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Abstract

We study coalition formation and the strategic timing of membership of an IEA for environ-

mental issues in the Coalitional Bargaining Game (CBG) of Gomes (2005, Econometrica).

For the general CBG, we derive the necessary and sufficient condition for immediate for-

mation of the grand coalition. We apply the CBG to a river sharing problem with two

symmetric upstream agents and one downstream agent. Taking the discount factor and a

productivity variable of water as parameters, we identify five regions in the parameter space.

First, there is a region in which the grand coalition always forms immediately. Second, there

are two regions in which there is for sure gradual coalition formation, in one of these regions

there is a positive probability that the upstream agents form a monopoly. Third, there are

two regions in which the grand coalition forms immediately with positive probability, but

also gradual coalition formation might occur with positive probability.

Keywords: Coalitional Bargaining Game, International Environmental Agreements, River

Sharing Problems, Markov Perfect Equilibrium, Efficiency, Monopoly

JEL codes: C78, Q25



1 Introduction

In many trans-boundary environmental issues, such as international rivers and greenhouse

gasses, countries engage in negotiations for international environmental agreements (IEAs)

to deal with these issues. Although the economic benefits for reaching IEAs seem obvious,

negotiations are often tedious, or fail altogether. Some countries are eager to participate,

while other countries prefer delaying their participation or even abstain from it. Although

strategic considerations are in principle suited for game theoretic analyses, the presence of

externalities, the issue of timing participation and the huge number of possible coalitions in

case of global IEAs makes application of game theory to explain IEAs a challenging task.

There are several strands of game theoretic approaches to study IEAs. In most of these

studies, the partial-agreement Nash equilibrium of Chander and Tulkens (1995) determines

the benefits from IEAs and it takes into account how other countries organize themselves in

alternative IEAs.1 The cooperative approach has focused on transfer schemes that distribute

the gains from forming the efficient grand coalition. These include the γ-Core as proposed in

Chander and Tulkens (1995, 1997) and Germain et al. (2003); the extended Shapley value

proposed in Macho-Stadler et al. (2007); and alternative axiomatic approaches in Ambec and

Sprumont (2002), Ambec and Ehlers (2008), van den Brink et al.(2012). This approach has

delivered many valuable insights about the impact of idealized principles on the distribution

of the gains that arise from IEAs. Part of this literature also proposes non-cooperative

procedures to implement cooperative solutions, but the underlying conditions needed to

make these procedures work are often absent in reality. Another approach applies stylized

strategic bargaining games to IEAs, e.g., Carraro et al. (2005a, 2005b) and Houba et al.

(2000). Strategic bargaining games are very general, but their application is hampered by the

difficulty of computing equilibria in empirical settings. Due to these difficulties, a third strand

of literature has emerged that resorts to a hybrid way of modeling. It combines the strategic

aspect of joining IEAs assuming cooperative sharing rules for distributing the IEAs’ gains.

In a cartel setting Eyckmans and Finus (2004) and Weikard (2009) propose a class of sharing

rules that enhance stability. In particular, the last author establishes a condition for stability

of the efficient grand coalition in environments with negative externalities. Comparison of the

effects of these and other sharing rules on stability are investigated in laboratory experiments

by McGinty et al. (2012) and in applied IEA climate models in e.g. Carraro et al. (2006),

Weikard et al. (2006) and Nagashima et al. (2009).

In this paper we consider the application of the Coalitional Bargaining Game (CBG)

proposed by Gomes (2005) to deal with strategic timing of participation and gradual coalition

formation in negotiations for IEAs. The CBG is a dynamic game that is played during a

number of rounds and in which the set of players and the stage game changes over time. The

game starts with a set of players, but over time the players form coalitions, always at most

1These gains can be determined prior to the analysis and summarized as the partition function form.
This form is taken as the primitive of many studies.

1



one at a time. At the beginning of each round, a collection of coalitions is present, i.e., a

partition of the players being the coalitions formed in the preceding rounds called a coalition

structure. Then this coalition structure forms the updated set of players that bargaining

among each other, so the set of players in each round is the set of coalitions in the coalition

structure. The stage game of each round is as follows. One of these players (coalitions) in

the coalition structure is randomly chosen and this player proposes a new coalition structure

that is obtained from the present coalition structure by merging together two or more players

(coalitions), including the proposing player, while all other players stay as they are. In

addition, the proposing player (coalition) offers a payoff to every other player (coalition) in

the proposed merger.2 All other players of the newly proposed merger respond by either

rejecting or accepting the offer. When they all accept, then the new coalition structure is

formed and the proposing player pays the offers and keeps the remaining (anticipated) value

of the coalition; when at least one player rejects, then nothing changes in the round under

consideration. When the grand coalition is formed, then the game ends; otherwise it goes

to the next round where the stage game restarts including the random selection of a new

proposer.

The stage game of the CBG is a reduced form of a more realistic model with detailed con-

tracts, see e.g. Gomes (2005). Although this more realistic model is prone to the mentioned

difficulty of computing equilibria, this reference also demonstrates that important theoretical

results for the realistic model can be easily derived from the CBG with the stage game in

the reduced form. One result states that there always exists a Markov perfect equilibrium

and that, in every coalition structure, every coalition has an endogenous reservation value.

Another result states that when the grand coalition is Pareto efficient, then in each round

the proposing coalition proposes to merge with at least one other coalition in the current

coalition structure, and all members included in the newly proposed coalition approve. So,

the set of coalitions in the coalition structure decreases with at least one in every round and

the merging process continues until the grand coalition has formed, which takes at most as

many rounds as the number of players at the start of the game minus one. Gomes (2005)

gives a rather restrictive sufficient condition for the immediate emergence of the grand coali-

tion, but this leaves the question what sequence of coalitions emerges otherwise. For IEAs, it

is of interest whether the grand coalition immediately emerges or whether it forms through a

sequence of mergers. This might explain why negotiations for some IEAs proceed fast, while

other negotiations are tedious. For future negotiations, it might predict whether tedious

negotiations with strategic timing can be expected.

The stage game in the CBG incorporates the strategic aspect of joining an IEA, an

2For technical simplicity, Gomes (2005) assumes that the proposing player buys the ownership rights
of his proposed coalition. In order to buy out all other players in this coalition, it is implicit that the
proposer is able to finance the amount needed. Alternatively, one might consider all players in a coalition
as shareholders and the shares determine the payoffs. For the context of IEAs with streams of payoffs over
time, the alternative interpretation is more appropriate but also it is more elaborate. Therefore, we will
closely follow Gomes (2005).
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aspect that is prominent in the hybrid modeling approach, in the sense that one player has

the initiative to ask others to join the IEA, who then decide whether to enter. One might

argue that players who are not proposed to are excluded from becoming a member, but

instead one could also argue that these players’ reservation values are too expensive to join

the IEA. Also, the proposer might deliberately let some players free ride on the proposed

IEA. In the CBG, every player has an endogenous reservation value depending upon the

current coalition structure. These reservation values replace the exogenously given sharing

rules in the hybrid models. The major novelty compared to these models is the modeling of

a dynamic coalitional formation process in which agents are forward looking.

One aim of our analysis is to investigate gradual coalition formation and tractability of

closed form solutions in the presence of an efficient grand coalition. Therefore we apply the

CBG to a specific simple river sharing problem with three agents, in which one downstream

agent is located at the junction of two symmetric tributaries, each belonging to a single

upstream agent. All agents have decreasing returns to scale of the use of water. We normalize

this situation such that we have two parameters: the discount factor and a productivity

parameter, which describes the incremental value of a single upstream country merging

with the coalition of the other two countries. Several very simple economic questions can

be asked that do not have a straightforward answer without performing the equilibrium

analysis. Should the two upstream agents first form a monopoly before jointly negotiating

with the downstream agent? Or should each of them try to reach a bilateral agreement with

the downstream agent first, trying to capture a share of the largest incremental value, or

instead propose the grand coalition immediately? Similar for the downstream agent, should

it contract with both supplying upstream agents at once, or first contract with one of them

before expanding the coalition? This paper shows that the answers to these questions depend

on the values of the discount factor and the productivity parameter. Besides analyzing the

CBG associated to this specific simple river sharing problem, we also derive, for the general

CBG, a necessary and sufficient condition for the immediate emergence of the grand coalition,

which extends a result in Gomes (2005).

The remainder of this paper is organized as follows. The river sharing problem and

the general CBG are presented in Section 2. Section 3 analyzes Markov perfect equilibria

in the general CBG and it includes the necessary and sufficient condition under which the

grand coalition immediately forms. The equilibrium analysis for the river sharing problem

is presented in Section 4 and Section 5 concludes.

2 The Model

In this section we introduce the specific simple river sharing problem and the general strategic

CBG in two separate subsections. The general river sharing problem can be found in e.g.

Houba et al. (2013) and the general CBG in Gomes (2005). For the purpose of this paper,
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Figure 1: A V-shaped river with two merging tributaries.

it suffices to introduce a less general river sharing problem with three agents only.

2.1 The River Sharing Problem

We consider a river that flows through three locations that could be either irrigation plots,

cities or countries. These are also called agents and N = {1, 2, 3} denotes the set of agents.

The river geography has two upstream agents, called 1 and 2, that represent two tributaries

that merge at a common downstream location, called agent 3. Each agent i, i ∈ N , has its

own local water resource ei with e3 ≥ 0 and ei > 0 for i = 1, 2.3

Agent i uses an amount of water xi that has to be feasible depending upon his access to

water. Agent 1’s feasible water use is given by x1 ≤ e1. Similarly, we have x2 ≤ e2 for agent

2. Available water for agent 3 consists of his own local water resource e3 plus the inflows

of water e1 − x1 and e2 − x2 received from his upstream neighbors. Feasible water use x3

by agent 3 is bounded from above by this sum, which we write as
∑

i∈N xi ≤
∑

i∈N ei for

convenience. Agent i ∈ N has a (net) benefit function bi(xi) that is differentiable for all

xi > 0 and strictly concave. Furthermore, there exists a satiation point xSi > 0 such that

b′i(x
S
i ) = 0. The benefits include the unmodeled costs of water extraction for each agent. In

our analysis of the CBG for this river sharing problem, we treat both upstream locations

symmetrically in terms of endowments e1 = e2 ≡ e > 0 and benefit functions b1(z) = b2(z),

z ∈ [0, e]. This eases the computational burden and discussion. Figure 1 illustrates the

river sharing problem analyzed in our study, which we will call the V-shaped river sharing

problem.

We assume that the benefits are measured in terms of money and agents are able to

transfer utility to each other by making monetary transfers. So, the benefits are transferable.

The monetary transfer to agent i is equal to ti ∈ R, where ti > 0 means that agent i receives

a monetary transfer from other agents and, otherwise, he pays in total a monetary transfer

3Here we do not allow ei = 0 for i = 1, 2. An upstream agent is irrelevant when it has zero water
resources, because water flows from upstream to downstream. Furthermore, the water resource of agent 3
can only be utilized by agent 3, while the water of an upstream agent can be used by that agent and by the
downstream agent 3.
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ti < 0 to other agents. A monetary transfer scheme is a vector t = (t1, t2, t3) such that

no financial deficit is allowed:
∑

i∈N ti ≤ 0. By the transferability assumption we have

that each agent i has a quasi-linear utility function ui(xi, ti) = bi(xi) + ti. We further take

xS1 ≥ e, xS2 ≥ e, and xS3 > e3, i.e., for each agent its own inflow is at most equal to its

satiation point with strict equality for agent three and assume that the marginal benefit of

agent 3 at e3 is higher than the marginal benefit of i at ei, i = 1, 2. By strict concavity of

the benefit functions we have that b1 and b2 are increasing on [0, e) and b3 is increasing on

[0, e3), while by the strict inequality xS3 > e3, agent 3 has an incentive to demand water from

its upstream agents. Finally, we assume that all agents are utility maximizing and that all

utility functions and water resources are common knowledge.

2.2 The Coalitional Bargaining Game

We now turn our attention to the general CBG of Gomes (2005).4 The set of players is

denoted as N = {1, 2, ..., n}. The coalition structure π is a partition of N describing who

have formed coalitions already. The initial coalition structure is denoted by π0 and it is

the finest partition of N , i.e., π0 = {{1}, {2}, ..., {n}}. The CBG is a dynamic game where,

at every round, a player (being a coalition in π) is randomly chosen to propose an offer

to a set of other players (coalitions) in the coalition structure, who can either accept or

decline the offer. For ease of notation, we assume invariant probabilities in selecting who

proposes throughout all rounds and all coalition structures. Formally, there is a probability

distribution p = (pi)i∈N with pi > 0 for all i, and at the beginning of a bargaining round τ , the

probability of a coalition C is selected to be the proposer with probability pC =
∑

k∈C pk.
5,6

The rules of the CBG are as follows. Let π be the coalition structure at the start of

some bargaining round τ and S ⊆ π be a collection of coalitions in π. Then the coalitions

in S can bargain and form a new coalition C ′ = ∪B∈S B, changing the coalition structure

to π′ = {C ′} ∪ (π \ S), where C ′ is the set of all (singleton) players in N belonging to

one of the coalitions in S. To be more precisely, at the start of a round a coalition C in

the coalition structure π is randomly chosen with probability pC to be the proposer. This

coalition then proposes the pair (S, t), where S ⊆ π with C ∈ S is a collection of coalitions

that are proposed to merge into C ′, and the vector t = (tB)B∈S\{C} consists of the proposed

monetary offers tB ∈ R made by C to each coalition B ∈ S \ {C}. The coalitions in the

collection S that are proposed to, i.e., the coalitions in S \ {C}, respond sequentially in a

fixed order (the order of response turns out to be irrelevant), either accepting or rejecting

the offer. If these coalitions are unanimous in accepting the offer, then the new coalition

4For a complete description of this game and the motivation of the underlying assumptions, we refer to
this reference.

5Our general results also hold if we would allow for general probabilities pC(π) that depend on the
coalition structure. Okada (1996, 2000, 2011) also assumes invariant probabilities.

6In the specific simple river sharing problem with three agents, we simply assume p1 = p2 = p3 = 1
3 and

p{1,2} = p{1,3} = p{2,3} = 2
3 .
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structure π′ = {C ′} ∪ (π \ S) immediately forms in round τ and the proposing coalition

C divides the continuation payoff of coalition C ′ in π′ by paying every joining coalition

B ∈ S the proposed lump-sum transfer tB and keeping the remainder.7 If the responders

are not unanimous in accepting the offer, then the next round’s coalition structure equals

this round’s coalition structure, i.e., the coalition structure does not change, and there are

no payments. We then write π′ = π. After accepting or rejecting the proposal the game ends

when π′ = {N}, (which can only happen when the proposal (π, t) was accepted.) Otherwise,

the game proceeds into the next round where the stage game is played once again and a

coalition from π′ is chosen randomly to be the proposer. Notice that according to the rules

that once a coalition has formed, it never breaks up8 and the renegotiation possibilities only

allow for further merging of coalitions in the coalition structure. Furthermore it is assumed

that all players have perfect information about the past play in the game when they make

decisions.

Many studies take the payoffs associated with IEAs as a primitive of the model, where

it is taken into account how other countries organize themselves in alternative IEAs. This

is also the case in Gomes (2005) albeit that these payoffs represent the payoffs per round

of infinite streams of these payoffs. In order to avoid confusion, we will refer to payoffs per

round as disagreement values.

• disagreement value: dC(π) is the disagreement payoff for coalition C in π, i.e., it is the

value that coalition C obtains per round when π is the coalition structure.

Notice that even for π = {N} we call dN({N}) the disagreement value for the grand

coalition. Infinite streams of disagreement values are discounted by the common discount

factor δ ∈ [0, 1). Formally, we will work with normalized discounted payoffs (1−δ)
∑∞

τ=0 δ
τxτ ,

where xτ denotes the payoff in round τ. The merit of this normalization is that if we let δ

go to 1, then the normalized sum remains bounded.

Finally, following Gomes (2005), we will investigate mixed strategies and we assume that

all players (coalitions) in this game have von Neumann-Morgenstern preferences.

3 Markov Perfect Equilibria

In this section, we will follow Gomes (2005) and study mixed Markov perfect equilibrium

(MPE) of the general CBG. As is shown in this reference, mixed MPEs are necessary for

the existence of MPEs and therefore unavoidable in any analysis. We first explain how

to characterize mixed MPEs and then derive a necessary and sufficient condition for the

immediate emergence of the grand coalition in an MPE. We do so in separate subsections.

7Recall Footnote 2. Gomes (2005) assumes that coalition C becomes the sole owner of coalition C ′ after
buying off all owners B ∈ S \ {C}. Alternatively, but more elaborate, we argued to consider the members of
C ′ as shareholders whose share of current and future disagreement values is worth the offers tB .

8Readers interested in a setting where coalitions may break up are referred to Gomes and Jehiel (2005).
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3.1 Strategies and Equilibria

Markov strategies assume that the τ -th round strategy of a player depends only on the ‘state’

of the game at the start of round τ . In the CBG, the state in round τ is the coalition structure

at the start of round τ . Thus, Markov strategies only depend on the coalition structure π.

At the stage game of round τ , the coalitions in the coalition structure make decisions: one

coalition makes a proposal and the others who are proposed to respond. Therefore, following

Gomes (2005), we assume that in every stage game the strategies of all players that belong

to a same coalition C coincide. Under this assumption we define for every coalition structure

π a stage-game strategy for every coalition C ∈ π with the interpretation that the stage-

game strategy of C ∈ π is the stage-game strategy of every player i ∈ C, avoiding in this

way duplication of strategies. Given a coalition structure π, the pure stage-game strategy

of coalition C ∈ π is composed of a proposal when selected as the proposer and a response

when being proposed to by other coalitions. In a (behavioral) mixed stage-game strategy

of coalition C ∈ π, this coalition possibly randomizes over the set of actions available when

taking the decision. Thus, coalition C randomizes over the set of all proposals (S, t) and

coalition C randomizes over accept and reject when being proposed to.

Mixed Markov strategies induce present values of infinite streams of expected disagree-

ment values, simply called values, for every coalition that depend on the coalition structure

π. In addition, we refer to these values as the equilibrium values in a MPE. So, we have the

following notion of value.

• vC(π) is the continuation (MPE) value for coalition C in coalition structure π at the

beginning of round τ prior to the randomization that determines who becomes the

proposing player in this round.

These values together with the stage-game Markov strategies have to be determined by the

equilibrium analysis. Notice that the value for the grand coalition is trivial and equal to the

infinite stream of disagreement values under coalition structure π = {N}, i.e.,

vN({N}) = (1− δ)
∞∑
τ=0

δτdN({N}) = dN({N}).

So when the grand coalition is formed, the value of N is equal to the disagreement value.

As shown in Gomes (2005) for any coalition structure, the response of any coalition in any

MPE stage-game strategy is always a pure strategy in which the responder always accepts

when indifferent. Formally, when a coalition C ∈ π has to respond to a proposal (S, t) made

by another coalition C ′ ∈ π, i.e., C ∈ S ⊂ π and t is a vector of offers including an offer tC

of C ′ to C, then C accepts if and only if tC ≥ tC(π), where tC(π) is the threshold value of

C in π defined as

tC(π) = δvC(π) + (1− δ)dC(π). (1)

7



When C rejects the offer, it gets discounted continuation value plus the normalized disagree-

ment value in this round. For future reference, we write t(π) = (tB(π))B∈S\{C}.

Now we consider the pure stage-game strategy of a coalition C ∈ π when C is chosen to

be the proposer. When C ∈ π proposes (S, t), the responding coalitions in S will all accept

the proposal if and only if the offer to any B ∈ S \ {C} is at least equal to its threshold

value tB(π). It follows that C extracts the highest surplus from proposing S when offering

exactly these threshold values of t(π) to every B ∈ S \ {C}. When C proposes (S, t (π))

knowing all responding coalition in S accept, then coalition C ′ = ∪B∈S B immediately forms,

π′ = {C ′}∪(π\S) immediately becomes the new coalition structure and the value to coalition

C is equal to

vC((S, t (π))|π) = δvC′(π′) + (1− δ)dC′(π′)−
∑

B∈S\{C}

tB (π) . (2)

This value is equal to the discounted continuation value vC′(π′) under the new coalition

structure π′ plus the normalized disagreement value under π′ minus the sum of the equilib-

rium offers to the joining coalitions in S. The maximal attainable surplus that coalition C

can obtain from proposing any (S, t(π)) is defined as

v∗C(π) = max
S⊆π,S3C

vC((S, t(π))|π). (3)

So, when C ∈ π is chosen to be the proposer and it plays a pure MPE stage-game strategy

(S, t), then the proposed S of this MPE strategy must be a maximizer of (3) and the

associated transfers t = t (π) offer exactly the threshold value tB(π) to any B ∈ S \ {C}.
Notice that we allow that coalition C proposes S = {C}, i.e., it proposes to stay alone,

guaranteeing itself δvC(π) + (1 − δ)dC(π). Staying alone is the unique best response when

vC((S ′, t(π))|π) < δvC(π) + (1− δ)dC(π) for every S ′ containing some coalition B ∈ π \ {C}.
The existence result for MPE in Gomes (2005) is for mixed MPE in which a proposing

coalition C is allowed to randomize over several coalitions S that are maximizers of (3) with

the understanding that the MPE proposal is (S, t (π)). Let σC(S|π) ≥ 0 be the probability

that C proposes (S, t(π)) with
∑

S⊂π,S3C σC(S|π) = 1. Then a mixed Markov strategy for

the proposal of C in a stage game with coalition structure π is optimal if and only if

σC(S|π) = 0 if vC((S, t(π))|π) < v∗C(π) for all S ⊆ π, S 3 C. (4)

We end this section with the value of C ∈ π in a mixed strategy MPE. When C is

the chosen to be the proposer it realizes payoff v∗C(π) = maxS⊆π,S3C vC((S, t(π))|π) from

playing an optimal mixed Markov strategy. This happens with probability pC . When some

other coalition B ∈ π is the proposer and proposes S including C, then C gets it threshold

value tC(π). This happens with probability
∑

B∈π\{C}

[
pB
∑

S⊆π
S3B,C

σB(S|π)

]
. Finally, when

8



B proposes a collection S not including C, then the expected payoff of C is given by tC(π′),

where π′ is the coalition structure resulting from the proposal of B. This happens with

probability
∑

B∈π\{C}

[
pB
∑

S⊆π
S3B,C 6∈S

σB(S|π)

]
. It follows that

vC(π) = pCv
∗
C(π)+tC(π)

∑
B∈π\{C}

pB ∑
S⊆π
S3B,C

σB(S|π)

+tC(π′)
∑

B∈π\{C}

pB ∑
S⊆π

S3B,C 6∈S

σB(S|π)

 .
Since

∑
S⊆π|S3B,C σB(S|π) = 1 when B = C it follows that vC(π) can be rewritten as

vC(π) = pC(v∗C(π)− tC(π))

+ tC(π)
∑
B∈π

pB ∑
S⊆π
S3B,C

σB(S|π)

+ tC(π′)
∑

B∈π\{C}

pB ∑
S⊆π

S3B,C 6∈S

σB(S|π)

 . (5)

In the above expression, the value function is composed of two parts: the first part (the

first term of the right-hand side) is the maximal net surplus from being the proposer if all

coalitions B ∈ S including proposing coalition C are paid tB (π). This net surplus is the

advantage to propose. Furthermore, for every merger of coalitions S ⊆ π and all coalitions

B ∈ S, the net surplus of proposing the coalition S is the same. In MPE, each coalition

in π randomizes over those S that maximize this coalition’s net surplus, see Gomes (2005).

The second part (the second and third term of the right-hand side) represents coalition C’s

status quo value. Note that the status quo value depends on other players’ mixed strategies

as well. For instance, the second term is the status quo value when C is included in the

proposal and the third term describes the situation when C is not included in the proposal.

3.2 Immediate Formation of the Grand Coalition

In this section we first impose a sufficient condition that assures that in every bargaining

round at least two coalitions in the coalition structure merge together, i.e., under the as-

sumption every proposing coalition proposes to merge with at least one other coalition. It

follows that under this assumption the grand coalition forms in at most n−1 rounds, because

in a MPE a proposal is always accepted.

Assumption 3.1. For every coalition structure π 6= {N} it holds that
∑

B∈π dB(π) <

dN({N}).

Lemma 3.2 (Gomes, 2005). Under Assumption 3.1 it holds that for every π 6= {N} and
every C ∈ π that σC({C}|π) = 0.
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Although Gomes (2005) provided a proof, we will give an alternative proof in the Appendix.

Assumption 3.1 means that only the grand coalition can fully internalize the externalities

and therefore it follows that the maximum surplus from being the proposer (i.e., the first

term of the right-hand of equation (5)) is positive. Therefore in every coalition structure

every proposer will propose to merge with at least one other coalition, thus σC({C}|π) = 0.

Notice that, in any mixed MPE, the proposer may randomize over several coalitions and

that he always makes proposals of the form (S, t(π)) that will be accepted. So, the proposer

will reach some agreement for sure.

The consequence of this result is that each coalition C ∈ π will make an acceptable

proposal for sure and that the state moves from π to π
′
, where S 6= {C} depends upon

the coalition proposed by C. An intuitive explanation is that players can renegotiate the

contract and the efficient grand coalition acts as an attractive sink of the Markov process to

which the system converges. Similar results can be found in the literature (e.g., Chatterjee

et al. (1993), Okada (2000)). The fact that the equilibrium path converges to the grand

coalition is based on the assumptions that the coalition does not break up and the efficiency

of the grand coalition.

We next state several results under the assumption that it is optimal to propose the

grand coalition. The first lemma yields the continuation payoff of a coalition C ∈ π when

it is optimal for every B ∈ π to propose S = π, thus to propose the grand coalition N =

∪D∈S D = ∪D∈π D with probability 1.

Lemma 3.3 (Gomes, 2005). For a coalition structure π 6= {N}, let σB(π|π) = 1 for every

B ∈ π. Then it holds that

vC(π) = dC(π) + pC

(
dN({N})−

∑
B∈π

dB(π)

)
, for every C ∈ π.

In Gomes (2005), this result is stated without proof and we provide a proof in the Appendix.

The lemma states that the value for a coalition C ∈ π when every coalition in π proposes

to form the grand coalition is equal to its disagreement payoff dC(π) under coalition structure

π plus a fraction pC of the net surplus
(
dN({N})−

∑
B∈π dB(π)

)
. The probability to propose

can be regarded as a measure of bargaining power and be taken as a coalition’s bargaining

weight in the asymmetric Nash bargaining solution.

In order to state the next result, we need some additional notation. For two coalition

structures π and π′, we denote π′ ≤p π if π′ 6= π can be obtained from π by merging coalitions

together, i.e., π′ is coarser than π.9 The next theorem states that under Assumption 3.1 it

is optimal for every proposer in a coalition structure π 6= {N} and every coarser coalition

structure π′ ≤p π to propose the grand coalition if and only if the discount factor is at

9Formally, we denote π′ ≤p π if |π′| ≤ |π| and for every B ∈ π′ there exist S ⊆ π such that B = S∪. So
π′ ≤p π and π ≤p π

′ if and only if π = π′. Moreover, any π′ ≤p π such that π′ 6= π is obtained from π after
merging coalitions together. Notice that π′ = {N} if and only if |π′| = 1.
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most equal to some upper bound. Let S ⊂ π be a proper collection of subsets of π, thus

∪B∈S B 6= N , and suppose that a member of S proposes to form ∪B∈S B. Let πS be the

new coalition structure, thus πS = {S∪}∪ (π \S), where S∪ denotes ∪B∈S B.10 Now, define

δπ(S) =
dN({N})− dS∪(πS)−

∑
B∈π\S dB(π)(

dN({N})−
∑

B∈π dB(π)
)∑

B∈π\S pB + pS∪
(
dN({N})−

∑
B∈πS dB(πS)

) (6)

and

δ(π) = min
S∪ 6=N

δπ(S).

Finally we define

δ(π) = min
{ π′≤pπ | π′ 6={N} }

δ(π′).

We show the following result.

Theorem 3.4. Let π 6= {N}. Under Assumption 3.1, for every proposer in the subgame at

state π and every proposer in every subgame at state π′ ≤p π it is optimal to propose S = π

if and only if δ ≤ δ(π).

The MPE strategies underlying this result are pure strategies. Intuitively, if δ is large

enough, delay of forming the grand coalition might occur because then the efficiency loss due

to the delay of the grand coalition formation is relatively small. In such a case proposers may

have an incentive to search for a better bargaining position, e.g., propose a partial coalition

instead of the grand coalition.11 When δ ≤ δ(π), then the grand coalition will be proposed

immediately in π and also in any coalition structure π′ ≤p π, so in any coalition structure

π′ ≤p π that might evolve in the sequence of bargaining rounds that will occur when a

coalition C ∈ π deviates from the equilibrium path and the grand coalition does not form

immediately from π. Notice that, by definition, δ(π) ≤ δ(π) and for δ > δ(π) we distinguish

δ(π) = δ(π) from δ(π) < δ(π). First, in case δ(π) = δ(π), i.e., the minimum over π′ ≤p π
is attained at the current coalition structure π, then proposing the grand coalition is clearly

not optimal in coalition structure π because of δ > δ(π) = δ(π).12 Second, if δ(π) < δ(π),

i.e., the minimum is attained for some coarser π′ 6= π, then for δ(π) < δ < δ(π), there is

some π′ ≤p π, π′ 6= π at which for at least one coalition in π′ it is not optimal to propose

the grand coalition. As a result it might be the case that, on the equilibrium path, for some

coalition in π it is better to make a proposal leading to π′ (in one or more bargaining rounds)

10When C ∈ S is the proposer, we denoted above S∪ by C ′ and πS by π′ = {C ′ ∪ (π \ S)}.
11In Section 4.2, we will identify a subclass of parameter values in the V-shaped river sharing problem

in which the upstream agents form a coalition acting as a monopolist to extract more surplus in the future
negotiation round.

12This is the case for the initial coalition structure of the V-shaped river sharing problem analyzed in
Section 4.2.
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instead of moving to the grand coalition immediately. However, in this situation it might

also be the case that, on the equilibrium path, for every coalition in π it is still optimal

to move to N immediately, only when a coalition deviates and the off-the-equilibrium-path

coalition structure π′ is reached it is not optimal anymore to form N , which in equilibrium

cannot occur.

Theorem 3.4 implies that the grand coalition is formed immediately from the initial

coalition structure π0 consisting of single players when δ ≤ δ(π0). If this holds then it is also

optimal to propose the grand coalition immediately for every π 6= {N}. Furthermore, let π

be a coalition structure with |π| = 2, so π consists of two coalitions, say C1 and C2. Then

δ(π) = min
{π′≤π:|π′|6=1}

δ(π′) = δ(π) = min
S={C1},S={C2}

δπ(S) = 1,

because taking either S = {C1} or S = {C2} yields δπ(S) = 1. So, this implies that

from a coalition structure with two coalitions the grand coalition is formed immediately for

every value of δ ∈ [0, 1) and, thus, Lemma 3.2 is a special case of Theorem 3.4. This is in

accordance with the results for the bilateral alternating-offer model with random proposers in

e.g. Muthoo (1999). Moreover, every coalition structure π always contains coarser coalition

structures π′ with two coalitions and, hence, δ(π) ≤ 1.

Finally, we investigate the necessary and sufficient condition for the grand coalition to

form immediately in all π′ ≤p π0 for all δ ∈ [0, 1), i.e., δ(π0) = 1. Notice that δ(π0) = 1 if

and only if δπ(S) ≥ 1 for every π 6= {N} and every S ⊂ π. So, δ(π0) = 1 if and only if for

every π 6= {N} and every S ⊂ π it holds that

dN({N})−dS∪(πS)−
∑
B∈π\S

dB(π) ≥

(
dN({N})−

∑
B∈π

dB(π)

) ∑
B∈π\S

pB+pS∪

(
dN({N})−

∑
B∈πS

dB(πS)

)
.

By rearranging terms this reduces to the inequality

dS∪(πS)+pS∪

(
dN({N})−

∑
B∈πS

dB(πS)

)
≤
∑
B∈S

[
dB (π) + pB

(
dN({N})−

∑
B∈π

dB (π)

)]
.

(7)

From above, we know that these inequalities only impose restrictions for coalition structures

with three or more coalitions, i.e., |π| ≥ 3. This yields the following corollary.

Corollary 3.5. For every subgame at state π and every proposer in π it is optimal to propose

the grand coalition if and only if for every π such that |π| ≥ 3 and every S ⊂ π inequality

(7) holds.

Proposition 4 of Gomes (2005) states that the grand coalition is formed immediately if

the inequality (7) holds, i.e., is a sufficient condition. The corollary shows that Proposition 4
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follows as a special case from Theorem 3.4 and, moreover, that it is a necessary and sufficient

condition. Moreover, we also conclude that coalition structures with two coalitions can be

neglected.

4 MPE in the River Sharing Problem

In this section we apply the CBG to the specific simple river sharing problem introduced

in Section 2.1. Before we do so, we first have to derive the disagreement values of Section

3.2 and then obtain a suitable normalization to reduce the computational burden of the

equilibrium analysis.

4.1 Disagreement Values

Payoffs in the CBG consist of infinite streams of disagreement values and all disagreement

values are derived from the partial-agreement Nash equilibrium of Chander and Tulkens

(1995) for each coalition structure in the economic model under consideration, which is the

V-shaped river sharing problem of Section 2.1 that is summarized in Figure 1.

Given N = {1, 2, 3}, there are five coalition structures to consider. Recall that the initial

situation in which no coalition has formed is denoted by π0, so π0 = {{1} , {2} , {3}}. For

i ∈ N = {1, 2, 3}, we further denote by πi = {{i}, N\{i}} the situation in which agent i is

single and the other two agents have formed a pair. Finally, the coalition structure in which

the grand coalition has formed is denoted as πN = {N}.
In the V-shaped river sharing problem, optimal cooperation between the unconnected

upstream agent 1 and 2 boils down to doing what each of these agents would do as a single

agent. Optimal cooperation between agents 1 (2) and 3 never causes externalities on agent

2 (1). The absence of externalities implies that the disagreement value di(π) of a single

agent i is independent of π, and we therefore denote di = di(π
0) = di(π

i). Notice that a

two agent coalition {j, k} only appears in πi, i 6= j, k, and so we denote djk = d{j,k}(π
i). We

also denote dN = dN(πN). As a consequence of the quasi-linear utility, the maximal utility

within each coalition is obtained by utilitarian welfare maximization of their joint benefits

under the water availability constraints, see e.g. Houba et al. (2013). So,

di = maxxi∈[0,ei] bi(xi), i ∈ N,

d12 = maxx1∈[0,e1],x2∈[0,e2] [b1(x1) + b2(x2)] ,

di3 = maxxi∈[0,e],x3∈[0,e3+e−xi] [bi(xi) + b3 (x3)] , i = 1, 2,

dN = maxx1,x2∈[0,e],x3∈[0,e3+2e−x1−x2] [b1(x1) + b2(x2) + b3 (x3)] .

In Section 2.1 it is assumed that for every agent its satiation point xSi exceeds its own inflow

ei, and therefore di = bi(ei), i ∈ N . Furthermore, the V-shaped river structure imposes that
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water flows between agents 1 and 2 are impossible, and this implies d12 = b1(e1) + b2(e2) =

b1(e) + b2(e) because e1 = e2 = e. Recall also that we assumed that the marginal benefit of

agent 3 in e3 is higher than the marginal benefit of agent i, i = 1, 2 in e. This implies that

in a solution of the maximization problem to find di3 we must have, on the one hand, that

x3 > e3 and xi < e. On the other hand x3 < xS3 , because at x3 = xS3 > e3 the marginal

benefit of water is zero for agent 3, whereas that of his upstream trading partner i is positive.

So, agent 3 and upstream agent i will trade, but never up to agent 3’s satiation point. It

follows that

di3 = max
xi∈[0,e]

[bi(xi) + b3 (e3 + e− xi)] , i = 1, 2.

Furthermore, the pair of agents i and 3 will be better off if agent j, j 6= i, 3, also joins their

coalition. To see this, if agent j would be excluded this agent’s marginal benefit at xj = e

would be lower than that of agent i who supplies a positive amount to agent 3. By letting

agent j take over part of i-th agent’s supply to agent 3, the total benefit of all three agents

can increase. So, it follows that

dN = max
x1,x2∈[0,e]

[b1(x1) + b2(x2) + b3 (e3 + 2e− x1 − x2)] .

For similar reasons as before, we have x1 = x2 < e and x3 ∈
(
e3, x

S
3

)
in the optimum. Clearly,

dN > di3 and, by the strict concavity of the benefit functions dN < d13 + d23. By symmetry

of agent 1 and 2, we have d1 = d2 and d13 = d23. From this it follows that without loss

of generality we may normalize the benefit functions in such a way that the disagreement

values become

d1 = d2 = d3 = 0, d12 = 0, d13 = d23 = 1, and dN = 1 + ε, (8)

with ε ∈ (0, 1). Obviously, the normalized disagreement values in the V-shaped river sharing

problem satisfy Assumption 3.1. This parameter ε can be interpreted as a productivity

parameter of water for the second of the two “units” e of water that the upstream agents

hold. Trading at most one unit e generates an incremental benefit of 1 and due to diminishing

returns the second unit e generates less incremental value. The limiting cases of ε are also of

interest. For instance, ε = 0 corresponds to zero incremental value for water from the second

upstream agent. This is essentially a cooperative game with transferable utility called the

Glove Game, where only pairs of gloves have value, agent 3 holds, say, a left-hand glove and

each upstream agent holds a right-hand glove. And ε = 1 corresponds to a linear benefit

function for agent 3 or constant marginal benefits from water.

Due to the absence of externalities, the γ-Core coincides with the Core. Furthermore,

it is easily verified that the cooperative game is balanced and, thus, the Core is nonempty.

The Core is equal to the convex hull of the four vectors (ε, ε, 1− ε), (0, ε, 1), (ε, 0, 1) and

14



{{1}, {2}, {3}} �
�
�
��

-
@
@
@
@R

A
A
A
A
A
A

{{1, 2}, {3}}

{{1, 3}, {2}}

{{2, 3}, {1}}
�
�
�
��

@
@@R

-

�
���

{N}

Figure 2: All coalition transitions that are possible in the V-shaped river sharing problem.

(0, 0, 1 + ε) that support its corners, which makes it diamond shaped.

Finally, it is important to keep in mind that the normalization of disagreement values

into a single productivity parameter still covers the entire class of V-shaped river sharing

problems. Given that the common discount factor δ ∈ [0, 1) is also a parameter of the CBG

[0, 1], we are now ready to analyze the associated CBG for all parameter values of ε ∈ (0, 1)

and δ ∈ [0, 1).

4.2 Main Results

In this section, we provide closed-form solutions for the value functions of the CBG with the

(normalized) disagreement values given in Section 4.1. Because the underlying derivations

are long and tedious, these are deferred to an online appendix where we also derive rather

cumbersome closed-form solutions for the mixed stage-game MPE strategies. Therefore, we

will discuss the main insights that are obtained from the equilibrium analysis without going

into too much technical detail.

To begin with, we apply the results obtained in Section 3.2 to the V-shaped river sharing

problem. The existence of MPE follows immediately from the general CBG. As mentioned

in Section 4.1, the disagreement values satisfy Assumption 3.1 for all ε ∈ (0, 1). So, the next

proposition follows immediately form Lemma 3.2.

Proposition 4.1. For a V-shaped river sharing problem with ε ∈ (0, 1), in every mixed MPE

of the CBG it holds that, for every coalition structure π 6= πN , every proposing coalition

C ∈ π proposes to merge with at least one other coalition and all responders accept.

As explained in Section 3.2, even though the proposer may randomize over several pro-

posals, all these proposals will be accepted and some agreement will be reached for sure.

This implies that the grand coalition of all three agents forms in at most two rounds. Figure

2 shows the four possible transitions from the initial coalitional structure π0 to the grand

coalition πN . There are three transitions out of the initial state that involve two bargaining

rounds and in which first a coalition with two agents forms before the grand coalition forms.

In the fourth transition the grand coalition forms immediately in a single transition.

15



The logic of subgame perfectness that underlies the MPE concept dictates that we first

solve for the relevant subgames. As already mentioned, all subgames associated with coalition

structure πN , the absorbing state, are trivial and have vN(πN) = 1 + ε. Next, we need to

consider subgames associated with a coalition structure πi = {{i}, N\{i}}, i ∈ N , in which

player i is still single and the other two players have formed a coalition. In what follows,

we simply write i for {i} and ij for {{i}, {j}}. Because δ(πi) = 1, according to the results

in Section 3.2, we have immediate agreement in any subgame associated with the state πi.

Application of Lemma 3.3 yields the following result.

Proposition 4.2. For the V-shaped river sharing problem given by (8), we have for i, j =

1, 2, i 6= j, that

vj3 (πi) = 1 + 2
3
ε, vi (π

i) = 1
3
ε,

v12 (π3) = 2
3

(1 + ε) , v3 (π3) = 1
3

(1 + ε) .

The MPE strategies underlying this result are pure strategies. This result implies that we

have exhausted all subgames that might be reached from the initial coalition structure.

Following Gomes (2005), we consider net surpluses instead of the value vi(S, t(π
0)|π0) of

proposing (S, t (π0)). Notice that the net surplus for a pair S = ij is equal to

vi(ij, t(π
0)|π0)− ti(π0) = vj(ij, t(π

0)|π0)− tj(π0),

which we denote as a for ij = 12 and b for ij = 13, 23 by symmetry. Similarly, for S = N

instead of S = {N},

v1(N, t(π
0)|π0)− t1(π0) = v2(N, t(π

0)|π0)− t2(π0) = v3(N, t(π
0)|π0)− t3(π0),

which we denote as c.

Now we are ready to consider the initial coalition structure π0. At this coalition struc-

ture, every proposer i randomizes over proposals (S, t(π0)) that maximize their net surplus,

because for every player i ∈ N it holds that

max
S⊆π,S3i

[vi((S, t(π))|π0)− ti(π0)] = v∗i (π
0)− ti(π0), (9)

where the last expression also appears as the first term on the right-hand side of (5). To

further simplify notation, we write v3(π
0) = v3 and, by symmetry of agent 1 and 2, v1(π

0) =
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v2(π
0) = v. Then, after substituting (8) and (1) in (9) we obtain

a = δv12(π
3) + (1− δ)d12(π3)− 2δv =

2(1 + ε)δ

3
− 2δv,

b = δv13(π
2) + (1− δ)d13(π2)− δv − δv3 = δv23(π

1) + (1− δ)d23(π1)− δv − δv3

=
3 + 2ε

3
δ + (1− δ)− δv − δv3,

c = dN({N})− 2δv − δv3 = 1 + ε− 2δv − δv3.

So, agent 1 proposes to form13 {1, 2} if a > max[b, c], to form {1, 3} if b > max[a, c] and to

form the grand coalition N if c > max[a, b]. In case of equalities the proposer randomizes,

so 1 randomizes over forming {1, 2} or {1, 3} if a = b. Similar for the agents 2 and 3. Notice

that agent 3 always randomizes over {1, 3} and {2, 3} if b > c, and randomizes over {1, 3},
{2, 3} and N if b = c.

The values of a, b and c and so the proposals in the first round of the bargaining process

depend on the parameters δ and ε. It appears that the (δ, ε) space can be divided in five

different regions, denoted A, B, C, D and E. Each region corresponds to a specific ordering

of the three values a, b and c. The regions are given in Table 1, together with the ordering of

a, b and c and the proposals in the corresponding equilibrium. Notice that not all orderings

occur, for instance there are no values of δ and ε such that a > max[b, c]. Consequently,

there is no equilibrium in which the agents 1 and 2 propose to form coalition {1, 2} with

probability 1. But it might happen that a = b = c, in that case every agent mixes over all

three possible proposals, so in this case the proposal to form {1, 2} might occur with positive

probability. Note that in Region B agent 3 proposes to form {1, 3} and {2, 3} with equal

probabilities 1
2
, since agents 1 and 2 are symmetric.

The five regions dividing the [0, 1]× [0, 1] ∈ R2 space of all pairs (δ, ε) are shown in Figure

3. Because region E is very small, Figure 4 zooms in around this region. From the figures

we make the following observations.

1. For Region A in which everyone proposes the grand coalition, we have δ ≤ 3ε
1+3ε

by

applying Theorem 3.4. The intuition is that if δ is sufficiently small, the loss due to

the delay of forming the efficient grand coalition is large for the proposing agent and

for the responding agents the present value of vi (π
0) is lowered, hence all agents have

incentives to propose the grand coalition immediately.

2. For a fixed ε, proposing to form a partial coalition instead of N becomes more plausible

when δ increases. For instance, in regions B and D, every agent proposes a partial

coalition. An intuitive explanation is that when δ is sufficiently large, every agent is

searching for a better bargaining position in order to extract future surplus. It seems

counter-intuitive that agents 1 and 2 propose the coalition {1,2} in π0 which does

13Formally the proposal should be {{1},{2}}. This abbreviation follows hereafter.
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not generate any surplus in current round since d12(π
3) = 0. However, in the next

bargaining round, coalition 1 and 2 can act as a monopolist and extract a larger share

of the surplus when forming the grand coalition with agent 3.

3. (δ, ε) ≈ (0.875, 0.95) serves as an important threshold point for different equilibria. We

observe the equilibria of A, C, B and D for ε below 0.95 while above that, we observe

equilibria of A, C, E and D.
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Figure 3: The regions of different equilibria in the (δ, ε) space
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Figure 4: Region E in the (δ, ε) space

Having found the optimal proposals of the agents in π0, for each region we can calculate

for each agent i ∈ N the expected payoff of the optimal proposal v∗i (π
0) by Equation (5)

and then derive the values vi(π
0), shortly denoted by vi(π

0). Proposition 4.3 summarizes

for each of the five regions the optimal proposals of the agents and the corresponding values

vi(π
0).

Proposition 4.3. In a MPE of the CBG for the V-shaped river sharing problem, the pro-

posals in the initial coalitional structure π0 are randomized over the coalitions depending on
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(δ, ε) according to Table 1. Moreover the values vi(π
0), i ∈ N , are given by

A : v1
(
π0
)

= v2
(
π0
)

= v3
(
π0
)

=
1 + ε

3
;

B : v1
(
π0
)

= v2
(
π0
)

=
2(1− δ)(2δε+ 3) + δε(3− 2δ)

3(6− 5δ)
,

v3
(
π0
)

=
(2− δ)(2δε+ 3)− δ2ε

3(6− 5δ)
;

C : v1
(
π0
)

= v2
(
π0
)

=
3− 2δ

3δ
ε, v3

(
π0
)

=
3(1− ε) + 4εδ

3(3− 2δ)
;

D : v1
(
π0
)

= v2
(
π0
)

=
4(1 + ε)δ + δε(g(δ, ε) + 1)

18− 3δ(1− g(δ, ε))
,

v3
(
π0
)

=
2(1 + ε)δ − 6δv1(π

0) + δ(1 + ε)(2− g(δ, ε))

9− 3δ − 3δg(δ, ε)
;

E : v1
(
π0
)

= v2
(
π0
)

=
3− 2δ

3δ
ε, v3

(
π0
)

=
(1 + ε)(3− 2δ)

3δ
.

where:

g(δ, ε) =
1

−2δ(1− δ)
(3− 4δ + 3δ2 − 3δε+ 3δ2ε−

√
∆)

and

∆ = 81− 180δ + 130δ2 − 28δ3 + δ4 − 18δε+ 30δ2ε− 18δ3ε+ 6δ4ε+ 9δ2ε2 − 18δ3ε2 + 9δ4ε2.

In regions B, C, D and E, there is an efficiency loss due to the delay of the formation of

the grand coalition. This efficiency loss depends on the probability that the grand coalition

is proposed by the agents. For instance, the efficiency loss for Region B is (1− δ)ε, which is

exactly the loss due to the delay of the formation of the grand coalition for one round.

Consider a horizontal line in Figure 3 that lies below Region E, which means fix ε ∈
(0, 0.95). Starting with δ close enough to 0, we are in Region A where all agents propose the

grand coalition and all responding agents immediately agree. All results for Region A follow

by applying the results derived in Section 4.2. By letting δ increase, we move into Region

C, where then upstream agents randomize between proposing the grand coalition and a

bilateral agreement with the downstream agent, and the downstream agent also randomizes

between the bilateral agreement with the upstream agent and the grand coalition. So, there

still is a positive probability of forming the grand coalition immediately but also a positive

probability of gradual coalition formation. If δ increases further, we reach Region B where

each of the upstream agents proposes a bilateral agreement with the downstream agent and

the downstream agent randomizes the two possible bilateral agreements with the upstream

agents. In this region, gradual coalition formation will occur for sure, because none of the

agents proposes the grand coalition. If δ is sufficiently close to 1, we reach Region D. In

this region, the upstream agents randomize between forming a monopoly and a bilateral

agreement with the downstream agent, who follows a similar randomization as in Region
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B. This implies that gradual coalition formation will also occur for sure in Region D. For

ε ∈ (0.95, 1), the horizontal line also crosses Region E. In this region, every agent randomizes

over all three possible coalitions and every sequence of gradual coalition formation can occur

with positive probability.

The vector of values for Region A lies outside the Core if v1 (π0) > ε, which implies ε > 1
2
.

So, the MPE in the CBG does not necessarily yield solutions in the Core. The efficiency loss

in the other regions makes the comparison to the Core meaningless. However, Region D is

the relevant region for sufficiently large discount factors and, by taking the limit δ goes to 1,

the inefficiency of the MPE vanishes in the limit. Taking the limit yields limδ→1 g(δ, ε) = 1

and, hence, we obtain the efficient limit outcome

lim
δ→1

v1
(
π0
)

= lim
δ→1

v2
(
π0
)

= 1
3
ε+ 2

9
, lim

δ→1
v3
(
π0
)

= 1
3
ε+ 5

9
.

Agent 3 receives at most his worst outcome 1 − ε in the Core if and only if ε ≥ 1
3
. So, we

conclude that for ε ≥ 1
3

the vector of limit outcomes lies in the Core. This also implies that

this vector lies outside the Core otherwise.

5 Concluding Remarks

In this paper, we identified gradual coalition formation and the strategic timing of becoming

a member of an IEA as an important and relevant research topic. We applied the Coalitional

Bargaining Game (CBG) in Gomes (2005) to deal with these issues. Our results are twofold:

extending general results and an illustration of the merits of applying the CBG. For the

general CBG we derive the necessary and sufficient condition that entails immediate agree-

ment on the grand coalition in every possible coalition structure in the CBG. This condition

states that the common discount factor, which describes the agents’ time preferences, should

be smaller than some upper bound. This result extends a result in Gomes (2005). This

condition for immediate agreement on the grand coalition is of interest, because this enables

us to identify which real-life environmental problems will be easy to deal with through swift

negotiations by the stakeholders involved.

One area where there is a need for IEAs are international rivers. Therefore, we also

applied the CBG to a specific simple river sharing problem with a V-shaped river structure

with two symmetric upstream agents and one downstream agent. Although simple in nature,

this problem has several intriguing features as argued in the introduction. We normalized

this problem in such a way that we obtained a single productivity parameter describing the

class of V-shaped river sharing problems under consideration. Together with the common

discount factor of the CBG we have two parameters in our application. Nevertheless, we

obtain a rich spectrum of equilibrium behavior. In two large regions and for sufficiently

patient agents, gradual coalition formation occurs for sure. In one region, both upstream
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agents propose with positive probability to form a monopoly first, before bargaining with the

downstream agent. These results provide valuable insights how coalition formation emerges

over time. On the one hand, it seems counter-intuitive that two upstream agents that cannot

trade water with each other form a coalition knowing they do not receive extra benefit in

the short run. On the other hand, those two upstream agents will act as a monopolist and

extract surplus in the future negotiations. By acting in this way, forming the grand coalition

will be delayed.
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6 Appendix

Proof of Lemma 3.2

Consider the proposal (S, t (π)) = (π, t (π)) for coalition C, then in (5) the first term on the

right-hand side becomes

(1− δ)dN({N}) + δvN({N})−
∑
B∈π

[(1− δ)dB(π) + δvB(π)]

= (1− δ)

[
dN({N})−

∑
B∈π

dB(π)

]
+ δ

[
vN({N})−

∑
B∈π

vB(π)

]
> 0,

because the first term is positive by Assumption 3.1 and the second term is nonnegative. So,

the maximum has to be positive, which rules out that proposing (S, t (π)) = ({C}, t (π)) is

optimal. QED.

Proof of Lemma 3.3

If σB(π|π) = 1 is optimal for every B ∈ π, π 6= {N}, then
∑

S⊂π
S3B,C

σB (S|π) = 1 and∑
S⊂π

S3B,C /∈S
σB (S|π) = 0. So, Equation (5) degenerates to

vC(π) = pC

[
(1− δ)dN({N}) + δvN({N})−

∑
B∈π

[(1− δ)dB(π) + δvB(π)]

]
+ [(1− δ)dC(π) + δvC(π)] .

Summing over all B ∈ π and substituting vN({N}) = dN({N}) yields
∑

B∈π vB(π) =

dN({N}). Then the equation for vC(π) can be rewritten into

(1−δ)vC(π) = (1−δ)dC(π)+pC

[
(1− δ)(dN({N})−

∑
B∈π

dB(π)) + δ

[
dN({N})−

∑
B∈π

vB(π)

]]

and we immediately obtain

vC(π) = dC(π) + pC

(
dN({N})−

∑
B∈π

dB(π)

)
.

QED.
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Proof of Theorem 3.4

Only if: The equilibrium conditions such that every proposer in the subgame at state π

proposes the grand coalition impose that

(1− δ) dN({N}) + δvN ({N})−
∑
B∈π

[(1− δ) dB (π) + δvB (π)]

≥ (1− δ) dS∪(πS) + δvS∪(πS)−
∑
B∈S

[(1− δ) dB (π) + δvB (π)] ,

for all S ⊂ π. Rewriting several times yields

δ

vS∪(πS)− dS∪(πS) +

(
dN({N})−

∑
B∈π

dB(π)

) ∑
B∈π\S

pB

 ≤ dN({N})−dS∪(πS)−
∑
B∈π\S

dB(π).

Notice that we consider strategies in which every proposer in every subgame π′ ≤p π proposes

the grand coalition. Then according to Lemma 3.3 we have

vS∪(πS) = dS∪(πS) + pS∪

(
dN({N})−

∑
B∈πS

dB(πS)

)
.

By further substitution, we get

δ

pS∪

(
dN({N})−

∑
B∈πS

dB(πS)

)
+

(
dN({N})−

∑
B∈π

dB(π)

) ∑
B∈π\S

pB


≤ dN({N})− dS∪(πS)−

∑
B∈π\S

dB(π).

Since the grand coalition is efficient, the term in the square bracket on the left-hand side

is positive. Then, δ ≤ δπ(S) follows immediately. By taking the minimum over all S∪ we

obtain δ ≤ δ(π) for every coalition structure π. Finally, by taking the minimum over π and

coalitions structures coarser than π, i.e., {π′ ≤p π : |π′| 6= 1}, we get the desired result.

If: When δ ≤ δ(π), we prove the result recursively. Let π be a coalition structure with

|π| = 2, so π consists of two coalitions, say C1 and C2. Then

δ(π) = min
{π′≤pπ:|π′|6=1}

δ(π′) = δ(π) = min
S={C1},S={C2}

δπ(S).

Taking either S = {C1} or S = {C2} yields δπ(S) = 1, implying that from a coalition

structure with two coalitions the grand coalition is formed immediately for every value of δ.

Now consider |π| = 3, when δ ≤ δ(π), it can be easily shown that for every proposer in π,

it is optimal to propose the grand coalition immediately. For π = π0 and |π| > 3, we can

deduce backwards in a similar way. QED.
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