
Billio, Monica; Casarin, Roberto; Ravazzolo, Francesco; van Dijk, Herman K.

Working Paper

Interactions between Eurozone and US Booms and Busts:
A Bayesian Panel Markov-switching VAR Model

Tinbergen Institute Discussion Paper, No. 13-142/III

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Billio, Monica; Casarin, Roberto; Ravazzolo, Francesco; van Dijk, Herman K.
(2013) : Interactions between Eurozone and US Booms and Busts: A Bayesian Panel Markov-
switching VAR Model, Tinbergen Institute Discussion Paper, No. 13-142/III, Tinbergen Institute,
Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/87180

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/87180
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


TI 2013-142/III 
Tinbergen Institute Discussion Paper 

 
Interactions between Eurozone and US 
Booms and Busts:  
A Bayesian Panel Markov-switching VAR 
Model 
 
 

Monica Billio1 

Roberto Casarin1 

Francesco Ravazzolo2 

Herman K. van Dijk3 

 

 
 
 
1  University of Venice, GRETA Assoc. and School for Advanced Studies in Venice, Italy; 
2  Norges Bank and BI Norwegian Business School, Norway; 
3  Erasmus School of Economics, Erasmus University Rotterdam, Faculty of Economics and Business 
Administration, VU University Amsterdam, and Tinbergen Institute, The Netherlands.
 



 
Tinbergen Institute is the graduate school and research institute in economics of Erasmus University 
Rotterdam, the University of Amsterdam and VU University Amsterdam. 
 
More TI discussion papers can be downloaded at http://www.tinbergen.nl 
 
Tinbergen  Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 1600 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the 
ambition to support innovative research and offer top quality academic education in core areas of 
finance. 

DSF research papers can be downloaded at: http://www.dsf.nl/ 
 
Duisenberg school of finance 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 8579 
 
 



Interactions between eurozone and US booms and busts:

A Bayesian panel Markov-switching VAR model∗

Monica Billio‡ Roberto Casarin‡

Francesco Ravazzolo¶ Herman K. van Dijk§

‡University of Venice, GRETA Assoc. and School for Advanced Studies in Venice

¶Norges Bank and BI Norwegian Business School

§Econometric Institute Erasmus University Rotterdam, Econometrics Department

VU University Amsterdam and Tinbergen Institute

September 11, 2013

Abstract

Interactions between the eurozone and US booms and busts and among major

eurozone economies are analyzed by introducing a panel Markov-switching VAR model

well suitable for a multi-country cyclical analysis. The model accommodates changes in

low and high data frequencies and endogenous time-varying transition matrices of the

country-specific Markov chains. The transition matrix of each Markov chain depends on

its own past history and on the history of the other chains, thus allowing for modelling

of the interactions between cycles. An endogenous common eurozone cycle is derived by

aggregating country-specific cycles. The model is estimated using a simulation based

Bayesian approach in which an efficient multi-move strategy algorithm is defined to

draw common time-varying Markov-switching chains. Our results show that the US

and eurozone cycles are not fully synchronized over the 1991-2013 sample period, with

evidence of more recessions in the eurozone, in particular during the 90’s when the

monetary union was planned. Larger synchronization occurs at beginning of the Great

Financial Crisis. Shocks affect the US 1-quarter in advance of the eurozone, but these

spread very rapidly among economies. There exist reinforcement effects in the recession

probabilities and in the probabilities of exiting recessions for both eurozone and US

cycles, and substantial differences in the phase transitions within the eurozone. An

increase in the number of eurozone countries in recession increases the probability of

the US to stay within recession, while the US recession indicator has a negative impact

on the probability to stay in recession for eurozone countries. Moreover, turning point

analysis shows that the cycles of Germany, France and Italy are closer to the US cycle

than other countries. Belgium, Spain, and Germany, provide more timely information

on the aggregate recession than Netherlands and France.

∗We thank conference and seminar participants at the: 5th CSDA International Conference on
Computational and Financial Econometrics 2012, 5th Italian Congress of Econometrics and Empirical
Economics, 2013, European Seminar on Bayesian Econometrics 2012, 2nd CAMP Workshop 2012 on
“Business cycles, monetary policy and nonlinear relationships”, University of Venice Workshop on “Modern
Tools in Macro-Econometrics”, and Norges Bank. The views expressed in this paper are our own and do
not necessarily reflect those of Norges Bank.
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1 Introduction

We investigate interactions between booms and busts of the eurozone and the US economies,

where the eurozone is represented by its six largest countries, with a particular focus on

similarities and cyclical co-movements, leads and lags, transmission mechanisms and turning

points. Our modeling approach is based on a Bayesian panel Markov-switching model that

describes cyclical behavior of the eurozone economy at a country specific level and at an

aggregate level by comparing results with those of the US economy. Our modeling approach

allows for transmission of shocks among different sectors, for example from the financial

sector, modeled with the term spread, to the real sector, modeled with the industrial

production index. In our empirical application, the transmission of shocks occurs among

countries using endogenous aggregate eurozone and US business cycle factors. By comparing

such factors one can discover which economy leads the other ones and by allowing each

country to load on these factors, we can investigate differences among the countries business

cycles.

Our analysis is intended to provide useful information on the sources of business cycle

co-movements, i.e. the channels through which business cycle fluctuations are transmitted

across countries that are part of an international economic system. In the literature there

is no consensus on the international transmission of shocks. For example, Canova and

Marrinan (1998) address the question, whether international business cycles originate from

common shocks or from a common propagation mechanism. Monfort et al. (2003) aim at

disentangling common shocks from spill-over effects. To this end, they estimate a Bayesian

dynamic factor model for the G7 real output growth, featuring a global common factor

and two area specific (North-American and Continental European) common factors, which,

being modelled as a VAR process, are interdependent. They find empirical support for the

presence of spill-over effects running from North-America to Continental Europe, but not

vice versa.

Our approach and empirical application aim to contribute to this debate by describing

the country specific cycles and their interactions and we thus also contribute to the literature

on the analysis of the business cycle of large panel of countries. A complete description of

this literature is beyond the scope of this paper but we refer to it. A first attempt to model

an international business cycle is Gregory et al. (1997), who consider output, consumption

and investment for G7 countries and estimate a dynamic factor model featuring a common

cycle, a country-specific component and a series-specific one. The specification extends the

Stock and Watson (1991) single index model and allow the authors to conclude that both the

common and the country-specific factors capture a significant amount of the fluctuations.

Kose et al. (2003) reach similar conclusions, using a larger data set on 60 countries and
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using a Bayesian dynamic factor model. Kose et al. (2008) find, however, that the relative

importance of the common factor has been declining over time and that the cycle of emerging

economies has become decoupled from that of industrialized countries. Lumsdaine and

Prasad (2003) assess the relative importance of country specific versus common shocks,

using industrial production growth for a set of 17 countries. They estimate the common

component of international fluctuations by aggregation with time-varying weights.

In the present paper we contribute and generalize the literature in this direction by

focusing on the business cycle of the eurozone, represented by the cycles of its six largest

economies, and the US. We measure the cycle by using multivariate series and extract

features and turning points of the country-specific business cycles in order to investigate

the similarities of booms and busts between the eurozone cycle at an aggregated level and

the US, and among the cycles of the eurozone countries.

Apart from presenting an empirical analysis, this paper also contributes to the

econometric literature on heterogeneity in cross-country panel data models. In the context

of these models, the more recent approaches have focused on two issues: the estimation

of international cycles focusing on the nature of the co-movements using relatively large

dimensional data sets and the introduction of country and time heterogeneity in multi-

country vector autoregressive models. The first issue has been considered by Hallin and

Liska (2008), Pesaran et al. (2004), and Dees et al. (2007) and the second by Canova and

Ciccarelli (2004) and Canova and Ciccarelli (2009). Hallin and Liska (2008) extend the

generalized dynamic factor model by Forni et al. (2000, 2001) to a panel of time series

with a block structure, where the blocks are represented by countries. They show that the

extension provides the means for the analysis of the interblock relationships, allowing the

identification of strongly common factors, which are common to all the blocks (e.g. the

international common factors), the strongly idiosyncratic factors, which are idiosyncratic

for all blocks, and the weakly common/weakly idiosyncratic factors, that are common to at

least one block, but idiosyncratic to at least another.

Multi-country VAR models provide a tool for examining the propagation of shocks across

countries. Canova and Ciccarelli (2009) consider Bayesian multi-country VAR models with

time varying parameters, lagged interdependencies and country specific effects. They avoid

the curse of dimensionality on the number of parameters by a factor parameterization of the

time varying VAR coefficients in terms of a number of continuous random effects that are

linear in the number of countries and series. The authors propose a Monte Carlo Markov

Chain sampling scheme for posterior approximation. Empirically, the transmission of shocks

in the G7 countries is analyzed with a focus on four macroeconomic variables: real growth,

inflation, employment growth and rent inflation; oil prices are considered as exogenous.

In this paper, we build on Canova and Ciccarelli (2009) and extend their panel VAR

model in order to model asymmetry and turning points in the business cycles of different

countries. Our paper is also extends Kaufmann (2010), where a panel of univariate

Markov-switching (MS) regression models is considered, by constructing a multivariate

panel MSVAR structure for the country-specific time series. We take the models of Hamilton
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(1989) and Krolzig (2000) as points of departure and consider Markov-switching dynamics

for low and high frequency components, that is, the means of the series and the covariance

matrices of the country-specific equations (see also Billio et al. (2012a), Basturk et al. (2013)

and Billio et al. (2012b)). We further build on Kaufmann (2011) and use an endogenous

time-varying transition mechanism to model the transition matrix of the country-specific

Markov-chains. In our model the transition of a country-specific chain may depend not

only on its past history but (endogenously) also on the past history of the other chains of

the panel. We develop an efficient algorithm to draw the common latent MS chain which

uses as candidate the standard forwarding-filtering backward sampling (e.g., see Frühwirth-

Schnatter (2006)). Moreover, in order to solve potential overfitting problems due to large

number of parameters in the model, we follow the hierarchical prior specification strategy

proposed by Canova and Ciccarelli (2009). Our paper is also related to Amisano and

Tristani (2013), who propose a panel Markov-switching model to investigate transmission

mechanisms in European sovereign bond markets. Our modeling and inference differ from

theirs in that since we follow a hierarchical specification of the VAR and Markov-switching

parameters. We make use of an endogenous transition that is based on alternative weighting

rules with time-varying weights that account for differences in size and importance of

the countries and our regime transition also accounts for the Harding and Pagan (2002)

constraints in order to obtain well defined business cycle phases.

Our main empirical results can be summarized as follows. The US cycle leads the

eurozone cycle, with evidence of more recessions in the eurozone, in particular during the

90’s when the monetary union was planned. The larger synchronization is at beginning of

the Great Financial Crisis: the shock affects the US 1-quarter in advance of the eurozone,

but it spread among economies very rapidly. We find evidence of reinforcement effects in

the recession probabilities for both the eurozone and the US cycles, and an asymmetric

relationship between the eurozone and the US economic phase transitions: an increase in

the number of eurozone countries in recession increases the probability of the US to stay

into recession, while the US recession indicator has a negative impact on the probability

to stay in recession for the eurozone countries. Evidence is similar in the probabilities of

exiting the recession phase. Finally, as regards the turning point analysis, the cycles of

Germany and, somewhat less, France and Italy are closer to the one of the US than other

countries, but Belgium, Spain, and somewhat less Germany, seem to provide more timely

information on the aggregate eurozone cycle.

The remainder of this paper is organized as follows. Section 2 presents the Bayesian

panel MS-VAR model that has been used for the analysis. Section 3 discusses the prior

choice and the Bayesian inference framework. Section 4 presents empirical evidence on

such cross-country features as indicated before within the eurozone and also between the

eurozone and the US. Finally, Section 5 concludes.
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2 A panel Markov-switching VAR model

In this section, we introduce a general Panel Markov-switching VAR (PMS-VAR) model

with endogenous transition and interaction. Moreover, we discuss the VAR parameter

restrictions needed to avoid overfitting and define the endogenous time-varying transition

of the unit specific Markov-chains. We will assume that the transitions are dependent on

their own past history and on the history of other chains in order to capture the cycle

interactions. Alternative interaction mechanisms such as weighting schemes and duration

of states are presented.

2.1 Panel VAR specification

Let yit ∈ RK , i = 1, . . . , N and t = 1, . . . , T , be a sequence of observations on K-dimensional

vectors of economic variables. N is the number of units (countries) and T the number of

time observations. A general specification of the PMS-VAR model reads

yit = ai(si t) +
N∑
j=1

p∑
l=1

Aijl(si t)yjt−l +Di(si t)zt + εit, (1)

i = 1, . . . , N , with εit ∼ NK(0,Σi(si t)) and zt ∈ RG a vector of variables, common to all

units.

The {si t}t are unit-specific and independent M -states Markov-chain processes with

values in {1, . . . ,M} and time-varying transition probability P(si t = k|si t−1 = j, Vt,α
kj
i ) =

pit,kj , j ∈ {1, . . . ,M}, where Vt is a set of Gv common endogenous covariates and αkji is a

unit-specific vector of parameters.

The generality of this statistical model comes from the fact that the coefficients may

vary both across units and across time. Moreover the interdependencies between units are

allowed whenever Aijl(si t) 6= 0 for i 6= j.

In order to define the parameter shifts more clearly and to simplify the exposition of

the inference procedure we introduce the indicator variable ξikt = I(si t = k), where

I(si t = k) =

{
1 if si t = k

0 otherwise

for k = 1, . . . ,M , i = 1, . . . , N , and t = 1, . . . , T and the vector of indicators ξit =

(ξi1t, . . . , ξiMt)
′, which collects the information about the realizations of the i-th unit-specific

Markov chain over the sample period. The indicators allow us to write the parameter shifts

as

ai(si t) =
M∑
k=1

ai,kξikt, Aijl(si t) =
M∑
k=1

Aijl,kξikt

Di(si t) =

M∑
k=1

Di,kξikt, Σi(si t) =

M∑
k=1

Σi,kξikt.
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where ai,k = (ai1,k, . . . , aiK,k)
′ ∈ RK are K dimensional column vectors representing the

country- and regime-specific VAR intercept, Aijl,k ∈ RK × RK K-dimensional matrices of

unit- and regime-specific autoregressive coefficients, Di,k ∈ RK × RG K × G-dimensional

matrices of regime-specific regression coefficients and Σi,k ∈ RK ×RK K-dimensional unit-

and regime-specific covariance matrices.

The large number of parameters makes our PMS-VAR a flexible model. Nevertheless,

the overparameterization may lead to an overfitting problem, especially in applications

to macroeconomics, where time series are characterized by a low number of observations,

slowly changing means and time-varying variances (see Basturk et al. (2013)). These issues

call for the use of a Bayesian approach to modeling and estimation. Since the Bayesian

approach allows for including parameter restrictions, with different degrees of prior beliefs,

through the specification of the prior (see, e.g., Litterman (1986), Sims and Zha (1998) for

Bayesian VAR, Chib and Greenberg (1995) for Bayesian Seemingly Unrelated Regression

and Canova and Ciccarelli (2009) for panel Bayesian VAR), the overfitting problems can be

strongly reduced. These restrictions should be motivated by the specific application. In our

application using monthly macroeconomic data on growth of the industrial production index

and on the term spread we assume Markov-switching in means and variances to model the

low and high frequency dynamics and constant autoregressive parameters, constant common

variables and block structure for panel in order to avoid overfitting. More specifically, we

assume the following restrictions to hold: E(εitε
′
jt) = OK×K with On×m the (n × m)-

dimensional null matrix, and there are no interdependencies among the same variable

across units, that is Aijl,k = Ail,kI(i = j) + OK×K(1 − I(i = j)), when conditioning on

the parameters. The dependence across units can be modelled through the hierarchical

prior specification discussed later on in this paper. Furthermore, Clements and Krolzig

(1998) found in an empirical study that most forecast errors are due to the constant

terms in the prediction models. Apart from this, they also suggest considering MS models

with regime-dependent volatility. In this paper, we follow Krolzig (2000), Billio et al.

(2012a) and Basturk et al. (2013) and assume that both unit-specific intercepts, ai(si t),

and volatilities, Σi(si t), are driven by the regime-switching variables {si t}t and assume

constant autoregressive coefficients Ail,k = Ail, ∀k (see also Anas et al. (2008)). In the

same spirit we assume that the coefficients of the common variables do not change over

time, that is Di,k = Di, ∀k, i.
Let w̄′it = (1, . . . ,y′it−1, · · · ,y′it−p, z′t), t = 1, . . . , T be the sequence of (1 + Kp + G)-

dimensional column vectors of regressors for the PMS-VAR model, that includes the

constant term, p lagged dependent variables, and the set of common variables. Moreover

define the regressors, Wit = w̄′it ⊗ IK , and coefficients, Ai,k = (ai,k, Ai1,k, · · · , Aip,k, Di),

matrices of dimension (K(1 + Kp + G) ×K) and (K ×K(1 + Kp + G)) respectively. By

using the allocation variables ξit and the unit independence assumptions, given above, the

PMS-VAR model can be rewritten as

yit = Ai,1Witξi1t + . . .+Ai,MWitξiMt + εit, εit ∼ NK(0,Σi(sit)) (2)
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or in a more compact form as yit = (ξit ⊗ Wit)vec(Bi) + εit where Bi =

(vec(Ai,1), vec(Ai,2), · · · , vec(Ai,M )), Σi(sit) = Σi(ξit ⊗ IK) and Σi = (Σi1, · · · ,ΣiM ). For

reason of convenience related to the derivation of the inference procedure, we also consider an

alternative re-parameterization (e.g., see Frühwirth-Schnatter (2006)) based on a partition

of the set of regressors w̄it into M + 1 subsets x̄i0t and x̄imt, m = 1, . . . ,M , that are a

K0-dimensional vector of regressors with regime-invariant coefficients and M vectors of Km

regime-specific regressors with regime-dependent coefficients. Moreover, in this paper we

apply a model without exogenous regressors common to all countries.

Under the previous assumptions, one obtains K0 = 1, Km = Kp, ∀m and G = 0 and

the PMS-VAR model writes as

yit = Xi0tγi0 + ξi1tXi1tγi1 + . . .+ ξiMtXiMtγiM + εit (3)

where Xi0t = (x̄i0t ⊗ IK), Ximt = (x̄imt ⊗ IK), with x̄i0t = (y′it−1, . . . ,y
′
it−p)

′ and

x̄imt = 1, are the regime-invariant and the regime-specific regressors respectively and

γim = (ai1,m, . . . , aiL,m)′ ∈ RL, m = 0, . . . ,M , i = 1, . . . , N , are L-dimensional vectors

with L = KKm. The relationship between the new parameterization and the previous one

is: γi0 = (vec(Ai1), · · · , vec(Aip)).

2.2 Transition mechanisms

Following Kaufmann (2011) we assume a centered parameterization of the transition

probabilities

P(si t = k|si t−1 = j, Vt,αi) = H(Vt,α
kj
i ), k, j = 1, . . . ,M (4)

with

H(Vt,α
kj
i ) =

exp
(

(Vt − ci)′αkj1i + αkj0i

)
∑M

l=1 exp
(

(Vt − ci)′αlj1i + αlj0i

) , (5)

where αlji = (αlj0i,α
lj′

1i )′ and ci is a vector of threshold parameters that can be chosen

to be the average of Vt. For identification purposes, we let M be the reference state

and assume αkM1i = 0 and αkM0i = 0. In order to simplify the exposition we denote

with αi = vec
(
(α11

i , . . . ,α
MM
i )

)
the collection of parameters of the sequence of transition

matrices for the i-th unit.

As regards to the choice of the number M of regimes, we notice that for more recent

data one needs an adequate business cycle model with more than two regimes (see also

Clements and Krolzig (1998)) and a time-varying error variance. For example, Kim and

Murray (2002) and Kim and Piger (2000) propose a three-regime (recession, high-growth,

and normal-growth) MS model while Krolzig (2000) suggests the use of a model with regime-

dependent volatility for the US GDP. In our paper we consider data on EMU industrial

production, for a period of time including the 2009 recession and find that three regimes
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(high-recession, contraction or normal-growth, and high-growth) are necessary to capture

some important features of the US and eurozone cycle.

As evidenced in Harding and Pagan (2011) and Harding (2010) the use of simple logit

or probit models for modelling the transition probability of the phases of a business cycle

may be inappropriate when the goal is to describe the feature of the business cycle. More

specifically, minimum phase duration leads to impose restrictions on the parameters of the

transition model. Extending the idea of Harding and Pagan (2011) to our panel MS-VAR

model and focusing on the minimum recession duration, we specify the following transition

P(si t = k|si t−1 = j, si t−2, Vt,αi) =

{
H1(Vt,α

kj
i ) if si t−2 6= 1

H2(Vt,α
kj
i ) if si t−2 = 1

(6)

with
H1(Vt,α

kj
i ) = I(k = 1)I(j = 1) + (1− I(j = 1))H(Vt,α

kj
i )

H2(Vt,α
kj
i ) = ((1− I(k = 1)) + I(j = 1)I(k = 1))H(Vt,α

kj
i )

2.3 Interaction mechanisms

In this paper we explore several alternative specifications of the endogenous transition

mechanism, which account for the possible interaction between the unit-specific cycles.

In our models, we introduce dependence through the covariates Vt, i = 1, . . . , N that

summarize the information contents of the N unit-specific Markov-chains sit, i = 1, . . . , N ,

used in the PMS-VAR model. In order to have a properly defined transition we assume

that covariates at time t, which drive the state transition between t− 1 and t, use the past

values of the observables and are of a Markov-switching nature up to time t− 1.

We define a general aggregation scheme as a map φ : ∆N
[0,1]M

7→ ∆[0,1]M where ∆[0,1]M

is the standard M -dimensional simplex and define

ηt = φ(s1t, . . . , sNt) (7)

Some alternative aggregation schemes based on the current value of the chains are

presented in the following.

2.3.1 Equal weights

The elements of ηt = (η1t, . . . , ηMt)
′ are defined by the following aggregation rule

ηkt =
1

N

N∑
i=1

I(sit−1 = k) (8)

k = 1, . . . ,M , where we assigned equal weights to the unit-specific regime probabilities.

When k = 1 we get a measure of the proportion of countries which are in a ”‘strong

recession”’ regime.
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2.3.2 Unit-specific weights

The elements of ηt = (η1t, . . . , ηMt)
′ are defined by the weighted average

ηkt =

N∑
i=1

ωitI(sit−1 = k) (9)

where, in order to have a properly defined vector of probability, we assume (ω1t, . . . , ωNt)
′ ∈

∆[0,1]N , for all t. The unit-specific weight ωit, can be driven, for example, by the relative

IPI growth rate or size of the i-th unit at time t− 1, with respect to the IPI growth rate or

economic size of the other units. Distance measures based on other features of the units can

be used to aggregate the hidden states. We shall notice that the aggregation weights can be

included in the inference procedure leading to a more complex latent variable model both

in terms of modelling and computation. One can use alternatively completely unobserved

combination weights (e.g., see the modelling strategies in Billio et al. (2013)) or weights

which are partially observed and driven by one or some of the variables mentioned above.

Given the high number of latent variables in our model, the latter weight specification

strategy should be preferred in order to avoid overfitting problems and to take advantage

of all the information available. While this is a topic of substantial interest, it is beyond

the scope of the present paper and we left it as a topic for future research.

2.3.3 Average duration

Also, we consider aggregation schemes which account for the duration of the states. For

example:

ηkt =
1

Nτ

N∑
i=1

τ∑
i=1

I(sit−τ = k) (10)

k = 1, . . . ,M , where we assigned equal weights to the unit-specific regime probabilities.

When k = 1 we get a measure of the proportion of countries which are in a ”‘strong

recession”’ regime.

Average transitions

Schemes which account for the number of transitions between time t − 1 and time t,

from the other regimes to the specific regime k, are defined as:

ηkt =
1

N

N∑
i=1

M∑
l=1

I(sit−1 = k)I(slt−1 = k) (11)

k = 1, . . . ,M ,

3 Bayesian Inference

The PMS-VAR model is estimated with a simulation based Bayesian procedure. In order

to solve potential overfitting problems due to the large number of parameters, we use
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hierarchical prior distributions. Moreover, we develop an efficient algorithm, to draw the

latent MS chain, which uses Metropolis candidate generated with the standard forwarding-

filtering backward sampling (e.g., see Frühwirth-Schnatter (2006)).

3.1 Hierarchical prior

We follow a hierarchical prior specification strategy (see, e.g. Canova and Ciccarelli (2009)),

which allows us to model dependence between the cross-sectional units through common

latent variables and to avoid the potential overfitting problem. For the parameters of the

VAR regression we assume

γi0 ∼ NK0(λ0,Σi0) (12)

λ0 ∼ NK0(λ0,Σ0) (13)

γim ∼ NKm(λm,Σim), m = 1, . . . ,M (14)

λm ∼ NKm(λm,Σm), m = 1, . . . ,M (15)

i = 1, . . . , N . We assume conditional independence across units, that is: Cov(γi0,γj0|λ0) =

OKm×Km and Cov(γim,γjm|λm) = 0, for i 6= j. For the inverse covariance matrix Σ−1im we

assume independent Wishart priors

Σ−1im ∼ WK(νim/2,Υm/2), i = 1, . . . , N (16)

Υ−1m ∼ WK(νm/2,Υm/2), (17)

m = 1, . . . ,M , that allow us to maintain the assumption of regime-specific degrees of

freedom νim and precision Υm parameters. We assume Cov(Σ−1im ,Σ
−1
im |Υ

−1
m ) = OK2

m×K2
m

.

Note, that the hierarchical prior specification allow us to introduce dependence between

units. Moreover, with the above given specification of the coefficients γim it is possible to

have a regime-specific dependence structure.

When using Markov-switching processes, one should deal with the identification issue

associated to the label switching problem. See for example Celeux (1998) and Frühwirth-

Schnatter (2001) for a discussion on the effects that label switching and the lack of

identification have on the results of a MCMC based Bayesian inference. In the literature,

different routes have been proposed for dealing with the label switching (see Frühwirth-

Schnatter (2006) for a review). One of the most efficient approach is the permutation

sampler (see Frühwirth-Schnatter (2001)), which can be applied under the assumption of

exchangeability of the posterior density. This assumption is satisfied when one assumes

symmetric priors on the transition probabilities of the switching process. As an alternative

one may impose identification constraints on the parameters. This practice is followed to a

large extent in macroeconomics and is related to the natural interpretation of the different

regimes as the different phases (e.g. recession and expansion) of the business cycle. We
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follow this latter approach and include the constraints

γij1 < γij2 < . . . < γijM

j = 1, . . . ,K and i = 1, . . . , N , that corresponds to a total ordering, across the different

regimes, of the constant terms in the equations of the system.

Modeling dependence between the chains is another issues to deal with. We propose

a flexible model, with regimes switching processes that are able to capture the different

phases of the unit-specific business cycles. This flexibility has as a drawback the use of a

large number of parameters that may lead to an overfitting problem. To avoid this, we

suggest to use a hierarchical prior specification for the transition matrices. In particular,

for the j-th row pit,j., j = 1, . . . ,M , of the i-th unit transition matrix, at time t, we assume

αjki ∼ NGv+1(ψ,Υi) i = 1, . . . , N, k = 1, . . . ,M − 1 (18)

ψ ∼ NGv+1(ψ,Υ) (19)

3.2 Posterior simulation

We extend the Gibbs sampler of Krolzig (1997) and Frühwirth-Schnatter (2006) to our PMS-

VAR model with the prior densities given in the previous sections. Under the hierarchical

prior setting the full conditional posterior distributions of the equation-specific blocks of

parameters are conditionally independent. Thus the Gibbs sampler can be iterated over

different blocks of unit-specific parameters avoiding the computational difficulties associated

with the inversions of large covariance matrices (see Canova and Ciccarelli (2009)). We

derive the full conditional densities of the parameters in Eq. 2 and propose a further blocking

step. Following the Markov-switching regression framework in Frühwirth-Schnatter (2006),

we separate the unit-specific parameters into two different blocks: the regime-independent

parameters and the regime-specific parameters.

We let yi = vec ((yi1, . . . ,yiT )) be the set of observations collected over time,

y = vec ((y1, . . . ,yN )′) the set of observations collected over time and panel units and

ξ = vec ((Ξ1, . . . ,ΞN )) the set of allocation variables, with Ξi = (ξi1, . . . , ξiT ). The complete

data likelihood function associated to the PMS-VAR model writes as

p(y|ξ,γ,Σ,α) = (2π)−
TKN

2

T∏
t=1

N∏
i=1

|Σi(sit)|−
1
2 exp

{
−1

2
u′tΣ

−1
t ut

} N∏
i=1

M∏
k,l=1

p
ξiktξilt−1

it,kl (20)

with ut = yt − ((1, ξ′1t, . . . , ξ
′
Nt) ⊗ INK)Xtγ, γ = vec ((γ1, . . . ,γN )) where γi =

vec ((γi0,γi1, . . . ,γiM )), Σ = (Σ1, . . . ,ΣN ) and α = vec ((α1, . . . ,αN )). Under the

conditional independence assumption, the likelihood factorises as

N∏
i=1

p(yi|Ξ,γi,Σi,αi) (21)
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where

p(yi|Ξ,γi,Σi,αi) = (2π)−
TK
2

T∏
t=1

|Σit|−
1
2 exp

{
−1

2
u′itΣ

−1
it uit

} M∏
k,l=1

p
ξiktξlkt−1

it,kl (22)

with uit = yit − ((1, ξ′it)⊗ IK)Xitγi and

Xit =


Xi0t Xi1t 0

...
. . .

Xi0t 0 XiMt


In order to describe the structure of the Gibbs sampler we define some more

notation. Let us introduce the auxiliary variables yi0t = yit − ξi1tXi1tγi1 + . . . +

ξiMtXiMtγiM and the notation γi(−m) = (γi1, . . . ,γim−1,γim+1, . . . ,γiM ) and Σi(−m) =

(Σi1, . . . ,Σim−1,Σim+1, . . . ,ΣiM ). The Gibbs sampler is in six blocks. In the blocks from

one to three, the Gibbs iterates over the unit index, i = 1, . . . , N , and simulates the unit-

specific parameters

(i) γi0 from f(γi0|yi,Ξi,γi,Σi,λ0);

(ii) for m = 1, . . . ,M

(ii.a) γim from f(γim|yi,Ξi,γi0,γi(−m),Σ,λm), for m = 1, . . . ,M ;

(ii.b) Σ−1im from f(Σ−1im |yi,Ξi,γi0,γi,Σi(−m),Υm);

(iii) αk1i , . . . ,α
kM−1
i from f(αk1i , . . . ,α

kM−1
i |yi,Ξ,γi0,γi).

In the blocks from four to six, the Gibbs sampler simulates from the full conditionals of the

common part of the hierarchical structure and jointly from the full conditional of all the

Markov-switching processes, i.e.

(iv) For m = 1, . . . ,M :

(iv.a) λm from f(λm|γ,Σ);

(iv.b) Υ−1m from f(Υ−1m |γ,Σ);

(vi) Ξ from p(Ξ|y1:T ,γ,Σα)

All the full conditionals can be deduced from the joint density, that is proportional to the

product of the prior densities, given in Section 3.1, and the completed likelihood given in

Eq. 20. Further details on the MCMC algorithm proposed here are given in Appendix A.

We note that, for sampling the hidden states we propose a multi-move strategy. In

Krolzig (1997) a multi-move Gibbs sampler (see Carter and Kohn (1994) and Shephard

(1994)) is presented for Markov-switching vector autoregressive models as an alternative to

the single-move Gibbs sampler given, for example, in Albert and Chib (1993). The multi-

move procedure, also known as forward-filtering backward sampling (FFBS) algorithm, is
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particularly useful in highly parametrized model, because it can improve the mixing of

the MCMC chain over a large parameter space, thus leading to a more efficient posterior

approximation. Unfortunately, the FFBS does not apply easily to our model due to the

presence of the chain interaction mechanism. In fact, the FFBS should be iterated jointly

for all the Markov-switching processes of the panel implying large matrix operations and,

therefore, a high computational cost. Alternatively, one could apply FFBS to a unit-specific

chain, conditioning on the other chains. In our simulation experiments we found that this

strategy may lead to a poor mixing of the MCMC chain. Thus, we propose a multi-move

strategy, which makes use of the FFBS algorithm to generate proposals for each unit-

specific chain within a global Metropolis-Hastings (M.-H.) step. The proposed procedure

extends in two directions the Billio et al. (1999) global M.-H. for switching ARMA. First, we

use a multi-move proposal instead of a single-move proposal within the global M.-H. step.

Secondly, we extend to a multiple-chain multivariate model the global M.-H. given in Billio

et al. (1999) for a single-chain univariate model. Our global M.-H. with multi-move proposal

has two main advantages over the single-move proposal M.-H. First, the joint generation of

the hidden state proposal improves the mixing of the MCMC chain. Secondly, the FFBS

proposal leads to simple calculation of the M.-H. acceptance probability. Further details on

the FFBS proposal are given in Appendix A.

4 Eurozone and US booms and busts

4.1 Data description

The main empirical focus of this paper is on whether and where the eurozone and US

economies differ in periods of booms and busts. We consider the eurozone at the country

level since the academic and economic debate is still open on whether European countries

have synchronized and whether regional shocks still play a dominant role. Our analysis

wants to contribute to the debate and provides evidence on this.

In our PMS-VAR we consider the US and the six largest economies in the eurozone,

given as Belgium, France, Germany, Italy, Netherlands, and Spain. For each country, we

consider two dependent variables: the Industrial Production Index (IPI), labelled as yi1,t

and the term spread (TS), the short term (3 months) and long term (10 years) interest

rate differentials, given as yi2,t. The IPI is an economic indicator that measures changes in

output for the manufacturing, mining, and utilities business sectors. Although these sectors

contribute only to a small fraction of the GDP, and several countries have partially shifted

from being production oriented to being service and consumer oriented, which reduces even

further the contribution of these sectors, they are rather sensitive to variations in interest

rates and consumer demand. This makes the IPI an important variable for forecasting

the future economic performance of an economic system. The term spread has often been

advocated as predictor of recession periods, see e.g. Harvey (1991). It can also be seen as

a source of financial shocks, and therefore captures the transmission mechanism from the
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financial sector to the real one. Claessens et al. (2008) link shock transmissions from the

financial sector to the real sector using a larger set of variables. Estrella and Hardouvelis

(1991) use real GNP growth in US to examine the predictive ability of the term spread.

The results show that term spread has significant predictive power on output growth,

consumption, and investment. Plosser and Rouwenhorst (1994) find the term structure

has significant predictive for economic growth in three industrial countries. However,

there is no conclusive finding that the yield spread consistently contains information in

explaining future economic activity. For example, Plosser and Rouwenhorst (1994) find the

evidence that yield spreads contain useful information to forecast real economic activities

in US, Canada and Germany, but not in France and UK. Harvey (1991) and Kim and

Limpaphayom (1997) examine G7 economies and conclude that the yield spread does not

consistently contain information about future economic activity. Hamilton and Kim (2002)

address the theoretical model toward the nature of the term spread. They nicely present

that the spread’s forecasting contribution is attributed to two effects: an expectation effect

that shows a sign of the public’s expectation on the future economic activities and the term

premium effect that represents the risk of investments in alternative assets. They find that

both factors are relevant for predicting real GDP growth but respective contributions differ.

The contributions are similar at short horizons but the effect of expected future short rates

is much more important than the term premium for predicting GDP more than two years

ahead.

IPI TS
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Figure 1: Country-specific endogenous variables: industrial production growth rate (IPI)
and term structure (TS).

All data, from Eurostat and OECD databases, are sampled at a monthly frequency, from

July 1991 to March 2013, and are seasonally and working day adjusted. Data is plotted in

Figure 1

To avoid issues with possibly non-stationary series, we take the IPI in terms of log-

changes. We set the number of regimes M = 3 for all countries in the panel, see e.g.

Ferrara (2003), and impose the following restrictions on the intercept of the IPI growth
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rate ai1,1 < 0 and ai1,1 < ai1,2 < ai1,3, i = 1, ..., N , in order to identify the regimes (see

Section 3.1). We label regime 1 as recession; regime 2 as recovery or moderate expansion;

and regime 3 as strong expansion.

One crucial aspect in studying interactions between the eurozone and the US and

among Euro countries relates to the composition of the variable Vt. To investigate the

interconnectedness between the eurozone and the US, we specify the set of common

endogenous covariates Vt equal to the vector η1t and I(sUS,t−1 = 1). The indicator η1t is a

weighted average of the number of eurozone countries in the recession regime (regime 1) at

time t−1; I(sUS,t−1 = 1) takes value 1 when the US economy is in recession and 0 otherwise.

Such assumptions allow us to have an endogenous interconnection mechanism between the

two economies. Note that the information of the eurozone countries was discussed in Section

2.3. More precisely, we focus on the weighted interaction indicator given in equation (9)

and use economic size unit-specific weights . We follow the Eurostat framework to eurozone

variables aggregation and derive weights on relative value added, see Eurostat Regulation

EC No 1165/98. Value added data are downloaded from the UNData database and Fig. 7

displays the weights.1.

4.2 Country-specific features

We apply to our dataset the Gibbs sampler, given in Section 3 and obtain the posterior

densities of the PMS-VAR model parameters. The posterior densities are then approximated

through a kernel density estimator applied to a sample of 4,000 random draws from the

posterior. In order to generate 4,000 i.i.d. samples from the posterior, we run the Gibbs

sampler, for 50,000 iterations, discard the first 10,000 draws to avoid dependence from

the initial condition, and finally apply a thinning procedure with a factor of 10 samples,

to reduce the dependence between consecutive Markov-chain draws. See Appendix B for

further details on choice of the number of iterations and of the burn in samples.

4.2.1 Unit- and variable-specific Markov-switching intercepts

Figures 2 and 3 show the approximated posterior densities of the parameters γim =

(ai1,m, ai2,m)′, (σi 1,m) and (σi 2,m), m = 1, . . . ,M and i = 1, . . . , N , that represent the value

of the unit- and variable-specific time-varying intercepts and volatilities of the PMS-VAR

model. A comparison of such posteriors provides useful information on whether and how

individual countries differ over booms and busts. We recall that the regime identification

follows from the parameter constraints ai1,1 < 0 and ai1,1 < ai1,2 < ai1,3, on the intercept

of the IPI growth rate equation.

The posterior densities for the IPI growth intercept, ai1,m, m = 1, 2, 3 (see left column

in Fig. 2), are not overlapping in most of the countries. This suggests that the regimes

are well identified on the IPI growth data. Moreover, for all panel units the support of the

1We have also investigated different choices of weights, such as equal weights or IPI growth unit-specific
weights. The sensitivity of the results is available upon request.
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Figure 2: Posterior densities of the Markov-switching intercepts, γim = (ai1,m, ai2,m)′,
i = 1, . . . , N , m = 1, . . . ,M for IPI growth rate and TS.
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Figure 3: Posterior densities of the Markov-switching volatilities,
√
σi jj,m, for IPI and TS,

with σi jj,m, j = 1, 2, diagonal elements of Σim, i = 1, . . . , N and m = 1, . . . ,M .

posterior density for ai1,1, the intercept of the recession regime, is negative as we impose;

whether ai1,2, the moderate regime, is centered around zero; and ai1,3, strong expansion,
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is positive. Nevertheless, there are substantial differences between European countries and

US: the three posteriors are wider for European countries; and the posteriors of ai1,1 are

large and negative. Posteriors for US are more concentrated and closer to zero. For France

and Italy, ai1,2 and ai1,3 overlap substantially, suggesting that the two countries have not

experienced strong growth in our sample. The other four European countries have larger

ai1,3; in particular for Belgium, Germany and the Netherlands.

The posterior density of the term spread intercept (see right column in Fig. 2) is

centered around zero for all countries, with larger dispersion for the recession and strong

expansionary periods. The slope of the term structure is often flat during calm period and

can be positive or negative both in recession and expansion periods. Our estimates display

such uncertainty. Nevertheless, the overlapping supports of the posterior densities indicate

a substantial equivalence of the mean TS value across regimes.

4.2.2 Markov-switching volatilities

The differences across regimes and across countries are larger for the posterior densities

of the IPI and TS volatilities (see Fig. 3). As regards the IPI volatility, there is a large

difference of the volatility behavior across regimes, between the US and the European

countries. The general pattern is that volatility is higher during recessions and, for

many countries, during expansion periods, and lower in recovery and moderate expansion

periods, but with important differences among countries. The volatility posteriors for the

three regimes do not overlap for Belgium and the US, whether this is not true for other

countries. The US industrial production has larger switches during strong recession or

expansion periods, which increase volatility estimates. Posterior mean estimates suggest

such movements are transitory and do not imply large changes in the intercept. The

eurozone estimates seem to be dominated by smoother transitions, resulting in lower

volatilities but more evident differences in the intercept. Germany posteriors are the closest

to US estimates. There is, however, an important difference in volatilities of the third regime

for Belgium: estimates are higher, meaning that strong expansions have larger uncertainty

in this country compared to the the rest of the eurozone and the US. There exist, on the

contrary, not major differences for residual volatilities for the term spread. As regards the

TS volatility, there is a strong evidence in favor of at least two regimes for the TS series.

Again, the identification of the regimes for the IPI data is quite effective also for the TS

series. For all countries, the posterior density for the TS volatility in the moderate regime is

concentrated around 0.08 and its support set does not overlap with the ones of the recession

and expansion regimes. The TS volatility in regimes 1 and 3 is larger and its posterior mean

is between 0.3 and 0.5.

To sum up, we find some important differences in the parameter posterior densities of the

eurozone and the US, both in the intercept and in the regime volatility. The heterogeneity

is also important among eurozone economies, with mainly Germany more similar to the US

than other countries.
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4.3 Evidence on leading and lagging cycles

The PMS-VAR model allows us to study the business cycles fluctuations of each country in

the panel, to analyse the transmission of shocks across cycles and predict the turning points

of the country-specific cycles. We recall that the regime labeling is: recession, si,t = 1,

recovery or moderate expansion, si,t = 2, and expansion, si,t = 3. The PMS-VAR model

produces both country-specific smoothing probabilities for each regime (given in Fig.9-

11) and eurozone and US aggregate smoothing probabilities. Specifically, the number of

eurozone countries in recession and the similar measure for the US, used in the vector Vt,

are reported in the first row of Fig. 4. The second row of the same figure reports the

associated probabilities of the eurozone and US economies to be in recessions. These figures

provide several interesting results and generally show that the eurozone and US economies

are not fully aligned.
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Figure 4: First row: fraction of eurozone countries in the recession regime, η̂1t, and US
recession indicator I(ŝ7,t = 1), t = 1, . . . , T . Second row: smoothing probability of being in
the recession regime (regime 1) using the indicator processes η1t for the eurozone and s7,t
for the US, t = 1, . . . , T
.

In the first decade of our sample, the recession probability in the eurozone is more

volatile than in the US, see also Fig. 9 in Appendix C, and this may be related to the

construction of the European Monetary Union. In the second decade, the US apparently

leads the eurozone cycle both in the short recessions in 2001-2002, and from 2007-2008.

The internet bubble has generated small and short-lasting recessions in both economies,
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with instabilities up to 2003, and some calls for new recession in the US at the end of 2005

and in 2006. The largest recession probabilities are during the Great Financial Recession,

with both economies having probabilities close to 1. The US seems to enter, and to reach

the peak one-quarter in advance of the eurozone. Our model indicates precisely that the

US economy enters in the recession phase in April 2008, with already increasing recession

probabilities from August 2007 onwards, where the eurozone recession starts in August

2008. Both economies enter in 2009Q2 in a new regime generally defined recovery in our

paper (see also the low probability levels in Fig. 9 and 11 and the high probability level

in Fig. 10), but which is probably more accurate to interpret as stagnation. Furthermore,

the eurozone has evidence of a new recession regime from June of 2011. We associate it to

fiscal and debt problems in some European countries, in particular in Italy and Spain, see

also next paragraph. In general, recessions in the US are shorter than in the eurozone.

Looking at the country specific smoothing probabilities we observe that the regimes are

often highly persistent. Regime 2 is the most probable as we could anticipate since its

definition can fit both stagnation, recovery and (moderate) expansion periods, which are

appropriate definitions for most of our sample. The global financial crisis in 2008-2009 and

its impact are evident, with most of the countries in recession. There is some evidence of a

recession in 2001, see, for example, The Netherlands and Spain, but all short-lived. Larger

differences exist during the European debt crisis, with Germany and the US the only two

countries where the probability of regime 2 does not increase. The third regime has the

lowest probabilities, in particular in the second decade. Finally, probabilities for Belgium

seem the least related to US probabilities in the first decade of our sample, but converging

in the second part of the sample. The large decline of mining in the 80’s is a possible

explanation for it.

The heterogeneity of the eurozone is present not only in the regime dynamics but also in

the features of the regimes. The dynamic features of the cycle, in terms of conditional level

and conditional variance, are given for each country in Appendix D. The mean conditional

level (Fig. 12-14) and the mean conditional variance (Fig. 15-17) of the cycle and their

high probability density regions account for both parameter and regime uncertainties. These

figures allow, at each point in time, for a statistical analysis of the cycle fluctuations and for

a comparison between the cycles of the different countries. A quick look at Fig. 12-14 reveals

that during the Great Financial Recession the level is much more negative in Europe than

the US. France, Germany, Italy and The Netherlands have all values below -1.5, compared to

the 90% interval [−0.5,−1] of the US. The Netherlands has the highest intercept in regime

2, whether France, Germany and Italy the lowest. The intercept of Germany increases after

2006 up to the crisis, probably due to the reforms they implemented. Fig. 15-17 tell us that

the high volatilities in the recession are evident, with the US one of the smallest. Moreover,

the US volatility in regime 2 is smaller than other countries.

The whole set of figures highlights the heterogeneity of the fluctuations in the eurozone

and allows to study how recession and non-recession phases spread out across countries.

In order to compare cycles and to better summarize the information about the diffusion
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of the recession (regime 1) and non-recession (regimes 2 and 3) phases across countries,

we elaborate further the output of our PMS-VAR model by aggregating regimes 2 and 3

in the non-recession regime and by normalizing the mean conditional level of the eurozone

countries by dividing it by the mean conditional standard deviation. The result is given in

Fig. 5. The figure strengths the interpretation of previous results, and it is clear that the

growth level during the Great Financial Recession is much more negative in Europe than

US; Germany, France and Italy have the lowest expansion growth levels and closer to the

US one, whether the Netherlands has the largest.
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Figure 5: Heatmaps of the standardized conditional levels of the country-specific cylces
during recession (up) and non-recession (bottom) phases. In each plot blue colors represent
lower levels of the economic activity (note the different scales in the two panels). The levels
are given by the ratio between the conditional interecepts (see Fig. 12-14, Appendix D) and
the conditional standard deviations (see Fig. 15-17, Appendix D) of the country-specific
cycles.

The evidence of strong heterogeneity of the cycles is one of the main results of our

PMS-VAR model. Another relevant result regards the interaction between the cycles. The
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Country pit,11 pit,12
i Label αEU,11

1i αUS,11
1i αEU,12

1i αUS,12
1i

1 BE 1.70 -0.47 -0.20 -0.15
(1.46, 1,99) (-0.63,-0.26) (-0.31, -0.02) (-0.34,0.05)

2 FR 1.51 -0.32 0.07 0.17
(1.39,1.74) (-0.53,0.12) (-012,0.21) (0.01,0.34)

3 GE 1.69 -0.25 -0.16 -0.27
(1.60,1.82) (-0.50,-0.07) (-0.51,0.00) (-0.45,-0.09)

4 IT 1.68 0.10 0.22 0.41
(1.45,1.87) (-0.03,0.33) (0.16,0.30) (0.26,0.59)

5 NL 1.57 0.18 0.24 -0.23
(1.47,1.71) (0.10,0.27) (0.08,0.47) (-0.43,-0.08)

6 SP 1.76 0.08 0.09 -0.33
(1.67,1.89) (-0.01,0.19) (-0.02,0.17) (-0.48,-0.06)

7 US 1.58 1.00 0.00 0.22
(1.53,1.65) (0.94,1.04) (-0.06,0.07) (0.18,0.26)

Table 1: Posterior mean and 90% credible interval (in parenthesis) for the parameters,

α1i = (α11
1i , α

12
1i )
′, with αlj1i = (αEU,lj1i , αUS,lj1i )′, which are the coefficients of the interaction

variables η1t and I(s7,t = 1) driving the Markov-switching transition probabilities.

posterior estimates of the loadings of Vt (see Table 1) provide further information on the

interaction between the eurozone and the US cycles. Estimates of the coefficients αEU,111i ,

i = 1, . . . , 6, associated with the eurozone recession indicator, η1t, appearing in the country-

specific probability to stay in recession (see Eq. 4-5), are all positive, large and significant.

This means that there is a reinforcement effect, that is an increase in the probability to stay

into the recession regime at time t + 1 due to the fact that the eurozone countries were in

a recession phase at the previous time t. See the upper-left chart of Fig. 6 for a graphical

illustration of the sensitivity of the recession probability pit,11 to the values of η1t when US

is not in recession, i.e. s7t 6= 0.

The posterior means of αUS,111i for the eurozone countries are negative, small and credible

significant except for Italy and the Netherlands. This means that, when the US enters in the

recession and the European countries are in recession, then the effect on the eurozone cycles

is not homogeneous. The upper-right chart of Fig. 6 exhibits the effect of an increase of

number of eurozone countries in recession, the η1t indicator, on the probability of staying in

regime 1 (recession), when the US is in recession, i.e. s7,t = 1. A comparison of the upper-

left and upper-right charts reveals the heterogeneous reactions of the eurozone countries to

changes in the cycle of the US.

We find evidence of a reinforcement effect also for the US cycle. In fact, the posterior

mean of αUS,111i for i = 7 (the US) is equal to one. Furthermore, there is strong evidence of

a positive effect of the eurozone recession on the US probability to stay in recession, that

corresponds to a posterior mean of αUS,111i for i = 7 equal to 1.58.

As regards the transition probability pit,12, that is the probability to exit a recession

phase, going from the recession regime (regime 1) to the moderate growth regime (regime
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Figure 6: Reaction of the transition probabilities pit,11 (first row) and pit,12 (second row)
to changes in η1t, when conditioning on not recession for the US, i.e. s7,t 6= 1 (left column)
and recession for the US, i.e. s7,t = 1, (right column).
.

2), we found evidence of differences between the eurozone countries (see Table 1). The

estimate for αUS,121i , i = 7, is positive and zero is outside the credible interval, where the

sign and significance of αEU,12i , with i 6= US, is more uncertain. The same evidence is true

for αUS,12i , i 6= US. The discrepancies between European countries are clear from the charts

in the second row of Fig. 6. When the US is not in a recession phase, an increase in η1t

(number of eurozone countries in recession) produces for some countries (i.e. Belgium and

Germany) a decrease of the probability of exiting the recession.

As regard the relationship between the US and the eurozone cycles, the probability of

exiting a recession phase for the US cycle is not affected by number of eurozone countries

in recession. While the US recession has an effect on the exiting probability of the eurozone

countries. This could be interpreted again as the fact that the US cycle is leading in eurozone

when exiting a recession phase. As regards the effect of the US on the eurozone cycle when

exiting a recession, we found evidence of heterogeneous behaviour of the eurozone countries

(see bottom-right chart of Fig. 6).

4.4 Turning points detection

The previous sections describe how the US economy differs from the eurozone. It also

highlights substantial differences among European countries. An important assumption

for our model strategy refers to the weight scheme to aggregate country-specific cycles.

We repeat that we use value added weights in equation (9). Fig. 7 shows that Germany
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has the largest weight, declining for most of the sample, but increasing at the end of it.

France and Italy are the second and third largest economies, then Spain, the Netherlands;

finally Belgium accounts for 5% of the sum. To further investigate how countries relate to

the aggregate and possible synchronize with it, we study how each country cycle detects

turning points of the business cycle. The contribution is not necessarily equal to the weights

for several reasons. The link from individual countries to the aggregate depends on which

measure is used. Some countries may lead the cycle, others may lag; value added weights

may not contain such information.
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Figure 7: Value added eurozone weights.

We follow Billio et al. (2012a) and construct eurozone business cycle turning points by

applying the Bry and Boschan (1971) (BB) rule, that identifies a downward turn (or peak)

at time t for the variable of interest yt if yt−κ < yt, . . . , yt−1 < yt and yt > yt+1, . . . , yt > yt+κ

and a upward turn (or trough) at time t if yt−κ > yt, . . . , yt−1 > yt and yt < yt, . . . , yt < yt+κ.

Similarly, we define a non-downward turn at time t if yt−κ < yt, . . . , yt−1 < yt and

yt < yt+1, . . . , yt < yt+κ and a non-upward turn at time t if yt−κ > yt, . . . , yt−1 > yt

and yt > yt+1, . . . , yt > yt+κ. The parameter κ reduces the number of false signals.2 These

definitions are standard in business cycle analysis (see for example Chauvet and Piger

(2008)) and are also used (with some adjustments) by the NBER institute for building the

reference cycle for the US.

In the following we apply an approximation of the BB rule and use only downward,

2Our analysis can be extended to include modifications of the BB rule (see for example Mönch and Uhlig
(2005)), which account for asymmetries and time-varying duration across business cycle phases. Censoring
rules preventing the algorithm from the detection of false signals could also be used.
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Dt(κ), and upward, Ut(κ), turn signals, that are

Dt(κ) =
κ∏
k=1

I[yt−k,+∞)(yt)I[yt+k,+∞)(yt) (23)

Ut(κ) =
κ∏
k=1

I(−∞,yt−k](yt)I(−∞,yt+k))(yt) (24)

respectively. Our analysis can be extended to include modifications of the BB rule (see

for example Mönch and Uhlig (2005)), which account for asymmetries and time-varying

duration across business cycle phases.

1991M07 1996M07 2001M07 2006M07 2013M03
0

20

40

60

80

100

120

 

 

BE FR GE IT NL SP

Figure 8: Cumulative concordance statistics of individual countries to predict eurozone
cycle
.

Set yt equal to the aggregate eurozone IPI growth used in Billio et al. (2012a) and

download from the OECD database. The following indicator variable can be computed:

zt = zt−1(1−Dt(κ)) + (1− zt−1)Ut(κ)

that is equal to 1 in the expansion phases and 0 in the recession phases. We assume z0 is

given. We evaluate turning point detection ability of the different country chains by the

concordance statistics (CS):

CSi =
1

t+ 1 + κ

t+1−κ∑
s=1

(
I(si,t = 1)zs − (1− I(si,t = 1))(1− zs)

)
(25)

where we define a downward turn when switching to regime 1, i.e. I(si,t = 1), and upward

turn otherwise, i.e. (1 − I(si,t = 1)). This means that an upward turn can be a switch to
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regime 2 or 3 in our three-regime models. The CS statistics is a nonparametric measure

of the proportion of time during which two series, in our case the country-specific cycle

and the eurozone cycle, are in the same state. This measure ranges between 0 and 1, with

0 representing perfectly counter-cyclical switches, and 1 perfectly synchronous shifts. Fig.

8 shows the CSi cumulated over time and it ranges between 0 and the sample size, that

is 261 in our application. The countries with the highest CS have a business cycle which

conserves over time a strong similarity to the cycle of the eurozone. At the end of the

sample, the order of the countries following the CS values does not corresponds with the

order obtained by applying the value added weights in Fig. 7. This constitutes evidence of

a substantial difference between the size of the countries and the dynamic features of their

economies in providing information about the aggregate cycle. Furthermore, we observe

that there is change in the country ordering from 2008, which corresponds to the beginning

of the recession phase dated in August 2008 following results in Fig. 4. In the first 15 years

of our sample, Germany has the largest CS, but after the beginning of the Great Financial

crisis and, above all, the European debt crisis, Spain and Belgium seem to provide more

timely information on the aggregate recession; an increasing role for Italy; and France gives

less accurate evidence.

5 Conclusion

We propose a new Bayesian panel VAR model with unit-specific time-varying Markov-

switching latent factors and develop a suitable Gibbs sampling procedure for posterior

inference. We apply our panel MS-VAR model to the analysis of the interconnections and

the differences between the eurozone and the US business cycles and their turning points.

Our results show that the US cycle leads the eurozone cycle. The two cycles are not

often fully synchronized over the 1991-2013 sample, with evidence of more recessions in

the eurozone, in particular during the 90’s when the monetary union was planned. The

larger synchronization is at beginning of the Great Financial Crisis: the shock affects the

US 1-quarter in advance of the eurozone, but it spreads among economies very rapidly. In

general, recessions are shorter-lived in the US, and switches from recessions to expansions

or from expansions to recessions are sharper, resulting in higher volatility in such regimes,

compared to smoother transitions for the the eurozone countries.

We found evidence of reinforcement effects in the recession probabilities for both

the eurozone and the US cycles, large differences in the phase transitions within the

eurozone and an asymmetric relationship between the eurozone and the US economic phase

transitions. More specifically an increase in the number of eurozone countries in recession

increases the probability of the US to stay into recession, while the US recession indicator

has a negative impact on the probability to stay in recession for the eurozone countries

except for Italy and the Netherlands. We found a similar asymmetry and heterogeneity

also in the probabilities of exiting the recession phase.

Finally, as regards the turning point analysis, the cycles of Germany and, somewhat
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less, France and Italy are closer to the one of the US than other countries. Affinity to the

US cycle does not necessarily imply that the correspondent country cycle detects turning

points for the eurozone accurately. Indeed, we find that Belgium, Spain, and somewhat less

Germany, seem to provide more timely information on the aggregate recession; whether the

Netherlands and France give less accurate evidence.
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A Computational details

A.1 Parameter full conditional densities

Updating γi0. Then the full conditional distribution of the regime-independent parameter

γi0 is a normal with density function

f(γi0|yi,Ξi,γi,Σi,λ0) ∝ (26)

∝ exp

{
−1

2

N∑
i=1

T∑
t=1

(yi0t − γi0)′Σ−1it (yi0t − γi0)−
1

2
(γi0 − λ0)

′Σ−1i0 (γi0 − λ0)

}

∝ exp

{
−1

2
γ ′i0

(
T∑
t=1

X ′i0tΣ
−1
it Xi0t + Σ−1i0

)
γi0 + γi0

(
T∑
t=1

X ′i0tΣ
−1
it yi0t + Σ−1i0 λ0

)}
∝ NK0(γ̄i0, Σ̄i0)

where γ̄i0 = Σ̄i0(Σ
−1
i0 λ0 +

∑T
t=1X

′
i0tΣ

−1
it Xi0t) and Σ̄−1i0 = (Σ−1i0 +

∑T
t=1X

′
i0tΣ

−1
it Xi0t).

Updating γim. The full conditional distributions of the regime-dependent parameters

γim, with m = 1, . . . ,M are normal with density function

f(γim|yi,Ξi,γi0,γi(−m),Σ,λm) ∝ (27)

∝ exp

−1

2

∑
t∈Tim

u′itΣ
−1
t uit −

1

2
(γim − λm)′Σ−1im(γim − λm)


∝ exp

−1

2
γ ′i

∑
t∈Tim

X ′imtΣ
−1
it Ximt + Σ−1im

γi + γ ′i

∑
t∈Tim

X ′imtΣ
−1
it yimt + Σ−1imλm


∝ NKm(γ̄im, Σ̄im)

with γ̄im = Σ̄−1im(Σ−1imλm+
∑

t∈Tim X
′
imtΣ

−1
it Ximt) and Σ̄−1im = (Σ−1im+

∑
t∈Tim X

′
imtΣ

−1
it Ximt),

where we defined Tim = {t = 1, . . . , T |ξimt = 1} and yimt = yit −Xi0tγi0.

Updating Σ−1im. The full conditional distributions of the regime-dependent inverse

variance-covariance matrix Σim, m = 1, . . . ,M , are Wishart distributions with density

f(Σ−1im |yi,Ξi,γi0,γi,Σi(−m),Υm) ∝ (28)

∝
T∏
t=1

|Σit|−
1
2 exp

−1

2

∑
t∈Tim

u′itΣ
−1
it uit

 |Σ−1im | νim−K−1

2 exp

{
−1

2
tr
(
Υ−1m Σ−1im

)}

∝ |Σ−1im |
νim+Tim−K−1

2 exp

−1

2
tr

Υ−1m +
∑
t∈Tim

uimtu
′
imt

Σ−1im


∝ WK(ν̄im, Ῡim)

where Tim =
∑T

t=1 I(ξimt = 1), uimt = yit − Xi0tγi0 − Ximtγim, ν̄im = νim + T and

31



Ῡ−1im = Υ−1m +
∑

t∈Tim uimtu
′
imt.

Updating αi. The full conditional distribution of the parameters in the k-th row of the

transition matrix is

f(αk1i , . . . ,α
kM−1
i |yi,Ξ,γi0,γi) ∝

T∏
t=1

M−1∏
j=1

(H(Vt,α
kj
i ))ξijtξik t−1

We apply a Metropolis-Hastings step.

Updating λm. The full conditional distributions of the parameters λm, m = 0, 1, . . . ,M ,

of the third stage of the hierarchical structure, are normal distributions with density

functions

f(λm|γ,Σ) ∝ (29)

∝ exp

{
−1

2

N∑
i=1

(γim − λm)′Σ−1im(γim − λm)− 1

2
(λm − λm)′Σ−1m (λm − λm)

}

∝ exp

{
−1

2

[
λ′m

(
N∑
i=1

Σ−1im + Σ−1m

)
λm − 2λ′m

(
N∑
i=1

Σ−1imγim + Σ−1m λm

)]}
∝ NKm(λ̄m, Σ̄m)

where Σ̄−1m =
∑N

i=1 Σ−1im + Σ−1m and λ̄m = Σ̄m

(∑N
i=1 Σ−1imγim + Σ−1m λm

)
.

Updating Υ−1m . The full conditional distributions of the Υm, m = 1, . . . ,M , are Wishart

distributions with density

f(Υ−1m |γ,Σ) ∝ (30)

∝ |Υ−1m |
νm−K−1

2 exp

{
−1

2
tr
(
Υ−1m Υ−1m

)} N∏
i=1

|Υ−1m |νim/2 exp

{
−1

2
tr

(
N∑
i=1

Υ−1m Σ−1im

)}
∝ WK(ν̄m, Ῡm)

where ν̄m =
∑N

i=1 νim + νm and Ῡ−1m = Υ−1m +
∑N

i=1 Σ−1im .

A.2 Allocation variable full conditional distributions

In the simulation from the full conditional of the hidden allocation variables, we exploit the

following factorization of the full conditional distribution of the ξi 1:T
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p(ξi 1:T |y1:T ,Ξ,γ,Σα) ∝
N∏
i=1

T∏
t=1

p(yt|yt−p−1:t−1, ξit,γi,Σi)

M∏
k,l=1

p
ξiltξikt−1

it,kl (31)

∝
T∏
t=1

p(yt|yt−p−1:t−1, ξit,γi,Σi)
M∏

k,l=1

p
ξiktξilt−1

it,kl

N∏
j=1
j 6=i

M∏
k,l=1

p
ξjktξjlt−1

it,kl

∝

(
p(ξiT |y1:T ,γi,Σi)

T−1∏
t=1

p(ξit|ξit+1:T ,y1:T ,γi,Σi)

) T∏
t=1

N∏
j=1
j 6=i

M∏
k,l=1

p
ξjktξjlt−1

it,kl


The first factor in the full conditional can be written recursively using the sequence of

filtering densities and can be easily simulated through the FFBS procedure. The second

part, is a proportionality factor that depends on the values ξit, t = 1, . . . , T . This

factorization suggests that the FFBS algorithm can be used as proposal for the hidden

states of the i-th chain of the model and that a Metropolis-Hastings step can be then used

to account for the proportionality factor.

These conditional probabilities do not account for the interaction mechanism between

the chains. Thus, we adjust for this discrepancy with a Metropolis-Hastings step, which

use the FFBS as proposal and the full conditional p(ξi1:T |ξ1 1:T , . . . , ξi−1 1:T , ξi+1,1:T ,

. . . , ξN 1:T ,y1:t,γi,Σi,α) as target.

The steps of the FFBS algorithms are described in the following.

First, the filtering probability for the i-th Markov chain at time t, t = 1, . . . , T , is

determined by iterating the prediction step

p(ξit = ιj |y1:t−1,γi,Σi,α) =

M∑
l=1

pit,jlp(ξit−1 = ιl|y1:t−1,γi,Σi,α) (32)

where pit,jl = p(ξit = ιj |ξit−1 = ιl, Vt,αi), with ιm the m-th column of the identity matrix,

and the updating step

p(ξit|y1:t,γi,Σi,α) ∝ p(ξit|y1:t−1,γi,Σi,α)p(yt|yt−1−p:t−1, ξit,γi,Σi,α) (33)

where p(ξit = ιj |ξit−1 = ιl) = pit,jl with p(yt|yt−p−1:t−1, ξit) the conditional distribution of

the variable yt from a MSIH(m)-VAR(p).

We shall notice that the prediction step can be used at time t to find the predictive

density of ξit+1

p(ξit+1|y1:t,γi,Σi,α) ∝ P ′it+1 p(ξit|y1:t,γi,Σi,α) (34)
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Secondly, the smoothing probabilities given by

p(ξit = ιj |y1:T ,γi,Σi,α) ∝
M∑
l=1

p(ξit = ιj |ξit+1 = ιl,y1:t,γi,Σi,α)p(ξit+1 = ιl|y1:T ,γi,Σi,α)

(35)

are used evaluated recursively and backward in time for t = T, T − 1, . . . , 1 with initial

condition p(ξiT = ιj |y1:T ,γi,Σi,α) given by the last filtering step. The conditional

distribution

p(ξit|ξit+1,y1:t,γi,Σi,α) ∝ pit+1,ljp(ξit = ιj |y1:t)

is the building block of the smoothing probability formula and is used in the FFBS algorithm

to sample the allocation variables from their joint posterior distribution sequentially and

backward in time for t = T, T − 1, . . . , 1 (see Frühwirth-Schnatter (2006), ch. 11-13).

As discussed in previous sections, when using data-dependent priors the generation of

the allocation variables should omit draws that yield to impropriety of the posterior. In our

prior settings, the set of non-troublesome grouping, for the i-th unit, is Si = Si,ν∩Si,σ = Si,σ.

Thus, each time the set of allocation variables ξi 1:T , does not assign at least two observations

to each component of the dynamic mixture, the entire set ξi 1:T , is rejected and a new set

is drawn until a proper set is obtained.
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B MCMC convergence issues

As regards to the number of iterations, we should say that the choice of the initial sample

size and the convergence detection of the Gibbs sampler remain open issues (see Robert and

Casella (1999)). In our application we choose the sample size on the basis of both a graphical

inspection of the MCMC progressive averages and the application of the convergence

diagnostic (CD) statistics proposed in Geweke (1992). We let n = 40, 000 be the MCMC

sample size and n1 = 10, 000, and n2 = 30, 000 the sizes of two non-overlapping sub-samples.

For a parameter θ of interest, we let

θ̂1 =
1

n1

n1∑
j=1

θ(j), θ̂2 =
1

n2

n∑
j=n+1−n2

θ(j)

be the MCMC sample means and σ̂2i their variances estimated with the non-parametric

estimator

σ̂2i
ni

= Γ̂(0) +
2ni
ni − 1

hi∑
j=1

K(j/hi)Γ̂(j),

Γ̂(j) =
1

ni

ni∑
k=j+1

(θ(k) − θ̂i)(θ(k−j) − θ̂i)′

where we choose K(x) to be the Parzen kernel (see Kim and Nelson (1999)) and h1 = 100

and h2 = 500 the bandwidths. Then the following statistics

CD =
θ̂1 − θ̂2√

σ̂21/n1 + σ̂22/n2
(36)

converges in distribution to a standard normal (see Geweke (1992)), under the null

hypothesis that the MCMC chain has converged.
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C Smoothing probabilities
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Figure 9: First regime (recession) smoothing probabilities for the Markov-switching
processes si,t, i = 1, . . . , N and t = 1, . . . , T .
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Figure 10: Second regime (moderate expansion) smoothing probabilities for the Markov-
switching processes si,t, i = 1, . . . , N and t = 1, . . . , T .
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Figure 11: Third regime (strong expansion) smoothing probabilities for the Markov-
switching processes si,t, i = 1, . . . , N and t = 1, . . . , T .

38



D Cycle dynamic features
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Figure 12: First regime (recession) unobserved conditional intercepts with 90% credible
intervals.
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Figure 13: Second regime (moderate expansion) unobserved conditional intercepts with 90%
credible intervals.
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Figure 14: Third regime (strong expansion) unobserved conditional intercepts with 90%
credible intervals.
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Figure 15: First regime (recession) unobserved conditional standard deviations with 90%
credible intervals.

42



1991M07 1996M07 2001M07 2006M07 2013M03
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BE

1991M07 1996M07 2001M07 2006M07 2013M03
0

0.2

0.4

0.6

0.8

1

1.2

1.4
FR

1991M07 1996M07 2001M07 2006M07 2013M03
0

0.2

0.4

0.6

0.8

1

1.2

1.4

GE

1991M07 1996M07 2001M07 2006M07 2013M03
0

0.2

0.4

0.6

0.8

1

1.2

1.4

IT

1991M07 1996M07 2001M07 2006M07 2013M03
0

0.5

1

1.5

2

2.5

NE

1991M07 1996M07 2001M07 2006M07 2013M03
0

0.2

0.4

0.6

0.8

1

1.2

1.4

SP

1991M07 1996M07 2001M07 2006M07 2013M03
0

0.1

0.2

0.3

0.4

0.5

US

Figure 16: Second regime (moderate expansion) unobserved conditional standard deviations
with 90% credible intervals.
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Figure 17: Third regime (strong expansion) unobserved conditional standard deviations
with 90% credible intervals.
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