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Abstract 

Information, communication and transport networks have always been in a state of flux, 

while they also influence each other. Extensive research efforts have been made to 

investigate the dynamics in the structure and use of networks, e.g., by means of network 

geometries, small-world effects and scale-free phenomena. We will illustrate these new 

developments on the basis of airline network evolution. The present paper provides a 

new contribution to the analysis of topological properties of complex airline networks. 

Using Lufthansa’s networks as an example, this paper aims to show the empirical 

relevance of various network indicators – such as connectivity and concentration – for 

understanding changing patterns in airline network configurations. After an extensive 

discussion of various statistical results, a decision-aid method, viz. multi-criteria 

analysis, is used to investigate the robustness of our findings. The results highlight the 

actual strategic choices made by Lufthansa for its own network, as well in combination 

with its partners in Star Alliance. 

 
Key words: airline networks, complexity, connectivity, concentration, degree 
distribution, network geometry, multicriteria analysis 
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1. Analysis of Complex Networks 

 
Networks are organized constellations that aim to shape and control human activities in 

an efficient way. In an open dynamic society, networks will be challenged to adjust 

themselves to new circumstances. And, consequently, all information, communication 

and transport networks are permanently in a state of flux. The use of advanced 

information systems offers even many more possibilities for a flexible adjustment of 

networks. The structure and formation of complex networks – using ingredients from 

information systems analysis – have received much attention in recent years. Boolean 

algebra in combination with digitally coded information form the constituents of 

network analysis, as exemplified for instance by traditional graph theory. Network 

analysis has become an established tool in, for example, operations research, 

telecommunication systems analysis and transportation science, while in more recent 

years it has also become an important analytical tool in industrial organization, 

sociology, social psychology, and economics and business administration (Barthélemy 

2003; Gorman 2005; Schintler et al. 2005a,b; Reggiani and Nijkamp 2006, 2009; Goyal 

2007; Patuelli 2007; Vervest et al., 2009). Air transport is a prominent example of 

modern network constellations and will be addressed in this paper from a structural 

network connectivity perspective. Air transport patterns show indeed clear network 

configurations, which impact on the way single airline carriers operate (Button and 

Stough 2000). The abundant scientific literature on airline networks has addressed this 

topic in terms of both mathematical modelling and empirical measurements on different 

typologies of airline network configurations.  

In this context, interesting research has emerged that mainly addressed the issue of 

describing and classifying networks by means of geographical concentration indices of 
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traffic or flight frequency (Caves et al. 1984; Toh and Higgins 1985; McShan 1986; 

Reynolds-Feighan 1994, 1998, 2001; Bowen 2002; Lijesen 2004; Cento 2009). These 

measures, such as the Gini concentration index or the Theil index, provide a proper 

measure of frequency or traffic concentration on main airports in a simple, well-

organized network. However, if a real-world network structure is complex, including 

multi-hub or mixed point-to-point and hub-spokes connections, the concentration 

indices may record high values for all types of structure, but fail to clearly discriminate 

between different network shapes (Alderighi et al. 2007). Consequently, there is a need 

for a more appropriate measurement of connectivity structures in complex networks, in 

particular, since in the modern airline industry competition takes place at all levels 

between companies, between airports and between airline networks. Sophisticated data 

analysis, instigated by advances in information systems technology, have laid the 

foundation for rapid and flexible adjustments of all actors in the aviation business, thus 

increasing competitiveness in this sector. 

Starting from the above contextual observations, the present paper aims to investigate 

the relevance and applicability of a set of network connectivity/concentration indices, in 

order to properly typify and map out structural developments in complex airline 

network configurations. For reasons of data availability, the application of our analysis 

will address Lufthansa’s network, both European and world-wide, while making a 

distinction between Lufthansa as an individual firm and Lufthansa in combination with 

Star Alliance. To put our analysis in perspective, we will first offer in the next section a 

concise review of recent developments in the airline industry. Then we will highlight 

the importance of network measurement analysis, followed by a description and 

assessment of various connectivity and concentration indices, applied to Lufthansa’s 
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network. A robustness test using multicriteria analysis is also undertaken, followed by 

concluding remarks. 

 

2. Structural Changes in the Airline Industry 

 

The airline industry has moved from a patchwork of individual and protected companies 

to a liberalized system of globally interconnected corporate organizations (see Martin 

and Voltes-Dorta 2008 and Nijkamp 2008). The aviation sector has traditionally been a 

publicly controlled industry, with a high degree of government intervention, for both 

strategic and economic reasons. Already in 1919, the Paris Convention stipulated that 

states have sovereign rights in the airspace above their territory. Consequently, a series 

of bilateral agreements was established between countries that the airlines wished to fly 

over. The Chicago Convention (1944) made a distinction between various forms of 

freedom for using the airspace, ranging from the 1st freedom (the right to fly over the 

territory of a contracting state without landing) to the 8th freedom (the right to transport 

passengers and cargo within another state between the airports in that state). The airline 

sector ultimately became an overregulated – and thus inefficiently operating – industrial 

sector in the post-war period all.  

The US Airline Deregulation Act (1978) set the tone for a clear market orientation of 

the aviation sector in the USA, where US-based airlines were allowed to autonomously 

determine their routes, destinations, frequencies and airfares on their domestic flights, 

while new firms that were fit, willing and able to properly perform air transportation 

were free to enter the market. The resulting competition led to a rise in efficiency and 
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innovative strategies in the airline industry and resulted in lower airfares, the entry of 

many new companies, and a significant increase in demand.  

The airline deregulation in Europe has taken a much slower pace, due to the 

heterogeneity among European countries, the diversity of air traffic control systems and 

nationalistic motives for promoting a national carrier. Since the year 1988, Europe has 

gradually introduced a series of steps (so-called packages) to ensure a full deregulation 

of the European airline sector by the end of the last century, based on an integrated 

airline market characterized by fair competition and sound economic growth.  

The next step in this deregulation process has been the Open Skies Agreement 

between the USA and Europe, which has opened up many more opportunities for 

carriers on both sides of the Atlantic to increase their financial viability and their market 

shares in a free competition across the Atlantic.  

The changes in regulatory regimes in the European airline sector have prompted 

various new actions and strategies of European carriers in the past decade, such as 

mergers, take-overs and alliances. But the fierce competition has also led to bankruptcy 

of several existing carriers (such as Swissair and Sabena). More competition in a free 

market in Europe has largely had the same effects as in the USA, except for the fact that 

flag carriers still kept a large share of the market.  

In Europe, we currently observe – as a result of the deregulation packages – three 

airline business models: (i) full-service carriers (offering a variety of services and 

network linkages); (ii) low cost carriers/LCCs (offering a limited number of services on 

specific segments of the network (for example, regional airports) at low prices, mainly 

on a point-to-point basis; (iii) charter companies (offering various services to specific 

holiday destinations). The changing scene in competition in response to the deregulation 
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has prompted a variety of network strategies (ranging from hub-and-spoke systems to 

point-to-point systems) and yield management practices (for example, through market 

segmentation, product differentiation, booking classes, price setting and distribution 

channels). Various alliances have also occurred, but less mergers, to strike a balance 

between scale advantages and national identity/visibility (see Albers et al. 2005; 

Brueckner and Pels 2005). 

The above described force field has had far-reaching implications for the network 

strategies of airline companies. In the present paper we will investigate the structure and 

evolution of the airline network of Lufthansa, both individually and in association with 

its international partners (in particular, Star Alliance) by paying particular attention to 

the connectivity and concentration patterns in a dynamic airline industry. Lufthansa has 

become a strong partner in the European airline sector, through its own strength as a 

large European company in one of the largest EU countries and through its successful 

strategic alliances with several European and non-European companies. This has 

induced important changes in its networks structure, as a consequence of both 

complementarity and competition. Advances in ICT have helped to create a flexible 

ajustment pattern in the airline industry. A mixed type of multi-hub-and-spokes system 

has emerged which may be rather typical for the spatial-economic development of 

modern airline networks in Europe (see also Guimera and Ameral 2004). 

 

3. Complex Network Analysis 

 

Airline networks exhibit a clear example of a dynamically evolving, complex network. 

Modelling complex networks is a great challenge: on the one side, the topology of the 
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network is governing the complex connectivity dynamics (see, for instance, Barabási 

and Oltvai 2004); on the other side, the functional-economic relationships in such 

networks may also depend on the type of connectivity structure. The understanding of 

these two interlinked network aspects may be instrumental for capturing and analysing 

airline network patterns (see also Guimera et al. 2005). 

In the last decades network theory has gained scientific interest and sophisticated 

network models have been used in different fields, including economics and geography 

(Waters 2006). This trend faced also quite some difficulty, because existing models 

were not able to clearly describe the network properties of many real-world systems, 

whose complexity could not fully be understood (Barabási and Albert 1999). An 

interesting new development can inter alia be found in exponential random graph 

modelling, in which networks are represented as a dynamic graph, in which the network 

is growing in an exponential way. Through maximum likelihood procedures such 

random developments can be statistically investigated (see e.g. Robins et al. 2007). In 

our approach we will use in particular notions and concepts from complexity theory. 

Spatial-economics systems – including air transport networks – are complex, because 

agents interact in order to obtain significant benefits by means of a joint activity 

(Boschma 2005). This interacting process may become a permanent feature prompting a 

structure change, thus leading to a new meso- or macro-structure, for example, to the 

creation of activity clusters.  



 8 

Air transport systems have over the past years been experiencing a variety of such 

clustering processes. An example is provided by airlines’ alliances.
1
 The main reason 

why airline carriers cooperate or form alliances stems from cost reductions they can 

thus obtain. Being a member of an alliance impacts on the carriers’ strategy for a long 

time and also influences the network configuration adopted by partners and competitors. 

It is worth noteworthy that alliances play also an important role in shaping market 

dynamics; in 2005, the three main alliances in air transport accounted for 80 per cent of 

the total capacity offer.
2

A further important trend many real networks show is the so-called ‘Small-World 

(SW) effect’. This term indicates that the diameter

 Therefore, it is important to develop airline network models 

that can adequately take into account clustering and merger processes.  

3

Alongside the SW effect, the SW network model has been developed in order to take 

into account both the SW effect and the related clustering processes (Watts and Strogatz 

 of a network is so small that it takes 

only a few movements along links in order to move between any two nodes of a 

network (Gorman and Kulkarni 2004; Reggiani and Vinciguerra 2007). In air transport 

systems, we can highlight the SW effect by taking into consideration and comparing the 

network configuration of single carriers or of alliances; such systems exhibit a clear SW 

effect when it takes only a small number of flights to link the two most distant airports 

in the network see also Anderson et al. 1999).  

                                                 
1
 The processes underlying the creation of an alliance can be clearly depicted by considering the integra-

tion of Lufthansa and Swiss, described in the Lufthansa Annual Report (2005); available on the website 

http://konzern.lufthansa.com/en/html/ueber_uns/swiss/index.html). 
2
 See http://www.tourismfuturesintl.com/special%20reports/alliances.html. 

3
 The concept of diameter is defined in Table 1. 



 9 

1998). The main features of this model are a short diameter and a high clustering 

coefficient.  

A promising research direction related to the SW model is the study of so-called 

Scale-Free (SF) networks introduced by Barabási and Albert (1999) in order to 

incorporate two mechanisms upon which many real networks have proven to be based: 

growth and preferential attachment. The former points to the dynamic character of 

networks, which grow by the addition of new nodes and new vertices; the latter explains 

how new nodes enter the network, namely by connecting themselves to the nodes 

having the highest number of links.  

An important feature of SF networks is represented by their vertex degree 

distribution
4

In air transport systems, we can identify SW networks by considering full-service 

carriers. Without national or political impediments in a free market, these carriers 

typically organize their network into a hub-and-spoke system, where one or a few 

central airports called ‘hubs’ have a high number of links to the other airports called 

‘spokes’. Passengers travelling from a place of origin to a place of destination have to 

 P(k) which is proportional to k–γ (with k being the number of links), that is, 

to a power law. The value of the degree exponent γ depends on the attributes of the 

single systems and is crucial to detect the exact network topology, in particular the 

existence of the hubs (highly connected nodes). As Barabási and Oltvai (2004) 

highlight, a SF network embeds the proper hub-and-spoke model only when γ = 2, while 

for 2 < γ ≤ 3 a hierarchy of hubs emerge. For γ > 3, the hub features are absent and the 

SF network behaves like a random one.  

                                                 
4
 P(k) is the probability that a chosen node has exactly k links (Barabási and Oltvai 2004). See also Equa-

tion (1). 
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stop typically in one or a few hubs to change aircraft. Hubs are organised in order to 

allow flight connectivity by coordinating the scheduled timetable of the arriving and 

departing flights. Investigating the airline strategy in designing hub connectivity and 

timetable coordination has been the aim of several empirical network studies. Some 

examples of theoretical and empirical investigation of hub connectivity can be found in 

the works of Bootsma (1997), Dennis (1998), Rietveld and Brons (2001), Veldhuis and 

Kroes (2002), and Burghouwt and de Wit (2003). As a consequence, the hub has to 

manage normally a high volume of traffic at the same time, due to their central 

connecting role in the network.  

In contrast to SF networks, we have to highlight also random networks (Erdös and 

Rényi 1959), which display homogeneous, sparse patterns, without cluster characters. 

Their vertex degree distribution follows a Poisson distribution.
5

In air transport, random networks are useful to map point-to-point connections, as is 

the case for low-cost airlines (Cento 2009). In the ideal point-to point network all 

airports are connected to each other, so that passengers can fly from one airport to any 

other directly without stopping in any hub to change aircrafts. These networks have a 

low diameter, as a consequence of the high number of direct links between airports. 

Reggiani and Vinciguerra (2007, p. 148) point out that a random network can be seen as 

‘a homogeneous system which gives accessibility to the majority of the nodes in the 

same way’. Furthermore, as is evident by looking at the plot of the exponential function, 

the probability to find highly connected nodes is equal to 0. Therefore, no clear hubs 

 

                                                 
5
 For a review of random models, SW models and SF models, see Albert and Barabási (2002) and Jeong 

(2003). 
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exist, and the network configuration appears to be random because no single airport 

displays a dominant role in a connected network. 

The vertex degree distribution is one of the key tools we may use to point out the 

network configuration (Reggiani and Vinciguerra 2007), since this function determines 

the way nodes are connected. It can be defined as the probability P(k) of finding nodes 

with k links. In general, we can state that: 

 ( ) ( ) / ,P k N k N=  (1) 

where N(k) is the number of nodes with k links and N is the number of nodes of the 

network. 

With regard to the network topologies developed in the framework of graph theory, 

complex systems tend to show two distinct main degree distributions: the Poisson 

distribution (Erdös and Rényi 1959) and the power-law function (Barabási and 

Bonabeau 2003).  

The former is defined as: 

 ( ) ,
!

k
k kP k e

k
< > < >

  (2) 

and describes networks – so-called random networks – where the majority of nodes 

have approximately the same number of links, close to the average < k > (Barabási and 

Albert 1999). Equation (2) is a distinctive feature of point-to-point networks, such as 

those adopted by low-cost airlines; this network topology is typical of equilibrated 

economic-geographical areas, where a high number of direct links can be profitably 

operated. Clearly, it is important that the indicator is scale- and size-independent (see 

Anderson et al. 1999 and Butts 2006). 

The power-law function is specified as: 
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 ( )P k k −


γ  (3) 

and characterizes networks having a small number of nodes with a very high degree, 

while the majority of nodes have a few links. Equation (3) has important economic 

implications: it characterizes SF networks, where the term SF refers to the fact that ‘the 

power-law distribution does not change its form no matter what scale is used to observe 

it’ (Reggiani and Vinciguerra 2007, p. 150), and that, in these networks, distances are 

irrelevant. Therefore, we expect to find SF networks in ‘global networks’, such as the 

Internet and air transport, and in general in those networks where relevant economic 

aggregation clusters (preferential attachments) attract flows from distant nodes.  

How can we describe the topological structure of networks? Networks can be 

analyzed from the perspective of their geometry and their concentration. Various 

relevant indices are included in Tables 1 and 2, respectively. 

All the indicators in Tables 1 and 2 will be utilized in the empirical analysis 

concerning the exploration of the Lufthansa network’s topology and concentration. 

 

4. Application to Airline Networks: the Case of Lufthansa 

 

4.1 Introduction 

Information systems advances have created flexible possibilities for various kinds of 

partnership – ranging from code sharing to mergers – in the modern aviation sector. 

This has prompted the emergence of various types of network evolution in the airline 

business. This is clearly illustrated in the dynamics in Lufthansa’s network. We will 

address here the spatial configuration of Lufthansa’s aviation network in the year 2006. 

As mentioned above, the Lufthansa network is not an esoteric case, but rather 

representative of European airline developments, where complementarity between the 
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airline operations of partners is sought, so that individual networks do not overlap 

significantly (unless joint flights or code sharing are used). The airline network 

measurement of such new configurations is essential for exploring the airline behaviour 

and its implications for the supply, the traffic demand, the airports’ infrastructure and 

aviation planning. The airline network can be subdivided into domestic, international or 

intercontinental configurations depending on whether the airports connected are located 

within a country, a continent or in different continents. Furthermore, an airline network 

can be interconnected or interlined to partner’s networks within the alliance concerned. 

This classification is based on geographical, air transport-political and economic 

characteristics, such as airlines’ degree of freedom from the Chicago Convention (see 

Cento 2009) market liberalization, or costs and traffic demand. Therefore, the overall 

network configuration is the result of the integrated optimisation of the domestic, 

international, and intercontinental parts of the total network. These sub-network 

configurations may range from fully-connected or point-to-point to hub-and-spokes 

configurations to alliances (fully-contracted) or to a mix of these configurations. Within 

this conceptual framework, we will present our analysis of four sub-networks of 

Lufthansa. As summarized in Table 3, networks A1 and A2 refer respectively to the 

flights operated by Lufthansa in Europe and in the whole world, while networks B1 and 

B2 take into consideration – respectively at a European and at a global level – the flights 

operated by all the carriers which are members of Star Alliance (to which Lufthansa 

belongs).
6

                                                 
6
 The Star Alliance member carriers are currently: Air Canada; Air New Zealand; ANA; Asiana Airlines; 

Austrian; bmi; LOT Polish Airlines; Lufthansa; Scandinavian Airlines; Singapore Airlines; South African 

Airlines; Spanair; Swiss; TAP Portugal; THAI; United Airlines; US Airways; VARIG (the list was re-

trieved from www.staralliance.com). 
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Table 1. Network’s topology indices 

Index or 
measurement 

Description Formulation Variables Source 

Degree The degree of a 
node is given by 
the number of its 
links 
 

( )k v  ( )k v  is the number of 
links of node v 

Barabási 
and Oltvai 
(2004) 

Closeness It indicates a 
node’s proximity 
to the other nodes 

1( )
vt

t V

C v
d

∈

=
∑

 vtd  is the shortest path 
(geodesic distance) 
between nodes v and t; n 
is the number of nodes 
in the network 

Newman 
(2003) 

Betweenness It indicates a 
node’s ability to 
stand between the 
others, and 
therefore, to 
control the flows 
among them 

( )( ) st

s t v V st

vB v σ
σ≠ ≠ ∈

= ∑  ( )st vσ  and stσ  are, 
respectively, the number 
of geodesic distances 
between s and t that pass 
through node v, and the 
overall number of 
geodesic distances 
between nodes s and t 

Freeman 
(1977) 

Diameter It measures the 
maximum value of 
the geodesic 
distances between 
all nodes 

, ,max s t V s t stD d∈ ≠=  dst is the geodesic 
distance between nodes 
s and t 

Boccaletti 
et al. 
(2006) 

Clustering 
coefficient 

It measures the 
cliquishness of a 
node max

( ) v

v

lCl v
l

=  
vl  and max vl  are, 

respectively, the number 
of existing and 
maximum possible links 
between the nodes 
directly connected to 
node v (its neighbours) 

Watts and 
Strogatz 
(1998) 

 

The variable under analysis is represented by the number of direct connections of 

each airport in the summer season of the year 2006, measured on a weekly basis7

                                                 
7 Official Airline Guides (OAG), 2006. 

. In all 

four cases we only consider those airports where Lufthansa operates with its fleet and 

not by partner airlines. When we consider the A1 and A2 networks, we can clearly see 

that the majority of Lufthansa’s flights are operated at a continental level. On the 

contrary, nearly half of Star Alliance’s flights are operated outside Europe. This finding 
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confirms our prior expectations, if we consider that the carriers making up Star Alliance 

are mainly from non-European countries. It is thus clear that network structure is a 

response to a company’s strategy. And, consequently, many aviation networks show 

nowadays a complex dynamics. We will now successively present and interpret the 

empirical results for network measures reflecting geometry, concentration and degree 

distribution, respectively.  

 

Table 2. Network’s concentration indices 

Indicator Formula Use Variables used Sources 
Gini 
concentration 
index 

1 1
22

n n
i ji j

x x
G

n µ
= =

−
=
∑ ∑

 
It is a 
measure of 
geographical 
concentration 

xi, xj are the number of 
weekly flights from 
airports i and j, ranked 
in increasing order; n is 
the number of airports 
in the network; μ is 

/ii
x n∑  

Cento 
(2009) 

Freeman 
centrality 
index 

*

3 2

( ) ( )
4 5 2

B B ii
B

F x F x
F

n n n

 − =
− + −

∑
 

It is a 
measure of 
similarity to a 
perfect star 
network 

( ) ( )B i jk iF x b x=∑∑  
is the j < k betweenness 
centrality of node xi; 
FB(x*) is the highest 
betweenness centrality 
value of the distribution 

Cento 
(2009) 

Entropy 
function 

lnij ijij
E p p= −∑  It measures 

the degree of 
spatial 
organization 
and variety in 
a system 

pij is the probability of a 
link between nodes i 
and j 

Nijkamp 
and 
Reggiani 
(1992); 
Frenken 
and 
Nuvolari 
(2004) 

 
Table 3. Lufthansa’s network constellation (2006) 

Network Area under 
consideration 

Carrier or alliance operating the 
flight 

Nodes Total number of 
links 

A1 Europe Lufthansa 111   522 
A2 World Lufthansa 188   692 
B1 Europe Star Alliance 111 3230 
B2 World Star Alliance  188 6084 
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4.2 Network Geometry 

In order to examine the nodes’ location, we have computed the three centrality measures 

(degree, closeness and betweenness) described in Table 1. Concerning the investigation 

of the nodes’ relations, we have examined the diameter and the clustering coefficient of 

the network (see again Table 1).  

The degree of a node (Table 1) can be seen as a measure of centrality if we assume – 

in the framework of our analysis – that the best connected airports have a greater power 

over the whole network, as they can control a considerable amount of all flights. In all 

networks we find that the airports of Frankfurt and Munich have always the highest 

degree (see Table A1 in Annex A). 

A further analysis of nodes’ centrality focuses on their ‘ease-of-access’ to the other 

nodes.
8
 In order to investigate this concept we have computed the closeness centrality

9

                                                 
8
 It can be assumed that access to the network is easier when nodes are closer (Freeman 1979). 

 

(Table 1). The values of this index for the networks under consideration (listed in Table 

A2 in Annex A) show that the highest values usually correspond to the best connected 

nodes; therefore, closeness centrality is able to map out – in the framework of our study 

– the most important airports in terms of connectivity. A similar trend can be observed 

by considering betweenness centrality (Table 1; the values for networks A1, A2, B1 and 

B2 are listed in Table A3 in Annex A). This finding is interesting, since hubs – in the 

framework of the hub-and-spoke model – are chosen from those airports falling among 

the highest possible number of pairs of other airports (O’Kelly and Miller 1994; Button 

and Stough 2000). Thus, strategic choices of companies appear to have a clear impact 

on network geometry. 

9
 We compute the closeness centrality, as well as the subsequent betweenness centrality, using the Pajek 

software (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). 
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The networks’ topology can also be explored by examining how the various nodes 

relate and link, since this last attribute impacts the configuration of the whole structure. 

For this purpose we have computed the clustering coefficient (defined in Table 1; the 

ten highest values for the nodes of the four networks of our experiments are listed in 

Table A4 in Annex A). The values indicate a significant difference between the 

networks A1 and A2 and the networks B1 and B2; in the former case the airports of 

Frankfurt and Munich dominate the chart; in the latter case, other airports appear to 

emerge, thus showing that flights are spread more equally on the whole network. 

In addition, we will also consider the diameter of the above networks in order to 

investigate how the links’ patterns influence the ability to move inside the network. 

Both A1 and A2 have a diameter of 4, while B1 and B2 have a diameter of 2. This can 

be justified only if there is no significant difference in the geographical configuration 

between A1 and A2, approximately a hub-and spoke, while B1 and B2 can be a mixture 

of hub-and-spoke and point-to-point networks. In other words, the integration of 

Lufthansa network in the Star Alliance reduces the travel distance, as the passengers can 

benefit from more connections and thus shorter paths to travel between the origin and 

the destination. This has important implications in the context of our study, because it 

entails that Lufthansa’s networks shrink, when we consider the flights of all Star 

Alliance members. 

 

4.3 Network Concentration 

The study of the networks’ degree of concentration – which is carried out in the present 

subsection – is crucial in order to detect the exact network topology, because the hub-
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and-spoke model is highly concentrated, while point-to-point networks do not show this 

feature (see also Butts 2006).  

First, Table  4 presents the normalized Gini index (see Table 1) for the four networks 

under consideration. Both Star Alliance networks are less concentrated than the 

Lufthansa counterparts, meaning that when we enlarge the measurement to a broader 

network including intercontinental destinations and partners' networks, the 

configuration will probably evolve into a mix of multi hub-and-spoke and point-to-point 

structures. In particular, network A2 appears to be the most concentrated. 

The information provided by the Gini index refers to the degree of concentration 

existing in a network, without any evidence on how this concentration impacts on the 

network topology. For this last purpose the Freeman centrality index (Table 1) has been 

computed. Its normalized values are represented in Table 4. This index assumes the 

value 1 for a hub-and-spoke network, and the value 0 for a point-to-point network 

(Cento 2009). 

 
Table 4. Concentration indices 

Network Gini index Freeman index Entropy 
A1 0.762 0.504 5.954 
A2 0.813 0.757 6.194 
B1 0.524 0.059 7.790 
B2 0.699 0.056 8.389 
 

According to the Freeman index, again networks A1 and A2 turn out to be the most 

concentrated ones. In particular, A2 network seems to be again the closest to the hub-

and-spoke model; we may suppose that this network is characterized by a strong 

hierarchy among nodes. 
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Finally, concerning the last concentration index, that is, entropy (Table 1), Table 4 

shows the related values for the networks A1, A2, B1 and B2. The results show that the 

entropy values are higher when we consider those flights operated by Lufthansa’s 

partners (networks B1 and B2). A likely explanation for this increase is given by the 

process of construction of these networks, obtained by the addition of flights to the 

nodes of A1 and A2, respectively. Both B1 and B2 are therefore the ‘sum’ of the 

networks implemented by the different carriers that are members of Star Alliance, and 

hence they are not the result of a specific strategy, as is the case for A1 and A2. Clearly, 

the above values indicate that A1 and A2 networks are more concentrated and less 

dispersed than the B1 and B2 networks; more specifically, A1 appears to be the most 

concentrated network.  

In conclusion, from the above three indicators, networks A1 and A2 appear to be the 

most concentrated. However, among these two networks, A2 seems the most 

concentrated with respect to two indicators (Gini and Freeman), while A1 seems the 

most concentrated with respect to the entropy index. 

 

4.4 Network Connectivity 

Degree Distribution of the Lufthansa Networks  

The vertex degree distribution function is important in order to detect the most plausible 

network connectivity feature. In this section, we will explore whether the variable 

‘number of weekly connections’ is rank-distributed – over A1, A2, B1 and B2 – 

according to either an exponential or a power function. The R2 values and the b 

coefficients of the two interpolating functions (exponential and power) concerning the 

four ranked distributions (in log terms) are listed in Table 5. The plots of both functions 
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for the four networks under consideration are displayed in Annex B (Figures B1 and 

B2). 

 
Table 5. Exponential and power fitting of rank distributions 

Network → 
Network parameters → 

Distribution function ↓ 

A1 A2 B1 B2 
R2 b R2 b R2 b R2 b 

Power 0.95 0.99 0.93 0.82 0.75 0.67 0.70 0.65 
Exponential 0.75 0.03 0.67 0.01 0.66 0.02 0.48 0.01 
 

Both Table 5 and Figures B1 and B2 (in Annex B) highlight that our data sets better 

fit a power function, as the higher R2 values indicate. It is worth noting that the b 

coefficient of the power function for the networks A1, A2, B1 and B2 is respectively 

equal to 0.99, 0.82, 0.67 and 0.65. If we carry out a transformation
10

A further issue concerns the fitting of the exponential function. Also in this case we 

obtain high R2 values, although inferior to the ones emerging in the power case; 

however, the coefficient of the exponential function is always very low, ranging from 

0.01 to 0.03 (Table 5). Therefore, if we look at the R2 indicators, all networks under 

consideration appear to be in a ‘border-line’ situation (that is, an ambiguity between a 

 of these 

coefficients, we observe that the A1 network displays a power-law exponent equal to 2, 

thus indicating a stronger tendency to a hub-and-spoke system according to Barabási 

and Oltvai (2004), while the other three networks A2, B1 and B2 display a power-law 

exponent between 2 and 3, thus indicating a tendency to a hierarchy of 

hub/agglomeration patterns. 

                                                 
10

 Adamic (2000) shows that the power-law exponent γ (emerging from the nodes’ probability distribution 

(Equation (3)) is related to the power function coefficient b (emerging from the distribution relating the 

degree of the nodes to their rank (rank size rule) (see Figures B1 and B2 in Annex B) as follows: γ = 1 + 

(1/b). 
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power and exponential fitting). Nevertheless, if we look at the coefficient values, the 

four networks seem to show a tendency toward an agglomeration structure of SF type, 

expressed by a clear power-law vertex degree distribution, with the degree exponent γ 

equal to 2 (network A1), or varying between 2 and 3 (networks A2, B1, B2).  

A further consideration concerns the plots of networks B1 and B2 (Figure B2 in 

Annex B). We can clearly see that both identify a power function with a cut-off. Thus, if 

we eliminate – in both networks B1 and B2 – those nodes which have less than 10 links, 

we slightly improve the fitting of their power function, obtaining for networks B1 and 

B2 respectively R2 values of 0.84 and 0.75, but still lower than the R2 values regarding 

A1 and A2.  

In conclusion, from our estimation results, the networks A1, A2 appear to show the 

strongest characteristics of connectivity to preferential nodes (see also Annex B and 

Table A1 in Annex A). In particular, network A1 appears to be the closest to the hub-

and-spoke model, from the perspective of Barabási and Oltvai’s approach. Given these 

preliminary results, it is worth to examine these connectivity characteristics, jointly with 

some indicators of network concentration and topology previously considered. 

Consequently, a multidimensional method, such as Multicriteria Analysis (MCA), 

taking into account – by means of an integrative approach – all adopted indicators and 

related results, was next carried out and utilized for further analysis. 

 
 
 
4.5 Network Configuration 

 
Classification of the Lufthansa Networks by means of Multicriteria Analysis 

The indicators assessed in the previous sections may be seen as characteristic features 

for various airline network configurations. These indicators may be interpreted as 
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implicit achievement criteria, so that the four network configurations considered may be 

mutually compared by means of a multidimensional benchmark analysis in order to find 

out the most representative network. A multidimensional assessment approach, such as 

MCA, will now be applied
11

Consequently, the alternatives are the four networks A1, A2, B1, B2 under 

consideration, while the criteria have been grouped according to three macro-criteria: 

network concentration, topology and connectivity (Table 6). It should be noted that, 

concerning the geometric criteria, we have considered the diameter and the clustering 

coefficient, since these two indices provide the network geometry’s features. In 

particular, concerning the latter, the average clustering coefficient has been adopted 

(Barabási and Oltvai 2004). 

 to the four Lufthansa networks in order to identify the most 

appropriate system, according to the network indicators previously calculated. This may 

also be regarded as a test on network robustness. 

The first group of macro-criteria is related to the networks’ concentration. It should 

be noted that in our MCA procedure, the entropy indicator needs to be transformed and 

interpreted positively, because the real values of the entropy function increase when 

networks are more heterogeneous, that is, less concentrated. The second group of 

macro-criteria refers to the networks’ physical measurement. Here, the diameter needs 

to be converted in utility, because its value is higher when networks are less centralized. 

The third group of macro-criteria is related to connectivity. This property is investigated 

through the interpolation of the ranked degree distributions, where – in the power 

function – the highest exponent of 0.99 implies a value of the exponent degree
12

                                                 
11

 Here the Regime method and software has been used (Hinloopen and Nijkamp 1990). 

 – in the 

12
 See Footnote 9. 



 23 

associated power-law distribution – close to 2 (perfect hub-and-spoke). The R2 and the 

coefficient of the exponential function need to be converted to utility, since both values 

indicate random and homogeneous patterns. 

 

Table 6. Alternatives and criteria 

Alternatives A1 (Lufthansa, Europe) 
A2 (Lufthansa, World) 
B1 (Star Alliance, Europe) 
B2 (Star Alliance, World) 

‘Concentration’ criteria  Gini index 
Freeman index 
Entropy 

‘Topology’ criteria Diameter 
Average Clustering Coefficient 

‘Connectivity’ criteria  R2 of the fitted power function (ranked degree 
distribution) 
Coefficient of the power function 
R2 of the fitted exponential function (ranked degree 
distribution) 
Coefficient of the exponential function 

 

We have carried out five scenarios by considering: (a) all the criteria mentioned 

above; (b) each macro-criteria separately; (c) concentration and topology criteria 

together. In each scenario an equal weight, that is, unknown priority, has been given to 

the single criteria. The results are listed in Table 7. 

These rather robust findings point out that network A1 prevails, however with two 

exceptions. The former is represented by network A2, which is the top-scorer when we 

consider the criteria related to the networks’ concentration/geography: this finding 

comes from the higher centralization and concentration degree of network A2, as 

demonstrated by the Freeman and Gini indices. The latter exception is represented by 

network B1, which prevails when we consider the criteria related to the physical 

measurement of networks. 



 24 

 

Table 7. Findings of multicriteria analyses 

Criteria 
considered 

All criteria 
combined 

Concentration 
criteria 

Topology 
criteria 

Connectivity 
criteria 

Concentration and 
topology criteria 

Hierarchy of 
the 
alternatives  

A1 
A2 
B2 
B1 

A2 
A1 
B2 
B1 

B1 
B2 
A1 
A2 

A1 
B1 
A2 
B2 

A1 
B1 
A2 
B2 

 

It turns out that the Lufthansa network A1 is the most connected one; we can 

conjecture that A1 is close to a hub-and-spoke system, according to the values 

expressed by its exponent degree in the power-law distribution (see Table 5). This result 

confirms the dual-hubs network strategy advocated by the German carrier (Lufthansa 

2005). Frankfurt and Munich act as central hubs, where all intercontinental flights 

depart and arrive in conjunction with the European and domestic flights. This timetable 

coordination is designed to allow passengers to transfer from one flight to another for 

different national and international destinations.  

 

5. Retrospect and Prospect  

 

Network analysis turns out to be a powerful tool for analyzing the structure and 

evolution of transportation systems. Airline networks are fascinating examples of 

emerging complex and interacting structures, which may evolve in a competitive 

environment under liberalized market conditions. They may exhibit different 

configurations, especially if a given carrier has developed a flanking network 

framework together with partner airlines. 
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The present paper has investigated the network structure of four types of networks of 

Lufthansa by considering several indicators concerning the concentration, topology and 

connectivity (degree distribution), which – as outlined above – map out structural 

functions characteristics of this carrier. An integrated multidimensional approach, in 

particular multicriteria analysis has been adopted, in order to take into account all 

information obtained by the above indices, and thus extrapolate the most representative 

network, according to these indicators. 

The related results point out that all the four Lufthansa networks can be properly 

mapped into the SF model of the Barabási type. In particular, network A1 can be 

formally identified as a hub-and-spoke structure. In general, we can conjecture a 

‘tendency’ towards a hubs’ hierarchy or hub-and-spoke configuration in Lufthansa’s 

European network (network A1), as also witnessed by the emergence of various nodes 

(Frankfurt, Munich and Dusseldorf) which are organized as hubs in the framework of 

Lufthansa’s activities. Apparently, this has been a rather successful network model, 

given the strong performance of Lufthansa in the Central European area. Preferential 

attachment is clearly an important anchor point for network design. All in all, the four 

networks exhibit a hierarchical structure mainly dominated by German airports. The 

moderate hub-and-spoke profile of the European airline industry is in agreement with 

the mixed structure of this industry, in which national interest, relatively small distances 

and competition by railways play an intermediate role. 

The results obtained thus far highlight various characteristic features of complex 

aviation networks, but need to be complemented with additional investigations, in 

particular, on the structure and driving forces of the demand side (types of customers, in 

particular). Furthermore, the market is decisive in a liberalized airline system, and hence 
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also price responses of customers as well as competitive responses of main competitors 

would need to be studied in the future. This might also offer a reply to the question 

whether and why LCCs operate in different niche markets or under different operating 

costs conditions. 

From a methodological viewpoint a refined weighted network analysis – taking into 

account the strength of each connecting link – might offer better insights into the 

topological structure of the airline network at hand (see, for example, Barrat et al. 

2004), as well as into its structural dynamics and its implications for connectivity and 

concentration measures. 

It ought to be recognized that our analysis was mainly prompted by the European 

aviation business development. But the general principles of network evolution as a 

smart response to external challenges (world-wide spread of diseases, terrorism etc.) or 

to market competition (e.g. as a result of liberalisation) hold across the entire airline 

industry. Obviously, different regions of our world face different challenges, but the 

type of networ analysis presented here has a more universal validity. It is thus clear that 

modern network analysis offers a wealth of new and important research challenges to 

the scientific community. Proper information systems and information sharing from 

airline carriers is of course necessary to undertaken more sophisticated statistical 

analyses, but the current data bases are unfortunately fragmented, incomplete or too 

aggregate.  

Finally, analysis of various network topologies – as a result of different competitive 

strategies of partners in an alliance – prompts a question on the returns accruing from a 

given network topology (see, e.g., Iatrou and Alamdari 2005; Kleymann 2005, and 

Martin and Voltes-Dorta 2008). This economic performance question leads us into yield 
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management and strategic performance management, which would be a promising 

follow-up research endeavour. 
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Annex A Top-Ten Airports 

In this annex, we will present the top ten scores of the airports – according to the main 

topological indices illustrated in Table 1 – belonging to the four airline networks A1, 

A2, B1 and B2. 

 

Table A1. Top-ten scores of airports according to the degree index (corresponding 

values in brackets) 

A1 A2 B1 B2 
MUC (82) FRA (138) FRA (106) FRA (183) 
FRA (81) MUC (100) MUC (105) MUC (179) 
DUS (39) DUS (41) BRE (97) HAM (172) 
HAM (24) HAM (24) HAM (97) DUS (171) 
STR (18) STR (18) BSL (94) STR (168) 
TXL (10) TXL (10) DUS (94) LEJ (166) 
CDG (8) CDG (8) LEJ (92) ZRH (165) 
NUE (8) NUE (8) NUE (92) TXL (164) 
BRU (7) BRU (7) STR (92) NUE (163) 
LHR (6) MXP (6) CGN (89) BRE (162) 
 

 

Table A2. Top-ten scores of airports according to the closeness index (corresponding 

values in brackets) 

A1 A2 B1 B2 
MUC (0.78) FRA (0.79) FRA (0.96) BRE (1) 
FRA (0.76) MUC (0.64) MUC (0.95) DUS (1) 
DUS (0.60) DUS (0.53) HAM (0.89) ZRH (1) 
HAM (0.55) HAM (0.51) DUS (0.87) FRA (0.98) 
STR (0.54) STR (0.50) NUE (0.86) MUC (0.95) 
TXL (0.51) CDG (0.49) STR (0.86) HAM (0.93) 
CDG (0.51) NUE (0.49) LEJ (0.85) STR (0.91) 
NUE (0.51) BRU (0.48) CGN (0.84) LEJ (0.89) 
LHR (0.51) LHR (0.48) TXL (0.84) NUE (0.89) 
MXP (0.51) MXP (0.48) ZRH (0.84) FMO (0.85) 

VIE (0.48) 
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Table A3. Top-ten scores of airports according to the betweenness index (corresponding 

values in brackets) 

A1 A2 B1 B2 
MUC (0.51) FRA (0.76) MUC (0.06) MUC (0.06) 
FRA (0.50) MUC (0.03) FRA (0.06) FRA (0.06) 
DUS (0.06) DUS (0.03) DUS (0.05) DUS (0.06) 
KUF (0.05) BKK (0.02) HAM (0.05) BRE (0.05) 
HAM (0.03) KUF (0.02) STR (0.05) CGN (0.05) 
GOJ (0.02) HAM (0.01) BRE (0.04) HAM (0.05) 
STR (0.01) CAI (0.01) HAJ (0.04) NUE (0.05) 
CDG (4.5e–4) CAN (0.01) NUE (0.04) STR (0.05) 
CGN (9.5e–5) GOJ (0.01) TXL (0.04) ZRH (0.05) 
BRU (1.9e–5) GRU (0.01) CGN (0.04) CGN (0.05) 

JED (0.01) DRS (0.05) 
KRT (0.01)  LEJ (0.05) 
LOS (0.01)  
PHC (0.01)  

 

 

Table A4. Top-ten scores of airports according to the clustering coefficient 

(corresponding values in brackets) 

A1 A2 B1 B2 
MUC (0.82) FRA (0.75) FRA (0.96) BRE (1) 
FRA (0.80) MUC (0.48) MUC (0.89) DUS (1) 
DUS (0.24) DUS (0.11) LEJ (0.77) ZRH (1) 
HAM (0.10) HAM (0.04) ZRH (0.67) FRA (0.96) 
STR (0.06) STR (0.02) BSL (0.66) MUC (0.88) 
CDG (0.01) TXL (6e–3) STR (0.57) LEJ (0.84) 
TXL (0.01) CDG (5e–6) DUS (0.55) BSL (0.81) 
NUE (9e–3) NUE (4e–3) HAM (0.55) GVA (0.67) 
BRU (6e–3) BRU (2e–3) GVA (0.48) HAM (0.63) 
MXP (4e–4) ZRH (2e–3) TXL (0.47) STR (0.60) 
VIE (4e–4) 
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Table A5. Nomenclature of airports under study 

BKK  Bangkok JED  Jedda 
BRE  Bremen KRT  Khartoum 
BRU  Bruxelles KUF  Samara 
BSL  Basel LEJ  Leipzig 
CDG  Paris Charles de Gaulle LHR  London-Heathrow 
CGN  Koln LOS  Laos 
DRS  Dresden MUC  Munich 
DUS Dusseldorf MXP  Milano-Malpensa 
FMO  Munster NUE  Nuremberg 
FRA  Frankfurt PHC  Port Harcour 
GOJ  Novgorod STR  Stuttgart 
GRU  Sao Paulo TXL  Berlin-Tegel 
GVA  Geneva VIE  Wien 
HAM  Hamburg ZRH  Zurich 
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Annex B Rank Distributions 

In this annex, we will present the rank distribution fitting for the networks A1, A2, B1 

and B2, with reference to the following variables: y-axis = number of weekly 

connections; x-axis = airport (node) rank. The related fitting has been carried out by 

considering both an exponential and a power interpolation (see Table 5 for the synthesis 

of the results). 

 

Network A1

Exponential:
y = 9.2195e-0.0256x

R2 = 0.7538

Power:
y = 89.421x-0.9908

R2 = 0.9497
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Network A2

Power:
y = 73.081x-0.9017

R2 = 0.8896

Exponential:
y = 14.744e-0.0421x

R2 = 0.5398
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Fig. B1. Rank distribution fitting for networks A1 and A2 

 

Network B1

Power:
y = 265.48x-0.669

R2 = 0.7518

Exponential:
y = 60.024e-0.0181x

R2 = 0.6566
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Network B2

Power:
y = 352.25x-0.6539

R2 = 0.7004

Exponential:
y = 53.478e-0,0095x

R2 = 0.4819
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Fig. B2. Rank distribution fitting for networks B1 and B2 

 

 




