median voter is indifferent (d3 = 0) so is the electorate as a whole, and

both candidates receive a vote share of 50 percent. Denote by δ3 the random variable belonging to d3.

d2 and δ2 are defined analogously as the (realized) difference in perceived utility in t = 2. Since a = d1

we will use only the former. Throughout the paper, we shall use the symbols φ and Φ to denote the

PDF and CDF of the standard normal distribution where needed.

4The assumption of such a ’macro’ shock is not necessary, but significantly simplifies the exposition. However, in
general the shocks could as well have any other form that allows inferring the expected ranking of candidates in the next
stage. In that case the identity of the median voter changes over time.

5http://www.nytimes.com/2008/09/17/world/americas/17iht-mccain.4.16251777.html.
6There are many other possible interpretations. For example Gassebner, Jong-A-Pin, and Mierau (2008) show the

influence of terrorist attacks on politicians’ popularity. While this may still be related to policy or qualification, other
studies show that pure random events – from the point of view of a politician – influence election outcomes. For example,
Healy, Malhotra, and Mo (2010) study the impact of local college football games just before an election takes place. If
the local team wins, the incumbent’s chances to win improve significantly. Similarly, natural disasters may have a direct
influence of voters’ candidate ranking. A recent example for such a shock is the disaster caused by the damaged Fukushima
Daiichi nuclear power plant in Japan that followed the earthquake and the thereby caused tsunami of March 11, 2011.
In the aftermath, in many countries around the world a shift of voters’ preferences in favor of green or anti-nuclear
movements was accounted for. In the U.S., support for nuclear energy dropped to a historical low, with numbers even
beneath those immediately after the Three Mile Island incident in 1979 (Cooper and Sussman, 2011). In Germany, the
Green Party’s support surged in the disaster’s aftermath and helped them to win the state election in one of Germany’s
most influential states, Baden-Württemberg, which until then was a traditional stronghold of the conservative party CDU
of Angela Merkel (Dempsey, 2011). Similar shifts in public opinion happened in other countries, such as France (Buffery,
2011), Switzerland (Kanter, 2011), and India (Gupta, 2011). Apart from shocks to candidate ranking, ǫ may as well be
interpreted as a random shock muting candidates’ campaign efforts in a given stage, so that effective effort is not xt

i but
xt
i−ǫti. This is a standard assumption in the literature on labor tournaments that has been pioneered by Lazear and Rosen

(1981) and Nalebuff and Stiglitz (1983). In the context of political competition it may represent uncertainty about the
effects of campaign spending, and that campaigning might backfire as well (e.g. Dukakis in the tank). Finally, it may be
interpreted as a poll’s error (see Section 6.3).
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The candidates’ objective functions are equal to

E[πF ] = Pr
(

δ3 > 0
)

− c

2
(x1F )

2 − c

2
(x2F )

2,

E[πT ] = Pr
(

δ3 < 0
)

− c

2
(x1T )

2 − c

2
(x2T )

2.

We normalize the utility from holding office to one. By equation (1) we see that expending campaigning

effort xti, t = 1, 2 increases the chances of winning the median voter’s vote and thus the election.

Furthermore, two types of factors not under the control of the candidates are relevant for the probability

of capturing the median voter on election day. On the one hand there is uncertainty about the exogenous

policy taste parameter α of the median voter. Thus, one candidate may start the campaign in t = 1

with a popularity advantage. Without loss of generality we focus on situations where µα > 0 and thus

we refer to candidate F as the “expected front-runner”.7 Similarly, when analyzing the candidates’

decisions with polls we focus on cases where a > 0 and d2 > 0 such that we refer to candidate F

as the current “front-runner”. Furthermore, the realizations of the two macro shocks ǫ1 and ǫ2 add

uncertainty in each stage. Investments come at quadratic costs C(xti) =
c
2(x

t
i)
2, c > 0. The convexity

of costs may reflect the fact that the opportunity costs of fundraising go up with every dollar already

raised or that each additional unit of investment becomes less effective at a given point in time.8 For

example, if we interpret spending xti as a measure of how many voters a candidate reaches at a given

time, convex costs would imply it gets harder and harder for the candidates to reach yet another voter

with their messages. Note that the objective function need not be concave in candidates’ investments.

Thus, in the main part of the paper we focus on situations where c, σα, and σǫ are sufficiently high

such that pure strategy equilibria exist.

3 The effect of polls

We now start our analysis of the campaign by studying candidate behavior in a FPTP electoral system.

A candidate’s goal is to win the simple majority of votes and thus, as long as a majority is achieved,

7F can also be interpreted as the incumbent and µα as the expected incumbency advantage.
8One might argue that candidates in a campaign are budget constrained. They cannot spend more money than is

donated by their supporters. While this is true in the short run, over the course of the campaign, candidates can invest
in fundraising and open up new sources of funding. Thus, we believe it is reasonable for our purposes to assume that
spending has some opportunity costs which increase with the amount of campaigning effort expended in a given period.
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the candidate is indifferent whether he wins by a small or by a large margin. We discuss an extension

in Section 6.

In order to identify the effect of polls we consider two polar cases: a situation without any poll, and

thus no information about current relative standing, and a situation where polls perfectly reveal current

popularity before each investment decision is taken by the candidates. First consider as a benchmark

a situation without any poll.

3.1 A campaign without a poll

In both t = 1 and t = 2 the candidates have the opportunity to buy TV ads for their campaigns. Absent

a poll they do not receive a signal as to their current popularity with the electorate in either stage and

thus they base their decisions solely on their common prior beliefs Φ
(

α
σα

)

. The next proposition

summarizes our first result:

Proposition 1. The equilibrium of the campaigning game without polls is unique. Both candidates

choose identical investments in each stage, and investments are also identical across stages. Conse-

quently, absent a poll the ex-ante expected popular vote of a candidate in t = 3 is identical to his

popularity in t = 1.

Proof. See appendix.

We find that efforts are completely identical, even if the front-runner F has an expected popularity

advantage. To see why it is instructive to look at candidates’ marginal incentives. For a realized median

position a, note that the marginal increase in popular vote / probability to win of F is exactly the

share (density) of currently indifferent voters. Of course, this also holds for T . Taking into account

uncertainty about α this must hold also in expectation. Moreover, since candidates have identical costs

of investment, they also have identical marginal products and marginal costs of spending. Consequently,

for any prior distribution Φ
(

α
σα

)

both candidates have identical marginal incentives, and hence the

equilibrium must be symmetric. This is similar to a result by Lazear and Rosen (1981) in their analysis

of labor market tournaments, when a candidate enjoys a head start.

A direct implication of the proposition is, that the campaigning stage does not have any effect on

the expected winner of the election, absent polls. Candidates choose identical investments, the net
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effect is zero, and the winning probability will be unaffected in equilibrium. Here we clearly see how

political campaigns, or contests in general, are similar to the Prisoner’s Dilemma: both candidates

would be better of by reducing spending by some k > 0, or by spending nothing at all. However,

individually they have an incentive to outspend their opponent.

3.2 A campaign with polls

In most modern democracies polls are a pervasive element of the political landscape. Information about

relative popularity is accessible in abundance. Apart from polls, politicians may learn more about their

popularity from prediction markets on the internet. Thus, candidates can react to changes in their

popularity, and, at the same time, even if popularity does not change over time (e.g. a = d2), this

gives additional information to the candidates. After all, learning about the popularity in t = 2 is

confounded by less noise than it was in t = 1, and for sure by less than absent any feedback. In this

section we introduce polls into the political campaign. Before their investment decisions in t = 1, 2

both candidates learn their relative popularity with the median voter d1 = a and d2 = a+x1F −x1T −e1.

3.2.1 Stage 2

We start with the candidates’ investment decisions in stage 2. After learning d2 through the poll, both

candidates decide on x2i . This situation is strategically similar to the situation in the absence of polls,

with one distinction: the amount of uncertainty until the election in t = 3 is reduced. But we have

seen from Proposition 1 that the amount of uncertainty was not decisive for relative incentives. Hence,

although investment levels differ from the situation without poll, candidates in stage 2 also choose

identical investments.

Proposition 2. There is a unique equilibrium in stage 2. Both candidates choose identical investments,

no matter what their popularity advantage in t = 2.

Proof. See appendix.

The intuition for the symmetry of investments is identical to before: by marginally increasing

spending, the additional probability to win equals exactly the opponent’s loss in winning probability;

the marginal benefit of investment is identical for both candidates independent of their popularity.
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Because marginal costs are also identical, both must choose identical spending. Hence, we can conclude

that the expected popular vote a candidate gets in t = 3, E[δ3] equals his popularity in stage 2, d2.

What are the properties of stage 2 investments? Intuitively, higher marginal costs c decrease

spending. The effect of increasing the noisiness of the macro shock σǫ is ambiguous. Increasing σǫ

implies φ goes up at the tails and goes down in the center, overall becoming flatter. Therefore, in case

competition is lopsided with one candidate enjoying a popularity advantage, increasing the variance of

the shock increases equilibrium spending. Intuitively, if the variance is large the trailing candidate has a

realistic chance to catch up without spending overly in the campaign. This also gives him an incentive to

increase spending, since, as we have discussed before, φ determines the marginal product of investment.

To the contrary, if σǫ is relatively low, catching up due to luck is relatively unlikely, and hence the

trailing candidate has no incentive to compete. As a result both candidates’ investments decrease. In

case candidates are similarly popular an increase in variance always decreases the incentives to invest, as

the marginal product of investment goes down. Finally consider the effect of the popularity advantage

d2. This comparative static is of special importance for the candidates as they are able to influence

their popularity through investing in stage 1. Since the second stage equilibrium is symmetric, the

difference in spending, x2F − x2T , is zero, independent of d
2. Thus, the marginal increase in the winning

probability in equilibrium is equal to the density of the shock, evaluated at d2, 1
σǫ
φ(d2σǫ

). The normal

density is strictly quasi-concave and symmetric at zero and thus φ(d2σǫ
) is strictly decreasing in |d2|.

This implies spending decreases as |d2| gets larger. Thus, the intensity of competition in t = 2 increases

as the popularity difference vanishes.

3.2.2 Stage 1

Next turn to stage 1. How does the existence of a poll in period 2 affect candidates’ incentives? In order

to answer this question we focus, for the moment, on situations where pure strategy equilibria exist.9

This depends on the cost parameter c and the variance of the macro shock σ2
ǫ , or more specifically,

on ρ := cσ2
ǫ . We can interpret ρ as a measure of how expensive it is to gain a substantial advantage

through investing in a close campaign. Obviously higher marginal costs, c, make it more expensive to

campaign, regardless of the closeness of the race. A high variance σ2
ǫ implies the density in the center

9We consider an extension in Section 6.
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of the shock distribution is low. Thus, on the margin, publishing TV ads in a close race has only a

small impact on the probability to win the campaign. First we consider ρ’s such that a unique pure

strategy equilibrium exists. Specifically we require ρ to be sufficiently large or ρ > (3
3
4
√
π)−1 = ρ̄.10

Consider the decision each candidate has to make in t = 1. There are three different channels

through which his decision influences a candidate’s expected utility. First, campaigning effort increases

the probability to win the election. This effect is, as in the previous section, identical for both, and hence

cannot be a cause of differences in campaign disbursements. Second, spending has immediate costs.

But candidates have identical cost functions, and hence marginal costs are also identical. Therefore,

this cannot be a reason for different behavior, either. There is, however, a third channel. By increasing

spending in t = 1 a candidate changes the expected state of the campaign in t = 2 in her favor,

because E[δ2] = a + x1F − x1T ; the marginal impact of investment in t = 1 on E[δ2] is equal to one.

Changing E[δ2] has consequences for expected future spending, and hence for expected future costs.

From the discussion of the comparative statics in t = 2 we know that costs are highest when the

race is tied, d2 = 0, and that costs decrease monotonically if we let |d2| grow, because equilibrium

spending goes down. This implies that the leading candidate, by exerting campaign effort in stage

1, locally increases |d2| in expectation and hence decreases her expected costs in stage 2, while the

opposite holds for the trailing candidate. In more technical terms, this implies the leading candidate’s

efforts in stage 1 and 2 are strategic substitutes, while the trailing candidates efforts are strategic

complements (Bulow, Geanakoplos, and Klemperer (1985)). This implies that the leader has lower

(expected) marginal costs of investment than her opponent. As a consequence, she spends more in

equilibrium and thereby in expectation increase the difference to her opponent. We have a situation in

which the leader acts tough, while her opponent takes a softer stance. We summarize this result in the

following proposition:

Proposition 3. Assume ρ > ρ̄. In the unique equilibrium the candidate leading in the poll chooses

greater investment in stage 1 than her opponent. If the race is tied both candidates choose identical

spending.

Proof. See appendix.

Together Propositions 2 and 3 characterize the candidates’ spending decisions over the course of

10A proof of this condition can be found in the appendix together with the proof of the next proposition.
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the campaign. While in stage 1 spending is typically asymmetric, with the front-runner outspending

the trailing candidate, expenditures are symmetric just before the election in stage 2. Overall, with

polls, the front-runner enjoys momentum in expectation, i.e. an initial lead grows in expectation over

time. In Proposition 1 we characterized spending decisions absent polls. We found that behavior is

completely symmetric and thus an initial advantage translates into an equal expected advantage. With

these observations we can state our main result:

Corollary 1. The effect of polls: If it is not too cheap to change a close outcome in expectation,

ρ > ρ̄, polls create momentum in favor of the front-runner. Thus, the introduction of polls increases

the likelihood that the front-runner wins the election.

Proof. This follows immediately from Propositions 1, 2 and 3.

We find that the availability of information about relative popularity crucially changes the incentives

of the candidates. In fact, a candidate starting into the campaign with an incumbency advantage will

make this advantage grow over time in expectation as the campaign progresses.

So far we have assumed that ρ is sufficiently large. When ρ is small campaigning is very effective and

cheap. Thus, influencing future popularity through campaigning is attractive. Furthermore, because

of the competitive environment, expected costs in period 2 are relatively high, making it attractive to

use period one spending to defuse competition and save on future costs. In such a situation “gambling

for resurrection” turns out to be a possible equilibrium. However, the popularity difference between

candidates must not be too large. To see why this is the case recall the aforementioned logic of strategic

substitutes and complements. A candidate’s investments are strategic substitutes if and only if he is in

expectation more popular than his opponent in stage 2 given equilibrium efforts. If this is not the case,

a marginal increase in spending decreases the expected popularity gap and hence increases expected

costs. Consequently, the trailing candidate may spend more in equilibrium, but if he does this he needs

to spend enough to turn the state in his favor in expectation. Of course, turning the state becomes

increasingly expensive as the difference between candidates increases, and there exists a threshold gap

determining the maximum lead that the trailing candidate may try to turn by investing heavily in

campaigning.

Obviously, if the trailing candidate can take charge and act aggressively in the campaign in equilib-
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Figure 2: Reaction functions for F (gray) and T (brown, dashed) and stage 1 equilibria for ρ = 0.242 and
a ∈ {0, 0.04, 0.1}.

rium, this is also possible for the front-runner. After all, it is cheaper for her to stay in the lead than

for her opponent to turn the electorate’s sentiment. Consequently, when ρ ≤ ρ̄ there exist multiple

equilibria.

It remains to discuss what happens when the race is tied. As before, to conjecture that there exists

a symmetric equilibrium is appealing. But we have also seen that there are multiple equilibria if no

candidate dominates. Those asymmetric equilibria also exist in the tied race. Hence, there exist three

equilibria for a = 0, and more generally, when a is small. However, note that the symmetric equilibrium

at a = 0 is asymptotically unstable, while the asymmetric equilibria are stable. In the next proposition

we summarize the results formally:

Proposition 4. If ρ is relatively small, ρ ≤ ρ̄, there may exist multiple equilibria. If we confine

ourselves to asymptotically stable equilibria, there exists no symmetric equilibrium, even for a = 0. In

close races either candidate may spend more in stage 1 in equilibrium, while if one candidate has a

sufficiently large advantage, this candidate outspends her opponent in stage 1 and the equilibrium is

unique.

Proof. See appendix.

Even though the two types of equilibria may look very different at first sight, they follow in fact the

same underlying logic. Candidates’ find it worthwhile to defuse competition in period 2 by investing

asymmetrically in period 1. One candidate takes a soft stance. She will suffer a lower probability

of success which will be more than compensated through the saved costs. The other candidate takes
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a tough stance and thus incurs high costs in period 1. He is more than compensated through the

increased probability of success and the cost savings in period 2. In order to illustrate the multiplicity

of equilibria in stage 1 graphically, we simulated the equilibria using the best response functions of the

candidates for ρ < ρ̄ and a ∈ {0, 0.04, 0.1}. They can be found in Figure 2. In panel a) the symmetric

case is depicted. In panel b) F has a small advantage, and thus multiple equilibria exist. In panel c)

there is a unique equilibrium exhibiting momentum.

Next consider the effect of polls on the election outcome. For the case of ρ ≤ ρ̄ we need to amend

Corollary 1 slightly.

Corollary 2. The effect of polls: If it is relatively inexpensive to change a close outcome in ex-

pectation, ρ < ρ̄, polls create momentum if there is a clear front-runner. Thus, polls increase the

probability that the front-runner is elected. In close races, momentum and anti-momentum may occur

and consequently the outcome of the election relative to a situation without polls is ambiguous.

Proof. This follows immediately from Propositions 1, 2 and 4.

A final comment concerning the equilibria when ρ ≤ ρ̄ is in order. A low value of ρ implies that

either marginal costs are low or the campaign is – to borrow from the theory of contests – relatively

discriminating (low σǫ), or both. Either makes it unlikely that an interior pure strategy equilibrium

exists, since the second order conditions are then likely to be violated. Typically there exists only

a small range of values for ρ ≤ ρ̄ for which the second order conditions hold. Figure 3 illustrates

combinations of c and σǫ for which pure-strategy equilibria as discussed above exist.

To sum up, there always exists an equilibrium where the front-runner outspends the trailing candi-

date and thus creates momentum. Furthermore, in close races when campaigning is relatively effective,

also the trailing candidate may outspend the front-runner. While in this section we compared relative

spending, in the next section we are interested in the effect of polls on candidates’ aggregate campaign

spending.

4 Polls and the intensity of political competition

So far we have focused on the effects of polls on the outcome of the election, which is determined through

relative candidate spending in the campaign. We have neglected the actual level of expenditures.
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Figure 3: Number of pure strategy equilibria in stage 1 depending on c and σǫ. In Region I there is a unique
equilibrium, in region II there are two stable equilibria in close races. In the region below II the second order
conditions do not hold for each possible popularity realization a and hence we cannot guarantee existence of pure
strategy equilibria.

Campaign expenditures can be quite substantial. For example, they typically exceed one billion U.S.

dollars in the case of presidential elections in the U.S. Thus, the “wastefulness of competition” is

also an important aspect to study and relate to the existence of polls. We are aware that not all

campaign efforts are necessarily wasteful since campaigns also inform voters about the candidates’

positions. Nevertheless, we define wastefulness as expected aggregate spending over the course of the

campaign. Thus, we implicitly assume that polls do not influence the level of informative campaigning

and candidates on the margin invest for example in image building activities. The following proposition

shows the result:

Proposition 5. Expected aggregate campaign expenditures are lower in the presence, than in the absence

of polls. Thus, ceteris paribus, polls make competition less wasteful.

Proof. See appendix.

Because polls create momentum (or anti-momentum), initial asymmetries are amplified. This de-

creases the expected intensity of competition in subsequent rounds, and hence expected wastefulness

decreases, too.11

11Of course, conducting polls will incur additional costs which need to be taken into consideration in a full-fledged
welfare analysis, here we only highlight the direct effect of polls on the intensity of competition.
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The effect of increased information on the intensity of competition has been a subject of interest

in other studies as well. A recent example is Denter, Morgan, and Sisak (2011), who analyze the

effect of mandatory disclosure requirements in competitive environments such as lobbying competition

and political campaigns. They study the competitors’ incentives to share private information about

their characteristics, for example their valuation of winning, and how mandated disclosure affects

the investment decision and outcome of competition. Their main result is that mandatory disclosure

increases the intensity and decreases allocative efficiency of competition in expectation. In their setting,

an uninformed player can use the chance of facing a weak opponent to appease a strong opponent, and

at the same time the threat to face a strong opponent to discourage a possible weak opponent. The

lack of information about the opponent helps to commit to strategies which would not be credible

under complete information. In contrast, in this paper, candidates are identical except for their current

popularity. There is no private information held by the candidates, and hence they can not use this

lack of knowledge as a commitment.

5 Polls and candidates’ spending profiles

In this section we take a closer look at the spending profiles of the candidates. Without polls the

result is straightforward, spending decreases as one candidate becomes more and more popular (in

expectation). In this section we focus on spending profiles given that polls are conducted. Because

comparative statics are only meaningful in settings with unique equilibria, we restrict ourselves to this

case. We compare our results with empirical findings and show that the model performs relatively well

in predicting spending profiles.

We know already from Section 3 that (given a unique equilibrium) polls always create momentum

and the more popular candidate invests more heavily in the campaign. We are now interested in how

the candidates’ spending varies in absolute terms as we increase the realized popularity advantage |a|

of the front-runner from zero. In stage 2 we observed that spending decreases monotonically in |d2|, i.e.

when one candidate’s becomes more and more popular with the electorate. Also in the studies of Snyder

(1989), Erikson and Palfrey (2000), or Klumpp and Polborn (2006) intensity of competition decreases

as candidates become increasingly asymmetric. However, in stage 1 we find a non-monotonic spending

profile for the front-runner. The reason is that compared to a symmetric race, the front-runner has an
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additional incentive to invest in stage 1 in order to reduce future competition. This also explains why

the trailing candidate’s spending profile is monotonically decreasing. Thus, we find that introducing

dynamics may change results significantly. The following proposition states the result:

Proposition 6. Assume ρ > ρ̄. Candidate F ’s expected total investment increases in a when a = 0,

while candidate T ’s expected total investment decreases.

Proof. See appendix.

The trailing candidate’s campaign spending decreases monotonically as |a| grows larger. His more

popular adversary, however, has an incentive to first increase spending when her lead grows larger,

before she also cuts down on spending when she becomes more and more advantaged in the campaign.

We can now describe the two candidates spending profiles completely:

Corollary 3. As |a| increases from zero the more popular candidate first increases spending in the

campaign and her spending declines only after she reaches a certain popularity advantage. The trailing

candidate monotonically decreases spending and spends less than his opponent for all |a| > 0.

How well does the model perform in predicting candidate spending in a campaign? In the left panel

of Figure 4 we plotted expected total campaign spending for both candidates for σǫ = 1 and c = 1
3 .

For a comparison we show in the right panel of Figure 4 the vote-on-spending effects as estimated by

Erikson and Palfrey (2000). Although our model is relatively simple it predicts the spending profile

surprisingly well. At a = 0, which represents a predicted incumbent vote of 50 percent, both candi-

dates choose identical spending. The incumbent’s spending increases first and decreases after peaking

at around 55 percent until the predicted incumbent vote reaches some 80-85 percent. Then, some-

what surprisingly, spending goes up again.12 The challenger’s spending decreases in the incumbent’s

popularity advantage and remains below the incumbent’s spending at all time.

6 Extending the basic model

In this section we discuss extensions to the basic model. We start off by showing that our results from

the previous section are qualitatively robust to more general functional specifications. Second we depart

12One reason for this upwards turn for a dominating front-runner might lie in her ability to attract funding. In our
model costs do not depend on popularity. When increased popularity makes fundraising easier and thus costs of investment
lower, an additional benefit of being a front-runner arises.
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Figure 4: Total spending per candidate, depending on popularity. The left panel shows the predictions of our
model (expected total spending) for σǫ = 1 and c = 1

3
. The right panel shows Figure 3 from Erikson and Palfrey

(2000), which shows candidate spending in the U.S.

from the assumption of pure maximization of the probability to win and consider candidates that are

also interested in the popular vote per se, as is for example the case in proportional representation (PR)

electoral systems. Third, we consider inaccurate polls. Finally, we discuss some further extensions.

6.1 Functional assumptions

For the baseline model we assumed normally distributed noise and quadratic costs. In this section we

show that our results generalize.

Consider the distribution of the macro shock ǫt first. While, as we argued above, the normality

assumption can be justified – for example by invoking the central limit theorem – it is nevertheless of

interest to explore the robustness of our results in more detail. Hence we relax this assumption and

assume the following instead:

Assumption 1. ǫ1 and ǫ2 are independently distributed on S1 ⊆ R and S2 ⊆ R with densities g1(ǫ1)

and g2(ǫ2). gt(ǫt) is differentiable on St, symmetric around zero and gt′(|ǫt|) ≤ 0.

By Assumption 1 each shock has a quasi-concave density, implying that a large shock is less likely

to occur than a small shock. Furthermore, noise is unbiased and thus it is unlikely to have a series of

20



random events only in support of one of the two candidates, i.e. each candidate gains from some events

and loses from others in expectation. Distributions fulfilling Assumption 1 are for example the uniform

distribution or a symmetrically truncated normal distribution.

Now turn to the cost function. Instead of quadratic costs we assume the following:

Assumption 2. Spending on TV ads x implies costs C(x), where C(0) = 0, C ′(0) = 0, C ′ > 0 for all

x > 0, C ′′ > 0 and |C ′′′| is finite.

This cost function is strictly convex and hence may reflect both increasing marginal costs of fund

raising as well as diminishing marginal returns of campaigning. In any other respect, the campaign

game is as before.

Proposition 7. All results qualitatively resemble those of Section 3. If there is a unique equilibrium

(sufficient noise, C ′′(x) sufficiently large) polls always create momentum.

Proof. See appendix.

As before, if the macro shock’s variance is sufficiently large or if marginal costs increase sufficiently

fast, there is a unique equilibrium and polls create momentum. Otherwise, multiple equilibria may

exist and polls may create anti-momentum in close races.

An interesting feature of the more general model is worth noting: candidates may drop out of the

race by spending nothing. This could not happen in the baseline model since marginal costs of the first

TV ad published were zero and the marginal benefit of publishing TV ads was strictly positive due

to the infinite support of the normal distribution. This possibility can be best illustrated by letting

E[(ǫt)2] → 0 and assuming the quadratic cost function from the previous section.13 The campaign is

then a perfectly discriminating contest or – using the language of auction theory – an All-pay auction.14

Absent a poll both candidates publish an identical number of TV ads in stage t = 1, 2. If there is a poll,

there exists a unique equilibrium in stage 2. If |d2| <
√

2
c this equilibrium is in mixed strategies and

both candidates choose in expectation identical spending. Otherwise, the campaign is decided already

and both candidates spend nothing. In stage 1, for |a| <
√

2
c , there always exists a pure strategy

13The formal discussion can be found in Section G of the appendix.
14This form of contests has been studied extensively with applications ranging from lobbying contest (Hillman and Riley,

1989; Baye, Kovenock, and de Vries, 1993) to political campaigns (Meirowitz, 2008), revolution or war (Polborn, 2006)
and internal labor markets (Nalebuff and Stiglitz, 1983; Moldovanu and Sela, 2001).
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equilibrium in which the leading candidate publishes TV ads and the trailing candidate stays passive

(for a ≥
√

2
c the front-runner is so far ahead, that it is strictly dominated for the trailing candidate to

spend anything, and thus there is no competition). In close races also the opposite – an equilibrium in

which the trailing candidate acts tough and spends a positive amount, while the front-runner remains

passive – exists. Hence, there are multiple pure strategy equilibria if the campaign is close in t = 1.

Consequently, in stage 1 the trailing candidates always drops out if his opponent is sufficiently popular.

In analogy to before, in close campaigns also the front-runner might drop out in equilibrium.

This discussion also confirms our previous findings for ρ < ρ̄ for the limit as ρ = 0. In close races,

multiple equilibria emerge, exhibiting momentum and anti-momentum. In general though, it is likely

to see the front-runner outspending the trailing candidate and thus the front-runner is more likely to

improve her position over time.

While we have shown that momentum is a robust characteristic of polls, can we say the same

about wastefulness? In Section 4, using our benchmark model, we have shown that polls make political

competition less wasteful because they introduce more asymmetries between the candidates. Next we

generalize Proposition 5 for more general noise and cost functions, but focusing on situations where a

unique equilibrium exists:

Proposition 8. Given assumptions 1 and 2 hold and a unique equilibrium exists. When C ′′′(x) ≥ 0

∀x, aggregate campaign expenditures decrease in expectation with the introduction of polls, strictly so

when | µα |> 0. For C ′′′(x) < 0 ∀x wastefulness may increase.

Proof. See appendix.

Thus, we find that the shape of the marginal cost function determines the effect of polls on waste-

fulness of competition. Note that if (but not only if) the spending elasticity of costs is decreasing in

x wastefulness always declines.15 This is in line with earlier findings by Aoyagi (2010), Ederer (2010)

as well as Gershkov and Perry (2009) regarding the effect of feedback in labor market tournaments.

To see why the shape of the cost function matters, consider second period investments. Investments

are symmetric and decreasing in popularity |d2|. The revelation of current relative standing reduces

the noisiness of the decision environment. Thus, when standing |d2| is close to zero, candidates’ incen-

tives to invest are increased by the reduction in noise. On the other hand, when relative popularity

15If this elasticity is decreasing C′′′(x) must be positive.
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|d2| is large, candidates’ incentives are diminished with a reduction in noise as the trailing candidate

then faces little chance of a “lucky break”. When marginal costs increase faster with higher spending,

or C ′′′(x) > 0, the latter effect is dominant and polls decrease wastefulness. In this case the differ-

ence in spending for relatively equal popularity is negligible because for high expenditures the effect

of increasing marginal costs kicks in the strongest. In contrast to Aoyagi (2010), Ederer (2010) and

Gershkov and Perry (2009) polls decrease wastefulness also for C ′′′ = 0 and even C ′′′ < 0 if sufficiently

close to zero because of the effect described in Section 4: Polls cause momentum for the front-runner

and thus amplify early asymmetries and defuse competition.

6.2 Concerns for vote share

In some situations candidates do not only care about winning the election, but also about the vote

share they receive. For example, a government that has only slightly more than 50 percent of the vote

share, might have difficulties in passing laws because some delegates might refuse to toe the party line.

Similarly, in proportional representation electoral systems the vote share is important.

Assume a candidate or party values winning the majority by λ ∈ [0, 1]. We can interpret this as a

plurality premium as in Iaryczower and Mattozzi (2013). In addition, candidates get utility si(1 − λ)

from gaining a share of si of the total popular vote. (1 − λ) measures the relative importance of the

vote share. For example, in many countries political parties receive financial subsidies in proportion to

their vote share. Increasing those subsidies would imply a higher (1 − λ). Similarly, the influence of

a normal member of parliament that is not part of the government may determine (1 − λ), too. The

benefit of candidate i in the election is hence

bi =







λ+ si(1− λ) if si >
1
2 ,

si(1− λ) else.

As before, candidates maximize their expected benefit subject to costs of campaigning effort. Otherwise

we leave the model unchanged relative to Section 3. Candidates now care about the whole distribution

of voters, and not only the median voter. We assume that voters vote for the candidate that affords

them the highest expected utility as defined in equation (1), and candidates’ spending affects all voters

in the same way. Analogous to the median’s relative ex-ante candidate assessment α, αi is voter i’s
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relative assessment of the candidates. We assume the distribution of αi follows:

Assumption 3. For a given realization of the median ′a′, the distribution of voters’ candidate assess-

ments has density

p(αi, a) =
φ(

−µp−a+αi

σp
) + φ(

µp−a+αi

σp
)

2
,

where µp ≥ 0 and σp > 0.

p(αi, a) is a mixture distribution of two normals with identical standard deviation σp and means

−µp and µp. Hence, it is symmetric around a. It is easy to generalize the model to more flexible

distributions, but the additional insights gained from such a generalization are only marginal.16

There are two different effects at work that may lead to differential incentives: the effect of a

marginal change in spending on the winner-take-all part and the effect on the vote share part. We

already know how the first effect looks like: investments are decreasing in |d2| and thus there always

exist momentum equilibria. Hence, turn to the latter effect, caused by the proportionality of the

obtained rent and the vote share. In the second stage competition will be fiercest when the mass of

marginal/swing voters to be won over is largest, i.e. the distribution peaks at current popularity d2.

Thus, in stage 1 a candidate’s incentives to publish TV ads depend on whether this will bring him closer

in expectation to a position of fierce future competition. If the electorate is polarized, i.e. there is a

large mass of voters at the tails of the distribution, while only a small mass in the center, competition

is fiercest when candidates are not equally popular. Thus, in these cases the trailing candidate may

have an incentive to publish more ads in stage 1 than the front-runner as this will enable him to defuse

competition in the future.

Proposition 9. If candidates care sufficiently about vote share (λ is small) and the electorate is suffi-

ciently polarized (µp is large), there exist unique anti-momentum equilibria in close races.

Proof. See appendix.

Of course, even if the electorate is polarized, this does not yet mean that there is this kind of

anti-momentum, because – as before – also the probability to win the majority counts. Hence, if λ, the

16We could also allow for different variances of the two normal distributions. Then the distribution p(αi, a) is not
symmetric anymore. This would have an asymmetric effect on candidates that is not related to their standing in the race,
but to the particular distribution. Assuming symmetry allows us to identify effects due to relative standing.
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plurality premium, is relatively large, the results will be identical to those in the previous section no

matter what the distribution looks like:

Corollary 4. There always exists a λ < 1 such that all results remain as in Section 3. If µp ≤
√

2σ2
ǫ + σ2

p this is generally the case, independent of λ.

Proof. See appendix.

What can we conclude from this? In FPTP systems it is unlikely that candidates value the vote

share more than the probability to win, and hence λ is likely to be large. But as we have seen, in

this case the results from Section 3 remain valid and momentum is likely to occur. However, in other

electoral systems results may differ. For example, in proportional representation electoral systems λ is

likely to be lower than under FPTP. Hence, if in such a system the electorate is polarized, the conditions

from Proposition 9 are more likely to apply and anti-momentum might be the unique outcome.

6.3 The precision of polls

We assumed that without a poll candidates receive no feedback about their relative standing with the

populace, while in the presence of polls they learn current popularity for sure. These were interesting

benchmark cases and served well to illustrate the relevant intuitions. We now extend our baseline model

to analyze imprecise polls to show that our results hold more generally.

Assume that instead of fully revealing current popularity, polls offer a noisy, though unbiased signal.

Let dt denote the result of the poll at time t. Note that in this extended model we have E
[

d1
]

= a

instead of d1 = a as well as E
[

d2
]

= a+ x1F − x1T instead of d2 = a+ x1F − x1T due to the imprecision

of the poll. Denote the error of the poll at t by ηt ∼ N(0, σ2
η) for some ση ≥ 0.17

In order to focus on the effect of poll precision, assume now that σǫ → 0 and thus there are no

popularity shocks. Hence, any change in candidate evaluation is due to campaigning. Given that

candidates have the belief that the median is normally distributed with mean µα and variance σ2
α, and

if the polling error is distributed as described above, the posterior belief after observing the poll at

17Note that as before we need ’sufficient’ noise to guarantee existence of a pure strategy equilibrium. We assume this to
be the case. But note that this extended model nests the all-pay case discussed in section 6.1 as a special case (σ2

η = 0).
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t = 1 is still normal with updated mean

µ̃α(d
1) =

σ2
αd

1 + σ2
ηµα

σ2
α + σ2

η

and variance18

σ̃2
α =

σ2
ασ

2
η

σ2
α + σ2

η

.

When the poll becomes very imprecise, σ2
η → +∞, candidates ignore the poll and beliefs remain

unchanged. This would correspond to our no-poll benchmark. On the other hand, when σ2
η → 0

the prior is ignored and beliefs solely reflect the poll result. This corresponds to the All-pay auction

discussed in Section 6.1. Hence, we bridge the two models by allowing for imprecise polls. For t = 2

we get a posterior belief with mean

˜̃µα(d
2) =

σ̃2
αd

2 + σ2
ηµ̃α

σ̃2
α + σ2

η

and variance

˜̃σ2
α =

σ̃2
ασ

2
η

σ̃2
α + σ2

η

.

Considering the candidates’ investments in the second stage, we can simply replace the density of

the shock ǫt with the density of the posterior popularity belief in t = 2 with variance ˜̃σ2
α. The reason

is that even though ǫt and ηt represent different types of uncertainty, they have the same effect with

respect to expected popularity in t = 3. ǫt represents uncertainty as to shifts in popularity between t

and t + 1, while ηt represents uncertainty as to actual popularity measured at t. Both translate into

uncertainty about popularity on election day and thus both have the same effect on behavior in t = 2.

The effect of imprecise polls on the spending decisions in stage 1 is slightly more complex, as before,

and works through an expected shift of the stage 2 belief distribution.

Proposition 10. Consider the extended model and assume marginal costs are sufficiently high such that

a unique pure strategy equilibrium exists. The first-period front-runner always outspends the trailing

candidate. Furthermore, when the first-period advantage of the front-runner, d1 is sufficiently small,

an increase in poll precision increases the spending gap between front-runner and trailing candidate. If

18See, for example, Casella and Berger (2002).
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Figure 5: The effect of a decrease of ση on x1
F − x1

T in the extended model for c = 2 and ση = 2/3 (brown dotted
line), ση = 1/2 (gray dashed line), and ση = 1/3 (solid black line). In close races more precise polls increase
the spending difference, while in very lopsided races the spending difference decreases as the poll becomes more
precise.

the front-runner’s advantage is quite large, increasing the precision of the poll decreases momentum as

the spending differential goes to zero.

Proof. See appendix.

Thus, we find that increasing the precision of a poll increases the difference in incentives between

front-runner and trailing candidate and thus amplifies the difference in spending x1F −x1T in close races.

In lopsided races the opposite is true. Figure 5 illustrates the result by example.

Intuitively, a front-runner in the poll at t = 1 can be more sure that she is indeed preferred by the

median voter, ceteris paribus, when the precision of polls increases. This has two effects. On the one

hand, she will be more likely to benefit from reduced expenditures in the future, giving her an extra

incentive to invest. On the other hand, when |d1| is large and thus the race seems very lopsided, both

candidates will be further discouraged from investing as they become more sure about their relative

standing. This latter effect can dominate and lead to a decrease in spending differences despite an

increase in poll precision. This is seen easiest by looking at the All-pay auction case discussed earlier.

When the front-runner’s advantage becomes too large no candidate invests in the campaign anymore

and hence the race is over before it starts.

27



6.4 Costs of campaigning

We assumed that costs of campaigning effort are additive across periods. This implies that the candi-

dates’ expected costs of spending in the future do not (directly) depend on current expenditures and

vice versa. Thinking about costs of fund raising, one can easily imagine though that high expenditures

in early periods make it harder to raise money later (ceteris paribus). This would be the case if first the

most willing donors are targeted for donations. Then, in later periods, new, less willing donors have to

be convinced to contribute. We expect this to have a mitigating effect on the magnitude of momentum.

When thinking about whether to increase spending, the front-runner will trade off a decrease in future

competition with higher expected costs of raising funds.

On the other hand, it may also seem plausible that early success lowers (marginal) costs of raising

funds in the future. This would be the case when donors condition their donation on expected success

in the election, maybe because they are expecting the implementation of favorable policies from the

winner. Then investing early has an additional advantage in that it improves popularity in expectation

and thus lowers costs of fundraising. In such a case momentum will be amplified. Which effect is more

relevant is an empirical question.

Finally, we assumed that candidates are similar in their costs of raising funds. Thus, we abstract

away from any differences between candidates not related to their relative popularity. Adding asym-

metries, for example in ability or costs, will naturally lead to more asymmetric campaigning behavior.

The general intuition though should be preserved also in such a more general setting. The benefit

of our modeling assumption is being able to disentangle different effects that play a role in creating

momentum more clearly.

7 Conclusion

In this paper we explore the effect of opinion polls on candidates’ incentives to campaign and the final

election outcome. We find that when candidates mostly care about winning the election, polls generally

cause momentum for the front-runner. The reason is that the front-runner has an additional incentive

to invest in her campaign. By investing early it becomes more likely that she comes out ahead in the

poll in the future. This in turn defuses competition and thus she can save on campaigning expenditures
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closer to the election. In close campaigns, when campaigning is very effective, also the trailing candidate

may adopt a tough stance and outspend the leader. We show that those results are robust to functional

form assumptions or the extent to which random events influence the election outcome.

Whether polls also make competition more wasteful, on the other hand, depends on the shape of

the marginal cost function of campaigning expenditures. If raising additional money becomes more

expensive with the amount raised, polls generally lead to a decrease in expected spending in the

campaign and so decrease the expected intensity of the electoral competition.

As discussed, we show that momentum arises quite generally when candidates care mostly about

winning the election. In case candidates are mainly interested in their vote share and the electorate is

relatively polarized, the trailing candidate may have stronger incentives to campaign in relatively close

elections. Anti-momentum may be the unique equilibrium. Thus, we expect the effect of polls to differ

between countries with a FPTP system and countries with proportional representation and that in the

latter no general statement about momentum can be made.

An implication of the model is that given an incumbency advantage at the outset of the campaign,

polls are likely to foster this advantage and thus decrease the rate of turnover in political offices. Indeed,

the spending profile predicted by our model fits well with the estimated profiles in Erikson and Palfrey

(2000), who show that incumbents with an early popularity edge tend to improve their chances by

spending more than their opponents in the competition.

Our model shows that a ban on the publication of opinion polls, as many countries impose in the

pre-election period, will likely not eliminate all effects on voters. In particular, we have shown that there

exists an indirect effect of polls on candidates’ campaigning investments, which in turn influence voters’

decisions at the ballot, and which is still in place because candidates are still allowed to commission

polls in that period. Thus, a ban on the publication of polling results needs to be complemented with

a ban on campaigning if potential causes of momentum are to be eliminated.

In our model voters react only to expenditures of the candidates, not to their relative standing.

Other papers have argued that voters’ preferences may be influenced also by relative standing (e.g.

Hong and Konrad (1998) or Callander (2007)). Voters receive additional utility by voting for a can-

didate who is ahead in the polls. Thus, for given popularity levels and equal campaigning effort, the

advantage of the front-runner grows. In terms of our model this can be interpreted as an additional
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popularity dependent shift of the voter distribution in favor of the front-runner. Under this interpre-

tation of the “bandwagon” effect momentum still results. Thus, accounting for the bandwagon effect

only introduces further stickiness into our model and potentially intensifies momentum.

For future research it is interesting to empirically validate the results proposed by the theory. In

contrast to theories that focus on the direct effect of polls on voters, our theory has predictions regarding

candidates’ campaign expenditures. Another interesting direction for future research is to study how

polls influence donors’ decisions to contribute to the candidates’ campaigns. As Figure 4 shows, clear

front-runners have a significant spending advantage over trailing candidates which is not completely

captured by our model, but which we believe to be related to donors’ behavior.

Mathematical appendix

A Proof of Proposition 1

Proof. We prove the proposition assuming the more general model discussed in Section 6.1, which as a

special case nests the model discussed in Section 3.1. If there is no poll, candidates do not observe the

realization of ǫ1 nor investments and hence their information does not change between periods 1 and

2. Hence, they maximize

max
(x1

F ,x2
F )∈R2

+

∫∞
−∞ G̃(a+ x1F + x2F − x1T − x2T )

1
σα

φ
(

a−µα

σα

)

d a− C(x1F )−C(x2F ),

max
(x1

T ,x2
T )∈R2

+

1−
∫∞
−∞ G̃(a+ x1F + x2F − x1T − x2T )

1
σα

φ
(

a−µα

σα

)

d a− C(x1T )− C(x2T ),

where G̃ is the cdf of the convolution g1 ∗ g2. The system of first order conditions is

∫ ∞

−∞
g̃(a+ x1F + x2F − x1T − x2T )

1

σα
φ

(

a− µα

σα

)

d a− C ′(xti) = 0,

i = F, T and t = 1, 2. It is easily observed that in any interior pure strategy equilibrium it must hold

that x1F = x2F = x1T = x2T = x∗. In particular,

x∗ = C ′−1

(
∫ ∞

−∞
g̃(a)

1

σα
φ

(

a− µα

σα

)

d a

)

.
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Note that corner solutions with any xti = 0 cannot be an equilibrium for unbounded densities gi such

as the normal due to our assumption that C ′(0) = 0 and the fact that gi(a) > 0 for all a. The second

order conditions evaluated at x∗ are

∫ ∞

−∞
g̃′(a)

1

σα
φ

(

a− µα

σα

)

d a−C ′′
(

C ′−1

(∫ ∞

−∞
g̃(a)

1

σα
φ

(

a− µα

σα

)

d a

))

< 0

for F and

−
∫ ∞

−∞
g̃′(a)

1

σα
φ

(

a− µα

σα

)

d a− C ′′
(

C ′−1

(
∫ ∞

−∞
g̃(a)

1

σα
φ

(

a− µα

σα

)

d a

))

< 0

for T . If C ′′(.) is sufficiently large relative to g̃′(.) the second order conditions hold for all a and hence

this is an equilibrium. We assume this to be the case. Note that if the variance of g1 and g2 vanishes,

the second order conditions always hold, as we show later in Appendix G. If the variance becomes very

large, the slope of g1 and g2 decreases and hence the second order conditions also always hold. For the

parameterized model in Section 3.1 the second order conditions hold if

c > |
∫ ∞

−∞
g̃′(a)

1

σα
φ

(

a− µα

σα

)

d a|.

For the remainder of the paper we assume C ′′ to be sufficiently large to guarantee the second order

conditions. Hence, the proof is complete and this also contributes to the proof of Proposition 7.

B Proof of Proposition 2

Proof. We again prove the proposition directly in the general version of Proposition 7.

Consider the subgame in stage 2 when there is a poll. In this case both candidates know the

median’s exact position in stage 2, d2. Candidates maximize

max
x2
F∈R+

G2(d2 + x2F − x2T )− C(x2F ),

max
x2
T∈R+

1−G2(d2 + x2F − x2T )−C(x2T ).
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First order conditions read

g2(d2 + x2F − x2T )− C ′(x2i ) = 0,

where i = F, T , and the assumption on C ′ guarantee that there exists a unique x2i fulfilling these. It is

immediately observed that – as without a poll – both candidates choose identical spending, x2F = x2T .

In particular,

x2F = x2T = x∗∗(d2) = C ′−1(g2(d2)).

The second order condition for F is

g2′(d2)− C ′′(C ′−1(g2(d2))) < 0.

Since it must hold for all d2, if this holds for F it also holds for T . We assume this holds for all d2. The

problem each candidate faces is then continuous and concave and hence a pure strategy equilibrium

exists. In our parameterized example, if σǫ2 = 1 it must hold that c > 0.242. For the remainder of the

paper we focus on situations where C ′′ is sufficiently large to guarantee the second order conditions are

fulfilled.

This proves Proposition 2 and also contributes to the proof of Proposition 7.

C Proofs of Propositions 3, 4, and 7

Proof. The expected utility of F and T , conditional on being in state d2 in the second stage, is

EU∗
F (d

2) = G2(d2) − C
(

C ′−1
(

g2(d2)
))

,

EU∗
T (d

2) = (1−G2(d2)) − C
(

C ′−1
(

g2(d2)
))

.

Note that d2 = a+ x1F − x1T − e1. Then we can write the optimization problem of the candidates as:

max
x1

F
≥0

∫

S1

G
2(a+ x

1
F − x

1
T − e

1)−C
(

C
′−1 (

g
2(a+ x

1
F − x

1
T − e

1)
))

g
1(e1)de1 − C(x1

F ),

max
x1

T
≥0

∫

S1

(1−G
2(a+ x

1
F − x

1
T − e

1))− C
(

C
′−1
(

g
2(a+ x

1
F − x

1
T − e

1)
))

g
1(e1)de1 −C(x1

T ).
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Taking the derivative with respect to the respective own strategy yields

∫

S1

(

g2(·) −
[

C ′(C ′−1(·))∂C
′−1(·)

∂g2(·)
∂g2(·)
∂x1F

])

g1(e1) de1 − C ′(x1F ),

∫

S1

(

g2(·) −
[

C ′(C ′−1(·))∂C
′−1(·)

∂g2(·)
∂g2(·)
∂x1T

])

g1(e1) de1 − C ′(x1T ).

Making use of the fact that C ′(C ′−1(z)) = z and ∂g2(·)/∂x1F = ∂g2(·)/∂a = −∂g2(·)/∂x1T these

equations simplify to

∫

S1

(

g2(·) −
[

g2(·)∂C
′−1(·)

∂g2(·)
∂g2(·)
∂a

])

g1(e1) de1 − C ′(x1F )

∫

S1

(

g2(·) +

[

g2(·)∂C
′−1(·)

∂g2(·)
∂g2(·)
∂a

])

g1(e1) de1 − C ′(x1T )

Using ∂C ′−1(g2(·))/∂g2(·) = 1/(C ′′(C ′−1(g2(·))) and ∂g2(·)/∂a = g2′(·), and letting a+ x1F − x1T =: κ

we get

∫

S1

(

g2(κ− e1) −
[

g2(κ− e1)g2′(κ− e1)

C ′′(C ′−1(g2(κ− e1)))

])

g1(e1) de1 − C ′(x1F ), (C.1)

∫

S1

(

g2(κ− e1) +

[

g2(κ− e1)g2′(κ− e1)

C ′′(C ′−1(g2(κ− e1)))

])

g1(e1) de1 − C ′(x1T ). (C.2)

Before we analyze the equilibrium in detail we now need to show that an equilibrium exists.

Lemma 1. If C ′′(x) > Γ(g1, g2) (defined below) a pure strategy equilibrium exists for all realizations a.

Proof. The second derivative of F ’s payoff function is

∫

S1

[

g2′(κ− e1)−
(

g2′(κ− e1)

C′′(x∗∗(·))

)2(

C′′(x∗∗(·)) − g2′(κ− e1)C′′′(x∗∗(·))
C′′(x∗∗(·))

)

− g2(κ− e1)g2′′(κ− e1)

C′′(x∗∗(·))

]

dG(e1) − C′′(x1
F ).

To show strict concavity of the payoff function we need to show that this is strictly negative for all κ

and x1F . Consider

(

g2′(κ− e1)

C ′′(x∗∗(κ− e1))

)2(

C ′′(x∗∗(κ− e1))− g2′(κ− e1)C ′′′(x∗∗(κ− e1))

C ′′(x∗∗(κ− e1))

)

. (C.3)
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Let the γ1 > 0 be the smallest value of C ′′ for which

γ21 > g2′(κ− e1)C ′′′(x∗∗(κ− e1))

for all κ − e1. If the infimum of C ′′ is at least γ1 (C.3) is non-negative. Since C ′′′ is bounded by

Assumption 2 and because it follows from differentiability and quasi-concavity that g2′(κ − e1) is

bounded, too, there exists finite γ1 for which this is the case. Hence assume (C.3) is zero. If this is the

case and we can show that the second derivative is negative, this is even more so the case when (C.3)

is positive. Therefore, we are left with

∫

S1

[

g2′(κ− e1)− g2(κ− e1)g2′′(κ− e1)

C ′′(x∗∗(·))

]

dG(e1)− C ′′(x1F ). (C.4)

From strict quasi-concavity of g2 it follows that the expectation is bounded. Hence, there exists γ2 > 0

such that if C ′′(x) > γ2 for all x, (C.4) is strictly negative. It follows that if C ′′(x) > Γ(g1, g2) :=

max{γ1, γ2} the second derivative is strictly negative and hence the problem is strictly concave. Thus,

assuming this holds, and since payoffs are continuous in x1F and x2T , existence of a pure strategy Nash

equilibrium follows from Theorem 1.2 in Fudenberg and Tirole (1991), which is due to Debreu (1952),

Fan (1952), and Glicksberg (1952).

Now let us go more into the details of the first order conditions to determine the properties an

equilibrium must have. For this purpose we need the following lemma:

Lemma 2. Let

ξ(κ) := Eǫ1

[

g2(κ− ǫ1)g2′(κ− ǫ1)

C ′′(C ′−1(g2(κ− ǫ1)))

]

.

Then ξ(0) = 0, ξ(+) < 0 and ξ(−) > 0.

Proof. Define

ω(κ) :=
g2(κ− ǫ1)g2′(κ− ǫ1)

C ′′(C ′−1(g2(κ− ǫ1)))
,

which is the function we want to take the expectation of. Now remember that by adding an arbitrary

constant k to the argument of a function, the graph of the function is shifted horizontally by −k.

Therefore, if g2(−ǫ1) is axis-symmetric across zero, g2(κ − ǫ1) is axis-symmetric across −κ. As a
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consequence, the same holds true also for functions of this function, like C ′−1(g2(κ−ǫ1)), C ′′(C ′−1(g2(κ−

ǫ1))), and g2(κ−ǫ1)
C′′(C′−1(g2(κ−ǫ1)))

. Because g2(−ǫ1) is axis-symmetric across zero, its derivative is point-

symmetric across zero. By a similar argument as above it also holds that g2′(κ− ǫ1) is point-symmetric

across −κ. Therefore, it holds true that also the product of an axis-symmetric function across −κ and a

point-symmetric function across this point, in our case this function is ω(κ), is point-symmetric across

−κ.

We first show that ξ(0) = 0. Let f(z) be a function which is axis-symmetric across zero and let

h(z) be another function which is point-symmetric across zero. Both functions share the same support

K. Then, if we want to find
∫

K f(z)h(z)dz, we can split the integral into two parts:

∫

K
f(z)h(z)dz =

∫

{z∈K:z≤0}
f(z)h(z)dz +

∫

{z∈K:z>0}
f(z)h(z)dz.

Because of the symmetry properties f(z) = f(−z) and h(z) = −h(−z) we can rewrite the second term

as
∫

{z∈K:z>0}
f(z)h(z)dz = −

∫

{z∈K:z≤0}
f(z)h(z)dz.

Using this substitution it is easily verified that

∫

K
f(z)h(z)dz =

∫

{z∈K:z≤0}
f(z)h(z)dz −

∫

{z∈K:z≤0}
f(z)h(z)dz = 0.

Now let f(z) = ω(·) and h(z) = g1(ǫ1) and observe that the integral we want to calculate is the

expectation of ω(·) and therefore equal to ξ(0) to complete this part of the proof.

Next, consider κ > 0. ω is shifted to the left and is point-symmetric across −κ. Now note two

things: First, to the left of −κ the values of ω are positive, to the rights the values are negative. Second,

for any shock e leading to a realization ω(κ − e) = m there exists exactly one other shock e′, which

leads to a realization ω(κ − e′) = −m and is an inversion of the former point at (−κ, 0). Moreover,

this holds true for any point in the graph of ω. Accordingly, we can define the whole graph as pairs

of inversion points. Now observe, that the probability of an outcome −m is always weakly larger than

the probability of outcome m for all m ≥ 0. To see this note that a shock generating m must be of

size −κ − c, while the shock generating −m must be −κ + c, for some constant c ≥ 0. But then the
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shock e that produces outcome m is in absolute value weakly larger than e′. As a consequence, because

shocks are distributed symmetrically around zero, the density at e′ is weakly larger than the density

at e, g2(e′) ≥ g2(e). Note that this must hold for all m, e and e′, and accordingly the expectation of ω

must be negative. From a similar argument it follows that the converse must hold if we assume κ < 0.

Hence the proof is complete.

Knowing now that a pure strategy equilibrium exists we focus on interior equilibria henceforth. In

Section 6.1 we also discuss the case when noise vanishes and the contest takes the form of a fully discrim-

inating All-pay auction. In this case there are only corner equilibria and the results are qualitatively

identical.

From (C.1) and (C.2) it follows that the first order conditions in an interior equilibrium are

∫

S1

(

g2(κ− e1) −
[

g2(κ− e1)g2′(κ− e1)

C ′′(C ′−1(g2(κ− e1)))

])

g1(e1) de1 − C ′(x1F ) = 0

and
∫

S1

(

g2(κ− e1) +

[

g2(κ− e1)g2′(κ− e1)

C ′′(C ′−1(g2(κ− e1)))

])

g1(e1) de1 − C ′(x1T ) = 0.

Simple manipulations reveal that equivalently the following must hold:

x1F = C ′−1
(∫

S1

(

g2(κ− e1) −
[

g2(κ− e1)g2′(κ− e1)

C ′′(C ′−1(g2(κ− e1)))

])

g1(e1) de1
)

x1T = C ′−1
(∫

S1

(

g2(κ− e1) +

[

g2(κ− e1)g2′(κ− e1)

C ′′(C ′−1(g2(κ− e1)))

])

g1(e1) de1
)

.

Using ∆1 = x1F − x1T , it follows that in equilibrium it must hold that

∆1 = Σ(∆1 + a) := C′−1
(∫

S1

(

g2(∆1 + a− e1) −
[

g2(∆1 + a− e1)g2′(∆1 + a− e1)

C′′(C′−1(g2(∆1 + a − e1)))

])

g1(e1) de1
)

(C.5)

− C′−1
(∫

S1

(

g2(∆1 + a − e1) +

[

g2(∆1 + a− e1)g2′(∆1 + a − e1)

C′′(C′−1(g2(∆1 + a− e1)))

])

g1(e1) de1
)

.

The shape of this function is now important to determine equilibrium behavior. We now establish a

few lemmata that help us to characterize equilibria.

Lemma 3. Sign
[

Σ(∆1 + a)
]

= Sign[∆1 + a]. Moreover, Σ(∆1 + a) is continuous, bounded, point

symmetric at −a in ∆1, and lim|∆1|→∞Σ(∆1 + a) = 0.
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Proof. From C ′′ > 0 it follows that the inverse C ′−1 is increasing. This together with Lemma 2 directly

implies Σ(0) = 0, Σ(+) = (+), and Σ(−) = (−). For the symmetry properties look at a = 0 first. Then

we have that

C ′−1
(∫

S1

(

g2(∆1 − e1) −
[

g2(∆1 − e1)g2′(∆1 − e1)

C ′′(C ′−1(g2(∆1 − e1)))

])

g1(e1) de1
)

and

C ′−1
(
∫

S1

(

g2(∆1 − e1) +

[

g2(∆1 − e1)g2′(∆1 − e1)

C ′′(C ′−1(g2(∆1 − e1)))

])

g1(e1) de1
)

are mirror images of each other (in ∆1) with the reflection axis being the vertical through zero. This fol-

lows from the first argument of C ′−1 being axis symmetric at zero and the second being point symmetric

at zero. Hence, the difference must be point symmetric at zero. Now note that by adding an arbitrary

constant – for example a – to the argument of a function, the function is shifted horizontally by −a.

Hence, Σ must be point symmetric at −a. Continuity and boundedness follow directly from all terms

and C ′−1 being continuous and bounded. That the limit vanishes follows from lim|x|→∞ g2(x)g2′(x) = 0,

which follows from quasi-concavity of g2. This proves the lemma.

Lemma 4. Assume a 6= 0 and let the investment of the more popular candidate in stage 1 be x1F and

the investment of his opponent be x1T . In any equilibrium it holds that

x1T /∈ (x1F , x
1
F + |a|).

Proof. To see this look at the first order conditions. Without loss of generality assume a > 0 and

also assume x1T ∈ (x1F , x
1
F + a). This implies κ > 0 and thus, by Lemma 2, ξ(κ) < 0. Hence, T ’s

investments are strategic complements, and F ’s strategic substitutes. If F ’s first order condition holds,

T ’s must be strictly negative and he hence would like to decrease investment. If T ’s first order condition

holds, F ’s must be strictly positive and he would like to increase investment. Hence, this cannot be an

equilibrium.

Lemma 5. Assume a 6= 0 and let the investment of the more popular candidate in stage 1 be x1F and
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the investment of his opponent be x1T . There exists d ≥ 0 such that if a > d the equilibrium in stage 1

is unique and x1F ≥ x1T .

Proof. This follows from Lemma 4 and the fact, that any investment greater than x̄ := C−1(1) is strictly

dominated. Thus, when a becomes larger and larger, outspending the leading candidate becomes too

expensive. The inequality is weak because we did not assume ǫ2 has full support and hence the race

might be decided if a is sufficiently large. If we assume ǫ2 has full support – S2 = R – the inequality is

strict because the leading candidate always spends positive amounts.

The derivative of Σ with respect to ∆1 is

∂Σ

∂∆1
=

Eǫ1
[

g2′(·)
]

− Eǫ1

[

(g2′(·))2
C′′(C′−1(g(·))) +

g2(·)g2′′(·)
C′′(C′−1(g(·))) −

g2(·)(g2′(·))2C′′′(C′−1(g(·)))
(C′′(C′−1(g(·))))3

]

C ′′
(

C ′−1
(

Eǫ1

[(

g2(·)−
[

g2(·)g2′(·)
C′′(C′−1(g2(·)))

])])) (C.6)

−
Eǫ1

[

g2′(·)
]

+ Eǫ1

[

(g2′(·))2
C′′(C′−1(g(·))) +

g2(·)g2′′(·)
C′′(C′−1(g(·))) −

g2(·)(g2′(·))2C′′′(C′−1(g(·)))
(C′′(C′−1(g(·))))3

]

C ′′
(

C ′−1
(

Eǫ1

[(

g2(·) +
[

g2(·)g2′(·)
C′′(C′−1(g2(·)))

])]))

The proposition we want to prove states that in close games there might be both equilibria in which

the leading candidate spends more and some in which the trailing candidate spends more, depending

on the distributions of ǫ1 and ǫ2 and the shape of the cost function. If one candidate has a sufficiently

large advantage, in all equilibria this candidate will spend weakly more. If the equilibrium is unique

for all a, in this equilibrium the leading candidate will always spend weakly more. A necessary and

sufficient condition for a unique equilibrium for all a is that Σ′(∆1) < 1 for all ∆1. To see this note that

if there are to be multiple equilibria, that is ∆1 = Σ(∆1) intersect more than once, then Σ must be

steeper than ∆1 somewhere. Starting from an intersection of the two functions, if the slope is strictly

smaller than 1 to the right of the intersection Σ is strictly smaller than ∆1, and to the left strictly

larger, and hence there cannot be another equilibrium. If, however, there is some region in which the

slope is larger than 1, there exists a shifting Σ in a way such that there are multiple equilibria. Hence,
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if and only if

∂Σ

∂∆1
=

Eǫ1
[

g2′(·)
]

− Eǫ1

[

(g2′(·))2
C′′(C′−1(g(·))) +

g2(·)g2′′(·)
C′′(C′−1(g(·))) −

g2(·)(g2 ′(·))2C′′′(C′−1(g(·)))
(C′′(C′−1(g(·))))3

]

C ′′
(

C ′−1
(

Eǫ1

[(

g2(·)−
[

g2(·)g2′(·)
C′′(C′−1(g2(·)))

])])) (C.7)

−
Eǫ1

[

g2′(·)
]

+ Eǫ1

[

(g2′(·))2
C′′(C′−1(g(·))) +

g2(·)g2′′(·)
C′′(C′−1(g(·))) −

g2(·)(g2 ′(·))2C′′′(C′−1(g(·)))
(C′′(C′−1(g(·))))3

]

C ′′
(

C ′−1
(

Eǫ1

[(

g2(·) +
[

g2(·)g2′(·)
C′′(C′−1(g2(·)))

])])) < 1

for all ∆1, there is a unique equilibrium. Note that the absolute value of the slope is strictly decreasing

in C ′′ (evaluated at the equilibrium). C ′′ enters only in the denominator of the condition and all the

other terms are bounded by assumption. Hence, if C ′′(x) is sufficiently large for all x the equilibrium

is unique for all a. For a = 0 the equilibrium is symmetric and ∆1 = 0. If we now increase a we

thereby shift Σ to the left, which, because of the fact that Σ(+) = (+) (see Lemma 3), implies that the

intersection is now where ∆1 > 0. This remains true for all a > 0, and the opposite is similarly true

for a < 0.

If

∂Σ

∂∆1
> 1

for some ∆1 there are multiple equilibria for some a. This follows from the discussion above. If this

is true for small |a| it is likely that either candidate might spend more in equilibrium. A sufficient

condition for such equilibria is that

∂Σ

∂∆1
|a=0 =

−2Eǫ1

[

(g2′(−ǫ1))2

C′′(C′−1(g(−ǫ1)))
+ g2(−ǫ1)g2′′(−ǫ1)

C′′(C′−1(g(−ǫ1)))
− g2(·)(g2 ′(·))2C′′′(C′−1(g(·)))

(C′′(C′−1(g(·))))3
]

C ′′ (C ′−1 (Eǫ1 [(g
2(−ǫ1))])

) > 1.

This derivative is strictly positive (follows from Lemma 2). If C ′′ is sufficiently small the derivative

gets larger than 1. Then there is one equilibrium ∆1 = 0. Moreover, because Σ vanishes as |∆1| → ∞

(see Lemma 3) and Σ is continuous, it follows from the intermediate value theorem that there are at

least two more equilibria, one with ∆1 > 0 and one with ∆1 < 0. Because Σ is point symmetric in ∆1

at zero (see Lemma 3) the asymmetric equilibria are symmetric to each other. Note that this analysis

relies on the validity of the first-order conditions. We have shown though that when C ′′ gets too small

the second order conditions are violated. In the parameterized version below we show that equilibria
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with this property can exist.

From Lemma 5 it follows that in races with one dominant candidate this candidate will always

expend more in the campaign, or both spend zero.

Now go the specific example of a normal distribution with variance σ2
ǫ and zero mean and a cost

function C(x) = c
2x

2. The marginal cost function is then linear and the second derivative of the cost

function is c. Hence, Σ simplifies significantly:

Σ(∆1 + a) = −Eǫ1

[

2φ(∆
1+a−ǫ1

σǫ
)φ′(∆

1+a−ǫ1

σǫ
)

c2

]

=
(∆1 + a)e

−(∆1+a)2

3σ2
ǫ√

27πc2σ4
ǫ

. (C.8)

Now look at the shape of Σ. Since a only shifts the function horizontally, we assume a = 0 for now.

The derivative with respect to ∆1 is

(3σ2
ǫ − 2(∆1)2)e

−(∆1)2

3σ2
ǫ

9
√
3πc2σ6

ǫ

. (C.9)

This is strictly positive for |∆1| <
√

3
2σǫ, negative for |∆1| >

√

3
2σǫ, and zero for |∆1| =

√

3
2σǫ. The

maximum of Σ = 1
3
√
2eπc2σ3

ǫ
is attained at ∆1 =

√

3
2σǫ and the minimum of Σ = − 1

3
√
2eπc2σ3

ǫ
is attained

at ∆1 = −
√

3
2σǫ. Now look at the second derivative of Σ,

2∆1(2∆1 − 9σ2
ǫ ))e

− (∆1)2

3σ2
ǫ

27
√
3πc2σ8

ǫ

.

This is strictly negative on [−∞,− 3√
2
σǫ) ∪ (0, 3√

2
σǫ), and hence the function is strictly concave in

this region, which also must include (and does) the maximum. Hence, Σ is strictly concave between

zero and the maximum, and decreases monotonically thereafter. Hence, if Σ′(∆1) ≤ 1, the slope is

strictly smaller than 1 (the slope of ∆1) for all ∆1 ≥ 0. Therefore, there exists a unique ∆1 fulfilling

∆1 = Σ(∆1) not only for a = 0, but for all a ∈ R. Using the condition Σ′(0) ≤ 1 we can derive the

lower bound on ρ for which a unique equilibrium exists in the benchmark model, ρ > ρ̄ = 1
33/4

√
π
. Thus,

for given σǫ the derivative becomes arbitrarily small at ∆1 = 0 if we increase c, and hence there exists c̃

such that for all c > c̃ the slope is less than 1, and larger than 1 else. In Figure 6 we show two examples.

If the derivative at ∆1 = 0 is larger than 1 there exist multiple equilibria. Because Σ is strictly concave
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Figure 6: ∆1 (gray) and Σ(∆1 + a) (brown) for σǫ = .5 and c ∈ {1.1, 0.97}.

on [0,
√

3
2σǫ], and the derivative is zero at the end of this interval, it must become equal to 1 at some

∆1 ∈ [0,
√

3
2σǫ]. Denote this by ∆̃. If we increase a now from zero we thereby shift Σ to the left by

a. Hence, the two outer intersections of ∆1 and Σ move to the right (∆1 increases), while the inner

intersection moves to the left. Hence, there are two intersections converging to each other, the ones

where ∆1 < 0. At d̃ they converge to ∆̃, and hence there are only two equilibria left. If we increase a

now further this equilibrium vanishes and only one equilibrium remains, in which ∆1 > 0.

To complete the proof we now show by example that the second order condition can hold in both

stages when there are multiple equilibria in stage 1. The second order condition in stage 2 for F is

φ′(
d2

σǫ
)− c < 0,

and this must hold for all d2. The second derivative has a maximum if d2 = −σǫ, and if c > 1√
2eπσ2

ǫ
⇔

ρ > 1√
2eπ

this maximum is strictly negative and F ’s second order condition holds for all d2. Note that

this is then also guarantees T ’s second order condition since candidates are symmetric in d2. Moreover,

note that 1√
2eπ

< ρ̄ = 1
33/4

√
π
. Hence, if the second order condition holds marginally in stage 2, there

are multiple equilibria in stage 1.

Now look at stage 1. Assuming the second order condition in stage 2 holds marginally, the second

order condition in stage 1 is

−κe
− κ2

4σ2
ǫ

4
√
πσ3

ǫ

− 1√
2eπσ2

ǫ

+
(3σ2

ǫ − 2κ2)e
1
2
− κ2

3σ2
ǫ

9
√
6πσ4

ǫ

,
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Figure 7: Numerical calculations of F ’s second derivative in stage 1, assuming second order conditions in stage
2 hold marginally, c > 1√

2eπσ2
ǫ

. Right panel: σǫ ∈ {1/4, 1/2, 1}.

where, as above, κ = ∆1 + a. This seems to be strictly negative for all (σǫ, κ), and is strictly negative

in all our numerical calculation, see Figure 7.

What is left to prove Proposition 4 is to show that no stable symmetric equilibrium exists when

ρ < ρ̄. In the following we show that the slope of each candidate’s best response function for a = 0,

evaluated at the symmetric intersection, is less than minus one.

Each candidate’s best response is implicitly defined by

BR1
F (x1

T ) = max

{

{x1
F :

∫

S1

(

g2(x1
F − x1

T − e1) −
[

g2(x1
F − x1

T − e1)g2′(x1
F − x1

T − e1)

C′′(C′−1(g2(x1
F − x1

T − e1)))

])

g1(e1) de1 − C′(x1
F ) = 0}, 0

}

,

BR1
T (x1

F ) = max

{

{x1
T :

∫

S1

(

g2(x1
F − x1

T − e1) +

[

g2(x1
F − x1

T − e1)g2′(x1
F − x1

T − e1)

C′′(C′−1(g2(x1
F − x1

T − e1)))

])

g1(e1) de1 − C′(x1
T ) = 0}, 0

}

.

Assuming a symmetric equilibrium with x1F = x1T , it follows from Lemma 2 that the indirect effect is

zero for both and hence

x1F = x1T = C ′−1
(Eǫ1 [g

2(ǫ1)])

is an equilibrium. From the implicit function theorem it follows that the slope of the best responses is

∂BR1
i (x

1
j )

∂x1
j

=

Eǫ1

[

(

g2′(ǫ1)
C′′(x∗∗(ǫ1))

)2 (

C′′(x∗∗(ǫ1)) − g2(ǫ1)C′′′(x∗∗(ǫ1))
C′′(x∗∗(ǫ1))

)

+
g2(ǫ1)g2′′(ǫ1)
C′′(x∗∗(ǫ1))

]

Eǫ1

[

(

g2′(ǫ1)

C′′(x∗∗(ǫ1))

)2 (

C′′(x∗∗(ǫ1))− g2(ǫ1)C′′′(x∗∗(ǫ1))

C′′(x∗∗(ǫ1))

)

+
g2(ǫ1)g2′′(ǫ1)

C′′(x∗∗(ǫ1))

]

+ C′′(C′−1(Eǫ1g
2(ǫ1)))

.

If this is smaller than minus 1 the equilibrium is unstable. Note that the denominator must be positive,
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because it is the negative of the second derivative in equilibrium, and this has to be negative in

equilibrium. This is the case whenever

−2Eǫ1

[

(

g2′(ǫ1)
C ′′(x∗∗(ǫ1))

)2(

C ′′(x∗∗(ǫ1))− g2(ǫ1)C ′′′(x∗∗(ǫ1))
C ′′(x∗∗(ǫ1))

)

+
g2(ǫ1)g2′′(ǫ1)
C ′′(x∗∗(ǫ1))

]

> C ′′(C ′−1
(Eǫ1g

2(ǫ1))).

Hence, the cost function must be sufficiently convex but not too convex. Using the functional forms

assumed this simplifies to

−2Eǫ1

[

(

φ′
(

ǫ1

σǫ

))2

+ φ

(

ǫ1

σǫ

)

φ′′
(

ǫ1

σǫ

)

]

> c2,

which further simplifies to

ρ = cσ2
ǫ < (33/4

√
π)−1 = ρ̄.

This is the condition for the existence of multiple equilibria in the game with quadratic costs and

normal shocks. Hence, whenever there are multiple equilibria in this game, there is no stable symmetric

equilibrium. This completes the proof.

The proofs in Appendix A and B complete the proof of Proposition 7.

D Proof of Propositions 5 and 8

Proof. From the proof of Proposition 1 we know that aggregate expenditures in the general model and

without a poll are equal to

4C
′−1

(
∫ ∞

−∞
g̃(a)

1

σα
φ

(

a− µα

σα

)

d a

)

.

With a poll, second period expected aggregate expenditures are also symmetric and equal to

2

∫ ∞

−∞

(
∫

S1

C
′−1(g2(d2))g1(e1) de1

)

1

σα
φ

(

a− µα

σα

)

da.

as the proof of Proposition 2 shows. In period 1 we unfortunately cannot generally get a closed form

solution for equilibrium investments with poll. So we need to take an indirect approach. Recall from
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the proof of Proposition 3 that the first-order conditions are given by

∫

S1

(

g2(d2) −
[

g2(d2)
∂C ′−1(g2(d2))

∂g2(d2)

∂g2(d2)

∂a

])

g1(e1) de1 − C ′ (x1F
)

= 0

∫

S1

(

g2(d2) +

[

g2(d2)
∂C ′−1(g2(d2))

∂g2(d2)

∂g2(d2)

∂a

])

g1(e1) de1 − C ′ (x1T
)

= 0

where d2 = a+ x1F − x1T − e1. Aggregate spending in period 1 is thus implicitly defined by

X1(a) = C
′−1
(

∫

S1

(

g2(d2) −
[

g2(d2)∂C
′−1(g2(d2))
∂g2(d2)

∂g2(d2)
∂a

])

g1(e1) de1
)

+C
′−1
(

∫

S1

(

g2(d2) +
[

g2(d2)∂C
′−1(g2(d2))
∂g2(d2)

∂g2(d2)
∂a

])

g1(e1) de1
)

,

and expected aggregate stage 1 spending is

∫ ∞

−∞
X1(a)

1

σα
φ

(

a− µα

σα

)

da.

By Jensen’s inequality we know that if C ′′′(x) ≥ 0

C
′−1
(

∫∞
−∞ g̃(a) 1

σα
φ
(

a−µα

σα

)

d a
)

≥
∫∞
−∞C

′−1
(∫

S1 g
2(a− e1)g1(e1) de1

)

1
σα

φ
(

a−µα

σα

)

da

≥
∫∞
−∞

(

∫

S1 C
′−1(g2(a− e1))g1(e1) de1

)

1
σα

φ
(

a−µα

σα

)

da.

This inequality is strict for C ′′′(x) > 0 and non-degenerate distribution functions. Furthermore, we

used the fact that g̃(a) is density of the sum of of ǫ1 and ǫ2 and thus the convolution of g1 and g2. The
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difference between expected aggregate investment with and without poll is equal to

∫ ∞

−∞

(

C
′−1

(∫

S1

(

g
2(d2)−Υ(d2)

)

g
1(e1)de1

)

+ C
′−1

(∫

S1

(

g
2(d2) + Υ(d2)

)

g
1(e1) de1

))

1

σα
φ

(

a− µα

σα

)

da

+2

∫ ∞

−∞

(∫

S1

C
′−1(g2(d2))g1(e1) de1

)

1

σα
φ

(

a− µα

σα

)

da− 4C
′−1

(∫ ∞

−∞

g̃(a)
1

σα
φ

(

a− µα

σα

)

d a

)

≤

∫ ∞

−∞

(

C
′−1

(∫

S1

(

g
2(d2)−Υ(d2)

)

g
1(e1)de1

)

+ C
′−1

(∫

S1

(

g
2(d2) + Υ(d2)

)

g
1(e1) de1

))

1

σα
φ

(

a− µα

σα

)

da

−2

∫ ∞

−∞

C
′−1

(∫

S1

g
2(a− e

1)g1(e1) de1
)

1

σα
φ

(

a− µα

σα

)

da

+2

∫ ∞

−∞

(∫

S1

(

C
′−1(g2(d2))−C

′−1(g2(a− e
1))
)

)g1(e1) de1
)

1

σα
φ

(

a− µα

σα

)

da

≤2

∫ ∞

−∞

(

C
′−1

(∫

S1

(

g
2(d2)

)

g
1(e1)de1

)

− C
′−1

(∫

S1

g
2(a− e

1)g1(e1) de1
))

1

σα
φ

(

a− µα

σα

)

da

+2

∫ ∞

−∞

(∫

S1

(

C
′−1(g2(d2))−C

′−1(g2(a− e
1))
)

)g1(e1) de1
)

1

σα
φ

(

a− µα

σα

)

da

< 0

where we denote Υ(d2) =
[

g2(d2)∂C
′−1(g2(d2))
∂g2(d2)

∂g2(d2)
∂a

]

for ease of exposition. The first two inequalities

follow from Jensen’s inequality and the fact that C
′−1 is a concave function. The last inequality

is strict because of the fact that Sign[a] = Sign[x1F − x1T ] (momentum) and thus for all a 6= 0,

|g2(d2)| < |g2(a− e1)| due to quasi-concavity and symmetry around zero of g2. Hence, for C ′′′(x) ≥ 0

polls always decrease expected aggregate spending.

Now consider again the benchmark model and a situation where there is anti-momentum. If in

an anti-momentum equilibrium it holds that |∆1| > |2a| we are done because then the above proof

establishes the result also for this case. From the first order conditions we know the difference in

investments is Σ as defined above in (C.8) and equals

Σ(∆1 + a) =
(∆1 + a)e

−(∆1+a)2

3σ2
ǫ√

27πc2σ4
ǫ

.

To find the maximum a for which multiple equilibria exist we take the derivative with respect to ∆1

and set it equal to 1:

Σ′(∆1 + a) =
e
− (∆1+a)2

3σǫ2
(

3σǫ
2 − 2(∆1 + a)2

)

9
√
3πc2σǫ6

!
= 1.

The solution is not to be obtained in closed form, but can be expressed in terms of the Lambert W

45



function. Let z = 3
2

√
3eπc2σ4

ǫ and let W (z) be the solution of the Lambert equation

z = W (z)eW (z).

Because z > 0 there exists a unique solution to this problem and W ′(z) > 0. Hence, W (z) is bounded

from below by W and from above by W . The maximum value that z can take on is achieved exactly

when ρ = ρ̄, in which case z =
√
e/2 and hence W = 1/2. As the lower bound we can take the minimum

value of ρ for which the second order conditions in stage 2 hold, which is ρ = 1/(
√
2eπ). This yields

z = 3
4

√

3
e , in which case then W ≈ 0.485075. The solution to the above equation is

∆1 + a = ±σǫ

√

3

2
− 3W (z).

Note that since W (z) ≤ 1
2 the square root has a real solution. The value of Σ evaluated at this point is

Σ(a) = ±
σǫ

√

3
2 − 3W (z)

2W (z)
,

which by definition is the difference in investments at this point. We focus on a ≥ 0 without loss of

generality, implying that in both expressions above we have to take the one with a minus. Hence, we

can determine the maximum a for which anti-momentum can exist in this case:

a = −σǫ

√

3

2
− 3W (z) +

σǫ

√

3
2 − 3W (z)

2W (z)
= σǫ

√

3

2
− 3W (z)

(

1

2W (z)
− 1

)

≥ 0.

a is zero iff ρ = ρ̄, which must of course be the case. Conditional on ρ, a is linear in σǫ.

So what we need to show is that

∆1 :











∆1 =
(∆1 + a)e

−(∆1+a)2

3σ2
ǫ

√
27πc2σ4

ǫ

| a ∈ [0, a] ∧ ρ ∈ [ρ, ρ]











≤ −2a.
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It is easy to show that at a this always holds,

Σ(a) + 2a = −
σǫ

√

3
2 − 3W (z)

2W (z)
+ 2



−σǫ

√

3

2
− 3W (z) +

σǫ

√

3
2 − 3W (z)

2W (z)





= σǫ





√

3
2 − 3W (z)

2W (z)
− 2

√

3

2
− 3W (z)





= σǫ

√

3

2
− 3W (z)

(

1

2W (z)
− 2

)

< 0

Remember that at this point the slope of Σ with respect to a is positive, it is one. Also remember

that the slope of Σ is strictly negative for all finite a /∈
[

−
√

3
2σǫ,

√

3
2σǫ

]

, zero at the boundaries of this

interval, and positive within. In other words, the set of values of a for which the slope is positive is

convex (see equation (C.9) and paragraph that follows it). If we can show that in the equilibrium to

which the anti-momentum converges as a → 0 the slope is also positive, we have proven that, starting

at a = 0, in all anti-momentum equilibria, the larger a grows, the smaller becomes |∆1|. We know

already that for the largest a that admits anti-momentum equilibria |∆1| is large enough. Hence, if the

slope at the equilibrium at a = 0 is positive we proved the proposition (see also Figure 6). It is easily

verified that in this equilibrium |∆1| =
√
3
√

−σǫ2 log
(

3
√
3πc2σǫ4

)

, which is well defined since ρ ≤ ρ̄.

Using this expression in the derivative of Σ above yields

∂Σ

∂∆
|
a=0∧∆1=−

√
3
√

−σǫ
2 log(3

√
3πc2σǫ

4)
= 2 log

(

3
√
3πc2σǫ

4
)

+ 1,

which is positive for all ρ ∈ [ρ, ρ]. This proves the proposition.

E Proof of Proposition 6

Recall the candidates’ first order conditions in stage 1 are

∂π1
F

∂x1F
= Eǫ1

[

φ(a+∆1−ǫ1

σǫ
)

σǫ

]

−Eǫ1

[

φ(a+∆1−ǫ1

σǫ
)φ′(a+∆1−ǫ1

σǫ
)

c σ3
ǫ

]

− c x1F
!
= 0

∂π1
T

∂x1T
= Eǫ1

[

φ(a+∆1−ǫ1

σǫ
)

σǫ

]

+Eǫ1

[

φ(a+∆1−ǫ1

σǫ
)φ′(a+∆1−ǫ1

σǫ
)

c σ3
ǫ

]

− c x1T
!
= 0
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in symmetric equilibrium, where a = 0, it is then easily verified that x1F = x1T = 1
2
√
πcσǫ

. To see this

note that from Lemma 2 the second term in the first order conditions is zero. The first is simply the

expectation of the normal density and hence the convolution of two normal densities, and thus equals

Eǫ1

[

φ(a+∆1−ǫ1

σǫ
)

σǫ

]

= 1
2
√
πσǫ

. Investment follows immediately.

Letting κ = a+∆1 − ǫ1, second order conditions are

∂2π1
F

∂(x1
F )

2
= Eǫ1

[

φ′( κ
σǫ
)

σ2
ǫ

]

− Eǫ1

[

φ′( κ
σǫ
)2 + φ( κ

σǫ
)φ′′( κ

σǫ
)

c σ4
ǫ

]

− c
!

< 0

∂2π1
T

∂(x1
T )

2
= −Eǫ1

[

φ′( κ
σǫ
)

σ2
ǫ

]

− Eǫ1

[

φ′( κ
σǫ
)2 + φ( κ

σǫ
)φ′′( κ

σǫ
)

c σ4
ǫ

]

− c
!

< 0

For comparative statics we totally differentiate the candidates’ FOCs:

(

∂2π1
F

∂(x1F )
2

)

dx1F +

(

∂2π1
F

∂x1F∂x
1
T

)

dx1T = −
(

∂2π1
F

∂x1F∂a

)

da

(

∂2π1
T

∂x1F∂x
1
T

)

dx1F +

(

∂2π1
T

∂(x1T )
2

)

dx1T = −
(

∂2π1
T

∂x1T∂a

)

da

Evaluating this in the symmetric equilibrium, where a = 0 and x1F = x1T = 1
2
√
πcσǫ

, we can express the

total differential in matrix notation. Defining

M =







∂2π1
F

∂(x1
F )2

∂2π1
F

∂x1
F ∂x1

T

∂2π1
T

∂x1
F ∂x1

T

∂2π1
T

∂(x1
T )2






=







1
6
√
3cπσ4

ǫ
− c − 1

6
√
3cπσ4

ǫ

− 1
6
√
3cπσ4

ǫ

1
6
√
3cπσ4

ǫ
− c







P =







− ∂2π1
F

∂x1
F ∂a

− ∂2π1
T

∂x1
T ∂a






=







− 1
6
√
3cπσ4

ǫ

1
6
√
3cπσ4

ǫ







dx =





dx1F

dx1T





we can rewrite the total differential as

M · dx = Pda
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We apply Cramer’s rule for comparative statics. Let

MF =







− 1
6
√
3cπσ4

ǫ
− 1

6
√
3cπσ4

ǫ

1
6
√
3cπσ4

ǫ

1
6
√
3cπσ4

ǫ
− c







and

MT =







1
6
√
3cπσ4

ǫ
− c − 1

6
√
3cπσ4

ǫ

− 1
6
√
3cπσ4

ǫ

1
6
√
3cπσ4

ǫ






.

The derivative we are searching for is then
∂x1

F
∂a = |MF |

|M | and
∂x1

T
∂a = |MT |

|M | , or

∂x1F
∂a

|a=0 =
1

6
√
3πc2σ4

ǫ − 2
(E.1)

∂x1T
∂a

|a=0 = − 1

6
√
3πc2σ4

ǫ − 2
(E.2)

∂x1
F

∂a is positive iff cσ2
ǫ > (33/4

√
π)−1 ⇔ ρ > ρ̄, and

∂x1
T

∂a is then negative. Expected investment in stage

2 is

Ex2(κ) = Eǫ1

[

1

σǫc
φ

(

a+ x1F − x1T − ǫ1

σǫ

)]

=
e
− (a+x1F−x1T )2

4σ2
ǫ

2
√
πcσǫ

=
e
− κ2

4σ2
ǫ

2
√
πcσǫ

.

The derivative of this expected investment with respect to κ is

∂Ex2

∂κ
= − κe

− κ2

4σ2
ǫ

4
√
πcσ3

ǫ

which, if we evaluate this at the symmetric equilibrium at a = 0, is equal to zero. Hence, marginally

changing a only has an effect on stage 1 spending but no effect on spending in stage 2. Hence, expected

total investment of F is increasing in a when a = 0 and T ’s expected total investment decreases. This

proves the proposition.
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F Proof of Corollary 3

The derivative of the candidates’ equilibrium spending, derived using Cramer’s rule as above, is

∂x1F
∂a

=
27
√
πcσ3

ǫ (a+ x1F − x1T )e
6x1T (a+x1F )+(a+x1F )2+x1T

2

12σ2
ǫ + 2

√
3e

2x1T (a+x1F )

3σ2
ǫ

(

2(a+ x1F − x1T )
2 − 3σ2

ǫ

)

4
√
3e

2x1
T

(a+x1
F
)

3σ2
ǫ

(

3σ2
ǫ − 2(a+ x1F − x1T )

2
)

− 108πc2σ6
ǫ e

(a+x1
F

)2+x1
T
2

3σ2
ǫ

∂x1T
∂a

=
27
√
πcσ3

ǫ (a+ x1F − x1T )e
6x1T (a+x1F )+(a+x1F )2+x1T

2

12σ2
ǫ + 2

√
3e

2x1T (a+x1F )

3σ2
ǫ

(

3σ2
ǫ − 2(a+ x1F − x1T )

2
)

4
√
3e

2x1
T

(a+x1
F
)

3σ2
ǫ

(

3σ2
ǫ − 2(a+ x1F − x1T )

2
)

− 108πc2σ6
ǫ e

(a+x1
F

)2+x1
T
2

3σ2
ǫ

We proceed as follows. First we show that the denominator is strictly negative. Then we show that for

T the numerator is strictly positive. Finally, we show that for F the numerator is negative for small a

and positive thereafter. To do all this we make the following transformations: c = t
33/4

√
πσ2

ǫ
for some

t > 1 and we let κ = a+ x1F + x1T > 0 for all a > 0 in the following where applicable:

∂x1F
∂a

=
9 4
√
3st(a+ x1F − x1T )e

6x1T (a+x1F )+(a+x1F )2+x1T
2

12σ2
ǫ + 2

√
3e

2x1T (a+x1F )

3σ2
ǫ

(

3σ2
ǫ − 2(a+ x1F − x1T )

2
)

4
√
3

(

e
2x1

T
(a+x1

F
)

3σ2
ǫ

(

3σ2
ǫ − 2(a+ x1F − x1T )

2
)

− 3σ2
ǫ t

2e
(a+x1

F
)2+x1

T
2

3σ2
ǫ

)

∂x1T
∂a

=
9 4
√
3st(a+ x1F − x1T )e

6x1T (a+x1F )+(a+x1F )2+x1T
2

12σ2
ǫ + 2

√
3e

2x1T (a+x1F )

3σ2
ǫ

(

3σ2
ǫ − 2(a+ x1F − x1T )

2
)

4
√
3

(

e
2x1

T
(a+x1

F
)

3σ2
ǫ

(

3σ2
ǫ − 2(a+ x1F − x1T )

2
)

− 3σ2
ǫ t

2e
(a+x1

F
)2+x1

T
2

3σ2
ǫ

)

Look at the denominator, which is identical for both, first and assume it is negative:

4
√
3

(

e
2x1T (a+x1F )

3σ2
ǫ

(

3σ2
ǫ − 2(a+ x1F − x1T )

2
)

− 3σ2
ǫ t

2e
(a+x1F )2+x1T

2

3σ2
ǫ

)

< 0

⇔ 4
√
3e

2x1T (a+x1F )

3σ2
ǫ

(

3σ2
ǫ − 2(a+ x1F − x1T )

2
)

< 12
√
3σ2

ǫ t
2e

(a+x1F )2+x1T
2

3σ2
ǫ

⇔ e
− (a+x1F−x1T )2

3σ2
ǫ

(

3σ2
ǫ − 2(a+ x1F − x1T )

2
)

< 3σ2
ǫ t

2 ⇔ e
− κ2

3σ2
ǫ

(

3σ2
ǫ − 2κ2

)

< 3σ2
ǫ t

2

It is easy to see that the last line must be true. The left side is decreasing in κ. At κ = 0 in the

symmetric equilibrium the inequality also holds. Hence, it holds generally.
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Now look at the numerator of T and assume it is positive:

9st(a+ x1F − x1T )e
(a+x1F+x1T )2

12σ2
ǫ + 2

4
√
3e

x1T (a+x1F )

3σ2
ǫ

(

3σ2
ǫ − 2(a + x1F − x1T )

2
)

> 0

⇔ 2
4
√
3e

− (a+x1F−x1T )2

12σ2
ǫ

(

3σ2
ǫ − 2(a+ x1F − x1T )

2
)

+ 9st(a+ x1F − x1T ) > 0

⇔ 2
4
√
3e

− κ2

12σ2
ǫ

(

3σ2
ǫ − 2κ2

)

+ 9κst > 0

Note that the last line always holds when
√

3
2σǫ > κ. Hence, let κ =

√

3
2σǫm for m ∈ [0, 1]. We get

then

3
√
2

4
√
3mt− 4e−

m2

8

(

m2 − 1
)

> 0.

m ≤ 1 implies −4(m2 − 1) ≥ 0, and hence this must be strictly positive and the inequality must

holds. Together with the negative denominator this consequently implies T ’s investment decreases

monotonically in a, proving one part of the corollary.

Finally, consider the numerator of F .

27
√
πcσ3

ǫ (a+ x1F − x1T )e
6x1T (a+x1F )+(a+x1F )2+x1T

2

12σ2
ǫ + 2

√
3e

2x1T (a+x1F )

3σ2
ǫ

(

2(a+ x1F − x1T )
2 − 3σ2

ǫ

)

> 0

⇔ 9

2

√
3πcσ3

ǫ (a+ x1F − x1T )e
(a+x1F−x1T )2

12σ2
ǫ + 2(a+ x1F − x1T )

2 > 3σ2
ǫ

⇔ 9

2

√
3πcκσ3

ǫ e
κ2

12σ2
ǫ + 2κ2 > 3σ2

ǫ

It is immediately observed that the LHS is zero for κ = 0, monotonically increasing in κ, and reaching

infinity as κ → +∞. Hence, iff κ is large the inequality holds. In addition, there exists a unique

κ̄ for which the LHS equals the RHS and for all smaller values the LHS is smaller. Because the

denominator is negative this yields that F ’s spending increases first, reaches a maximum and declines

then monotonically. Together with Proposition 6 this completes the proof.

G All-pay auction

Consider the example when E[(ǫt)2] → 0. Also consider the situation without a poll first. In this

situation the candidates do not know the median’s exact ranking but have beliefs F (α). For candidate
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F the probability to win the race is

Pr[x1F + x2F + a− x1T − x2T > 0] = Pr[a > x1T + x2T − x1F − x2F ] = 1− F (x1T + x2T − x1F − x2F ),

and similarly for T we get F (x1T + x2T − x1F − x2F ). Hence, we may write the candidates objectives as

max(x1
F ,x2

F )∈R2
+

1− F (x1T + x2T − x1F − x2F )− C(x1F )− C(x2F ),

max(x1
T ,x2

T )∈R2
+

F (x1T + x2T − x1F − x2F )− C(x1T )− C(x2T ).

The corresponding first order condition for i in t reads

f(x1T + x2T − x1F − x2F )− C ′(xti)
!
= 0.

This is identical for all t = 1, 2 and i = F, T . Hence,

xtF = C ′−1(f(0)).

For this to be an equilibrium the second order conditions need to hold:

f ′(0)− C ′′(C ′−1(f(0))) ≤ 0.

If costs are sufficiently convex and / or the variance of beliefs is sufficiently large this inequality holds

generally.

Now look at the case of a campaign with polls. Candidates have perfect knowledge of the median’s

ranking, and since there is no shock, there is no exogenous noise left. Consider stage 2 first, and assume

without loss of generality d2 ≥ 0. It is easily shown that there cannot be a pure strategy equilibrium

in this stage (see e.g. Nalebuff and Stiglitz (1983) or Hillman and Riley (1989)). The stage game is

similar to the game analyzed in Meirowitz (2008) with the difference that we have strictly convex

costs instead of linear cost functions. Let x̄ := C−1(1), the maximum investment that is not strictly

dominated. Moreover, let Qi(x
2
i ) be candidate i’s mixed strategy with support Si, i = F, T . Then stage

2 equilibrium is given by
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Figure 8: Investment distribution functions for the leader (dashed) and his opponent (solid). We assumed d2 = 3

10

and in the left panel c = 1, while in the right c = 7.

Proposition 11. Without loss of generality, let d2 ≥ 0. There is a unique equilibrium in mixed

strategies if d2 < x̄ with SF = [0, x̄− d2] and ST = {0} ∪ [d2, x̄]. Candidate F randomizes according to

QF (x
2
F ) =























0 if xF < 0,

C(d2 + xF ) if xF ∈ [0, x̄− d2],

1 if xF > x̄− d2,

while T ’s mixed strategy is given by

QT (x
2
T ) =



































0 if xT < 0,

1− C(x̄− d2) if xT ∈ [0, d2],

1− C(x̄− d2) + C(xT − d2) if xT ∈ [d2, x̄],

1 if xT > x̄.

Expected utilities are 1 − C(x̄ − d2) for F and 0 for T . If d2 ≥ x̄ both candidates expend zero, x2F =

x2T = 0, and expected utilities are 1 and 0 respectively.

Proof. First we show that this is an equilibrium. Consider F choosing investment x ∈ [0, x̄ − d2]. The
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associated payoff is then

Pr[x+ d2 > x2T ]− C(x) = QT (x+ d2)− C(x) = 1− C(x̄− d2) + C(x+ d2 − d2)− C(x)

= 1− C(x̄− d2) + C(x)− C(x) = 1− C(x̄− d2).

He is hence indifferent between all pure strategies in SF given QT . Note also, that x > x̄ − d2 is

strictly dominated since lowering investment to x̄ − d2 saves costs without altering the probability to

win. Hence, given QT F is indifferent between all pure strategies in SF and cannot improve on the

expected payoff by deviating. Now consider T . Given QF , choosing x ∈ ST gives the following payoff:

Pr[x > x2F + d2]− C(x) = Pr[x− d2 > x2F ]− C(x) = QF (x− d2)− C(x)

= C(d2 + x− d2)− C(x) = C(x)− C(x) = 0.

Investment x = 0 never wins but does not imply costs, either. All investments x ∈ [0, d2] are strictly

dominated since they cannot win but imply costs. Choosing investment x ∈ [d2, x̄] also yields zero

payoff, since the probability to win exactly equals the associated investment costs. Hence, all x ∈ SB

yield zero expected payoff. Note that deviating to x > x̄ is strictly dominated, since it would win for

sure but imply costs that are greater than the value of winning. Hence, there is no beneficial deviation

for T as well and thus QF and QT are an equilibrium.

Now consider the support SF . By elimination of strictly dominated strategies it is apparent that F

will never choose investment greater than x̄− d2, because T will never choose investment greater than

x̄. The maximum bid neither can be lower, because than T would have a winning strategy and could

simply overbid F and win for sure. That F ’s minimum bid must be zero and that the support cannot

have holes, or that it must be convex, follows directly from the proof in Hillman and Riley (1989).

Hence, SF is the only support a mixed strategy of F can have in equilibrium. Now consider ST . It is

apparent that all x ∈ (0, d2) can never win but imply positive costs, and are hence strictly dominated.

The maximum possible bid is naturally x̄, and must also be x̄. Otherwise F could overbid x2T and win

for sure. Convexity of ST follows again from Hillman and Riley (1989).

It is now easy to see that given SF and ST there do not exist other investment distribution making

the opponent indifferent between all investment in his mixed strategy. Hence, the proof is complete.
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To see which candidate has stronger incentives to invest we now need to calculate the expected

investment of each. We resort to the quadratic form employed before, where C(x) = c
2x

2. Candidate

F ’s expected investment in the campaign is

Ex2F =

∫

SF

xC ′(x+ d2)dx =

∫

SF

xc(x+ d2)dx =

[

c

3
x3 +

cd2

2
x2
]x̄−d2

0

=
c

3
(x̄− d2)3 +

cd2

2
(x̄− d2)2

=
c

3

(

√

2

c
− d2

)3

+
cd2

2

(

√

2

c
− d2

)2

=

√

8

9c
− d2 +

c

6
(d2)3

Similarly, for candidate T we get

Ex2T =

∫

ST

xC ′(x− d2)dx =

∫

ST

xc(x− d2)dx =

[

c

3
x3 − cd2

2
x2
]x̄

d2

=
c

3
(x̄)3 − cd2

2
(x̄)2 − c

3
(d2)3 +

c

2
(d2)3

=

√

8

9c
− d2 +

c

6
(d2)3

Hence, the expected difference in investments is zero:

Corollary 5. The difference in expected investments in stage 2 is equal to zero.

This resembles our findings from a campaign with exogenous noise.

Now look at stage 1. We focus on pure strategy equilibria. Assume a ≥ 0 and x1T = 0. F chooses

investment to maximize

1−C(x̄− d2)− C(x1F ) = 1− C(x̄− a− x1F )− C(x1F ).

His first order condition reads

C ′(x̄− a− x1F )− C ′(x1F ) = 0 ⇔ x̄− a = 2x1F .

The equivalence in the last step follows from the strict convexity of C(.), due to which C ′(.) is strictly
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increasing. Because the second derivative is strictly negative,

−C ′′(x̄− a− x1F )− C ′′(x1F ) < 0,

we can use the first order condition to find the global maximum. F ’s optimal reaction to x1T = 0 is

x∗F =
x̄− a

2
.

(Note that for this to make sense we need that |a| < x̄. Otherwise no candidate has any incentive

to invest in their campaign.) Now turn to T . He either spends zero and gets zero in expectation or

maximizes

1− C

(

3

2
x̄+

1

2
a− x1T

)

− C(x1T ).

The first order condition reads

C ′(
3

2
x̄+

1

2
a− x̃1T ) = C ′(x̃1T ) ⇔ 2x̃T =

3

2
x̄+

1

2
a,

and hence

x̃T =
3

4
x̄+

a

4
.

The second order condition holds, but note that we only looked at positive investment. For this to be

optimal it needs to hold in addition that expected utility is weakly positive:

1− 2C

(

3

4
x̄+

a

4

)

≥ 0.

This inequality could in principle hold for small a, depending on the curvature of the costs function

and when a is relatively small. For concreteness, however, we stick to the functional employed mostly

in the paper, C(x) = c
2x

2. Then

1− 2C

(

3

4
x̄+

a

4

)

= 1− c

(

3

4

√

2

c
+

a

4

)2

< 0.

To see this note that the second term is strictly increasing in a. Hence, if utility is negative for a = 0
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Figure 9: Combinations of c (horizontal) and a (vertical) admitting a pure strategy Nash equilibrium in which
F spends more.

this is true also for all a > 0. Using a = 0 we get

1− c

(

3

4

√

2

c
+

a

4

)2

= 1− c

(

3

4

√

2

c

)2

= 1− 9

8
= −1

8
< 0.

Hence, x̃T cannot be an optimal choice and T chooses zero investment instead. Therefore, we established

that this is an equilibrium. Moreover, note that as long as the utility from spending x̃1T is negative,

(x∗F , 0) is an equilibrium. This is the case for all

a ≥ 4− 3
√
2√

c
< 0.

Hence, as before when E[(ǫ)2] 6= 0, it may also be the case that the trailing candidate spends more. In

Figure 9 we show combinations of c and a for which there exists a pure strategy Nash equilibrium in

which F spends x1F > 0 while T stays passive.

Note that by symmetry the whole analysis also applies for T if a ≤ 0. Hence, there always exists

a pure strategy Nash equilibrium in stage 1 if we assume costs to be quadratic, and there are multiple

pure strategy equilibria in close enough games:

Proposition 12. In stage 1 of the competition with quadratic costs there always exists a pure strategy

Nash equilibrium. In a close race there may also exist multiple equilibria, and either candidate may

adopt a tough stance and spend more. If one candidate has a relatively large advantage, this candidate

will also choose larger investment.

Proof. This follows immediately from the discussion above.
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It follows from Corollary 5 and Proposition 12 that the campaign game qualitatively perfectly

resembles what we have seen before in the case of a noisy competition. This proves the example.

H Proof of Proposition 9

Proof. To show existence of equilibrium we can proceed as before. To save on space we do not show the

proof (available upon request) but note that, as before, if c is large enough in any stage the candidates’

problems are strictly concave with continuous payoff functions and compact strategy spaces [0,
√

2
c ],

and hence equilibrium existence follows from standard proofs.

First we replicate the result of the benchmark model without polls. Candidates maximize

∫ ∞

−∞

(

λΦ

(

a +∆1 +∆2

√
2σǫ

)

+ (1 − λ)Eǫ1,ǫ2
[

1− P (a +∆1 +∆2 − ǫ1 − ǫ2)
]

)

1

σα
φ

(

a− µα

σα

)

da− c

2
(x1

F )2 − c

2
(x2

F )2

∫ ∞

−∞

(

λ(1− Φ

(

a +∆1 +∆2

√
2σǫ

)

) + (1− λ)Eǫ1,ǫ2
[

P (a+∆1 +∆2 − ǫ1 − ǫ2)
]

)

1

σα
φ

(

a − µα

σα

)

da− c

2
(x1

T )2 − c

2
(x2

T )2

respectively. Taking first derivatives with respect to spending in t leads to

∫ ∞

−∞

(

λ√
2σǫ

φ

(

a+∆1 +∆2

√
2σǫ

)

+ (1− λ)Eǫ1,ǫ2

[

p(a+∆1 +∆2 − ǫ1 − ǫ2)
]

)

1

σα

φ

(

a− µα

σα

)

da− cxt
F

!
= 0

∫ ∞

−∞

(

λ√
2σǫ

φ

(

a+∆1 +∆2

√
2σǫ

)

+ (1− λ)Eǫ1,ǫ2

[

p(a+∆1 +∆2 − ǫ1 − ǫ2)
]

)

1

σα

φ

(

a− µα

σα

)

da− cxt
T

!
= 0

It is apparent that in any interior equilibrium both choose identical investments in both stages. More-

over, since investments perfectly cancel out, the equilibrium must be unique.

Now consider the situation with polls. For the stage 1 analysis we need an expression of the second

stage investment. Noticing that the noise structure changes since only one random term is remaining,

and that candidates now know d2 precisely, from the FOCs is follows that

x2F = x2T = x2 =

λ
σǫ
φ
(

d2

σǫ

)

+ (1− λ)Eǫ2
[

p(d2 − ǫ2)
]

c
.
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Making use of Assumption 3, we find

x2 =

λ
σǫ
φ
(

d2

σǫ

)

+ (1−λ)√
σ2
ǫ+σ2

p

φ

(

−µp+d2√
σ2
ǫ+σ2

p

)

+φ

(

µp+d2√
σ2
ǫ+σ2

p

)

2

c
.

Differentiation with respect to d2 gives

∂x2

∂d2
=

λ
σ2
ǫ
φ′
(

d2

σǫ

)

+ (1−λ)
σ2
ǫ+σ2

p

φ′

(

−µp+d2√
σ2
ǫ+σ2

p

)

+φ′

(

µp+d2√
σ2
ǫ+σ2

p

)

2

c
.

At d2 = 0 the derivative is clearly zero. We hence take the second derivative to see the curvature:

∂2x2

∂(d2)2
=

λ
σ3
ǫ
φ′′
(

d2

σǫ

)

+ (1−λ)

(σ2
ǫ+σ2

p)
3/2

φ′′

(

−µp+d2√
σ2
ǫ+σ2

p

)

+φ′′

(

µp+d2√
σ2
ǫ+σ2

p

)

2

c
.

At d2 = 0 we get

∂2x2

∂(d2)2
|d2=0 =

λ
σ3
ǫ
φ′′ (0) + (1−λ)

(σ2
ǫ+σ2

p)
3/2

φ′′

(

−µp√
σ2
ǫ+σ2

p

)

+φ′′

(

µp√
σ2
ǫ+σ2

p

)

2

c

=

λ
σ3
ǫ
φ′′ (0) + (1−λ)

(σ2
ǫ+σ2

p)
3/2φ

′′
(

µp√
σ2
ǫ+σ2

p

)

c

The first term is strictly negative, implying the derivative ∂x2

∂d2
decreases and so does investment as we

increase |d2| from zero. Hence look at the second term. It is straightforward to verify that

Sign



φ′′





µp
√

σ2
ǫ + σ2

p







 = Sign
[

µp −
√

σ2
ǫ + σ2

p

]

.

It follows that µp >
√

σ2
ǫ + σ2

p is necessary for investment to be increasing in d2. It is, however, not

sufficient. It is clear that when λ becomes large, the first term dominates and the sign of the second

derivative must be positive. However, if λ is small, that is if the plurality premium is very important,
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the second term dominates.

It is apparent from the discussion that for too small µp incentives are as under FPTP. However,

if µp >
√

σ2
ǫ + σ2

p stage 2 investments increase over some range in |d2|. It is easily verified that when

µp = µp =
√
3
√

σ2
ǫ + σ2

p the second derivative of second stage investment with respect to d2 has its

maximum. It is easily shown that comparative statics ∂x1F /∂a at a = 0, in case a unique equilibrium

exists, are negative if µp = µp and if λ is small (available upon request). Hence, in this region there is

always anti-momentum in close games.

I Proof of Corollary 4

Proof. We know already from before that the comparative statics in stage 2 drive stage 1 behavior. To

prove the corollary it is hence sufficient to show that second stage investment is weakly decreasing in |d2|.

Note that there are two parts that determine the slope of investment, the marginal winning probability

and the marginal share. The first is always decreasing. Hence, if the second is also decreasing the

result holds. It is easily shown that for µp ≤
√

σ2
ǫ + σ2

p this must always be true. Note that this does

not mean the electorate is not divided. There are still two peaks of the preference distribution, but in

expectation the distribution in stage 3 becomes single peaked. Reasoning from stage 1 the condition

modifies to µp ≤
√

2σ2
ǫ + σ2

p, because the variance due to noise exactly doubles. That this is sufficient

for momentum follows basically from Proposition 7. If this condition does not hold comparative statics

may be different and anti-momentum might exist. However, there always exist a λ < 1 for which there

is strict momentum. To see this differentiate the investment in the second stage with respect to d2:

∂x2

∂d2
=

λ
σ2
ǫ
φ′
(

d2

σǫ

)

+ (1−λ)
σ2
ǫ+σ2

p

φ′

(

−µp+d2√
σ2
ǫ+σ2

p

)

+φ′

(

µp+d2√
σ2
ǫ+σ2

p

)

2

c
.

As discussed above the first term is strictly negative, but the second may be positive as well. However,

since all functions are bounded for all d2 there exist a λ < 1 for which this is strictly negative, also in

expectation.
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J Proof of Proposition 10

Proof. We start solving the game from the end. Expected utility of F and T before exerting effort in

stage 2 equals

π2
F = Φ

(

˜̃µα+x2
F−x2

T
˜̃σα

)

− c
2 (x

2
F )

2

π2
T = 1− Φ

(

˜̃µα+x2
F−x2

T
˜̃σα

)

− c
2(x

2
T )

2

From a similar reasoning as before we can show that equilibrium efforts are identical for both and equal

to

x∗∗ =
φ
(

˜̃µα
˜̃σα

)

c
.

Effort depends on the belief about the relative standing, which was influenced by the earlier polls as

well as the prior belief. Expected utility in equilibrium is

π2
F = Φ

(

˜̃µα
˜̃σα

)

−
(

φ
(

˜̃µα
˜̃σα

))2

2c

π2
T = 1− Φ

(

˜̃µα
˜̃σα

)

−
(

φ
(

˜̃µα
˜̃σα

))2

2c

Substituting

˜̃µα =
µ̃ασ

2
η + d2σ̃2

α

σ̃2
α + σ2

η

and

˜̃σα =
σ2
ησ̃

2
α

σ̃2
α + σ2

η

and taking the expectation over d2 yields the expectation over stage 2 expected utility from the point

of view of stage 1:19

π2
F =

∫∞
−∞



Φ
(

µ̃ασ2
η+d2σ̃2

α

σ2
η σ̃

2
α

)

−

(

φ

(

µ̃ασ2
η+d2σ̃2

α

σ2
ησ̃2

α

))2

2c



φ
(

µ̃α+x1
F−x1

T−d2

σ̃α

)

dp2

π2
T =

∫∞
−∞



1− Φ
(

µ̃ασ2
η+d2σ̃2

α

σ2
ησ̃

2
α

)

−

(

φ

(

µ̃ασ2
η+d2σ̃2

α

σ2
ησ̃2

α

))2

2c



φ
(

µ̃α+x1
F−x1

T−d2

σ̃α

)

dp2

19As in the baseline model we assume that investment is not observable to the candidates and it is thus not used to
update the prior beliefs. On the other hand, the candidates do anticipate the effect of their investments on the distribution
of the poll signal. We chose to present this specification because it encompasses the no-poll benchmark and the All-Pay
auction case as the limiting cases. Our results are robust to assuming that investments are observable and are thus used
by the candidates to update their prior beliefs. An appendix with details is available from the authors upon request.
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This can be shown to be

π1
F = Φ





µ̃α

(

σ̃2
α + σ2

η

)

+ σ̃2
α(x

1
F − x1T )

σ̃αση
√

2σ̃2
α + σ2

η



− 1

2
− e

−

µ̃2α(σ̃4
α+σ̃2

ασ2
η+2σ4

η)
σ̃2
α(σ̃2

α+σ2
η)

+2µ̃α(x1F−x1T )+(x1F−x1T )2

2σ2
η

4πcσ̃2
ασ

2
η

×













(σ̃2
α+σ2

η)
3/2

e

σ2
η(σ̃2

α+σ2
η)
(

µ̃α+x1F−x1T
σ2
η

−
2µ̃α

σ̃2
α+σ2

η

)2

2(3σ̃2
α+σ2

η)√
3σ̃2

α+σ2
η

− 2πcσ̃2
ασ

2
ηe

µ̃2α(σ̃4
α+σ̃2

ασ2
η+2σ4

η)
σ̃2
α(σ̃2

α+σ2
η)

+2µ̃α(x1F−x1T )+(x1F−x1T )2

2σ2
η













− c
2 (x

1
F )

2

π1
T = −Φ





µ̃α

(

σ̃2
α + σ2

η

)

+ σ̃2
α(x

1
F − x1T )

σ̃αση
√

2σ̃2
α + σ2

η



− e
−

µ̃2α(σ̃4
α+σ̃2

ασ2
η+2σ4

η)
σ̃2
α(σ̃2

α+σ2
η)

+2µ̃α(x1F−x1T )+(x1F−x1T )2

2σ2
η

4πcσ̃2
ασ

2
η

×













(σ̃2
α+σ2

η)
3/2

e

σ2
η(σ̃2

α+σ2
η)
(

µ̃α+x1F−x1T
σ2
η

−
2µ̃α

σ̃2
α+σ2

η

)2

2(3σ̃2
α+σ2

η)√
3σ̃2

α+σ2
η

− 4πcσ̃2
ασ

2
ηe

µ̃2α(σ̃4
α+σ̃2

ασ2
η+2σ4

η)
σ̃2
α(σ̃2

α+σ2
η)

+2µ̃α(x1F−x1T )+(x1F−x1T )2

2σ2
η













− c
2 (x

1
T )

2

The first order conditions evaluated at the symmetric equilibrium at µ̃α = 0 are

∂π1
F

∂x1F
|µ̃α=0 =

σ̃α√
2πση

√

2σ̃2
α + σ2

η

− cx1F
!
= 0

∂π1
T

∂x1T
|µ̃α=0 =

σ̃α
√
2πση

√

2σ̃2
α + σ2

η

− cx1T
!
= 0

and equilibrium efforts at µ̃α = 0 are thus

x1F = x1T =
σ̃α√

2πση

√

2σ̃2
α + σ2

ηc
.

It is easily shown that iff the slope at the symmetric equilibrium at µ̃α = 0 is less than one there is a

unique equilibrium and there are multiple equilibria else.

As before, for comparative statics we totally differentiate the candidates’ FOCs (which are omitted
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here; they can be easily reproduced for example with Mathematica):

(

∂2π1
F

∂(x1F )
2

)

dx1F +

(

∂2π1
F

∂x1F∂x
1
T

)

dx1T = −
(

∂2π1
F

∂x1F∂µ̃α

)

dµ̃α

(

∂2π1
T

∂x1F∂x
1
T

)

dx1F +

(

∂2π1
T

∂(x1T )
2

)

dx1T = −
(

∂2π1
T

∂x1T∂µ̃α

)

dµ̃α

We express the total differential in matrix notation. Defining

M =







∂2π1
F

∂(x1
F )2

∂2π1
F

∂x1
F ∂x1

T

∂2π1
T

∂x1
F ∂x1

T

∂2π1
T

∂(x1
T )2






,

where
∂2π1

F

∂(x1
F )2

=
(
√

σ̃2
α+σ2

η−6c2πσ4
η

√
3σ̃2

α+σ2
η)σ̃2

α+σ2
η(
√

σ̃2
α+σ2

η−2c2πσ4
η

√
3σ̃2

α+σ2
η)

2cπσ4
η(3σ̃2

α+σ2
η)

3/2 ,

∂2π1
F

∂x1
F ∂x1

T
= −

(

σ̃2
α+σ2

η

3σ̃2
α+σ2

η

)3/2

2cπσ4
η

,

∂2π1
T

∂x1
F ∂x1

T
= −

(

σ̃2
α+σ2

η

3σ̃2
α+σ2

η

)3/2

2cπσ4
η

,

∂2π1
T

∂(x1
T )2

=
(
√

σ̃2
α+σ2

η−6c2πσ4
η

√
3σ̃2

α+σ2
η)σ̃2

α+σ2
η(
√

σ̃2
α+σ2

η−2c2πσ4
η

√
3σ̃2

α+σ2
η)

2cπσ4
η(3σ̃2

α+σ2
η)

3/2 ,

all evaluated at the symmetric equilibrium at µ̃α = 0, and letting

P =







− ∂2π1
F

∂x1
F ∂µ̃α

− ∂2π1
T

∂x1
T ∂µ̃α






=









− (σ̃2
α+σ2

η)
5/2

2πcσ̃2
ασ

4
η(3σ̃2

α+σ2
η)

3/2

(σ̃2
α+σ2

η)
5/2

2πcσ̃2
ασ

4
η(3σ̃2

α+σ2
η)

3/2









dx =





dx1F

dx1T





we rewrite the total differential as

M · dx = Pdµ̃α

To apply Cramer’s rule we substitute P in the respective columns of M as before. The derivative we
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are searching for is

∂x1F
∂µ̃α

|µ̃α=0 =

(

σ̃2
α + σ2

η

)5/2

2σ̃2
α

(

πc2σ6
η

√

3σ̃2
α + σ2

η − σ̃2
α

(√

σ̃2
α + σ2

η − 3πc2σ4
η

√

3σ̃2
α + σ2

η

)

− σ2
η

√

σ̃2
α + σ2

η

)

∂x1T
∂µ̃α

|µ̃α=0 =
−
(

σ̃2
α + σ2

η

)5/2

2σ̃2
α

(

πc2σ6
η

√

3σ̃2
α + σ2

η − σ̃2
α

(√

σ̃2
α + σ2

η − 3πc2σ4
η

√

3σ̃2
α + σ2

η

)

− σ2
η

√

σ̃2
α + σ2

η

)

or, if we substitute σ̃α =

√

σ2
ησ

2
α

σ2
η+σ2

α
,

∂x1
F

∂µ̃α
|µ̃α=0 =

(

2σ2
α + σ2

η

)5/2

σ2
α

(

σ2
α + σ2

η

)3/2



πc2σ4
η

√

3σ2
α

σ2
α+σ2

η
+ 1− σ2

α





√

2σ2
α+σ2

η
(

σ2
α+σ2

η

)

3
− 3πc2σ4

η

√

4σ2
α+σ2

η
(

σ2
α+σ2

η

)

3



−
√

σ2
α

σ2
α+σ2

η
+ 1





∂x1
T

∂µ̃α
|µ̃α=0 =

−
(

2σ2
α + σ2

η

)5/2

σ2
α

(

σ2
α + σ2

η

)3/2



πc2σ4
η

√

3σ2
α

σ2
α+σ2

η
+ 1− σ2

α





√

2σ2
α+σ2

η
(

σ2
α+σ2

η

)

3
− 3πc2σ4

η

√

4σ2
α+σ2

η
(

σ2
α+σ2

η

)

3



−
√

σ2
α

σ2
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This derivative is strictly positive for F (and thus also strictly negative for T ) iff
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and hence if this condition is met momentum exists. For example, if ση = σα = 1 we need c >
( 3
5)

3/4

√
π

≈

0.3846. This parallels our previous finding because for large enough c a unique equilibrium exists and

there is momentum.

Finally, the derivative of
∂x1

F
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with respect to poll (im)precision ση at µ̃α = 0 is
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< 0

and is strictly negative. Hence, when a unique equilibrium with momentum exists, as the poll becomes

more imprecise, momentum decreases.
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Figure 10: Difference in spending for c = 2 and σǫ ∈ {1/2, 3/4, 1}. The dotted straight lines represent µ̃α ∈
{0, 1, 5/2} and intersections with the spending difference curve mark the respective equilibria. We see that at
µ̃α = 0 the spending difference is zero independent of σǫ. As we increase µ̃α the spending difference increases in
both µ̃α and σǫ. However, as we continue increasing µ̃α this changes and for example at µ̃α = 2.3 momentum is
largest when precision is smallest.

If µ̃α becomes large in absolute value, momentum may decrease. This is easiest seen by considering

the All-Pay action as a polar case of this model, featuring perfect poll precision. For | µ̃α |>
√

2
c both

candidates expend zero and thus momentum vanishes. Figure 10 illustrates how poll precision is related

to momentum using a parameterized version of the model. That proves the proposition.
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