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Abstract

This paper examines which macroeconomic and financial variables are most infor-

mative for the federal funds target rate decisions made by the Federal Open Market

Committee (FOMC) from a forecasting perspective. The analysis is conducted for

the FOMC decision during the period January 1990 - June 2008, using dynamic or-

dered probit models with a Bayesian endogenous variable selection methodology and

real-time data for a set of 33 candidate predictor variables. We find that indicators

of economic activity and forward-looking term structure variables as well as survey

measures have most predictive ability. For the full sample period, in-sample proba-

bility forecasts achieve a hitrate of 90 percent. Based on out-of-sample forecasts for

the period January 2001 - June 2008, 82 percent of the FOMC decisions are predicted

correctly.
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1 Introduction

The federal funds target rate is one of the key monetary policy instruments of the

Federal Reserve and, thereby, an important indicator of the (future) state of the

U.S. economy. Not surprisingly then, decisions concerning the target rate as made

by the Federal Open Market Committee (FOMC) are closely watched by investors,

firms, and other economic agents. Likewise, speeches, interviews, and other types of

communication by FOMC members are routinely scrutinized for information about

future target rate decisions. Surprises in target rate decisions have been documented

to have a pronounced impact on financial markets, see Bernanke and Kuttner (2005),

Faust et al. (2007), Andersen et al. (2007), and Chulia-Soler et al. (2010), among

many others.

Federal funds target rate decisions are made by the FOMC during their meetings

held approximately every six weeks, and are the outcome of a complicated decision-

making process. The target rate is set as a guideline for the Federal Reserve’s open

market operations, that is, purchases and sales of U.S. Treasury and federal agency

securities, which is one of the Fed’s principal tools for implementing its monetary

policy (in addition to the discount window and reserve requirements). Numerous

economic indicators are closely monitored by the FOMC, in order to determine

the most appropriate course of action. Most attention is believed to be paid to

inflation (in deviation from a target) and the output gap, in accordance with the

main goals of the Federal Reserve’s monetary policy to promote price stability and

maximum sustainable output growth and employment (Federal Reserve Board of

Governors; 2005), as formalized in the Taylor rule, see Taylor (1993). The minutes of

FOMC meetings indicate, however, that a large number of other economic variables,

reflecting developments in the labor market, housing market, and financial markets,

also play a substantial role in the considerations.1

The aim of this paper is to assess which macroeconomic and financial variables

are most informative for the FOMC’s federal funds target rate decisions from a

1For example, the following variables, among others, are explicitly mentioned in the minutes of

the FOMC meeting held on December 15-16, 2008: private payrolls, unemployment rate, new claims

for unemployment insurance, industrial production, factory utilization rate, consumer spending,

consumer sentiment, new building permits, house prices, vacancy rates, new orders for nondefense

capital goods, manufacturing and wholesale trade inventories, purchasing managers’ index, core

consumer price inflation, energy prices, consumer food prices, inflation expectations, stock prices,

bond yields and spreads.
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forecasting perspective. We analyze the 157 target rate decisions made during the

period January 1990 - June 2008, and consider a set of 33 possible predictors. The

variables in this set are classified into three categories. First, we include recent

releases of macro variables such as output, employment and inflation, reflecting the

fact that these are most directly related to the Federal Reserve’s monetary policy

goals. Second, we examine the information embedded in recent realizations of several

other macroeconomic and financial variables. Most of the macro variables in this

group are established leading indicators, providing signals about future economic

developments that are potentially useful for predicting FOMC decisions. Similarly,

the forward-looking nature of asset prices such as stock prices and interest rates

has been shown to result in predictive ability for macro variables such as output

and inflation, see Stock and Watson (2003), among others. It seems natural to

examine whether this also holds for FOMC target rate decisions. Third, we include

survey measures of consumer confidence and expectations as well as professional

forecasts for inflation, output and interest rates. This is motivated by the results

in Ang et al. (2007), who demonstrate that survey-based measures and forecasts

outperform macro variables and asset prices in forecasting inflation.

In our analysis we employ ordered probit models, to take into account that actual

target rate decisions are discrete, in the sense that, with few exceptions, they occur

in multiples of 25 basis points. We limit ourselves to modeling and forecasting the

sign of the target rate decisions (or, in economic terms, the direction of monetary

policy), making no distinction between changes of different magnitudes.

Visual inspection of the time series of the federal funds target rate shows that

decisions of a given type come in clusters. This may reflect persistence in shocks to

the macroeconomic variables that drive monetary policy in general and the FOMC

decisions in particular. Often, however, this feature is interpreted as a sign of in-

terest rate smoothing by the FOMC. Several reasons for this ‘inertia’ in monetary

policy decisions have been put forward. These include uncertainty about the true

structure of the economy and uncertainty about the accuracy of initial data re-

leases of important macro variables, in particular output and employment. A third

reason is the possibility to influence market expectations if monetary policymakers

demonstrate that they (are willing to) implement a consistent, long-run interest rate

policy, see Dueker and Rasche (2004) for a discussion. Rudebusch (2002) suggests

that much of the evidence for interest rate smoothing may in fact be the result of

omitting some relevant determinants of target rate decisions from the model. As
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it is not really possible to include all relevant variables, empirically it is difficult to

distinguish between policy inertia and persistence of macroeconomic shocks. While

economically this distinction is important for the interpretation of the clustering of

similar target rate decisions, from a forecasting perspective the true explanation is

less crucial. Following Rudebusch (2002), we simply allow for autocorrelated errors

to capture the temporal dependence in the FOMC decisions. In the empirical anal-

ysis we compare this dynamic ordered probit model with a static version, in order

to assess the importance of explicitly accounting for the observed clustering.

FOMC target rate decisions, and possible determinants thereof, have been stud-

ied previously by means of (dynamic) ordered probit and logit models by Dueker

(1999), Vanderhart (2000), Hamilton and Jordà (2002), Dueker and Rasche (2004),

Hu and Phillips (2004), Piazzesi (2005), Grammig and Kehrle (2008), Kim et al.

(2009), Hayo and Neuenkirch (2010), Monokroussos (2011) and Kauppi (forthcom-

ing), among others. We make three contributions to the existing literature. First,

previous studies consider a pre-determined set of explanatory variables. We, how-

ever, explicitly address the question which macroeconomic and financial variables

bear most predictive content for target rate decisions. This is made possible by

adopting a Bayesian approach for inference and forecasting. In particular, we employ

an endogenous variable selection algorithm developed by Kuo and Mallick (1998),

which for each candidate predictor renders a probability that it should be included

in the forecasting model. Alternatively, we can interpret this procedure as a form of

Bayesian model averaging. In terms of forecasting, model uncertainty is accounted

for by averaging across different models, based on the posterior probabilities of in-

clusion of the different predictors.

Second, while most of the previous literature on target rate decisions only con-

siders the in-sample fit of ordered probit (or other) models, we explicitly focus on

out-of-sample forecasting. For this purpose, we update the parameter beliefs each

time the outcome of a new FOMC meeting is observed by employing a recursive

importance sampling scheme. As we integrate with respect to the updated posterior

beliefs, our real-time forecasts do not only account for model uncertainty but also

for parameter uncertainty.

Third, we take care to construct our probability forecasts of the target rate de-

cisions in real time, in order to mimic the FOMC decision making as realistically

as possible. In addition to the recursive updating of the parameter estimates men-

tioned above, this means that we account for the fact that many macroeconomic
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variables are revised after their initial release. Hence, the values of variables like

output, employment and inflation as they are available to us now are not necessarily

the same as available to the FOMC members in the past, at the time of their target

rate decisions. Neglecting this aspect may crucially affect the results of historical

forecasting exercises as conducted here, see Diebold and Rudebusch (1991), Rude-

busch (2001), Stark and Croushore (2002), and Croushore (2006), among others. In

order to address this issue we put together a real-time data set for the macroeco-

nomic variables that we consider as possible predictors of the target rate decisions.

This data set enables us to use the values of these variables as they actually were

available to the FOMC at each point in time.

Our main empirical results are as follows. First, we find that measures of recent

(changes in) economic activity like the output gap and industrial production, which

are closely linked to the Federal Reserve’s monetary policy goals, indeed have sub-

stantial predictive content for the FOMC target rate decisions. Perhaps surprisingly,

the predictive ability of past inflation is much more limited. The most important

individual predictor is the spread between the six-month T-bill rate and the effective

federal funds rate, reflecting the forward-looking nature of the term structure. In

agreement with Ang et al. (2007), we find that survey-based measures and forecasts

contribute to forecasting the FOMC decisions. This holds in particular for consumer

confidence, expectations about the labor market and term structure forecasts. Sec-

ond, the dynamic ordered probit model with endogenous variable selection correctly

predicts no less than 90 percent of the target rate decisions in-sample (during the

complete sample period from January 1990 until June 2008) and 82 percent during

the out-of-sample period January 2001 - June 2008. It is crucially important to

incorporate the clustering of similar target rate decisions in the model. Compared

to the hit rates of 90 and 82 percent for the in-sample and out-of-sample forecasts

achieved by the dynamic model, the static model predicts 74 and 77 percent of the

target rate decisions correctly. Finally, using real-time data instead of fully revised

data (as available at the time of the analysis) does not lead to deterioration in fore-

casting performance. Using fully revised data, the dynamic probit model produces

forecasts that result in hit rates of 89 and 81 percent.

The outline of the paper is as follows. In Section 2 we describe the dynamic

ordered probit model with endogenous variable selection for the FOMC target rate

decisions. Subsequently we discuss the Bayesian procedure for inference and real-

time forecasting. In Section 3 we summarize the main features of the federal funds
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target rate during the sample period January 1990 - June 2008, and introduce the

data set of candidate predictors and its real-time properties. We discuss the estima-

tion and forecasting results in Section 4, and conclude in Section 5.

2 Methodology

In this section we discuss the dynamic probit model that we use to describe the

discrete federal funds target rate changes. Section 2.1 deals with model specification.

We opt for a Bayesian approach for estimation and inference. We consider the prior

for the model parameters in Section 2.2 and discuss the main aspects of our posterior

simulation scheme in Section 2.3. Finally, in Section 2.4, we outline our procedure for

obtaining real-time Bayesian forecasts. Full details of the computational procedures

for the posterior simulation and forecasting are provided in Appendices A and B.

2.1 Modeling target rate changes

As mentioned in the introduction, federal funds target rate decisions are (mostly)

made during the scheduled meetings of the FOMC. These are held approximately

every six weeks, in total eight times per year. Our dynamic probit modeling frame-

work is not specified in ‘meeting time’ (as in Hamilton and Jordà (2002) and Hayo

and Neuenkirch (2010)) though, but in calendar time with a monthly frequency, as

in Hu and Phillips (2004) and Kim et al. (2009). A crucial difference with these

studies is that we do not discard months without an FOMC meeting, as discussed

in detail below.

We define rt as the prevailing target rate at the end of month t for t = 1, . . . , T .

As we aim to model the direction of FOMC target rate decisions we take the sign

of ∆rt = rt − rt−1 as our variable of interest. We construct the discrete dependent

variable yt according to the classification

yt =





1 if ∆rt < 0 (target rate decrease),

2 if ∆rt = 0 (no change),

3 if ∆rt > 0 (target rate increase).

(1)

This variable summarizes the FOMC decisions concerning the target rate as decided

upon during its meetings and therefore is necessarily missing if there is no meeting
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in month t.2 To describe the discrete and ordinal nature of yt we introduce a latent

continuous variable r∗t , (t = 1, . . . , T ), which drives the classification, see Albert

and Chib (1993) and Geweke (2005), for example. The introduction of the latent

variable has two justifications. First, it facilitates the link of yt with potentially

explanatory variables. Second, we can conveniently interpret r∗t as the publicly

unobserved target rate that is central to the FOMC in choosing its policy. With our

application in mind, if in month t the (absolute) deviation between the previously

announced target rate rt−1 and the latent ‘desired’ target r∗t becomes too large, a

new target is announced. Formally this decision rule, establishing the link between

rt, yt and r∗t , becomes

yt = j ⇔ r∗t − rt−1 ∈ (αj−1, αj] , for j = 1, 2, 3, (2)

where the αj’s are threshold parameters satisfying the restriction −∞ = α0 < α1 <

α2 < α3 = ∞. Hence, if, for example, r∗t is higher than rt−1 by an amount that

exceeds α2, the target rate is increased in month t such that rt > rt−1.

With the introduction of r∗t , we model the FOMC decisions by describing the

behavior of this latent variable. In particular, for predicting future decisions we

specify its link with macroeconomic and financial information that is available at

the moment of constructing the forecast. We assume a linear relation between the un-

observed target rate r∗t and covariates summarized in the vector xt = (x1t, . . . , xKt)
′,

such that

r∗t = β′xt + ut, (3)

in which β = (β1, . . . , βK)′ and {ut} is an unobserved random process. We stress

that in the implementation we require that information included in xt is available at

the end of month t− 1 (including publication lags), such that the model can indeed

be used for real-time prediction of the target rate decision in month t. Note that our

approach is conservative, in the sense that the FOMC may have had more recent

information at its disposal when making the target rate decision in month t.

As discussed in the introduction, the FOMC monitors a large number of macroe-

conomic and financial variables to guide its target rate decisions, in addition to

2An alternative definition of the dependent variable yt disregards the meetings-issue and has an

observation each month. More in particular, if there is no meeting the target rate is said to remain

constant and yt is set equal to the value 2 for these months, as in Dueker (1999). We discuss this

alternative model specification with its different interpretation and limitations, together with its

estimation results in Appendix C.
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inflation and output measures that are directly related to monetary policy objec-

tives. This raises the question which economic indicators are the most important

predictors for the FOMC decisions. We incorporate this uncertainty with respect to

the exact content of the vector xt in our analysis of the ordered probit model. This

approach has two advantages. First, it allows us to do inference on which economic

variables are important determinants of the Fed’s monetary policy decisions. Second,

when constructing forecasts of future target rate decisions, we can account for this

model uncertainty by averaging over different models with different combinations of

predictor variables.

We follow the approach of Kuo and Mallick (1998) because it is computationally

easy to implement and does not require extensive tuning as, for example, the method

proposed by George and McCulloch (1993). We have K potential predictors xkt,

(k = 1, . . . , K). For describing the selection of these covariates in the model we

introduce K additional binary parameters γk, (k = 1, . . . , K), indicating whether

the k-th variable is included in the model (γk = 1) or not (γk = 0). Effectively

we decompose the regression parameters βk in (3) as βk = ψk · γk with γk ∈ {0, 1}
and ψk denoting the effect of xkt on the latent target rate when it is included in the

model. Modeling the uncertainty regarding relevant predictors this way boils down

to determining which of the 2K different predictor combinations are most likely to

have predictive power for the target rate decisions.

The final part of our model specification concerns the distributional assumptions

on ut in (3).3 In order to deal with decision smoothing and policy inertia, we allow

for temporal dependence in the process for ut. In particular, we assume a Gaussian

first-order autoregressive structure:

ut = ϕut−1 + εt, εt
i.i.d.∼ N (0, 1). (4)

A similar type of persistence faced by the FOMC is considered plausible by Rude-

busch (2002). The shocks εt are normally distributed and independent of the current

and past values of the predictors xs for all s ≤ t. Their effect on the latent target

rate dies out exponentially over time. This structure allows for temporal dependence

in the latent target rate r∗t in (3), in addition to the temporal dependence due to au-

tocorrelation in the predictor variables xt. In the empirical application, we compare

3If we consider r∗t as the latent target rate which directs monetary policy, we can follow the eco-

nomic interpretation of Bernanke and Blinder (1992) and describe ut as an unanticipated monetary

policy shock as opposed to the anticipated part captured by β′xt.
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the dynamic ordered probit model with a static model, obtained by setting ϕ = 0

in (4).

2.2 Prior specification

We adopt a Bayesian approach for estimation and inference in the dynamic probit

model with endogenous variable selection. Therefore we have to choose a prior for the

model parameters in (2)–(4). The prior specifications for most of the parameters are

straightforward in the sense that we set them relatively uninformative and conjugate.

For the threshold parameters αj we opt for a flat prior, not imposing any kind

of prior asymmetry that would favor a particular target rate adjustment category.

However, due to the ordering of the categories of yt, we do restrict this prior to the

region {(α1, α2)
′ ∈ R2 : α1 < α2}.

Our prior for the autoregressive parameter ϕ is such that stationarity of the ut

process is guaranteed. We take a truncated normal distribution: ϕ ∼ N (b, B) ×
I{ϕ∈S} with S = (−1, 1). We note that for very large B the prior for ϕ becomes a

uniform distribution on the region defined by S.

The regression parameters deserve some extra attention due to the endogenous

variable selection procedure. As noted before, we decompose β into the product of

inclusion indicators γ = (γ1, . . . , γK)′ and regression effects ψ = (ψ1, . . . , ψK)′. We

first focus on the inclusion indicators. We take the inclusion of the k-th predictor to

be a priori independent of the inclusion of all other K − 1 variables. Consequently,

the prior for each γk is a Bernoulli distribution with probability of success πk: γk|πk ∼
Ber(πk). A prior on the πk’s implies a prior on the model size. The latter is defined

as the number of included covariates given by N(γ) =
∑K

k=1 γk. For simplicity

we restrict the prior inclusion probabilities to be equal, that is, we set πk = π for

k = 1, . . . , K. We opt for a conjugate Beta prior on π, that is, π ∼ Be(c1, c2). In

this setting the prior expected model size is equal to Kc1/(c1 + c2).
4 We experiment

with different values for the hyperparameters ci to avoid strong prior influence on

posterior results. As a starting point we make this prior uninformative in the sense

that we consider all values π ∈ [0, 1] to be equally likely (which is achieved by setting

c1 = c2 = 1).

One of the advantages of Kuo and Mallick’s (1998) approach is the specification

4We compute prior expected model size by applying the law of iterated expectations: E[N(γ)] =

EπEγ|π[N(γ)] = Eπ[Kπ] = K·c1
c1+c2

, because N(γ)|π ∼ Bin(K, π).
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of the prior for ψ. This prior is specified independent of the inclusion indicators

γ, in contrast to the mixture of normals idea of George and McCulloch (1993).

This facilitates the posterior simulation considerably and has no undesirable model

restrictions. We propose to use a Gaussian prior for ψ with mean a and covariance

matrix A, that is, ψ ∼ N (a,A). As we demonstrate below, in our simulation scheme

to obtain posterior results (based on the Gibbs sampler), ψ is sampled conditional

on γ and vice versa. If γk = 0, the corresponding ψk is not identified by the data

and is approximately sampled from its prior distribution. This implies that, in order

to give predictor k a reasonable chance of getting selected in the next iteration, the

prior should generate ‘good proposals’. Kuo and Mallick (1998) recommend to make

the prior relatively uninformative and choose a diagonal prior covariance matrix A

with elements equal to 16 if the explanatory variables are standardized. We adopt

their recommendation, though we have experimented with different values. Provided

that these variances do not take extreme values, we find that posterior results are

robust.

2.3 Inference

We obtain posterior results by using Markov chain Monte Carlo [MCMC] meth-

ods, see Tierney (1994) and Robert and Casella (2004). The latent variables r∗ =

(r∗1, . . . , r
∗
T )′ are simulated alongside the model parameters θ = (α1, α2, π, ϕ, ψ′,γ ′)′,

see Tanner and Wong (1987) and Albert and Chib (1993). The posterior density of

the parameters and latent variables after having observed a sample y = (y1, . . . , yT )′

is given by

p(θ, r∗|y) ∝ p(θ)p(y, r∗|θ), (5)

in which p(θ) and p(y, r∗|θ) are the prior density of the model parameters and the

complete data likelihood function of the model, respectively. We refer to A for the

specific functional forms of these densities.

It is well known that Gibbs sampling in ordered probit models may suffer from

mixing difficulties, especially if some form of temporal dependence in the latent

variables is allowed, as in (4), see e.g. Liu and Sabatti (2000). We solve this issue

partly by fixing the lower threshold α1 in (2) at zero and at the same time including

an intercept in (3). We only use this reparameterization for posterior simulation.

Results are easily converted back into the familiar, interpretable model specification
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for inference.5 The MCMC simulation scheme to sample from the posterior is given

by:

Step 1. Sample the threshold α2 from its full conditional posterior (uniform distri-

bution);

Step 2. Sample ϕ given the other parameters and r∗ with a Metropolis–Hastings

sampler as suggested by Chib and Greenberg (1994) (proposal values from

truncated normal distribution);

Step 3. Sample π from its full conditional posterior (Beta distribution);

Step 4. Sample the latent target rate r∗t from its full conditional posterior for t =

1, . . . , T (truncated normal distributions);

Step 5. Sample γk from its full conditional posterior for k = 1, . . . , K in a random

order, see Kuo and Mallick (1998) (Bernoulli distributions);

Step 6. Sample ψ from its full conditional posterior, see also Kuo and Mallick

(1998) (multivariate normal distribution).6

The first step proceeds in a similar fashion as for a standard (static) ordered probit

model, see e.g. Albert and Chib (1993). Since we do not condition on the first

observation, we cannot sample the autoregressive parameter from a truncated normal

distribution. Therefore, in Step 2 we implement the Metropolis–Hastings sampler to

simulate ϕ as suggested by Chib and Greenberg (1994). In Step 3 the full conditional

posterior of π reduces to π|γ ∼ Be(c1 + N(γ), c2 + K −N(γ)). To take care of the

dynamics in the latent variables and the treatment of the first observation, we can

rewrite the conditional model and execute the next three steps of the simulation

scheme in a straightforward manner. We provide details of our posterior simulation

procedure in Appendix A.

5If we call the intercept β0, and the new upper threshold α∗2, then this reparameterization boils

down to α1 = −β0 and α2 = α∗2 − β0. If we set improper priors β0 ∝ 1 and α∗2 ∝ I{α∗2>0}, the

priors in both parameterizations are fully equivalent.
6Note that due to the reparameterization, in this step the regression parameters and the inter-

cept are simulated in one block from their joint multivariate normal distribution.
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2.4 Forecasting

To construct real-time Bayesian forecasts of the FOMC target rate decisions that

account for model and parameter uncertainty, we have to derive the posterior pre-

dictive distributions. The one-step ahead predictive distribution of ys made at time

s− 1 is given by its conditional probability density function

p(ys|y1,s−1) =

∫
p(ys|θ, r∗;1,s−1,y1,s−1)p(θ, r∗;1,s−1|y1,s−1)dr∗;1,s−1dθ, (6)

in which yn,m = (yn, . . . , ym)′ and r∗;n,m = (r∗n, . . . , r
∗
m)′, (1 ≤ n < m ≤ T ). Given

draws from the posterior distribution with pdf p(θ, r∗;1,s−1|y1,s−1), we can use Monte

Carlo integration to solve the integral in (6). We note that we can analytically com-

pute p(ys|θ, r∗;1,s−1,y1,s−1) = p(ys|θ, r∗s−1) by evaluations of the normal cumulative

distribution function. Because θ contains the predictor inclusion parameters γ, each

draw from the posterior also indicates a particular selected combination of predictors.

According to this principle, forecasts by models which are a posteriori considered

more likely get a larger weight in the ‘model-free’ predictive distribution.

For model evaluation we gauge the predictive power of the model by considering

one-step ahead forecasts. We compute these forecasts for the last T−τ observations,

that is, for months s = τ + 1, . . . , T . For every one-step ahead prediction we want

to incorporate all sample information revealed by that date. Therefore we update

our posterior distribution for every forecast we make.

We limit the computational burden by using importance sampling methods. The

forecast for ys is based on all information available up to and including period s− 1.

Hence, based on draws from p(θ, r∗;1,s−1|y1,s−1) we can construct the forecast for

period s according to (6). Before constructing the next one-step ahead forecast, for

ys+1, we incorporate the extra observed information revealed by the latest target

rate decision ys to update the posterior beliefs. We avoid rerunning the entire Gibbs

sampler by using importance sampling with the posterior from the previous period,

p(θ, r∗;1,s−1|y1,s−1), as importance function. To construct the forecast for ys+1 we

actually need a sample from p(θ, r∗;1,s|y1,s), but our importance function does not

provide a draw for r∗s . We solve this issue by extending the posterior from the

previous period with p(r∗s |θ, r∗;1,s−1,y1,s) and, hence, we obtain r∗s by simulating

from a truncated normal distribution. In Appendix B we describe this forecasting

procedure in full detail and show how to derive the importance weights.
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3 Data and target rate characteristics

We investigate the federal funds target rate at a monthly frequency for the period

from January 1990 till June 2008. It can be argued that during this sample period,

covering most of Greenspan’s term as chairman of the Board of Governors plus the

start of Bernanke’s reign, the Federal Reserve’s monetary policy objectives have

been kept constant.7 We build on this by assuming that the macroeconomic and

financial variables that are most closely monitored by the FOMC (and thus are most

informative for predicting target rate changes) have been the same throughout this

period. Put differently, we assume that structural breaks in the parameters of the

ordered probit model in (2)–(4) do not occur.

The FOMC meets eight times per year at previously set dates. Our sample pe-

riod, which covers 222 months in total, contains 148 months with such a scheduled

meeting. In addition, unscheduled meetings of the FOMC are held occasionally

(sometimes by conference call), if required by sudden unexpected economic develop-

ments or other major events affecting the economy. In addition to the 148 months

with scheduled meetings, we observe nine more months with unscheduled meetings

in our sample.8 We argue that the decision making process during these unscheduled

meetings is no different from the regular meetings. The only difference is that xt

takes atypical values that urge an extra meeting, but given these exogenous variables,

the way the outcome is decided upon (i.e., the model parameters) is identical.9

7During our sample period, substantial changes did occur in Federal Reserve’s operating proce-

dures and communication policy (see Poole; 2005; Ehrmann and Fratzscher; 2007, among others).
8Specifically, these months cover decisions made on January 9, 1991; April 30, 1991; 13 Septem-

ber, 1991; April 9, 1992; September 4, 1992; October 15, 1998; April 18, 2001; and September 17,

2001 (target rate decreases) and on April 18, 1994 (target rate increase). There are also months

with both unscheduled and scheduled meetings. For example, an unscheduled target rate decrease

was announced on January 22, 2008, but this was followed later that month by another target rate

cut following the scheduled meeting on January 29-30. We typify such months as months with a

scheduled meeting and therefore include them among the 148 ‘scheduled’ months.
9We have examined an alternative definition of the dependent variable yt in (1), which has ob-

servations if and only if there is a scheduled meeting in month t. Months without an unscheduled

meeting are not omitted from the sample, but yt is treated as missing in such a case. Estimation

results for this specification are not much different from those reported in Section 4. In partic-

ular, similar predictor variables are considered relevant in forecasting the target rate decisions

and estimated thresholds do not indicate substantial differences. Hence, removing the unscheduled

meetings from the data set would mean throwing away information while we already have relatively

few observations.
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Two remarks are in order. First, as discussed in the previous section, our dynamic

probit model is specified in calendar time. Hence, about one third of our sample

period concerns months without an FOMC meeting. In this case, yt as defined in

(2) is not observed and the only thing we know is how the unobserved target rate

behaves: r∗t |θ, r∗t−1 ∼ N (β′xt + ϕ(r∗t−1 − β′xt−1), 1), according to (3). Hence, such

a month does not provide direct information about the unknown model parameters.

We note that this is different from months with an FOMC meeting at which it is

decided to keep the target unchanged. According to the model specification in (2),

in that case the difference between the latent target rate r∗t and the prevailing actual

target rt−1 rate must have realized in the range (α1, α2] and this truncates r∗t .

Second, because we do not exclude months without meetings, neither in the

model estimation, nor in the forecasting experiment, our model is makes monthly

predictions. Hence, due to our sample selection, every forecast we construct is

necessarily conditioned on the event of a meeting and each forecasting statement

should start with saying: “If the FOMC organized a meeting next month, the forecast

for its outcome would be . . . ”.

Table 1: Summary statistics

FOMC decisions Federal funds target rate

# Decreases 40 Mean 4.35

# No-changes 86 Minimum (June 2003 - May 2004) 1.00

# Increases 31 Maximum (January 1990 - June 1990) 8.25

Standard deviation 1.85

Note: The table presents summary statistics for the federal funds target

rate and the FOMC decisions during the period January 1990 - June 2008 (222

months). In total we have 157 months in which the FOMC organized at least

one official meeting.

The announced target rates are displayed Figure 1, with summary statistics being

provided in Table 1. Over the sample period the target rate varied considerably,

between a minimum of 1.00 percent in 2003-4 and a maximum of 8.25 percent during

the first half of 1990. The circles in Figure 1 indicate the decisions to change the

target rate made by the FOMC. We represent no-change outcomes by diamonds.
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With 40 months with a decrease and 31 months with an increase, the FOMC seems

slightly more reluctant to set a higher target rate, although we have to correct for

the effects of the covariates. Figure 1 clearly shows that decisions of the same type

appear in clusters. For example, periods of sustained declines of the target rate

occurred in the early nineties, in 2001, and during the final year of the sample

period. To a large extent these target rate declines coincide with U.S. recessions as

declared by the NBER, as shown in Figure 1 by the shaded areas. Similarly, multiple

consecutive decisions to increase the target were made during 1994, 1999, and the

period from mid-2004 till mid-2006. These clusters can be explained by our model

via two mechanisms. First, it may be due to temporal dependence in the predictor

variables and, second, conditional on these covariates there is the persistence in the

decisions caused by interest rate smoothing.

Figure 1: Federal funds target rate and FOMC decisions
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Our data set further consists of a set of macroeconomic and financial variables

that are considered potential predictors for the FOMC target rate decisions. These

variables can be categorized in three groups. The first group comprises measures

related to inflation, output and (un)employment. These variables are most closely

related to the monetary policy objectives of the Federal Reserve and for this rea-
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son might be expected to play a key role in the FOMC decision making process.

The second group of variables consists of recent realizations of several other macro

and financial variables that provide information on economic developments. Most

of the variables in this group, such as new orders and building permits, have a

forward-looking character. As discussed in the introduction, the FOMC considers

multiple economic indicators in its deliberations, reflecting developments in financial

markets, the labor market, and the housing market, among others. Including this

second group of variables allows us to examine whether these indicators provide any

supplemental information for predicting target rate decisions, in addition to inflation

and output measures. The third group of variables consists of survey-based mea-

sures of consumer confidence and forecasts of inflation, output and interest rates.

The latter are taken from the Survey of Professional Forecasters conducted by the

Federal Reserve Bank of Philadelphia, see Croushore (1993) for a description of the

way these forecasts are constructed. Including this group of variables is motivated,

among others, by Ang et al. (2007) and Campbell and Diebold (2009), who demon-

strate that survey-based measures provide more accurate out-of-sample forecasts for

inflation and stock returns than historical macroeconomic and financial variables.

A relevant feature for the macroeconomic variables in the first and second group

of predictors is that they are subject to revisions after their initial release. As a

consequence, the currently available time series is different from the one that was

at the FOMC’s disposal at the time they met. These revisions can be substantial,

in particular for output and employment related variables. Diebold and Rudebusch

(1991) and Stark and Croushore (2002), among others, analyze the consequences and

potential pitfalls in case a forecasting experiment is conducted with latest-available

data instead of variables measured in real time, see also Croushore (2006) for a recent

survey. Note that the survey-based measures in the third group of predictors are not

subject to revisions, which can be considered an additional advantage of this type of

variables. In order to make our empirical analysis as realistic as possible, we employ

data as available on a real-time basis. For this purpose, we combine data from the

ALFRED database of the Federal Reserve Bank of St. Louis, the Federal Reserve

Bank of Philadelphia’s real-time database and real-time data for the components of

The Conference Board Leading Economic Indicator.10 Our resulting data set is set

10The real-time database of the Federal Reserve Bank of Philadelphia is constructed and main-

tained as described in Croushore and Stark (2001). We use their (monthly) vintages of GDP, but

due to some redefinitons we encounter problems in forming a real-time output gap. Therefore we
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up such that the vector of covariates xt contains potentially relevant information

for the target rate decision in month t, as it was historically available at the end of

month t− 1, when the forecast for the coming month was made.

Table 2 lists the complete set of 33 potential predictors we use in our analysis. All

variables are transformed to stationarity, mostly by converting them to growth rates;

see the final column of Table 2. Two further issues are worth mentioning. First,

variables measured only at a quarterly frequency, such as the SPF forecasts, are

transformed to monthly observations by simply keeping the value constant for the

three months within a quarter. We justify this by observing that during this three-

month period no new information about this variable is revealed. Second, we allow

for a so-called ‘averaging’ period. By this we mean that we take moving averages

or growth rates over the m most recent available observations of the predictors.

This reflects the idea that possibly the FOMC does not (only) focus on what has

happened to a certain economic indicator in the most recent month, which can be

a noisy signal, but instead (or also) considers developments over a longer period of

a few months. We experiment with different values for m to analyze the robustness

of our results with respect to the choice of m.

4 Empirical results

This section is divided into three parts. First, we consider estimation results for

the dynamic (and static) ordered probit model when using the full sample period

from January 1990 till June 2008, focusing on the question which variables appear to

be most informative for FOMC target rate decisions. Second, we present real-time

out-of-sample forecasts of the target rate decisions during the period from January

2001 till June 2008. Third and finally, we discuss a number of robustness checks that

examine the sensitivity of the results to the choice of priors and the transformations

applied to the predictor variables.

construct our own series of real potential GDP in real time by applying an HP-filter per vintage

to real-time GDP.
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Table 2: Set of potential predictors

Variable Acronym Pr [γk = 1|y] Transf.

Dynamic Static

Panel A: Monetary policy variables

1. Inflation, CPI: U.S. city average: All items: Seasonally adjusted INF 0.023 0.187 gr

2. Output gap, Real GDP less its HP-filtered trend OUT 0.474 0.166 av

3. Unemployment gap, Unemployment rate less CBO NAIRU UG 0.054 0.038 av

Panel B: Other macroecnomic and financial variables

4. TCB LEI, The Conference Board’s leading economic indicator LEI 0.017 0.012 gr

5. BCI-01 Average weekly hours, manufacturing WHM 0.049 0.020 gr

6. BCI-05 Average weekly initial claims for unemployment insurance CUI 0.014 0.010 gr

7. BCI-08 Manufacturers new orders, consumer goods and materials NOC 0.017 0.014 gr

8. BCI-32 Vendor performance, slower deliveries diffusion index VPI 0.016 0.022 gr

9. BCI-27 Manufacturers new orders, nondefense capital goods NOK 0.012 0.008 gr

10. BCI-29 Building permits, new private housing units NBP 0.039 0.009 gr

11. BCI-19 Stock prices, 500 common stocks SP5 0.009 0.010 gr

12. BCI-106 Money supply, M2 M2 0.009 0.008 gr

13. BCI-129 Interest rate spread, 10-y Treasury bonds less Fed funds 10TFF 0.052 0.969 av

14. TCB CCI, The Conference Board’s coincident index CCI 0.336 0.020 gr

15. BCI-41 Employees on nonagricultural payrolls ENP 0.035 0.013 gr

16. BCI-51 Personal income less transfer payments PI 0.066 0.016 gr

17. BCI-47 Index of industrial production IP 0.481 0.412 gr

18. BCI-57 Manufacturing and trade sales MTS 0.010 0.017 gr

19. Interest rate spread, 6-month T-bill less Fed funds 6TFF 1.000 1.000 av

20. Capacity utilization: Manufacturing CUM 0.065 0.043 av

21. Household sector: Liabilites: Household credit market debt outstanding HCM 0.109 0.064 gr

22. Total consumer credit outstanding TCC 0.023 0.013 gr

Panel C: Survey measures and professional forecasts

23. TCB Consumer confidence CC 0.083 0.144 av

24. TCB Consumer confidence: Present situation CCP 0.518 0.131 av

25. TCB Consumer confidence: Expectations CCE 0.036 0.032 av

26. Univ of Michigan consumer sentiment index CS 0.034 0.092 av

27. Univ of Michigan consumer sentiment index: Current conditions CSC 0.038 0.589 av

28. Univ of Michigan consumer sentiment index: Expectations CSE 0.030 0.052 av

29. Average (mean) duration of unemployment MDU 0.275 0.174 av

30. ISM Purchasing managers index ISM 0.019 0.109 av

31. Anxious index: Probability of decline in real GDP in the following quarter AI 0.021 0.016 av

32. SPF: Mean expected 3-month T-bill rate in the following 4 quarters 3TE 0.142 0.966 av

33. SPF: Mean expected CPI inflation rate in the following 4 quarters INE 0.052 0.034 av

Note: We use two types of transformations for the predictor variables. Dependent on

the behavior and character of the explantory variable we compute the annualized growth

rate 1200
m

∆mxt

Lmxt
(gr) or a moving average 1

m (1 + L + . . . + Lm−1)xt (av) over the m most

recent months.

17



T
ab

le
3:

M
ar

gi
na

l
po

st
er

io
r

di
st

ri
bu

ti
on

s

D
yn

am
ic

or
de

re
d

pr
ob

it
St

at
ic

or
de

re
d

pr
ob

it

P
er

ce
nt

ile
s

P
er

ce
nt

ile
s

P
ar

am
et

er
M

ea
n

St
d.

5t
h

95
th

P
r
[γ

k
=

1|y
]

P
ar

am
et

er
M

ea
n

St
d.

5t
h

95
th

P
r
[γ

k
=

1|y
]

β
6
T

F
F

2.
96

7
0.

58
1

2.
05

0
3.

94
6

1.
00

0
β

6
T

F
F

2.
76

7
0.

41
1

2.
11

9
3.

46
8

1.
00

0

β
C

C
P

2.
39

4
0.

93
3

0.
87

9
3.

88
6

0.
51

8
β

1
0
T

F
F

−1
.3

99
0.

34
9

−1
.9

84
−0

.8
48

0.
96

9

β
IP

0.
66

6
0.

21
8

0.
31

5
1.

03
3

0.
48

1
β

3
T

E
1.

38
7

0.
29

2
0.

87
9

1.
79

2
0.

96
6

β
O

U
T

1.
82

8
0.

67
3

0.
70

5
2.

91
3

0.
47

4
β

C
S
C

0.
80

4
0.

23
1

0.
44

0
1.

14
2

0.
58

9

β
C

C
I

0.
54

9
0.

20
4

0.
23

9
0.

89
2

0.
33

6
β

IP
0.

47
1

0.
17

5
0.

20
2

0.
77

3
0.

41
2

β
M

D
U

−1
.2

44
0.

50
1

−2
.0

51
−0

.4
13

0.
27

5
β

IN
F

0.
36

3
0.

14
3

0.
13

1
0.

59
9

0.
18

7

β
3
T

E
1.

41
3

0.
86

4
0.

06
8

2.
90

4
0.

14
2

β
M

D
U

−0
.7

37
0.

35
9

−1
.3

99
−0

.1
79

0.
17

4

β
H

C
M

−0
.4

94
0.

22
8

−0
.8

62
−0

.1
29

0.
10

9
β

O
U

T
0.

60
9

0.
26

7
0.

16
7

1.
04

8
0.

16
6

β
C

C
0.

98
0

1.
64

1
−1

.5
37

4.
17

1
0.

08
3

β
C

C
0.

72
3

0.
48

9
0.

05
7

1.
26

2
0.

14
4

β
P
I

0.
46

0
0.

27
3

0.
01

1
0.

88
8

0.
06

6
β

C
C

P
0.

76
7

0.
51

4
−0

.0
14

1.
40

5
0.

13
1

π
0.

14
7

0.
07

1
0.

04
8

0.
27

9
π

0.
18

3
0.

07
3

0.
07

9
0.

31
4

α
1

−3
.2

94
1.

24
7

−5
.3

35
−1

.3
04

α
1

−1
.7

59
0.

27
3

−2
.2

44
−1

.3
56

α
2

3.
75

0
1.

33
8

1.
71

8
6.

04
6

α
2

2.
06

4
0.

30
2

1.
62

9
2.

60
4

ϕ
0.

92
7

0.
04

1
0.

85
2

0.
97

3

N
ot

e:
T

he
ta

bl
e

sh
ow

s
pr

op
er

ti
es

of
th

e
m

ar
gi

na
l
po

st
er

io
r

di
st

ri
bu

ti
on

s
of

th
e

m
od

el
pa

ra
m

et
er

s.
W

e
pr

es
en

t
th

e
eff

ec
ts

of

th
e

te
n

m
os

t
re

le
va

nt
pr

ed
ic

to
rs

by
co

nd
it

io
ni

ng
on

in
cl

us
io

n:
P
os

te
ri

or
ex

pe
ct

at
io

n
E

[β
k
|γ k

=
1,

y
],

po
st

er
io

r
st

an
da

rd
de

vi
at

io
n

S
td

[β
k
|γ k

=
1,

y
]
an

d
th

e
5t

h
an

d
95

th
pe

rc
en

ti
le

s
of

th
e

re
sp

ec
ti

ve
m

ar
gi

na
l
di

st
ri

bu
ti

on
s.

18



4.1 Estimation results

We present the key properties of the marginal posterior distributions of the dynamic

ordered probit model parameters in the left panel of Table 3. We obtain these results

by applying the MCMC simulation scheme discussed in Section 2.3 using the full

sample period from January 1990 till June 2008 with an uninformative Be(1, 1) prior

on the predictor inclusion probability π and an averaging period equal to one month

(m = 1). For comparison, we present the posterior results for the nested static

ordered probit model, that is, with the restriction ϕ = 0 in (4), in the right panel of

this table.

Several conclusions emerge from these posterior results. First, we find strong

evidence for temporal dependence in the target rate decisions that goes beyond

the dependence caused by the inclusion of autocorrelated predictor variables. The

posterior mean of the autoregressive parameter in the AR(1) specification for the

error process ut in the dynamic probit model is equal to 0.93. Since the posterior

mass is tightly concentrated around values close to 0.9, the effect of a shock εt

remains noticeable for a substantial period of time. The posterior mean of 0.93, for

example, corresponds with a half-life of shocks of ten months.

Second, based on the marginal posterior inclusion probabilities Pr [γk = 1|y], we

observe that a limited number of predictor variables appears to be informative for

the target rate decisions. We show these probabilities for the ten most frequently

sampled covariates in the rightmost columns of the panels in Table 3, together with

summary statistics of the posterior for the average inclusion probability π.11 For

the dynamic model we find that six variables have a conditional posterior inclusion

probability that exceeds the posterior mean E [π|y], which equals 0.15. These vari-

ables are the spread between the six-month T-bill rate and the effective federal funds

rate (6TFF), The Conference Board’s consumer confidence index: present situation

(CCP), industrial production growth (IP), the output gap (OUT), The Conference

Board’s coincident index (CCI) and the expected mean duration of unemployment

(MDU). The spread between the six-month T-bill rate and the effective federal funds

rate (6TFF) is by far the most important predictor, in agreement with Hamilton

and Jordà (2002). This spread is included in the model with probability equal to

one, which furthermore is almost twice as high as the inclusion probability of the

second-most frequently sampled variable, being The Conference Board’s consumer

11We display the marginal posterior inclusion probabilities for all examined predictors in Table 2.
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confidence measure of present economic conditions. Although its inclusion prob-

ability of 0.14 is slightly smaller than the posterior of π, the SPF forecast of the

three-month T-bill rate (3TE) also contains relevant predictive content. Interest-

ingly, inflation only has a posterior inclusion probability of 0.023, indicating that

lagged inflation is not important for predicting FOMC decisions.

For the static model we also find six variables for which Pr [γk = 1|y] > E [π|y] =

0.18. These include the spread between the six-month T-bill and the effective federal

funds rate (6TFF), growth in industrial production (IP) and the professional forecast

of the three-month T-bill rate, which also are found to be important in the dynamic

model. In addition, the spread between the ten-year T-bond rate and the effective

federal funds rate (10TFF), the University of Michigan’s consumer sentiment index:

current conditions (CSC), and the inflation rate (INF) satisfy this condition. Al-

though their inclusion probabilities are strictly below the posterior mean of π, the

output gap (OUT), expected mean duration of unemployment (MDU) and The Con-

ference Board’s consumer confidence measures (CC, CCP) contribute substantially

to describing FOMC decisions.

It is also relevant to note that for both models the posterior mean of the inclusion

probability π is considerably smaller than its prior mean, which is equal to 0.5.

Hence, the data indicate a much smaller expected model size than suggested by the

prior distribution of π. Furthermore, the posterior inclusion probabilities are lower

for the dynamic probit model, which is due to the strong explanatory power of the

autoregressive dynamics in this model. In Section 4.3 we discuss other Beta priors

for π to check the robustness of our results.

If we exclusively focus on the marginal inclusion properties of the predictors,

the potential interaction between covariates remains hidden, as pointed out by Dop-

pelhofer and Weeks (2009a). In order to investigate these interactions we compute

Doppelhofer and Weeks’ (2009a) jointness measure for all pairs of explanatory vari-

ables {xkt, xlt}, (k 6= l = 1, . . . , K).12 This measure, denoted Jk,l, accounts for both

joint inclusion and exclusion of the two variables over the total model space to assess

their mutual dependence. Negative values indicate that the two variables are substi-

tutes, which means that they contain approximately the same information content

with respect to the target rate decisions. Positive values suggest a complementary

pair such that the two variables are jointly in/excluded most of the time and to-

12There are alternatives to this measure, see the comments in Doppelhofer and Weeks (2009b).
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gether they are more informative than in isolation. If Jk,l = 0, inclusion of variable

k is a posteriori independent of variable l’s inclusion.

Table 4: Posterior jointness measures for predictor pairs

Dynamic ordered probit Static ordered probit

Complements Substitutes Complements Substitutes

Pair {k, l} Jk,l Pair {k, l} Jk,l Pair {k, l} Jk,l Pair {k, l} Jk,l

CC CCE 2.57 CCI IP −3.19 CSC 3TE 2.96 10TFF OUT −3.43

MDU OUT 1.91 CCP OUT −2.67 10TFF CSC 2.64 CC CSC −2.69

CS CSE 1.64 CCI PI −1.87 CS CSE 2.55 CSC OUT −2.47

INF PI 1.58 CCP MDU −1.55 MDU OUT 2.30 CCP CSC −2.44

3TE INE 1.51 WHM PI −1.32 CUM MDU 1.94 CS CSC −2.06

INF CSC 1.43 CCI HCM −1.24 IP MDU 1.65 CCE 3TE −1.89

CCI ENP 1.39 NOC IP −1.00 CCE CUM 1.59 10TFF INE −1.81

NOK HCM 1.36 CC CCP −0.92 INE OUT 1.49 10TFF CCP −1.74

WHM OUT 1.29 WHM IP −0.91 CCP 3TE 1.37 CSC CSE −1.62

PI MTS 1.22 CCP HCM −0.82 IP CCP 1.32 CSC MDU −1.58

Note: The table shows Doppelhofer and Weeks’ (2009a) jointness measure for predictor

pairs in the dynamic and static ordered probit models estimated for the full-sample period

January 1990 - June 2008, using a Be(1, 1) prior for the variable inclusion probability π and

an averaging period m = 1 for the predictor variables. The jointness measure is defined

as Jk,l = log
[
q(k, l)q(k̄, l̄)

] − log
[
q(k, l̄)q(k̄, l)

]
in which q(k, l) = Pr [γk = 1, γl = 1|y] is

the posterior joint inclusion probability, q(k̄, l̄) = Pr [γk = 0, γl = 0|y] the posterior joint

exclusion probability and q(k̄, l) = Pr [γk = 0, γl = 1|y] and q(k, l̄) = Pr [γk = 1, γl = 0|y]

are the two posterior mutual exclusion probabilities. Jeffreys’ classification can be used

to assess significance: |Jk,l| > 2, strong relation; 1 < |Jk,l| < 2, significantly related;

|Jk,l| < 1, no significant relation. Negative values indicate substitutes, positive values

signal a complementary relation.

Table 4 shows the ten pairs of strongest complements and substitutes for both the

dynamic (left panel) and static (right panel) ordered probit models. The TCB con-

sumer confidence index and its expectations component are strong complements. We

find a similar result for the consumer sentiment indices by the University of Michigan

(CS and CSE); measures of the current economic situation need the forward-looking

character of consumers’ future expectations to jointly approximate the present sit-

uation and predict FOMC decisions. Many of the complementary pairs contain a

current economic activity measure and a type of forward-looking variable. For ex-

ample, the output gap and the expected duration of unemployment, which both

are important predictors when considered in isolation as shown in Table 3, are of-

ten jointly in/excluded. Growth in TCB’s coincident index is a strong substitute
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for both industrial production and personal income. This may not be surprising,

given that these variables are two of the four constituents of the CCI (together with

employment and manufacturing sales). The pairs of substitutes mostly consist of

current economic activity measures, for example, present consumer confidence and

the output gap or hours of manufacturing and personal income.

For the static probit model we find more predictor pairs that form strong substi-

tutes. Although in this specification the expected model size is larger, many of the

different included variables contain the same information for the target rate deci-

sions. Especially pairs of economic activity variables and different present consumer

confidence measures contain similar predictive content. We observe that the SPF

forecast of the three-month T-bill rate is a strong complement for current consumer

sentiment (JCSC,3TE ≈ 3). The latter, in turn, forms a strong complementary pair

with the spread between the ten-year T-bond and the federal funds rate (10TFF);

the pair has a jointness measure of 2.6. With respect to the significant complemen-

tary pairs, we find a similar result as in the dynamic model: activity variables and

forward-looking measures mutually complement each other.

In Table 5 we provide further information about the selected predictor combina-

tions. We show the ten posterior most likely combinations of covariates. Obviously

these models are mostly combinations of the posterior likely predictors discussed

above. As mentioned before, the autoregressive component in the dynamic probit

model apparently accounts for a large part of the dynamics in the latent target rate

r∗t . The static ordered probit specification needs more explanatory variables to cap-

ture the dynamics in the target rate, as demonstrated here by the larger posterior

most likely combinations of covariates. We expect the main predictors which are im-

portant in the static model but less in the dynamic variant (10TFF, 3TE, CSC and

IP) to pick up the strong dynamics in r∗t−1, because, except the growth of industrial

production, they show strong persistence. We find that these four covariates jointly

explain about 50 percent of the total variation in the lagged latent target rate.

For the dynamic probit model, the model that includes the interest rate spread

(6TFF), the present situation consumer confidence (CCP) and TCB’s coincident

index (CCI) is the most likely combination with a posterior probability of 0.07. The

second most likely model substitutes industrial production for CCI. We have seen

before that CCI and IP form a strong pair of substitutes. Most of the included

variables measure a type of current economic activity, such as industrial production,

coincident index or the output gap. Survey measures and professional forecasts
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Table 5: Posterior most likely combinations of predictors

Model Mi Probability

Panel A: Dynamic probit model

6TFF CCP CCI 0.067

6TFF IP CCP 0.061

6TFF CCP 0.056

6TFF IP OUT 0.042

6TFF IP OUT MDU 0.030

6TFF OUT CCI 0.023

6TFF OUT MDU CCI 0.023

6TFF IP 0.011

6TFF OUT 3TE 0.011

6TFF IP 0.010

Panel B: Static probit model

6TFF 3TE 10TFF CSC 0.191

6TFF 3TE 10TFF CSC INF 0.070

6TFF IP 3TE 10TFF CSC 0.065

6TFF IP CCP 3TE 10TFF 0.038

6TFF IP 3TE 10TFF 0.025

6TFF 3TE 10TFF ISM CSC 0.025

6TFF IP OUT MDU 3TE 10TFF 0.019

6TFF 3TE 10TFF 0.012

6TFF IP MDU 3TE 10TFF CSC 0.011

6TFF IP 3TE 10TFF CSC INF 0.011

Note: The table shows the posterior most likely combinations of predictor vari-

ables in the dynamic ordered probit model (Panel A) and static ordered probit

model (Panel B) estimated for the full-sample period January 1990 - June 2008, us-

ing a Be(1, 1) prior for the variable inclusion probability π and an averaging period

m = 1 for the predictor variables. The posterior model probability of combination

Mi = (γi,1, . . . , γi,K)′, γi,k ∈ {0, 1}, (i = 1, 2, . . . , 2K , k = 1, . . . ,K), is computed by

counting the number of occurrences of this particular combination in the simulation

sample of the posterior distribution.
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complement these combinations. The SPF three-month T-bill rate forecast, con-

sumer confidence indexes and households expectations about the duration of unem-

ployment are selected most often. The probabilities of individual models are rather

small, indicating that model uncertainty is substantial. Consequently, averaging

over models for descriptive or forecasting purposes may be preferable compared to

relying upon a single specification with a particular choice of explanatory variables.

We measure the effects of the covariates on the target rate decisions by the

marginal posteriors of the parameters βk. We focus on the effect of an explanatory

variable conditional on being included in the model. We therefore consider the prop-

erties of the marginal conditional densities p(βk|γk = 1,y) as reported in Table 3.

Obviously, we can only draw meaningful conclusions about these effects if the specific

variable is incorporated frequently enough, that is, if Pr[γk = 1|y] is reasonably large.

Otherwise its effect is only weakly identified by the data and conclusions would be

based on a small sample from the prior of ψk. Table 3 shows the mean, standard

deviation and the 5th and 95th percentiles of the posterior distributions conditional

on predictor inclusion. We can compute the unconditional posterior mean of βk by

using E [βk|y] = E [βk|γk = 1,y] · Pr [γk = 1|y], because E [βk|γk = 0,y] = 0.

Economic activity measures all have a positive effect, that is, larger values of these

variables imply a higher likelihood of a target rate increase. This corresponds well

with the idea that the FOMC tries to temper economic activity during expansionary

periods by setting a higher target rate, in order to prevent inflation from becoming

too high. Households expecting that it will become more difficult to find a job in

the coming months indicates a slowdown in economic growth. The likelihood that

the Fed will intervene and stimulate the economy by setting a lower target rate will

increase, which explains why Pr [βMDU < 0|γMDU = 1,y] ≈ 1. A similar explanation

holds for the effect of growth in the households debt outstanding (HCM).

The negative effect of the spread between the ten-year T-bond rate and the ef-

fective federal funds rate in the static probit model may seem strange at first sight.

However, we can interpret this variable as a proxy for long-run inflation expectations,

as pointed out in, e.g., Estrella and Mishkin (1997). As such, it may not be a vari-

able the FOMC reacts upon directly, but it rather measures market expectations of

what the FOMC will decide at upcoming meetings and what the long run impact of

its decisions will be. If people expect inflation to be high for a relatively long period

of time as the result of a relatively low target rate, long-term interest rates should

increase to compensate. As such, the ten-year T-bond rate may be more a predictor
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of FOMC outcomes than an indicator to which the FOMC reacts. This reasoning is

contrary to the explanation of the effect of a short-term spread like 6TFF, which rep-

resents short-term market expectations about inflation/economic activity to which

the FOMC does react. Estrella and Mishkin (1997) also find different predictive

natures of spreads with different maturities with regard to forecasting inflation and

output growth. Mishkin (1990a,b) discusses similar issues as well.

To get a better understanding of how strong the effects of the explanatory vari-

ables are, we display the three category probabilities as functions of a predictor

value in Figures 2 and 3 for the dynamic and static probit models, respectively. We

show effects of the six posterior most relevant predictors. The steeper the graphs

are, the stronger the effect of the explanatory variable under consideration. We see

that 6TFF, CCP and OUT have the largest impact on the type of FOMC decision.

In Figure 3 we observe that 6TFF has an even stronger effect in the static probit

model. Due to the negative effect of MDU, the graphs for a target rate increase

(dashed line) and decrease (solid line) switch roles compared to variables with a

positive influence. We further note that the effects in these figures are marginal

effects, i.e., holding constant the other variables. However, we have previously seen

that predictors seems to come in complementary sets. Hence, the marginal effects of

IP and CCI may seem modest, but considered in conjuction with their complements,

the joint impact will be larger.

A third finding from Table 3 is that the estimation results for the thresholds

α1 and α2 also reveal a difference between the static and dynamic models. In the

latter model, the posterior means of the thresholds are almost twice as large (in

absolute value), substantially expanding the no-change region for the latent target

rate. However, at least to some extent this is an implication of the difference in model

specification. In the dynamic model, r∗t will be more variable in an absolute sense

because the unconditional variance of the error ut is equal to 1/(1−ϕ2) > 1. To check

whether the FOMC decides ‘symmetrically’ with regard to upward or downward

target rate adjustments, we compute Pr[α1 + α2 > 0|y]. In case of symmetric

behavior α1 +α2 would equally likely be positive or negative. In the dynamic probit

model this probability is 0.60 and the static model has a value of even 0.85. This

result supports our initial conjecture that the FOMC is more reluctant to increase

the target rate than to decrease it (as r∗t must take more extreme values in order to

trigger an increase of the target rate).
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Finally, Figure 4 shows the posterior time-path of the latent target rate r∗t and

the thresholds that determine what decision will be taken. The latent target leads

the announced target, with a maximum sample correlation (0.70) for a twelve-month

lead time. This point is nicely illustrated by focusing on the period following the

millennium change. Before the target was lowered in 2001 we observe that the latent

rate had already been decreasing for several months. A similar pattern appears for

the upward target rate adjustments from mid-2004 onwards. This leading charac-

teristic is in line with previous research, see Hu and Phillips (2004). This graph also

shows that large changes in the target rate (|∆rt| > .25) coincide with relatively

large (absolute) values of r∗t . For example, the rapid and pronounced decline in the

latent rate during the second half of 2007 resulted in downward target changes of

0.50 and even 1.25 at single meetings. We note that this leading property of the

latent target rate is quite promising for the ability of the dynamic probit model to

actually predict future FOMC target rate decisions, which is the topic we turn to

next.

Figure 4: Federal funds target rate, latent target rate and thresholds
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4.2 Forecasting

We examine the predictive ability of our dynamic ordered probit model in two ways.

First, we compute the smoothed one-step ahead probabilities of a decrease, no-

change or increase of the target rate for each month in the full sample period January

1990 - June 2008. Specifically, we compute the sample mean of Pr[yt = j|θ, r∗t−1] =

Φ(αj + rt−1 − µt) − Φ(αj−1 + rt−1 − µt), (j = 1, 2, 3), over simulated values from

the full-sample posterior p(θ, r∗|y). We use that µt = β′xt + ϕ(r∗t−1 − β′xt−1) is

the conditional mean of r∗t . Figure 5 displays the results, with the shaded bars

representing the actual FOMC decisions. The dynamic probit model fits very well,

achieving a hitrate of 90 percent. The hitrate is defined as the percentage of correctly

predicted target rate decisions, where the forecast is taken to be the decision that

has the highest probability. If we consider the static probit model, the in-sample

hitrate deteriorates with 16 percentage points to 74 percent. The dynamic probit

probabilities show pronounced behavior, assigning most of the weight to a single

decision. The static probit model generally gives more moderate probability forecasts

for target rate increases and decreases and assigns more weight to the no-change

decision.13

Second, we employ our real-time Bayesian forecasting procedure and obtain gen-

uine out-of-sample posterior predictive distributions for the period January 2001 -

June 2008. We depict the one-step ahead probabilities in Figure 6. We first fo-

cus on the target increases in the upper panel of Figure 6. The dynamic probit

model succeeds in predicting the cluster of target rate increases from mid-2004 till

mid-2006 rather well. Already at the start of 2004 the probability of a target rate

hike gradually increases. In June, when the FOMC decided to increase the target

rate for the first time, it was up to 0.5. For all other target rate increases in this

period the probability forecast is in the range [0.6; 0.9]. For the first meeting after

this period of consecutive target rate increases, in August 2006, the model predicts

that a rise and no change would realize with probabilities 0.7 and 0.3, respectively

(see central panel of Figure 6). Hence, the probability of a target rate increase was

already declining considerably.

Next, we turn attention to the target rate decreases in the lower panel of Fig-

ure 6. The probability forecasts for the beginning of the cluster in 2001 are not

13We do not display graphs of the smoothed probabilities for the static ordered probit model,

but these are available upon request.
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very accurate. This holds especially for the decrease of June 2001 with a probability

forecast of only 10 percent. Possibly the posterior was not yet precise enough to

generate accurate forecasts, with only 88 meetings available in our sample before

2001. In-sample these meetings are fitted quite well though, as seen in Figure 5.

During the following period, running from 2002 till the end of 2003, the target rate

remained fairly stable with two isolated FOMC decisions to lower the target. A

prolonged period of consecutive decreases of the target rate starting again at the

end of 2007. During the six months before, the associated probability forecast al-

ready starts to increase. Following the final decrease in May 2008 this probability

quickly returns to zero. We further note that for the whole sample, in periods of an

increasing target rate, the probability of a decrease is virtually zero, and vice versa.

For the static probit model we find less pronounced probability forecasts. Espe-

cially during the period of consecutive increases in 2004-2006, the no-change decision

is given considerable probability. For the period July 2002 - December 2003 the static

model considers target rate decreases more likely than the dynamic model. Also for

the static probit model, we find a substantial and persistent rise in the probabilities

of a target increase or decrease already a few months before a period of such target

rate changes actually starts.

We report out-of-sample hitrates and predictive likelihoods in Table 6. The

dynamic probit model forecasts 82 percent of the meetings correctly. The static

probit model achieves an out-of-sample hitrate of 77 percent. We conduct a formal

evaluation of the models by computing the predictive likelihood p(yτ+1,T |y1,τ ) in

the observed sample; τ + 1 is January 2001. The dynamic model takes a (log) value

of −25.9, compared to −40.0 for the static model, which shows that the dynamic

variant finds far more support in the data.

To give some insight into the mechanics of the model averaging approach, we

also estimate the models with a fixed set of regressors. For both the dynamic and

static ordered probits we choose the posterior most likely predictor combination

from Table 5. Note that it is β′xt that determines the location of the normal

distribution of r∗t in (3) and, therefore, the probabilities of the three possible decisions

as determined by (2). Hence, if we allow for uncertainty in this part by allowing for

uncertainty in the regressors that are included, these probabilities will on average be

more spread compared to a case with fixed regressors. Although we cannot formally

compare the predictive performance of the fixed regressor specification with the

model averaging approach (as this is a situation with nested models), we find its
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Table 6: Hitrates and predictive likelihoods

Model Data In-sample hitrate Out-of-sample hitrate Pred. likel.

Dynamic Real time 89.8 (141/157) 82.3 (51/62) −25.9

Static Real time 73.9 (116/157) 77.4 (48/62) −40.0

Dynamic Latest available 88.5 (139/157) 80.6 (50/62) −26.7

Static Latest available 77.7 (122/157) 72.6 (45/62) −33.6

Benchmark 1: Time-invariant 54.8 (86/157) 43.6 (27/62) −70.0

Benchmark 2: Pure AR(1) 81.5 (128/157) 85.5 (53/62) −33.2

Note: Hitrates are equal to the percentage of correctly predicted target rate decisions,

when the forecast of the decision is given by ŷt = arg max{Pr [yt = j] : j = 1, 2, 3}.
The benchmarks are (1) a model with time-invariant probabilities π = (π1, π2, π3)′

(effectively β = 0K and ϕ = 0) such that the dependent variables are temporally

independent and (2) a pure AR(1) model (β = 0K) for the latent target rate r∗t .

predictive likelihood to be higher. We also should stress that we do not choose

an arbitrary model with fixed regressors, but the posterior most likely one. The

advantage of model averaging becomes visible during the isolated target decreases

in November 2002 and June 2003 though [Figure 6(c)]. These decisions get more

weight compared to the fixed predictor specification. If we would like to have a more

precise forecast distribution (i.e., more pronounced probabilities) in the future, we

could use our posterior results as prior input in a new model. For example, the

model space may be limited to the J most likely predictor combinations. However,

this more dogmatic prior comes with a cost as probabilities of less likely realizations

(the ones in November 2002 and June 2003, for example) may be underestimated.

Finally we examine the difference between using revised data and data available

in real time. Visual inspection of the probability plots of the dynamic model reveals

no significant differences. In Table 6 we see that the predictive likelihood using

real-time data is slightly larger compared to the latest-available data case. We can

see an improvement in the in-sample fit of the static model if we switch from real-

time to revised data. We find such an improvement in terms of the out-of-sample

performance too. The predictive likelihood increases from −40.0 to −33.6 if we use

latest-available instead of real-time data.
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4.3 Robustness checks

We assess the robustness of our empirical results in two respects. First, we examine

the effect of the choice of prior on the predictor inclusion probability π. Second,

we check the effects of changing the ‘averaging’ period m used for constructing our

predictor variables.

If we replace the uninformative Beta prior with a Be(3, 1) (prior mean 0.75 but

relatively large variance) or a Be(10, 10) (prior mass relatively tightly concentrated

around 0.5), the posterior mean of π increases from 0.15 to 0.25 and 0.30, respec-

tively. The type of posterior most likely variables does not change though. These

larger models also do not contribute to better forecasting results. Our findings sup-

port the idea that we should be careful with interpreting the posterior inclusion

probabilities. These can easily be inflated via the prior without enhancing the fit of

the model; the prior simply forces us to include irrelevant predictors more frequently.

The choice of the averaging period m does have consequences. If we set it equal

to three months (m = 3), similar predictors as for m = 1 are selected. However, the

forecasting performance deteriorates, mainly because the reversal decisions become

harder to forecast. The smoothing of the predictors makes the probabilities to

react more sluggish. An even more extreme choice of nine months has the result

that hardly any explanatory variables provide useful information. A pure AR(1)

process for r∗t is then the posterior most likely model. As a result the probabilities

become very smooth with always considerable mass assigned to the no-change class.

Obviously, since in this model hardly any exogenous information is selected, changing

patterns are difficult to predict and we simply extrapolate the past. However, the

predictive likelihood of a pure AR(1) for the latent target rate takes a value of −33.2

which is still quite an improvement over a benchmark model with time-invariant

probabilities and a static ordered probit model, see Table 6. We explain this by the

strong dynamics in r∗t : once yt is in a particular class, outcomes of future meetings

in the short run will likely be of the same type.

5 Conclusions

We model the discrete changes in the Federal funds target rate during the period

January 1990 - June 2008. We focus on the direction of change as decided by

the FOMC during their meetings held approximately eight times per year, using
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ordered probit models. The key modeling issue that we address concerns the question

which indicators can help predict the FOMC decisions. For this reason we use an

endogenous variable selection procedure. We consider a set of 33 potential predictors,

including macroeconomic and financial series and forward-looking variables obtained

from the Survey of Professional Forecasters.

Our empirical results show strong evidence for persistence in the target rate

decisions, above the persistence caused by the (strongly) autocorrelated covariates.

Endogenously selected explanatory variables are in line with previous literature.

Most predictive ability is found for, first, economic activity measures like industrial

production, the output gap and the coincident index, and, second, term structure

variables like interest rate spreads. In addition we find that SPF-based forecasts

for the three-month T-bill rate and different survey-based variables that measure

current and future consumer confidence contain predictive content for the FOMC

decisions. The estimation results furthermore suggest a kind of asymmetry in FOMC

decision-making, in the sense that the FOMC seems more reluctant to increase than

to decrease the target rate. Perhaps an erroneous slow-down could be considered

more harmful than a bit of overstimulation.

Another contribution of this paper is that we propose a (Bayesian) forecasting

scheme on a real-time basis to construct out-of-sample probability forecasts, effi-

ciently using all information available at the time of generating the forecasts. For

this purpose, we construct a real-time data set and update the posterior parame-

ter beliefs with importance sampling each time a new observation comes in. The

Bayesian approach makes sure that we can appropriately deal with parameter and

model uncertainty to end up with a parameter- and model-free forecast.

Meetings in the period January 2001 - June 2008 are predicted well; 82 percent

of the outcomes during the out-of-sample period 2001-2008 are correctly predicted.

In-sample we even achieve a hitrate of 90 percent. Changes in the economy and

subsequently in the outcome of FOMC meetings are quickly incorporated in the

forecasts. For example, before the FOMC started increasing the target rate in mid-

2004, its probability forecast was already rising for four months. The dynamic

ordered probit model improves forecasting performance substantially compared to a

static model, which achieves hitrates of 77 and 74 percent.
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Appendix A Posterior simulation

In this appendix we provide details of the main components for the Bayesian analysis

of our dynamic ordered probit model. We specify the functional forms of the prior

and the complete data likelihood in Section A.1. In Section A.2 we discuss the

details of the Markov chain Monte Carlo simulation scheme.

A.1 Prior distribution and complete data likelihood

The joint prior density for the parameters follows from the individual priors specified

in Section 2.2:

p(θ) ∝ exp

{
−1

2
(ψ − a)′A−1(ψ − a)

}
exp

{
− 1

2B
(ϕ− b)2

}
× I{ϕ∈S}

× πc1+N(γ)−1(1− π)c2+K−N(γ)−1 × I{α1<α2}, (A.1)

and N(γ) =
∑K

k=1 γk is the number of included covariates.

To derive the complete data likelihood of our model (1)–(4) we collect the latent

target rates r∗t in r∗ = (r∗1, . . . , r
∗
T )′ and the observed target rate decisions yt in the

vector y = (y1, . . . , yT )′. The complete data likelihood is decomposed as p(y, r∗|θ) =

p(y|r∗,θ)p(r∗|θ) and the first pdf on the left equals

p(y|r∗, θ) =
T∏

t=1

p(yt|r∗t , θ) =
T∏

t=1

I{r∗t−rt−1∈(αyt−1,αyt ]}, (A.2)

in which the latter equality follows from the mapping rule in (2); conditional on r∗t ,

yt is degenerate. To derive the other pdf, p(r∗|θ), we use the first-order Markov

property of {r∗t } by combining (3) and (4), which results in

p(r∗|θ) = p(r∗1|θ)
T∏

t=2

p(r∗t |r∗t−1,θ). (A.3)

If we use (3) and (4), then the individual conditional densities in (A.3) are Gaussian

with means

µt = β′xt + ϕ(r∗t−1 − β′xt−1) (A.4)

and unit variances, for t = 2, . . . , T . We model the first latent variable r∗1 using its

marginal distribution (given x1) and hence

r∗1 = β′x1 + u1, with u1 ∼ N
(

0,
1

1− ϕ2

)
. (A.5)
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Both (A.2) and (A.3)–(A.5) reveal the complete data likelihood:

p(y, r∗|θ) ∝
T∏

t=1

I{r∗t−rt−1∈(αyt−1,αyt ]} × (1− ϕ2)
1
2 exp

{
−1− ϕ2

2
(r∗1 − β′x1)

2

}

× exp

{
−1

2

T∑
t=2

(r∗t − β′xt − ϕ(r∗t−1 − β′xt−1))
2

}
, (A.6)

in which the integrating constant does not depend on parameters θ.

A.2 Posterior simulation steps

We set up an MCMC sampler to simulate from the posterior p(θ, r∗|y) which is

proportional to the product of (A.1) and (A.6). We simulate the parameters and

the latent variables from their full conditional posterior distributions. The simulation

scheme is provided in Section 2.3. The first three steps of the sampler are standard.

Steps 4 and 5-6 are discussed in detail.

Step 4: Sampling latent data

The latent target behaves like r∗t −β′xt = ϕ(r∗t−1−β′xt−1) + εt with εi
i.i.d.∼ N (0, 1).

This temporal dependence in combination with the truncation (caused by condition-

ing on the observed categories) makes the simulation of all latent variables in one

block impossible. Instead, we sample them individually from their full conditional

posteriors, see Albert and Chib (1993) and Geweke (2005).

We start with the initial r∗1. Since the process for r∗t is first-order Markov all

relevant information in the series for r∗1 is captured by r∗2. We use the following two

equations to derive the full conditional posterior of r∗1:

r∗1 = β′x1 + u1,

r∗2 = β′x2 + ϕ(r∗1 − β′x1) + ε2.

This system is rewritten as
√

1− ϕ2β′x1 =
√

1− ϕ2r∗1 + ε1,

r∗2 − β′x2 + ϕβ′x1 = ϕr∗1 + ε2,

with εi
i.i.d.∼ N (0, 1), (i = 1, 2). Hence, we have a normal linear regression framework

with dependent and independent variables

y∗1 =

[ √
1− ϕ2β′x1,

r∗2 + β′(ϕx1 − x2)

]
, X∗

1 =

[ √
1− ϕ2

ϕ

]
,
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respectively. This result shows that r∗1 should be sampled from a normal distribution

with mean
(
X∗′

1 X∗
1

)−1
X∗′

1 y∗1 and variance
(
X∗′

1 X∗
1

)−1
= 1, truncated to the interval

(r0 + αy1−1, r0 + αy1 ].

For r∗t , (t = 2, . . . , T − 1), we derive the full conditional posteriors in a similar

fashion. We collect the r∗t -terms from the joint posterior and get the system:

β′xt + ϕ(r∗t−1 − β′xt−1) = r∗t + εt,

r∗t+1 − β′xt+1 + ϕβ′xt = ϕr∗t + εt+1.

If we define the auxiliary variables

y∗t =

[
ϕr∗t−1 + β′(xt − ϕxt−1)

r∗t+1 + β′(ϕxt − xt+1)

]
, X∗

t =

[
1

ϕ

]
,

then r∗t is sampled from a normal distribution with mean
(
X∗′

t X∗
t

)−1
X∗′

t y∗t and

variance
(
X∗′

t X∗
t

)−1
= 1/(1 + ϕ2), truncated to the interval (rt−1 +αyt−1, rt−1 +αyt ].

At the end of the sample period there is only one data point that contains

information for r∗T :

r∗T = β′xT + ϕ(r∗T−1 − β′xT−1) + εT .

We sample this final latent variable from a normal with mean β′xT + ϕ(r∗T−1 −
β′xT−1), unit variance and truncated to the interval (rT−1 + αyT−1, rT−1 + αyT

].

Steps 5-6: Variable selection

In order to apply the Kuo and Mallick (1998) step we rewrite the system such that,

conditional on {r∗, ϕ}, a normal linear regression framework appears. We construct

adjusted dependent, vt, and independent, wt, variables by collecting terms involving

β:

vt ≡ r∗t − ϕr∗t−1 = β′(xt − ϕxt−1) + εt = β′wt + εt, (t = 2, . . . , T ),

v1 ≡
√

1− ϕ2r∗1 =
√

1− ϕ2β′x1 + ε1 = β′w1 + ε1.

With this result we can perform the variable selection in the normal linear regression

setup v = Wβ + ε with dependent variables v = (v1, . . . , vT )′ and explanatory

variables W = (w1, . . . ,wT )′. First we sample the inclusion indicator γk from its

full conditional posterior for all k (in random order), which is Bernoulli. Next we

update the regression parameters ψ in one block (conditional on the new inclusion

indicators), for which we draw from their joint multivariate normal distribution.
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Appendix B Bayesian forecasting

In this appendix we discuss the details of the implementation of the real-time

Bayesian forecasting procedure. During this forecasting exercise we want to gen-

erate a series of one-step ahead predictive densities p (ys|y1,s−1) for s = τ +1, . . . , T ,

given by

p(ys|y1,s−1) =

∫
p(ys|θ, r∗;1,s−1,y1,s−1)p(θ, r∗;1,s−1|y1,s−1)dr∗;1,s−1dθ. (B.1)

As discussed in Section 2.3, we need a sample from p(θ, r∗;1,s−1|y1,s−1) to be able to

evaluate these predictive densities. To avoid calculating posterior results for every

time period s, we opt for importance sampling techniques (see, for example, Robert

and Casella; 2004, for a discussion).

The construction of the predictive density of ys requires a sample from the pos-

terior distribution with pdf p(θ, r∗;1,s−1|y1,s−1), which we decompose as

p(θ, r∗;1,s−1|y1,s−1) = p(r∗s−1|θ, r∗;1,s−2,y1,s−1)p(θ, r∗;1,s−2|y1,s−1). (B.2)

Given a sample from p(θ, r∗;1,s−2|y1,s−1), we draw r∗s−1 from p(r∗s−1|θ, r∗;1,s−2,y1,s−1).

The latter simplifies to p(r∗s−1|θ, r∗s−2, ys−1) and is the pdf of a normal distribution

with mean µs−1 defined in (A.4), unit variance and truncated to the region (rs−2 +

αys−1−1, rs−2 + αys−1 ].

To sample from p(θ, r∗;1,s−2|y1,s−1) we use importance sampling. As importance

function we apply the posterior density using data up to and including period s− 2,

that is, p(θ, r∗;1,s−2|y1,s−2). We write

p(θ, r∗;1,s−2|y1,s−1) =
p(ys−1|θ, r∗;1,s−2,y1,s−2)p(θ, r∗;1,s−2|y1,s−2)p(y1,s−2)

p(y1,s−1)
(B.3)

and hence the importance weights are given by

ws(θ, r∗;1,s−2) =
p(ys−1|θ, r∗;1,s−2,y1,s−2)

p(ys−1|y1,s−2)
. (B.4)

This whole setup is applied recursively and we start with a posterior sample from

p(θ, r∗;1,τ |y1,τ ). We compute the predictive density for yτ+1 using Monte Carlo inte-

gration. For the periods s = τ +2, . . . , T , we keep on simulating the latent variables

r∗s−1 and correct with importance weights according to the following scheme:

Step 1. Given a draw of {θ, r∗;1,s−2} simulate r∗s−1 from p(r∗s−1|θ, r∗;1,s−2,y1,s−1),

which is N (µs−1, 1) truncated to (rs−2 + αys−1−1, rs−2 + αys−1 ] where µs−1 is

given in (A.4);
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Step 2. Update the importance weight ws(θ, r∗;1,s−2) using

ws(θ, r∗;1,s−2) =
p(ys−1|θ, r∗;1,s−2,y1,s−2)

p(ys−1|y1,s−2)
ws−1(θ, r∗;1,s−3),

with the initialization wτ+1 = 1;

Step 3. Evaluate

Pr[ys = j|θ, r∗s−1] · ws = [Φ(αj + rs−1 − µs)− Φ(αj−1 + rs−1 − µs)] · ws,

in the simulated value of {θ, r∗;1,s−1} for all possible categories (j = 1, 2, 3),

where µs is given in (A.4) and Φ(·) is the standard normal cumulative distri-

bution function;

Step 4. Repeat the previous three steps M (= number of simulation runs) times

and compute p(ys|y1,s−1) using the simulation sample average over the values

in Step 3.

Appendix C An alternative dependent variable

The FOMC meets eight times per year, approximately every six weeks. For our

ordered probit model, which is specified in calendar time at a monthly frequency,

this implies that on average there are four observations each year for which there is

no formal decision on the target rate. In the main analysis we treat those months

as giving rise to missing observations for the dependent variable yt as defined in (1).

In this appendix we briefly summarize the ordered probit results obtained with an

alternative treatment of those months. Specifically, we set yt = 2 when no FOMC

meeting takes place in month t, corresponding with the target rate remaining at the

same level. This alternative definition may be motivated by noting that if there had

been reason to change the target rate, the FOMC would have done so by means of

an unscheduled meeting.

An immediate consequence of this alternative way of handling months without

an FOMC meeting is that the latent target rate r∗t is forced to be such that the

difference with rt−1 remains within the interval (α1, α2], due to the relation between

yt and r∗t in (2). This leads to erratic behavior of r∗t , especially during prolonged

periods of consecutive FOMC decisions to increase or decrease the target rate. This

can be seen from the posterior time-path of r∗t in Figure C.1. As an example, between
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June 2004 and June 2006, the FOMC decided to increase the target rate by 25 basis

points at each of the 17 meetings that were held during this period. Nevertheless

we observe that r∗t − rt−1 did not increase much beyond the threshold α2 during the

months with FOMC meetings in this period. This results from the fact that r∗t −rt−1

necessarily falls below α2 during the months without a meeting.

The main implication of this behavior of r∗t is that by construction the ordered

probit model cannot provide a strong signal for target rate increases or decreases.

Again, during the period June 2004 - June 2006, the difference between the latent

target rate and the prevailing actual target rate rt−1 never becomes much larger

than the threshold α2, such that the probability of no target rate change will always

be quite substantial. This is confirmed by Figure C.2, which shows the smoothed

in-sample probabilities for the three categories of target rate decisions based on esti-

mating the dynamic probit model using the complete sample period. The probability

of a target rate increase or decrease typically hardly ever exceeds 0.7.

This effect is felt even more strongly when the model is used for out-of-sample

forecasting. Figure C.3 shows one-month ahead real-time out-of-sample probabilities

from the dynamic probit model for the period January 2001 - June 2008. With few

exceptions, the probability forecast for a target rate decrease or increase does not

become larger than 0.5.

Not surprisingly then, the forecast performance of the ordered probit models

deteriorates considerably. Table C.1 shows the in-sample and out-of-sample hit rates

obtained from the dynamic and static models with real time and latest available data.

For all specifications, the hitrates are 10-20 percent lower than those obtained in the

main analysis, as shown in Table 6.
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Table C.1: Alternative yt: Hitrates and predictive likelihoods

Model Data In-sample hitrate Out-of-sample hitrate Pred. likel.

Dynamic Real time 77.9 (173/222) 67.8 (61/90) −61.4

Static Real time 71.6 (159/222) 61.1 (55/90) −67.7

Dynamic Latest available 71.2 (158/222) 57.8 (52/90) −64.7

Static Latest available 69.8 (155/222) 64.4 (58/90) −60.1

Benchmark 1: Time-invariant 68.0 (151/222) 61.1 (55/90) −86.7

Benchmark 2: Pure AR(1) 69.8 (155/222) 64.4 (58/90) −63.2

Note: The table shows the hitrates and predictive likelihoods for the models with

the alternative yt. Since we do not have missing observations in this setting, we have

222 observations in-sample and 90 FOMC decisions out-of-sample. Also note that we

cannot compare these values with the ones in Table 6. For further notes, see Table 6.
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Figure C.1: Alternative yt: Federal funds target rate, latent target rate and thresholds
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