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Abstract

A situation in which a finite set of agents can generate certain payoffs by cooperation can

be described by a cooperative game with transferable utility (or simply a TU-game) where

each agent is represented by one player in the game. In this paper, we assume that one

agent can be represented by more than one player. We introduce two solutions for this

multi-player agent game model, both being generalizations of the Shapley value for TU-

games. The first is the agent-Shapley value and considers the agents in the most unified

way in the sense that when an agent enters a coalition then it enters with all its players.

The second is the player-Shapley value which takes all players as units, and the payoff of

an agent is the sum of the payoffs over all its players.

We provide axiomatic characterizations of these two solutions that differ only in a

collusion neutrality axiom. The agent-Shapley value satisfies player collusion neutrality

stating that collusion of two players belonging to the same agent does not change the

payoff of this agent. On the other hand, the player-Shapley value satisfies agent collusion

neutrality stating that after a collusion of two agents, the sum of their payoffs does not

change.

After axiomatizing the player- and agent-Shapley values we apply them to airport

games. In particular, we distinguish between the costs that depend on the type of airplane

that uses a landing strip, and costs that do not depend on this. We argue that for one type

of costs the agent-Shapley value is a suitable solution, while for the other type of cost the

player-Shapley value is more suitable. Finally, we apply both solutions to voting games.

Keywords: Cooperative TU-game, Shapley value, multi-player agent, collusion neutral-

ity, airport games.

JEL code: C71



1 Introduction

A cooperative game with transferable utility, or simply a TU-game, consists of a finite set

of players and for every subset (coalition) of players a worth representing the total payoff

that the coalition can obtain by cooperating. A (single-valued) solution is a function that

assigns to every game a payoff vector which components are the individual payoffs of the

players. One of the most applied solutions for cooperative TU-games is the Shapley value

(Shapley (1953)).

When modelling an allocation situation as a cooperative TU-game, every decision

maker or agent is represented by exactly one element of the player set N . However, in many

real life situations one agent is represented by various players. For example, one person

can be an employee in several firms, thus being a player in each firm. Similar, one person

can invest in several firms or belong to the Board of Directors of several firms. One of the

main applications of cooperative games in cost allocation is the airport game of Littlechild

and Owen (1973), where different airplanes that want to use the same landing strip must

pay landing fees that cover the cost of building and maintaining the landing strip, see also

Littlechild and Thompson (1977). Although in these airport games the players usually

are the airplane movements, i.e. every player represents the landing of one airplane, the

real decision making units are the airline companies. So, the airline companies might be

considered to be the ‘real’ decision makers or agents whose players are the landings of any

of their airplanes.

In this paper, we generalize the model of a TU-game to deal with situations where

each agent can have more than one player. The characteristic function is defined on the set

of players, i.e. it are the players who can cooperate and generate worth. Then we introduce

two solutions for this model, both being generalizations of the Shapley value for TU-games.

The first is the agent-Shapley value and considers the agents in the most unified way. It

simply takes an agent with all its players as one unit, and when an agent enters a coalition

then it enters with all its players. The other solution is called the player-Shapley value and

takes the players as units in the cooperative situation. Here, the payoff of an agent is the

sum of the payoffs over all its players.

Interestingly, both these solutions are efficient and satisfy (different) collusion neutrality1

properties. This is surprising since van den Brink (2009) showed that requiring efficiency

and collusion neutrality at the same time is very restrictive for TU-games. For example,

there is no solution for TU-games that satisfies efficiency, collusion neutrality and the null

player property.2 It turns out that extending the TU-game model to allow agents to be

1We refer to the collusion neutrality type of axioms that are used by Haller (1994) and Malawski (2002)

to characterize the (non-efficient) Banzhaf value for TU-games.
2It is also shown that the equal division solution, that distributes v(N) equally over all players, is the
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represented by more than one player does allow for collusion neutrality properties that

are compatible with efficiency and the null player property. In particular, we provide ax-

iomatizations of the two Shapley type solutions mentioned above that differ only in the

collusion neutrality axiom that is used. First, the agent-Shapley value satisfies player col-

lusion neutrality stating that collusion of two players belonging to the same agent does not

change the payoff of this agent. On the other hand, the player-Shapley value satisfies agent

collusion neutrality stating that after a collusion of two agents, the sum of their payoffs

does not change.

After axiomatizing the agent- and player-Shapley values we apply them to airport

games and voting games. In particular, for airport games we distinguish between the

costs that depend on the size of the airplanes that are using the landing strip, and costs

that do not depend on this. We argue that for one type of costs the agent-Shapley value

is a suitable solution, while for the other type of cost the player-Shapley value is more

suitable. For voting games, the agent Shapley value yields the ‘traditional’ Shapley value

(or Shapley-Shubik index (1954)) for the weighted voting games, often used as a measure

assigning voting power to the different parties in parliament. The player-Shapley value

simply assigns to every party the number of members in parliament, and is often used to

distribute the ministries among the parties that form the government.

The paper is organized as follows. Section 2 contains preliminaries. After presenting

the model and the two solutions in Section 3, we provide axiomatic characterizations of

these solutions in Section 4. In Section 5 we apply these solutions to sharing costs in

airport games and voting games. Section 6 contains concluding remarks. Finally, there

is an appendix showing logical independence of the axioms used to characterize the two

solutions.

2 Preliminaries

A situation in which a finite set of players N ⊂ IN can generate certain payoffs by co-

operation can be described by a cooperative game with transferable utility (or simply a

TU-game), being a pair (N, v) where v: 2N → IR is a characteristic function on N satis-

fying v(∅) = 0. For any coalition S ⊆ N , v(S) ∈ IR is the worth of coalition S, i.e. the

members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate. We

denote the collection of all characteristic functions on player set N by GN .

A payoff vector for game (N, v) is an |N |-dimensional vector x ∈ IRN assigning a

payoff xi ∈ IR to any player i ∈ N . A (single-valued) solution for TU-games is a function

only solution satisfying efficiency, collusion neutrality and symmetry.

2



that assigns a payoff vector to every TU-game. One of the most famous solutions for

TU-games is the Shapley value (Shapley (1953)) given by

Shi(N, v) =
∑
S⊆N

i∈S

(|N | − |S|)!(|S| − 1)!

|N |!
(v(S)− v(S \ {i})) for all i ∈ N.

For each nonempty T ⊆ N , T 6= ∅, the unanimity game uT is given by uT (S) = 1

if T ⊆ S, and uT (S) = 0 otherwise. It is well-known that the unanimity games form

a basis for GN . For every v ∈ GN it holds that v =
∑

T⊆N

T 6=∅
∆v(T )uT , where ∆v(T ) =∑

S⊆T (−1)|T |−|S|v(S) are the Harsanyi dividends , see Harsanyi (1959).

3 The model and solutions

In this paper we assume that agents in a cooperative game situation can be represented

by more than one player. Therefore, we represent such a multi-player agent game, or

shortly multi-player game, by a triple (N, v, P ) where N ⊂ IN is the set of players, v is a

characteristic function on the set of players N , and P = (P1, . . . , Pm) is a partition of N .

Given P = (P1, . . . , Pm) we denote M = {1, . . . ,m}. The idea behind the partition P is

that every k ∈ {1, . . . ,m} is an agent and Pk is its set of players. We denote by PN the

collection of all partitions of N , and by GA the collection of all multi-player cooperative

games.

A solution for multi-player games is a function f :GA →
⋃

M⊂IN IRM such that

f(N, v, P ) ∈ IR|P | for all (N, v, P ) ∈ GA.3 In this paper we introduce two solutions that

can be considered as extreme cases. In the first solution the agents are considered in the

most unified way. It simply takes an agent with all its players as one unit, and when an

agent enters a coalition then it enters with all its players. In other words, we consider a

game defined on the set of agents M = {1, . . . ,m}, where each time agent k ∈ {1, . . . ,m}
enters a coalition, all players in Pk enter the coalition. Therefore, the agent-Shapley value

is given by

Sha(N, v, P ) = Sh(M, vP )

with vP (S) = v(
⋃

k∈S Pk) for all S ⊆M .4

3Note that the model of a multi-player game is the same as that of a game with coalition structure, see

e.g. Aumann and Drèze (1974) and Owen (1977). However, its interpretation and the notion of a solution

are different. In terms of multi-player games, a solution for games with coalition structure assigns a payoff

to every player, i.e. a payoff vector is a vector in IRN , whereas here we assign a payoff to every agent, i.e.

a payoff vector is a vector in IRM .
4Note that vP is the quotient game when (N, v, P ) represents a game with coalition structure.
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The other solution takes the original game v: 2N → IR on the set of players, applies the

Shapley value to this game and assigns to every agent the sum of the Shapley values over

all its players. Therefore, the player-Shapley value is given by

Shpk(N, v, P ) =
∑
i∈Pk

Shi(N, v) for all k ∈M.

In the next section we provide axiomatizations of these two solutions.

4 Axiomatizations

We provide axiomatizations of the agent- and player-Shapley values that differ only in a

collusion neutrality axiom. The other four axioms are standard for TU-games, but here

we present them in terms of multi-player TU-games. The first axiom is efficiency and can

be taken directly from the TU-game literature, but adding partition P .

Efficiency For every (N, v, P ) ∈ GA, it holds that
∑

k∈M fk(N, v, P ) = v(N).

In order to state symmetry, we need to identify symmetric agents in a multi-player game.

We say that agents k, l ∈ {1, . . .m} are symmetric in (N, v, P ) if |Pk| = |Pl| (i.e. they

have the same number of players), and there exist permutations πk = (πk
1 , . . . , π

k
|Pk|) on Pk,

and πl = (πl
1, . . . , π

l
|Pk|) on Pl such that v(S ∪ {πk

i }) = v(S ∪ {πl
i}) for all i ∈ {1, . . . , |Pk|}

and S ⊆ N \ {πk
i , π

l
i} (i.e. the players of agents k and l can be ordered such that two

corresponding players are ‘symmetric’ in game v).

Symmetry For every (N, v, P ) ∈ GA, it holds that fk(N, v, P ) = fl(N, v, P ) whenever

k, l ∈M are symmetric agents in (N, v, P ).

The null player out property of Derks and Haller (1999) states that deleting a null player

from a TU-game does not change the payoffs of other players. Here we state a similar

property for multi-player games by saying that deleting a null player from any agent, does

not change the payoffs. Player i ∈ N is a null player in game (N, v) if v(S ∪ {i}) = v(S)

for all S ⊆ N \ {i}. For game (N, v) we denote the set of null players by Null(v). Further,

for game (N, v) and T ⊂ N , the restricted game (T, vT ) is given by vT (S) = v(S) for all

S ⊆ T .

Null player out property For every (N, v, P ) ∈ GA, it holds that f(N, v, P ) = f(N \
{i}, vN\{i}, (P \ {Pk}) ∪ {Pk \ {i}}) whenever i ∈ Pk is a null player in (N, v) and

|Pk| ≥ 2.
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We generalize strong monotonicity of Young (1985) by saying that whenever all marginal

contributions of all players of an agent in game v are at least as much as the corresponding

marginal contributions in game w, then this agent earns in game v at least as much as in

game w.

Strong monotonicity For every pair of multi-player games (N, v, P ), (N,w, P ) ∈ GA
and agent k ∈ {1, . . . ,m} such that v(S ∪ {i}) − v(S) ≥ w(S ∪ {i}) − w(S) for all

i ∈ Pk and S ⊆ N \ {i}, it holds that fk(N, v, P ) ≥ fk(N,w, P ).

As mentioned above (and proved later), both the agent- and player Shapley value satisfy

these five axioms. They differ with respect to a collusion neutrality axiom they satisfy.

Haller (1994) introduced several collusion neutrality properties for TU-games. Such axioms

state that the sum of payoffs of two players does not change if they ‘collude’. He used these

properties to axiomatize the (non-efficient) Banzhaf value. Later, Malawski (2002) showed

that several other collusion neutrality properties can be used.5 In this paper, we consider

two types of collusion, one on the level of the players and one on the level of the agents.

Considering the first one, we allow two players of the same agent to collude in the sense of

Haller (1994)’s proxy agreement . When player i ∈ N is going to act as a proxy for player

j ∈ N \ {i} then instead of v we consider the characteristic function vij ∈ GN given by

vij(S) =

{
v(S \ {j}) if i 6∈ S
v(S ∪ {j}) if i ∈ S.

(4.1)

So, when player i acts as a proxy for another player j then player j becomes a null player,

and whenever player i enters a coalition also the contribution of j is added. Similar as shown

in van den Brink (2009) for collusion under an association agreement (see Haller (1994)),

there is no solution for TU-games that satisfies efficiency, (proxy) collusion neutrality and

the null player property. However, it turns out that for multi-player games, there does exist

a solution that satisfies all properties mentioned above and the property that collusion of

two players belonging to the same agent does not change the payoff of this agent.

Player collusion neutrality For every (N, v, P ) ∈ GA with P = {P1, . . . , Pm} ∈ PN ,

and i, j ∈ Pk, k ∈ {1, . . . ,m}, it holds that fk(N, v, P ) = fk(N, vij, P ).

It turns out that this type of collusion neutrality, together with the above five axioms

characterizes the agent-Shapley value. First, we state the following lemma. We call two

agents k, l ∈M co-dependent in multi-player game (N, v, P ) if and only if for every T ⊆ N

5A characterization of the Banzhaf value with collusion properties in terms of inequalities can be found

in Lehrer (1988).
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with ∆v(T ) 6= 0 it holds that [Pk ∩ T 6= ∅] if and only if [Pl ∩ T 6= ∅]. So, two agents are

co-dependent if every coalition with nonzero dividend either contains players from agent i

as well as from agent j, or does not contain any player from these two agents. The next

lemma states that a solution satisfying symmetry and the null player out property gives

two co-dependent agents i and j the same payoff in game v when both Pi and Pj contain

exactly one non-null player.

Lemma 4.1 Let f be a solution satisfying symmetry and the null player out property, and

let i, j ∈M be two co-dependent agents such that |Pk \Null(v)| = |Pl \Null(v)| = 1. Then

fk(N, v, P ) = fl(N, v, P ).

Proof

Suppose that solution f satisfies symmetry and the null player out property, and let k, l ∈
M be two co-dependent agents such that |Pk \ Null(v)| = |Pl \ Null(v)| = 1. The null

player out property implies that f(N, v, P ) = f(N, v, P ′), where P ′ = (P ′1, . . . , P
′
m) with

P ′h = Ph\Null(v) if h ∈ {k, l}, and P ′h = Ph otherwise. Since i and j are also co-dependent

in (N, v, P ′), by symmetry fk(N, v, P ′) = fl(N, v, P
′), and thus fk(N, v, P ) = fl(N, v, P ).

2

Now we state our axiomatization of the agent-Shapley value.

Theorem 4.2 A solution f for multi-player games is equal to the agent-Shapley value

if and only if it satisfies efficiency, strong monotonicity, symmetry, the null player out

property and player collusion neutrality.

Proof

It is straightforward to verify that the agent-Shapley value satisfies efficiency, strong mono-

tonicity, symmetry and the null player out property. Player collusion neutrality follows

since vP = (vij)
P if i, j ∈ Pk for some k ∈ {1, . . . ,m}.

To show uniqueness, suppose that solution f satisfies these five axioms.

Recall that every game v can be written as a (unique) linear combination of unanimity

games by v =
∑

T⊆N

T 6=∅
∆v(T )uT . Let D(N, v) = {T ⊆ N | ∆v(T ) 6= 0}, and d(N, v) =

|D(N, v)|. Similar as in Young (1985), we prove uniqueness by induction on d(N, v).

If d(N, v) = 0 (i.e. (N, v) is a null game given by v(S) = 0 for all S ⊆ N) then by the null

player out property we have that fk(N, v, P ) = fk(N, v, P ′) where P ′ = (P ′1, . . . , P
′
m) with

P ′k ⊆ Pk such that |P ′k| = 1 for all k ∈ M . Since all agents are symmetric in (N, v, P ),

symmetry implies that all fk(N, v, P ′) are equal, and thus all fk(N, v, P ) are equal. By

efficiency, fk(N, v, P ) = 0 for all k ∈M .
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Proceeding by induction, assume that f(N,w, P ) is uniquely determined whenever d(N,w) <

d(N, v). Define R(N, v, P ) = {k ∈M | Pk∩T 6= ∅ for all T ∈ D(N, v)} as the set of agents

that have at least one player in every unanimity coalition with nonzero dividend.

If k ∈M \R(N, v, P ) then there exists a T ∈ D(N, v) with T∩Pk = ∅. Strong monotonicity

then implies that fk(N, v, P ) = fk(N, v − ∆v(T )uT , P ), which is uniquely determined by

the induction hypothesis.

To determine the payoffs of the agents in R(N, v, P ), define Q(N, v, P ) = {k ∈ R(N, v, P ) |
|Pk \ Null(v)| > 1} as the set of agents in R(N, v, P ) that have more than one non-null

player, and let q(N, v, P ) = |Q(N, v, P )|. We determine fk(N, v, P ), k ∈ R(N, v, P ), by

performing a second induction on q(N, v, P ).

If q(N, v, P ) = 0, i.e. all agents have at most one non-null player who is in every T ∈
D(N, v), then any two players in R(N, v, P ) are co-dependent, and thus by Lemma 4.1

there exists a c∗ ∈ IR such that fk(N, v, P ) = c∗ for all k ∈ R(N, v, P ). Efficiency then

uniquely determines c∗, and thus fk(N, v, P ) for all k ∈ R(N, v, P ).

Proceeding by induction, suppose that f(N,w, P ) is uniquely determined whenever q(N,w, P ) <

q(N, v, P ). Take k ∈ Q(N, v, P ) and i, j ∈ Pk \ Null(v), i 6= j. (Note that such i and j

exist since k ∈ Q(N, v, P ).) Collusion neutrality implies that fk(N, v, P ) = fk(N, vij, P ).

Note that j is a null player in vij. Repeated application of player collusion neutrality in

this way, yields that fk(N, v, P ) = fk(N, vi, P ) with, for some i ∈ Pk, the characteristic

function vi given by vi = v +
∑

T⊆N

T∩Pk 6=∅
∆v(T )(u(T\Pk)∪{i} − uT ). Note that all j ∈ Pk \ {i}

are null players in vi. Since, j ∈ N \Pk is a null player in vi if and only if it is a null player

in v, we have that q(N, vi, P ) = q(N, v, P ) − 1, and the payoff fk(N, v, P ) = fk(N, vi, P )

is determined by the induction hypothesis.

Finally, all i ∈ R(N, v, P )\Q(N, v, P ) are symmetric in (N, v, P ) where P = {P 1, . . . , Pm}
is such that P k = Pk \ Null(v) if k ∈ R(N, v, P ) \ Q(N, v, P ), and P k = Pk otherwise.

Thus, by symmetry there exists a c∗ ∈ IR such that fk(N, v, P ) = c∗ for all k ∈ R(N, v, P )\
Q(N, v, P ). Since all the other payoffs are determined, efficiency determines c∗, and thus

fk(N, v, P ) for all k ∈ R(N, v, P ) \ Q(N, v, P ). But then the null player out property

determines fk(N, v, P ), k ∈ R(N, v, P ) \Q(N, v, P ). 2

Logical independence of the axioms in Theorem 4.2 is shown in the appendix of the paper.

Besides collusion between players of one agent, one might also consider collusion

between agents. In this case we do not change the game, but merge the two agents by

replacing them with one agent who ‘controls’ all players of the two original agents together.

So, a collusion between agents k, l ∈M = {1, . . . ,m} can be described by merging the sets
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of players of these two agents, i.e. by considering the partition

P kl = (P \ {Pk, Pl}) ∪ {Pk ∪ Pl}.

Assuming without loss of generality that k < l, we label the elements in P kl such

that P kl
k = Pk ∪ Pl, and P kl

h = Ph for all h ∈M \ {k, l}.

Agent collusion Neutrality For every (N, v, P ) ∈ GA, it holds that fk(N, v, P )+fl(N, v, P ) =

fk(N, v, P kl).

Replacing in Theorem 4.2 player collusion neutrality by this agent collusion neutrality

characterizes the player-Shapley value. Moreover, in this case we can do without the null

player out property.

Theorem 4.3 A solution f is equal to the player-Shapley value if and only if it satisfies

efficiency, strong monotonicity, symmetry and agent collusion neutrality.

Proof

It is straightforward to verify that the player-Shapley value satisfies efficiency, strong mono-

tonicity and symmetry. Agent collusion neutrality follows since Pk ∩ Pl = ∅, and thus

{Pk, Pl} is a partition of Pk∪Pl, so
∑

i∈Pk
Shi(N, v)+

∑
i∈Pl

Shi(N, v) =
∑

i∈Pk∪Pl
Shi(N, v).

Now, suppose that solution f satisfies these four axioms. To prove uniqueness, we perform

induction on the number of agents with more than one player. as in the proof of Theorem

4.2, we define D(N, v) = {T ⊆ N | ∆v(T ) 6= 0}, d(N, v) = |D(N, v)|, and R(N, v, P ) =

{k ∈M | Pk ∩ T 6= ∅ for all T ∈ D(N, v)}).
Further, let H(N,P ) = {k ∈M | |Pk| ≥ 2} be the set of agents having at least two players,

and h(N,P ) = |H(N,P )|.
First, suppose that h(N,P ) = 0, i.e. |Pk| = 1 for all k ∈ M . Then the proof is similar

to that of Young (1985). We perform a second induction on d(N, v). If d(N, v) = 0 then

by symmetry and efficiency fk(N, v, P ) = 0 for all k ∈ M . Proceeding by induction,

assume that f(N,w, P ) is uniquely determined whenever d(N,w) < d(N, v). If k ∈ M \
R(N, v, P ) then there is a T ⊆ N \ Pk with ∆v(T ) 6= 0. But then, fk(N, v, P ) = fk(N, v −
∆v(T )uT , P ) by strong monotonicity. Thus, fk(N, v, P ) is uniquely determined by the

induction hypothesis. Since all k ∈ R(N, v, P ) are symmetric, their payoffs are then

determined by symmetry and efficiency.

Proceeding by induction, suppose that f(N, v, P ′) is determined whenever h(N,P ′) <

h(N,P ). For k ∈ H(N,P ), with Pk = {k1, . . . , kp}, consider

P̃ = (P̃1, . . . , P̃k−1, P̃k1 , . . . , P̃kp , P̃k+1, . . . , P̃m) with P̃h = Ph for all h ∈ M \ {k}, and

P̃ki = {ki} for ki ∈ Pk. Since h(N, P̃ ) < h(N,P ) − 1, the induction hypothesis implies
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that f(N, v, P̃ ) is uniquely determined. But then agent collusion neutrality implies that

fk(N, v, P ) =
∑p

i=1 fki(N, v, P̃ ) is determined.

For agents k ∈ M \H(N,P ), i.e. the agents with one player, the proof goes again similar

as Young (1985)’s or the proof above for the case h(N,P ) = 0. We again perform a

second induction on d(N, v). If d(N, v) = 0 then all agents in M \H(N,P ) are symmetric,

and since we already determined the payoffs of the agents in H(N,P ), efficiency and

symmetry determine the payoffs of the players in M \H(N,P ). Proceeding by induction,

assume that fk(N,w, P ) is uniquely determined whenever d(N,w) < d(N, v). If k ∈
M \ (H(N,P ) ∪ R(N, v, P )) then there is a T ⊆ N \ Pk with ∆v(T ) 6= 0. But then,

fk(N, v, P ) = fk(N, v−∆v(T )uT , P ) by strong monotonicity. Thus, fk(N, v, P ) is uniquely

determined by the induction hypothesis. Since all k ∈ (M \ H(N,P )) ∩ R(N, v, P ) are

symmetric, and all the other payoffs are determined, also their payoffs are determined by

symmetry and efficiency.

2

Logical independence of the axioms in Theorem 4.3 is also shown in the appendix of the

paper.

As mentioned before, van den Brink (2009) shows that there is no solution for TU-

games that satisfies efficiency, collusion neutrality and the null player out property. Above

we saw that for multi-player games, the agent-Shapley value and player-Shapley value

both satisfy efficiency and a different collusion neutrality. Moreover, both solutions satisfy

the null agent property which generalizes the null player property. In order to state this

property, we need to specify what is a null agent in a multi-player game. We say that an

agent is a null agent if all its players are null players in v, i.e. solution f satisfies the null

agent property if for every (N, v, P ) ∈ GA, it holds that fk(N, v, P ) = 0 whenever k ∈ M
is a null agent in (N, v, P ).

We remark that in both Theorem 4.2 as well as in Theorem 4.3, the player set N is

fixed. Concerning the agents, in Theorem 4.2 the set of agents is fixed, but Theorem 4.3

is stated for a variable agent set. We saw that, given the other axioms, in that case the

null player out property is not needed anymore. Similar, we could state player collusion

neutrality for a variable player set by requiring that for every (N, v, P ) ∈ GA with P =

{P1, . . . , Pm} ∈ PN , and i, j ∈ Pk, i 6= j, k ∈ {1, . . . ,m}, it holds that fk(N, v, P ) =

fk(N \ {j}, (vij)N\{j}, P−j), where P−jk = Pk \ {j}, and P−jl = Pl for all l ∈ M \ {k}.
Similar as the proof of Theorem 4.2, it can be shown that in that case the null player

out property is not needed anymore, and the agent-Shapley value is characterized by the

remaining four axioms. Thus, the agent-Shapley value and the player-Shapley value are

characterized by comparable axioms in the sense that they differ only in the collusion
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neutrality property that is used.

5 Applications

5.1 Airport games

Airport games are introduced by Littlechild and Owen (1973) to allocate the building and

maintenance costs of airport landing strips, see also Littlechild and Thompson (1977).6

Suppose there are n airplanes that want to use the same landing strip.7 The n airplanes are

different and therefore need landing strips of different size. Assume that the airplanes are

labeled so that the cost of building or maintaining a landing strip for airplane i ∈ {1, ..., n}
is given by ci satisfying 0 ≤ c1 ≤ c2 ≤ ... ≤ cn. The corresponding airport game (see

Littlechild and Owen (1973)) is a cost game (N, v) with the set of airplanes as the set of

players and the characteristic function given by v(S) = maxi∈S ci for all S ⊆ N . So, the

total cost of the landing strip that can handle all the n airplanes is determined by the most

expensive airplane (in terms of landing strip). For simplicity, we assume that the larger

the airplane the larger (and more expensive) is the landing strip it needs, and the larger

is its contribution to the maintenance costs. Applying the Shapley value to allocate the

total cost over the airplanes one arrives at the famous formula

Shi(v) =
i∑

j=1

cj − cj−1
n− j + 1

for all i ∈ N,

where c0 = 0, see Littlechild and Owen (1973).

Instead of allocating costs over the airplanes, using multi-player games we can allo-

cate the costs over the airline companies. Consider the multi-player game (N, v, P ) where

N = {1, . . . , n} is the set of airplanes, v: 2N → IR is the airport (cost) game described

above, and P = {P1, . . . , Pm} is the partition of the set of airplanes into the m airlines,

such that Pk is the set of airplanes owned by airline k ∈ {1, . . . ,m}. Applying the agent-

Shapley value, the cost allocation will be as if applying the Shapley value to the associated

game

vP (S) = v

(⋃
k∈S

Pk

)
= max

i∈
⋃

k∈S Pk

ci for all S ⊆M.

6Although we do not discuss them further, we remark that the class of airport games is equivalent to

the class of dual auction games (see Graham, Marshall and Richard (1990)) and DR-polluted river games

(see Ni and Wang (2007)).
7Instead of airplanes, in an airport game every airplane landing is a player but for convenience we

simply call these airplanes.
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So, the cost of a coalition of airlines is fully determined by the largest airplane among

the airlines in the coalition. In particular, vP ({k}) = maxi∈Pk
ci is the cost of the largest

airplane of airline k. Each time an airline enters a coalition, its marginal contribution

is fully determined by its largest airplane. Taking the Shapley value of this game, we

allocate the costs among the airlines in a similar spirit as the Shapley value for airport

games allocates the cost over the airplanes. So, the agent-Shapley value seems reasonable

to apply when allocating costs that are fully determined by the largest airplane that uses

the landing strip.

However, when we allocate maintenance costs that do not depend on the length of

the landing strip needed for the largest airplane, the agent-Shapley value is not suitable.

For these costs we can apply the player-Shapley value which first determines fees by the

Shapley value for each airplane and after that, lets every airline pay the sum of the fees

allocated to all its airplanes.

Example 5.1 Consider a situation with two airlines where airline 1 owns two airplanes,

and airline 2 owns three airplanes. Suppose airline 1 owns airplanes 2 and 5, while airline

2 owns airplanes 1, 3 and 4. Consider the costs ci = i for i ∈ N = {1, . . . , 5}. If

these are the building costs that depend only on the size of the largest airplane then the

costs can be allocated using the agent-Shapley value. The associated game vP is given by

vP ({1}) = 5, vP ({2}) = 4 and vP ({1, 2}) = 5, yielding agent-Shapley value Sha(N, v, P ) =

Sh(N, vP ) = (3, 2). However, if these are maintenance costs that depend more on the use

of the landing strip than on the size of the largest airplane, then using the player-Shapley

value we obtain as Shapley values of the airplanes Sh(N, v) = 1
60

(12, 27, 47, 77, 137). Adding

the costs over each airlines own airplanes yields the player-Shapley value Shp(N, v, P ) =
1
60

(149, 151). So, according to the player-Shapley value agent 2 pays more than agent 1,

while according to the agent-Shapley value agent 1 pays more than agent 2. 2

Considering the interpretation of the two collusion neutrality axioms to airport

games, player collusion neutrality implies that when an airline does not use anymore one

of its airplanes but its largest airplane, then its share in the costs does not change. This

seems reasonable when allocating costs that are fully determined by the costs for the

largest airplane. On the other hand, agent collusion neutrality implies that when two

airlines merge in such a way that their ‘fleet’ consists of exactly the two sets of airplanes

that were owned by the separate airlines before merging, then the total share in the costs

of the new merged airline equals the sum of the shares in the cost of the two previous

airlines. This seems reasonable when one has to allocate costs that depend on all landings.
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5.2 Voting power

Measuring power in political bodies is often done by applying TU-game solutions to simple

games representing the possibilities of political parties to form majority coalitions. A TU-

game is called simple if v(S) ∈ {0, 1} for every S ⊆ N . In such a game a coalition is called

winning when its worth equals one, otherwise (i.e. when its worth is zero), it is called

losing . Usually the player set in such games is formed by the political parties that belong

to the voting body (and not by the individual members of, say, the parliament). A special

class of simple games that are often used to represent political bodies are weighted majority

voting games . These games describe situations where a coalition of parties is winning if

and only if this coalition in total has a number of seats (or votes) that is at least equal to

some quota, which is often taken to be higher than half of the number of seats.

Formally, a weighted voting game is given by a tuple (M ; s1, . . . , sn; q), where si ∈ IN

is the number of votes of player i, i ∈M , and the quota q ∈ IN is the number of votes needed

to win. The corresponding simple game (M, v) is given by v(S) = 1 when
∑

i∈S si ≥ q

(S is winning) and v(S) = 0 otherwise. A simple game is proper if v(S) = 1 implies that

v(M \ S) = 0. So, for a weighted majority voting game this means that q > 1
2

∑
i∈M si.

One can use voting power measures or indices, such as the Banzhaf index (see

Banzhaf (1965)) or the Shapley-Shubik index (see Shapley and Shubik (1954)), to measure

the voting power of the political parties in a parliament. The Shapley-Shubik index is

obtained by applying the Shapley value to the associated simple voting game. Both indices

are based on the marginal contributions of players in voting games. Note that the marginal

contribution of a player to any coalition in a weighted majority voting game is either zero

or one. It equals one if and only if the player turns a losing coalition into a winning one.

When the marginal contribution of player i to coalition S equals one, then S is called a

swing for player i.

Although the power of political parties depends heavily on the swings of that party,

usually when a majority coalition forms a government, the parties in that coalition divide

the number of ministries among them proportional to the number of seats each party has,

and not using the ‘real’ voting power of the parties. So, it seems that both the Banzhaf

and Shapley-Shubik voting power indices as well as the seat distribution among parties

plays a role in the formation of a government. The player- and agent-Shapley values can

be used to obtain both.

Consider the multi-player game (N, v, P ) where the set N is the set of members

(seats) of parliament, v is the characteristic function defined on the set of members of

parliament, and P = (P1, . . . , Pm) is the partition of the members N into the different

political parties. So, the members in Pk are exactly those that belong to party k ∈
{1, . . . ,m}. Notice that v(S) = 1 if and only if |S| ≥ q, even if S contains members of
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different parties. So, all members (players) are symmetric, and thus applying the Shapley

value yields Shi(N, v) = 1
n

for all i ∈ N . The player-Shapley value of party (agent)

k ∈M equals the fraction of seats of party k: Shpk(N, v, P ) =
∑

i∈Pk
Shi(N, v) = sk

|N | where

sk = |Pk|, yields the seat distribution.

On the other hand, applying the agent-Shapley value Sha(N, v, P ) = Sh(P, vP ), we

see that vP is similar to a ‘standard’ voting game on the set of parties, and thus this yields

the Shapley-Shubik index of the standard voting game.

Example 5.2 Consider the weighted majority voting game (M ; s1, . . . , sn; q) with M =

{1, 2, 3}, s1 = 20, s2 = s3 = 40 and q = 51. So, there are 100 members of parliament who

are divided among three parties, and decisions are made by majority voting. Assuming

the seats to be labeled such that each party has a consecutive set of seats, this can be

modelled by multi-player game (N, v, P ) with N = {1, . . . , 100}, P = (P1, P2, P3) with

P1 = {1, . . . , 20}, P2 = {21, . . . , 60} and P3 = {61, . . . , 100}. Considering voting power,

the game vP is given by vP (S) = 1 if S ⊆M with |S| ≥ 2, and vP (S) = 0 otherwise. Then

all agents are symmetric in vP , and the agent-Shapley value Sha(N, v, P ) = Sh(M, vP ) =

(1
3
, 1
3
, 1
3
) which equals the Shapley-Shubik index and expresses the fact that each party

is equally powerfull in turning losing coalitions into winning ones. However, when parties

form a majority coalition then the ministries are usually distributed proportional to the seat

distribution which is obtained as the player-Shapley value Shp(N, v, P ) = 1
100

(20, 40, 40)

since Shi(N, v) = 1
100

for all i ∈ N . 2

6 Concluding remarks

We modeled a situation in which an agent is represented by (possibly) more than one player

by a multi-player game. We introduced two solutions for such games. The agent-Shapley

value considers the agents in the most unified way in the sense that when an agent enters

a coalition, then it enters with all its players. The player-Shapley value takes the players

as units, and the payoff to an agent is the sum of the payoffs over all its players.

We gave axiomatic characterizations of these two solutions that differ only in a

collusion neutrality axiom. The agent-Shapley value satisfies player collusion neutrality

stating that collusion of two players belonging to the same agent does not change the

payoff of this agent. On the other hand, the player-Shapley value satisfies agent collusion

neutrality stating that after a collusion of two agents, the sum of their payoffs does not

change. It is interesting that the possibility for agents to be represented by different players

in a multi-player game, makes it possible to have a solution that satisfies such a collusion

neutrality axiom as well as efficieny and the null agent property, since for TU-games van den
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Brink (2009) has shown that there is no solution satisfying efficiency, collusion neutrality

and the null player property.

We applied both solutions to airport (cost sharing) games, where the agents rep-

resent airlines and the players their airplanes. Depending on the type of cost, one of the

two solutions introduced in this paper is more suitable. We also applied both solutions to

voting games, where the agent-Shapley value is most similar to the ‘traditional’ Shapley-

Shubik power index, while the player-Shapley value just assigns weights proportional to the

number of seats. This is often used when allocating ministries among government parties.

We conclude by mentioning that in the future we plan to consider more applications

of multi-player games. For example, we want to use them to measure centrality or network

power in social networks. Traditionally, the nodes in such networks are the positions that

an agent or player can occupy in the network. When one agent can occupy (a part of)

more than one node at the same time, then we can apply multi-player games to define

centrality and power measures for this new setting.

Appendix: Logical independence

Logical independence of the five axioms stated in Theorem 4.2 is shown by the following

alternative solutions.

1. The solution fk(N, v, P ) = 0 for all k ∈ M satisfies strong monotonicity, symme-

try, the null player out property and player collusion neutrality. It does not satisfy

efficiency.

2. The solution f(N, v, P ) = Nuc(vP ) that assigns to every multi-player game the

nucleolus of the game vP , satisfies efficiency, symmetry, the null player out property

and player collusion neutrality. It does not satisfy strong monotonicity.

3. Consider exogenously given positive weights ωk > 0, assigned to all agents k ∈M =

{1, . . . ,m}. The solution fω
k (N, v, P ) =

∑
H⊆M

k∈H

ωk∑
j∈H ωj

∆vP (H) that assigns to every

multi-player game the weighted Shapley value of vP corresponding to weight system

ω, satisfies efficiency, strong monotonicity, the null player out property and player

collusion neutrality. It does not satisfy symmetry.

4. The solution fω with ωk = |Pk| that applies the weighted Shapley value with weights

equal to the number of players of every agent, satisfies efficiency, strong monotonicity,

symmetry and player collusion neutrality. It does not satisfy the null player out

property. (Note that this solution itself is not a weighted Shapley value since the

weights change if the partition P changes.)
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5. The player-Shapley value satisfies efficiency, strong monotonicity, symmetry and the

null player out property. It does not satisfy player collusion neutrality.

Logical independence of the five axioms stated in Theorem 4.3 can be shown by similar

alternative solutions. To be precize, the first solution (fk(N, v, P ) = 0 for all k ∈M), also

satisfies agent collusion neutrality.

Instead of applying the nucleolus to the game vP , consider the solution fk(N, v, P ) =∑
i∈Pk

Nuci(v), that assigns to every agent the sum of the nucleolus payoffs over all its

players. This solution satisfies efficiency, symmetry, and agent collusion neutrality, but

does not satisfy strong monotonicity.

Considering exogenously given positive weights ωi > 0, assigned to all players i ∈ N ,

the solution f
ω

k (N, v, P ) =
∑

i∈Pk

∑
H⊆N

i∈H
ωi∑

j∈H ωj
∆v(H) that assigns to every agent the sum

of the weighted Shapley values of all its players, satisfies efficiency, strong monotonicity,

and agent collusion neutrality. Itt does not satisfy symmetry.

Obviously, the agent-Shapley value satisfies efficiency, strong monotonicity and sym-

metry, but does not satisfy agent collusion neutrality.
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