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Abstract

We propose a Bayesian combination approach for multivariate predictive densities which relies

upon a distributional state space representation of the combination weights. Several specifications

of multivariate time-varying weights are introduced with a particular focus on weight dynamics

driven by the past performance of the predictive densities and the use of learning mechanisms.

In the proposed approach the model set can be incomplete, meaning that all models can be indi-

vidually misspecified. A Sequential Monte Carlo method is proposed to approximate the filtering

and predictive densities. The combination approach is assessed using statistical and utility-based

performance measures for evaluating density forecasts of simulated data, US macroeconomic time

series and surveys of stock market prices. Simulation results indicate that, for a set of linear auto-

regressive models, the combination strategy is successful in selecting, with probability close to one,

the true model when the model set is complete and it is able to detect parameter instability when

the model set includes the true model that has generated subsamples of data. Also, substantial

uncertainty appears in the weights when predictors are similar; residual uncertainty reduces when

the model set is complete; and learning reduces this uncertainty. For the macro series we find that

incompleteness of the models is relatively large in the 70’s, the beginning of the 80’s and during
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the recent financial crisis, and lower during the Great Moderation; the predicted probabilities of

recession accurately compare with the NBER business cycle dating; model weights have substantial

uncertainty attached. With respect to returns of the S&P 500 series, we find that an investment

strategy using a combination of predictions from professional forecasters and from a white noise

model puts more weight on the white noise model in the beginning of the 90’s and switches to

giving more weight to the professional forecasts over time. Information on the complete predictive

distribution and not just on some moments turns out to be very important, above all during tur-

bulent times such as the recent financial crisis. More generally, the proposed distributional state

space representation offers a great flexibility in combining densities.

JEL codes: C11, C15, C53, E37.

Keywords: Density Forecast Combination, Survey Forecast, Bayesian Filtering, Sequential Monte

Carlo.

1 Introduction

When multiple forecasts are available from different models or sources it is possible to combine these

in order to make use of all relevant information on the variable to be predicted and, as a consequence,

to produce better forecasts. One of the first papers on forecasting with model combinations is Barnard

[1963], who considered air passenger data, and see also Roberts [1965] who introduced a distribution

which includes the predictions from two experts (or models). This latter distribution is essentially a

weighted average of the posterior distributions of two models and is similar to the result of a Bayesian

Model Averaging (BMA) procedure. See Hoeting et al. [1999] for a review on BMA, with an historical

perspective. Raftery et al. [2005] and Sloughter et al. [2010] extend the BMA framework by introducing

a method for obtaining probabilistic forecasts from ensembles in the form of predictive densities and

apply it to weather forecasting.

Our paper builds on another stream of literature, starting with Bates and Granger [1969] and

dealing with the combination of predictions from different forecasting models; see Granger [2006] for

an updated review. Granger and Ramanathan [1984] extend Bates and Granger [1969] and propose to

combine forecasts with unrestricted regression coefficients as weights. Liang et al. [2011] derive optimal

weights in a similar framework. Terui and van Dijk [2002] generalize the least squares model weights

by representing the dynamic forecast combination as a state space with weights that are assumed to
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follow a random walk process. This approach has been extended by Guidolin and Timmermann [2009],

who introduce Markov-switching weights, and by Hoogerheide et al. [2010], who propose robust time-

varying weights and accounte for both model and parameter uncertainty in model averaging. Raftery

et al. [2010] derive time-varying weights in “dynamic model averaging”, following the spirit of Terui

and van Dijk [2002], and speed up computations by applying forgetting factors in the recursive Kalman

filter updating. Hansen [2007] and Hansen [2008] compute optimal weights by maximizing a Mallow

criterion. Hall and Mitchell [2007] introduce the Kullback-Leibler divergence as a unified measure for

the evaluation and combination of density forecasts and suggest weights that maximize such a distance,

see also Geweke and Amisano [2010b]. Gneiting and Raftery [2007] recommend strictly proper scoring

rules, such as the cumulative rank probability score.

In this paper, we assume that the weights associated with the predictive densities are time-varying

and propose a general distributional state space representation of predictive densities and combination

schemes. For a review on basic distributional state space representations in the Bayesian literature,

see Harrison and West [1997]. Our combination method allows for all models to be false and therefore

the model set to be misspecified as discussed in Geweke [2010] and Geweke and Amisano [2010b].

In this sense we extend the state space representation of Terui and van Dijk [2002] and Hoogerheide

et al. [2010] and the model mixing via mixture of experts (see for example Jordan and Jacobs [1994]

and Huerta et al. [2003]) by allowing for the possibility that all models are misspecified or, in other

words, the model set is incomplete. Our approach is general enough to include multivariate linear and

Gaussian models (e.g., see Terui and van Dijk [2002]), dynamic mixtures and Markov-switching models

(e.g., see Guidolin and Timmermann [2009]), as special cases. We represent our combination schemes

in terms of conditional densities and write equations for producing predictive densities and not point

forecasts (as is often the case) for the variables of interest. Given this general representation, we can

estimate (optimal) model weights that minimize the distance between the empirical density and the

combination density, by taking into account past performances. In particular, we consider convex

combinations of the predictive densities and assume that the time-varying weights associated with the

different predictive densities belong to the standard simplex. Under this constraint the weights can

be interpreted as discrete probabilities over the set of predictors. Tests for a specific hypothesis on

the values of the weights can be conducted due to their random nature. We discuss weighting schemes

with continuous dynamics, which allow for a smooth convex combination of the predictive densities.
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A learning mechanism is also introduced to enable the dynamics of each weight to be driven by past

and current performances of the predictive densities of all models in the combinations.

The constraint that time-varying weights associated with different forecast densities belong to the

standard simplex makes the inference process nontrivial and calls for the use of nonlinear filtering

methods. We apply simulation based filtering methods, such as Sequential Monte Carlo (SMC), in

the context of combining forecasts, see for example Doucet et al. [2001] for a review with applications

of this approach and Del Moral [2004] for convergence issues. SMC methods are extremely flexible

algorithms that can be applied for inference to both off-line and on-line analysis of nonlinear and non-

Gaussian latent variable models, see for example Creal [2009]. Billio and Casarin [2010] successfully

applied SMC methods to time-inhomogeneous Markov-switching models for an accurate forecasting

of the business cycle of the euro area.

Important features of our Bayesian combination approach have been analyzed in section 5 using a

set of Monte Carlo simulation experiments. This yielded the following results. For the case of a set of

linear models, the combination strategy is successful in selecting with probability close to one the true

model when the model set is complete. High uncertainty levels in the combination weights appear

due to the presence of predictors that are similar in terms of unconditional mean and that differ little

in terms of unconditional variance. The learning mechanism produces better discrimination between

forecast models with the same unconditional mean, but different unconditional variance. The degree

of uncertainty in the residuals reduces when the model set is complete. A combination of linear with

non-linear models shows that the learning period may be longer than for the case in which only linear

models are present. Finally, we consider an example of a set of models containing a true model with

structural instability. Here it is shown that the proposed combination approach is able to detect the

instability when the model set includes the true model that is generating subsamples of data.

To show practical and operational implications of the proposed approach with real data, this pa-

per focuses on the problem of combining density forecasts using two relevant economic datasets. The

first one contains the quarterly series of US real Gross Domestic Product (GDP) and US inflation

as measured by the Personal Consumption Expenditures (PCE) deflator. Density forecasts are pro-

duced by several of the most commonly used models in macroeconomics. We combine these densities

forecasts in a multivariate set-up with model and variable specific weights. For these macro series we

find that incompleteness of the models is relatively large in the 70’s, the beginning of the 80’s and
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during the recent financial crisis while it is lower during the Great Moderation. Furthermore, the

predicted probabilities of recession accurately compare with the NBER business cycle dating. Model

weights have substantial uncertainty attached and neglecting it may yield misleading inference on the

model’s relevance. To the best of our knowledge, there are no other papers applying this general den-

sity combination method to macroeconomic data. The second dataset considers density forecasts on

future movements of a stock price index. Recent literature has shown that survey-based forecasts are

particularly useful for macroeconomic variables, but there are fewer results for finance. We consider

density forecasts generated by financial survey data. More precisely we use the Livingston dataset

of six-months ahead forecasts on the Standard & Poor’s 500 (S&P 500), combine the survey-based

densities with the densities from a simple benchmark model and provide both statistical and utility-

based performance measures of the mixed combination strategy. To be specific, with respect to the

returns of the S&P 500 series we find that an investment strategy using a combination of predic-

tions from professional forecasters and from a white noise model puts more weight on the white noise

model in the beginning of the 90’s and switches to giving more weight to the professional forecasts

over time. Information on the complete predictive distribution and not just from basic first and sec-

ond order moments turns out to be very important in all investigated cases and, more generally, the

proposed distributional state space representation of predictive densities and of combination schemes

demonstrates to be very flexible.

The structure of the paper is as follows. Section 2 introduces combinations of predictive densities

in a multivariate context. Section 3 presents different models for the weight dynamics and introduces

learning mechanisms. Section 4 describes the nonlinear filtering problem and shows how Sequential

Monte Carlo methods could be used to combine predictive densities. Section 5 contains results using

simulated data and Section 6 provides results of the application of the proposed combination method

to the macroeconomic and financial datasets. Section 7 contains conclusions and presents suggestions

for further research. In the Appendices the data sets used are described in detail. Further, alternative

combination schemes and the relationships with some existing schemes in the literature are discussed

together with the Sequential Monte Carlo method used.
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2 Combinations of Multivariate Predictive Densities

Let yt ∈ Y ⊂ RL be the L-vector of observable variables at time t and y1:t = (y1, . . . ,yt) be the

collection of these vectors from 1, . . . , t. Let ỹk,t = (ỹ1k,t, . . . , ỹ
L
k,t)
′ ∈ Y ⊂ RL be the typical one-step

ahead predictor for yt for the k-th model, where k = 1, . . . ,K. For the sake of simplicity we present

the new combination method for the one-step ahead forecasting horizon, but our results can easily be

extended to multi-step ahead forecasting horizons.

Assume that the L-vector of observable variables is generated from a distribution with conditional

density p(yt|y1:t−1) and that for each predictor ỹk,t there exists a predictive density pk(ỹk,t|y1:t−1).

To simplify notation, in what follows we define ỹt = vec(Ỹ ′t ), where Ỹt = (ỹ1,t, . . . , ỹK,t) is the L×K

matrix of predictors and vec is the operator that stacks the columns of this matrix into an KL-vector.

We denote with p(ỹt|y1:t−1) the joint predictive density of the set of predictors at time t and let

p(ỹ1:t|y1:t−1) =
t∏

s=1

p(ỹs|y1:s−1)

be the joint predictive density of the predictors up to time t.

Generally speaking a combination scheme of a set of predictive densities is a probabilistic re-

lationship between the density of the observable variable and the set of predictive densities. This

relationship between the density of yt, conditionally on y1:t−1, and the set of predictive densities from

the K different sources is given as:

p(yt|y1:t−1) =

∫
YKt

p(yt|ỹ1:t,y1:t−1)p(ỹ1:t|y1:t−1)dỹ1:t (1)

where the specific dependence structure between the observable and the predictive densities is spec-

ified below. This relationship might be misspecified because all models in the combination are false

(incomplete model set) and to model this possibly misspecified dependence we consider a parametric

latent variable model. We also assume that this model is dynamic to capture time variability in the

dependence structure. Modeling the relationship between the observable and the predictive densities

allows us to compute combination residuals and their distributions, which is a measure of the incom-

pleteness of the model set. For example, the analysis of the residuals may be used to measure the lack

of contribution of each model to the forecast of the variable of interest. The residual analysis may also
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reveal the presence of time variation in the incompleteness level, e.g. due to structural change in the

Data Generating Process (DGP). In Section 5 we investigate these issues through some Monte Carlo

simulation studies.

Among others, Hall and Mitchell [2007], Jore et al. [2010] and Geweke and Amisano [2010b] discuss

the use of the log score as a ranking device on the forecast ability of different models. The log score is

easy to evaluate and can be used to detect misspecification by studying how model weights change over

different vintages. One difference with our approach is that we consider the complete distribution of the

residuals. This yields information about a bad fit in the center but also about a bad fit on scale and tails

of the distribution; some results are reported in section 5. Therefore, we can contemporaneously study

the dynamics of both weight distributions and predictive errors. Furthermore, the log score appears to

be sensitive to tail events; see the discussion in Gneiting and Raftery [2007] and Gneiting and Ranjan

[2011]. In the empirical macroeocnomic application we compare our method to combination schemes

based on log score, see section 6. However, a careful analysis of the relative advantages of using the

log score versus the time-varying combinations of predictive densities is a topic for further research.

To specify the latent variable model and the combination scheme we first define the latent space.

Let 1n = (1, . . . , 1)′ ∈ Rn and 0n = (0, . . . , 0)′ ∈ Rn be the n-dimensional unit and null vectors

respectively and denote with ∆[0,1]n ⊂ Rn the set of all vectors w ∈ Rn such that w′1n = 1 and

wk ≥ 0, k = 1, . . . , n. ∆[0,1]n is called the standard n-dimensional simplex and is the latent space used

in all our combination schemes.

Then, we introduce the latent model, that is a matrix-valued stochastic process, with random

variable Wt ∈ W ⊂ RL ×RKL, which represents the time-varying weights of the combination scheme.

Denote with wlh,t the h-th column (h = 1, . . . ,KL) and l-th row (l = 1, . . . , L) elements of Wt, then we

assume that the row vectors wl
t = (wl1,t, . . . , w

l
KL,t) satisfy wl

t ∈ ∆[0,1]KL . The proposed latent variable

modelling framework generalizes previous literature on model combination with exponential weights

(see for example Hoogerheide et al. [2010]) by inferring dynamics of positive weights which belong to

the simplex ∆[0,1]LK .1 As the latent space is the standard simplex, the combination weights are [0,1]-

valued processes and one can interpret them as discrete probabilities over the set of predictors. Thus,

in our framework, the weights on the model set are not given, as in the standard model selection or

1Winkler [1981] does not restrict weights to the simplex, but allows them to be negative. It would be interesting to
investigate which restrictions are necessary to assure positive predictive densities with negative weights in our framework.
We leave this for further research.
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BMA frameworks, but are random quantities. In this sense the proposed combination scheme shares

some similarities with the dilution and hierarchical model set prior distributions for BMA, proposed

in George [2010] and Ley and Steel [2009] respectively. A hierarchical specification of the weights in

order to achieve a reduction of the model space by removing redundant weights is a matter of further

research.

We assume that at time t, the time-varying process of random Wt has a distribution with density

p(Wt|y1:t−1, ỹ1:t−1). Then we can write Eq. (1) as

p(yt|y1:t−1)=

∫
YKt

(∫
W
p(yt|Wt, ỹt)p(Wt|y1:t−1, ỹ1:t−1)dWt

)
p(ỹ1:t|y1:t−1)dỹ1:t (2)

We assume a quite general specification of the transition density, p(Wt|Wt−1,y1:t−1, ỹ1:t−1), that allows

the weights to have a first-order Markovian dynamics and to depend on the past values y1:t−1 of the

observables and ỹ1:t−1 of the predictors. Under this assumption, the inner integral in Eq. (2) can be

further decomposed as follows

p(Wt|y1:t−1, ỹ1:t−1)=

∫
W
p(Wt|Wt−1,y1:t−1, ỹ1:t−1)p(Wt−1|y1:t−2, ỹ1:t−2)dWt−1 (3)

The proposed combination method extends previous model pooling by assuming possibly non-

Gaussian predictive densities as well as nonlinear weight dynamics that maximize general utility

functions.

It is important to highlight that this nonlinear state space representation offers a great flexibility

in combining densities. In Example 1 we present a possible specification of the conditional predictive

density p(yt|Wt, ỹt), that we consider in the applications. In Appendix B we present two further

examples that allow for heavy-tailed conditional distributions. In the next section we will also consider

a specification for the weights transition density p(Wt|Wt−1,y1:t−1, ỹ1:t−1).

Example 1 - (Gaussian combination scheme)

The conditional Gaussian combination model is defined by the probability density function

p(yt|Wt, ỹt) ∝ exp

{
−1

2
(yt −Wtỹt)

′Σ−1 (yt −Wtỹt)

}
(4)
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where Wt ∈ ∆[0,1]L×KL is the weight matrix defined above and Σ is the covariance matrix.
�

A special case of the previous model is given by the following specification of the combination

p(yt|Wt, ỹt)∝exp

−1

2

(
yt −

K∑
k=1

wk,t � ỹk,t

)′
Σ−1

(
yt −

K∑
k=1

wk,t � ỹk,t

) (5)

where wk,t = (w1
k,t, . . . , w

L
k,t)
′ is a weights vector and � is the Hadamard’s product. The system of

weights is given as wl
t = (wl1,t, . . . , w

l
L,t)
′ ∈ ∆[0,1]L , for l = 1, . . . , L. In this model the weights may

vary over the elements of yt and only the i-th elements of each predictor ỹk,t of yt are combined in

order to have a prediction of the i-th element of yt.

Special cases of model combinations are given in the Appendix.

3 Weight Dynamics

In this section we discuss the specification of the weight conditional density, p(Wt|Wt−1,y1:t−1, ỹ1:t−1),

appearing in (3). First, we introduce a vector of latent processes xt = vec(Xt) ∈ RKL2
where

Xt = (x1
t , . . . ,x

L
t )′ and xlt = (xl1,t, . . . , x

l
KL,t)

′ ∈ X ⊂ RKL. Next, for the l-th predicted variables of

the vector yt, in order to have weights wl
t which belong to the simplex ∆[0,1]KL , we introduce the

multivariate transform g = (g1, . . . , gKL)′

g :

 RKL → ∆[0,1]KL

xlt 7→ wt = (g1(x
l
t), . . . , gKL(xlt))

′
(6)

Under this convexity constraint, the weights can be interpreted as discrete probabilities over the set

of predictors. A hypothesis on the specific values of the weights can be tested by using their random

distributions.

In the simple case of a constant-weights combination scheme the latent process is simply xlh,t = xlh,

∀t, where xlh ∈ R is a set of predictor-specific parameters. The weights can be written as: wlh = gh(xl)

for each l = 1, . . . , L, where

gh(xl) =
exp{xlh}∑KL
j=1 exp{xlj}

, withh = 1, . . . ,KL (7)

9



is the multivariate logistic transform. In standard Bayesian model averaging, xl is equal to the

marginal likelihood, see, e.g. Hoeting et al. [1999]. Geweke and Whiteman [2006] propose to use the

logarithm of the predictive likelihood, see, e.g. Hoogerheide et al. [2010] for further details. Mitchell

and Hall [2005] discuss the relationship of the predictive likelihood to the Kullback-Leibler information

criterion. We note that such weights assume that the model set is complete and the true DGP can be

observed or approximated by a combination of different models.

3.1 Time-varying Weights

If parameters are estimated recursively over time, say, using Kalman Filters then this creates sub-

stantial flexibility in dynamic adjustment. Following the same idea we define for the latent random

vector xlh a stochastic process that accounts for the time variation of the weight estimates. In our

first specification of Wt, we assume that the weights have their fluctuations generated by the latent

process

xt ∼ p(xt|xt−1) (8)

with a non-degenerate distribution and then apply the transform g defined in Eq. (6)

wl
t = g(xlt), l = 1, . . . , L (9)

where wl
t = (wl1,t, . . . , w

l
KL,t) ∈ ∆[0,1]KL is the l-th row of Wt. Note that this prior specification is

a special case of the transition density, p(Wt|Wt−1,y1:t−1, ỹ1:t−1), appearing in Eq. (3), where we

assume the model weights do not depend on the past values ỹ1:t−1 of the predictors and y1:t−1 of the

observables.

Example 1 - (Logistic-Transformed Gaussian Weights)

We assume that the conditional density function of xt is a Gaussian one

p(xt|xt−1) ∝ exp

{
−1

2
(xt − xt−1)

′ Λ−1 (xt − xt−1)

}
(10)
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where Λ is the covariance matrix and the weights are logistic transforms of the latent process

wlh,t =
exp{xlh,t}∑KL
j=1 exp{xlj,t}

, h = 1, . . . ,KL, l = 1, . . . , L

We note that the density functions of the weights wl
t is not of a known form and will be computed by

a nonlinear filtering method, see section 4.
�

3.2 Learning Mechanism

We generalize the weight structures given above and in related literature (see for example Hooger-

heide et al. [2010]) by including a learning strategy in the weight dynamics and by estimating these

weights using nonlinear filtering (see also Branch [2004] for a discussion of learning mechanism in

macroeconomic forecasting). Our weights are explicitly driven by the past and current forecast errors

and capture the residual evolution of the combination scheme. Instead of choosing between the use

of exponential discounting in the weight dynamics or time-varying random weights (see Diebold and

Pauly [1987] and for an updated review Timmermann [2006]), we combine the two approaches.

We consider an exponentially weighted moving average of the forecast errors of the different pre-

dictors. In this way it is possible to have at the same time a better estimate of the current distribution

of the prediction error and to attribute greater importance to the most recent prediction error. We

consider a moving window of τ observations and define the distance vector elt = (el1,t, . . . , e
l
KL,t)

′,

where

elK(l−1)+k,t = (1− λ)

τ∑
i=1

λi−1f
(
ylt−i, ỹ

l
k,t−i

)
, k = 1, . . . ,K, l = 1, . . . , L (11)

is an exponentially weighted average of forecast errors, with λ ∈ (0, 1) a smoothing parameter and

f(y, ỹ) a measure of the forecast error. In this paper we consider the distribution of the quadratic

errors, approximated through i.i.d. draws from the predictive density of ylk,t. Note that other forecast

measures proposed in the literature, such as utility-based measure or predictive log score, could be

used in our combination approach with learning. Define et = vec(Et), where Et = (e1t , . . . , e
L
t ), then
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we specify the following relationship between combination weights and predictors

wl
t = g(xlt), l = 1, . . . , L (12)

xt ∼ p(xt|xt−1,∆et) (13)

where ∆et = et − et−1. In this way, we include the exponentially weighted learning strategy into the

weight dynamics and estimate the density of xt accounting for the density of the conditional square

forecast errors pλ(elh,t|ỹlh,t−τ :t−1, ylt−τ :t−1) induced by Eq. (11). We emphasize that for the l-th variable

in the model, with l = 1, . . . , L, an increase at time t in the average of the square forecasting errors

implies a reduction in the value of the weight associated with the h−th predictor in the predictive

density for the l-th variables in yt. Thus in the specification of the weights density we assume that

the conditional mean is an increasing function of ∆et. One possible choice of the weight density is

given in the following example.

Example 2 - (Logistic-Gaussian Weights (continued))

Let wl
t = g(xlt), with l = 1, . . . , L, we assume that the distribution of xt conditional on the prediction

errors is

p(xt|xt−1,yt−τ :t−1, ỹt−τ :t−1) ∝ exp

{
−1

2
(xt − xt−1 + ∆et)

′ Λ−1 (xt − xt−1 + ∆et)

}
(14)

�

Note that, the above specification of the weight dynamics with learning leads to a special case of

the transition density p(Wt|Wt−1,y1:t−1, ỹ1:t−1) of Eq. (3), where we assume that the weight dynam-

ics depend on the recent values of the predictors and observables, i.e. p(Wt|Wt−1,y1:t−1, ỹ1:t−1) =

p(Wt|Wt−1,yt−τ :t−1, ỹt−τ :t−1), τ > 0. Under these assumptions, the first integral in Eq. (2) simpli-

fies as it is now defined on the set YK(τ+1) and is taken with respect to the probability measure that

has p(ỹt−τ :t|y1:t−1) as joint predictive density. As a final remark, note that the weight dynamics do

not include information about the predictive density p(ỹt|y1:t−1), such as the correlation between the

predictors, which is available at time t. Our combination approach can be extended to include such a

piece of information, when the researcher thinks it plays a crucial role in the forecasting problem.
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Summary of the applied combination scheme

In the simulation and empirical exercises we will apply a Gaussian combination scheme with logistic-

transformed Gaussian weights with and without learning. The scheme is specified as:

p(yt|Wt, ỹt) ∝ exp

{
−1

2
(yt −Wtỹt)

′Σ−1 (yt −Wtỹt)

}

where wl
t, l = 1, . . . , L elements of Wt; and

wlh,t =
exp{xlh,t}∑KL
j=1 exp{xlj,t}

, withh = 1, . . . ,KL

p(xt|xt−1) ∝ exp

{
−1

2
(xt − xt−1)

′ Λ−1 (xt − xt−1)

}
with xt = vec(Xt) ∈ RKL2

where Xt = (x1
t , . . . ,x

L
t )′ and extended with learning as:

p(xt|xt−1,yt−τ :t−1, ỹt−τ :t−1) ∝ exp

{
−1

2
(xt − xt−1 + ∆et)

′ Λ−1 (xt − xt−1 + ∆et)

}

4 Non-linear Filtering and Prediction

As already noted in section 2.3, the proposed general distributional representation allows us to repre-

sent the density of observable variables, conditional on the combination scheme, on the predictions and

on combination weights, as a nonlinear and possibly non-Gaussian state-space model. In the following

we consider a general state space representation and show how Sequential Monte Carlo methods can

be used to approximate the filtering and predictive densities.

Let Ft = σ({ys}s≤t) be the σ-algebra generated by the observable process and assume that the

predictors ỹt = (ỹ′1,t, . . . , ỹ
′
K,t)

′ ∈ Y ⊂ RKL stem from a Ft−1-measurable stochastic process associated

with the predictive densities of the K different models in the pool. Let wt = (w′1,t, . . .w
′
K,t)

′ ∈ X ⊂

RKL be the vector of latent variables (i.e. the model weights) associated with ỹt and θ ∈ Θ the

parameter vector of the predictive model. Include the parameter vector into the state vector and thus

define the augmented state vector zt = (wt,θ) ∈ X × Θ. The distributional state space form of the

13



forecast model is

yt|zt, ỹt ∼ p(yt|zt, ỹt) (15)

zt|zt−1,y1:t−1, ỹ1:t−1 ∼ p(zt|zt−1,y1:t−1, ỹ1:t−1) (16)

z0 ∼ p(z0) (17)

The hidden state predictive and filtering densities conditional on the predictive variables ỹ1:t are

p(zt+1|y1:t, ỹ1:t) =

∫
X
p(zt+1|zt,y1:t, ỹ1:t)p(zt|y1:t, ỹ1:t)dzt (18)

p(zt+1|y1:t+1, ỹ1:t+1) ∝ p(yt+1|zt+1, ỹt+1)p(zt+1|y1:t, ỹ1:t) (19)

which represent the optimal nonlinear filter (see Doucet et al. [2001]). The marginal predictive density

of the observable variables is then

p(yt+1|y1:t) =

∫
X×Yt+1

p(yt+1|zt+1, ỹt+1)p(zt+1|y1:t, ỹ1:t)p(ỹ1:t+1|y1:t)dzt+1dỹ1:t+1

=

∫
Y
p(yt+1|y1:t, ỹt+1)p(ỹt+1|y1:t)dỹt+1

where

p(yt+1|y1:t, ỹt+1)=

∫
X×Yt

p(yt+1|zt+1, ỹt+1)p(zt+1|y1:t, ỹ1:t)p(ỹ1:t|y1:t−1)dzt+1dỹ1:t

is the conditional predictive density of the observable given the predicted variables.

To construct an optimal nonlinear filter we have to implement the exact update and prediction

steps given above. As an analytical solution of the general filtering and prediction problems is not

known for non-linear state space models, we apply an optimal numerical approximation method, that

converges to the optimal filter in Hilbert metric, in the total variation norm or in a weaker distance

suitable for random probability distributions (e.g., see Legland and Oudjane [2004]). More specifically

we consider a sequential Monte Carlo (SMC) approach to filtering. See Doucet et al. [2001] for an

introduction to SMC and Creal [2009] for a recent survey on SMC in economics. Let Ξt = {zit, ωit}Ni=1

be a set of particles, then the basic SMC algorithm uses the particle set to approximate the prediction

14



and filtering densities with the empirical prediction and filtering densities, which are defined as

pN (zt+1|y1:t, ỹ1:t) =
N∑
i=1

p(zt+1|zt,y1:t, ỹ1:t)ω
i
tδzit(zt) (20)

pN (zt+1|y1:t+1, ỹ1:t+1) =

N∑
i=1

ωit+1δzit+1
(zt+1) (21)

respectively, where ωit+1 ∝ ωitp(yt+1|zit+1, ỹt+1) and δx(y) denotes the Dirac mass centered at x. The

hidden state predictive density can be used to approximate the observable prediction density as follows

pN (yt+1|y1:t, ỹ1:t+1) =
N∑
i=1

ωitδyit+1
(yt+1) (22)

where yit+1 has been simulated from the measurement density p(yt+1|zit+1, ỹt+1) independently for

i = 1, . . . , N . For the applications in the present paper we use a regularized version of the SMC

procedure given above (see Liu and West [2001] and Musso et al. [2001]). Moreover we assume that

the densities p(ỹs|y1:s−1) are discrete

p(ỹs|y1:s−1) =
M∑
j=1

δ
ỹjs

(ỹs)

This assumption does not alter the validity of our approach and is mainly motivated by the forecasting

practice, see literature on model pooling, e.g. Jore et al. [2010]. In fact, the predictions usually come

from different models or sources. In some cases the discrete prediction density is the result of a

collection of point forecasts from many subjects, such as surveys forecasts. In other cases the discrete

predictive is a result of a Monte Carlo approximation of the predictive density (e.g. Importance

Sampling or Markov-Chain Monte Carlo approximations).

Under this assumption it is possible to approximate the marginal predictive density by the following

steps. First, draw M independent values ỹj1:t+1, with j = 1, . . . ,M from the sequence of predictive

densities p(ỹs+1|y1:s), with s = 1, . . . , t. Secondly, apply the SMC algorithm, conditionally on ỹj1:t+1,

in order to generate the particle set Ξi,jt = {zi,j1:t, ω
i,j
t }Ni=1, with j = 1, . . . ,M . At the last step, simulate

yi,jt+1, i = 1, . . . , N and j = 1, . . . ,M , from p(yt+1|zi,jt+1, ỹ
j
t+1) and obtain the following empirical
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predictive density

pM,N (yt+1|y1:t) =
1

MN

M∑
j=1

N∑
i=1

ωi,jt δyi,jt+1
(yt+1) (23)

5 Experiments using simulated data

5.1 Complete and incomplete model sets

Using simulated data we start to study the ability of the nonlinear filtering procedure to select the

true model, when the model set is complete. Next, we study the behavior of both weights and

residuals for an incomplete set. We do consider models that are similar and belong to the class of

Gaussian, linear autoregressive models. This class is widely studies in the forecasting literature (e.g.,

see see Clements and Hendry [1998], Patton and Timmermann [2012] for an extension to testing using

inequality constraints and Hoogerheide et al. [2012] to include risk measures).

We run two sets of experiments. In the first set, we have three linear stationary autoregressive

(AR) models with different unconditional means (UM), i.e.

M1 : y1t = 0.1 + 0.6y1t−1 + ε1t (24)

M2 : y2t = 0.3 + 0.2y2t−2 + ε2t (25)

M3 : y3t = 0.5 + 0.1y3t−1 + ε3t (26)

with εit
i.i.d.∼ N (0, σ2), t = 1, . . . , T , independent for i = 1, 2, 3 and assume yi0 = 0.25, i = 1, 2, 3 and

σ = 0.05. Note that, as we generate data from model M1, which is the true model, then in this

experiment we have two biased predictors, M2 and M3 and one unbiased predictor M1. Moreover,

the three models differ in terms of persistence patterns in the autoregression. The true model has

UM=0.25 and the series is moderately autoregressive with root 10/6. Model M2 has a different

intercept, autoregressive coefficient and lag structure. It has UM = 0.375 and the series is more close

to normal white noise with a root equal to
√

10/2. Model M3 has the same lag structure as the true

model, but different intercept and autoregressive coefficient. It has UM = 0.56 and the series is really

close to white noise: the root is 10.

In the second set of experiments, we consider three stationary autoregressive processes with equal

means. The two processes have almost the same roots. Specifically, let M1 be defined as in the
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previous section and

M2 : y2t = 0.125 + 0.5y2t−2 + ε2t (27)

M3 : y3t = 0.2 + 0.2y3t−1 + ε3t (28)

with εit
i.i.d.∼ N (0, σ2) independent for i = 1, 2, 3. Model M1 has UM = 0.25 and is moderately

autoregressive, with unconditional variance (UV) equal to 0.0039. Model M2 has UM = 0.25 and is

moderately autoregressive with UV=0.0033. Finally, Model M3 has UM = 0.25 and is close to white

noise with UV=0.0026. Models M2 and M3 have the same UM as the one of the true model, and

are similar to it in terms of unconditional variance. We thus consider three unbiased predictors where

two are even almost equal in persistence pattern and close in terms of unconditional variance.

In the two sets of experiments, we generate a random sequence y1t, t = 1, . . . , T , with T = 100,

from M1 and set yt = y1t, assume that the model set is complete and apply our density combination

method. We specify the following combination scheme

p(yt|ỹt) = (2πσ2)−
1
2 exp

− 1

2σ2

(
yt −

3∑
i=1

witỹit

)2
 (29)

where ỹit are forecast for yt generated at time t− 1 from the different models and ỹt = (ỹ1t, ỹ2t, ỹ3t)
′.

As regards the probabilities, wit, for the model index i = 1, 2, 3, we assume that the vector wt =

(w1t, w2t, w3t)
′ is a multivariate logistic transform, ϕ, of the latent process xt = (x1t, x2t, x3t)

′ (see

section 3) and consider independent random walk processes for xit, i = 1, 2, 3 for updating. We

assume the initial value of the weights is known and set it equals to wit = 1/3, i = 1, 2, 3,.

We apply a sequential Monte Carlo (SMC) approximation to the filtering and predictive densities

(see Appendix B) and find optimal weights (see blue lines in the left column of Fig. 1) and their

credibility regions (gray areas in the same figure) for the three models.

In the first experiment, after some iterations the weight of the modelM1 converges to one and the

weights of the other models converge to zero. The credibility region for w1t does not overlap with the

credibility regions of the other weights. This leads us to conclude that it is credible that the weights

are different in our simulation experiment. Note that we used different random sequences simulated

from the true model and different random numbers for the SMC algorithm and find the same results.
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Figure 1: Filtered model probability weights, when the true model is M1 : y1t = 0.1 + 0.6y1t−1 + ε1t.
Left: results for a complete model set in presence of biased predictors: M2 : y2t = 0.3 + 0.2y2t−2 + ε2t

and M3 : y3t = 0.5 + 0.1y3t−1 + ε3t, with εit
i.i.d.∼ N (0, σ2), t = 1, . . . , T . Right: results for a complete

model set in presence of unbiased predictors: M2 : y2t = 0.125 + 0.5y2t−2 + ε2t and M3 : y3t =
0.2 + 0.2y3t−1 + ε3t. Model weights (blue line) and 95% credibility region (gray area) for models 1,2
and 3 (different rows).
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On the same simulated dataset we apply our optimal combination scheme to an incomplete set of

models and find the optimal weights presented in the left column of Fig. 2. The weight of the model

M3 converges to one, while M2 has weight converging to zero. Note that for the incomplete set the

variance of the residuals is larger than the variance for the complete set (see left column of Fig. 3).

In the second experiment the credibility regions of the model weights are given in the right column

of Fig. 1 for the complete model set and in the right column of Fig. 2 for the incomplete model

set. Both experiments show that the weights have a high variability. This leads us to conclude that
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Figure 2: Filtered combination weights for the incomplete model set, in presence of biased (left):

M2 : y2t = 0.3 + 0.2y2t−2 + ε2t andM3 : y3t = 0.5 + 0.1y3t−1 + ε3t, with εit
i.i.d.∼ N (0, σ2), t = 1, . . . , T

and unbiased (right): M2 : y2t = 0.125 + 0.5y2t−2 + ε2t, M3 : y3t = 0.2 + 0.2y3t−1 + ε3t, predictors.
Model weights (blue line) and 95% credibility region (gray area) for models 2 and 3 (different rows).
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the three models in the complete set have the same weights. The same conclusion holds true for the

incomplete set.

Nevertheless, from the analysis of the residuals it is evident that differences in the fit of the two

model combinations exist. In fact, for the incomplete set the residuals have a larger variance than the

residuals for the complete set (see right column of Fig. 3).

In conclusion, our simulation experiments enable us to interpret the behavior of the weights and

that of the residuals in our density forecast combination approach. More specifically, the high un-

certainty level in the weights appear due to the presence of predictors that are similar in terms of

unconditional mean and differ a little in terms of unconditional variance. The degree of uncertainty

in the residuals reduces when the true model is in the set of combined models.

5.2 Different degrees of persistence

Next, we study the effect of varying the persistence parameter on the results presented above. Further,

we show that time-varying weights with learning can account for differences in the unconditional
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Figure 3: Standard deviation of the combination residuals for complete (balck line) and incomplete
(gray line) model sets in presence of biased (left) and unbiased (right) predictors
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predictive distribution of the different models. In our experiments, the learning mechanism produces

a better discrimination between forecast models with the same unconditional mean, but with different

unconditional variance.

We consider models M2 and M3 defined previously and a sequence of models M1 parameterized

by the persistence parameter φ, with φ ∈ (0, 1). The model set include the following models

M1 : y1t = 0.1 + φy1t−1 + ε1t (30)

M2 : y2t = 0.125 + 0.5y2t−2 + ε2t (31)

M3 : y3t = 0.5 + 0.2y3t−1 + ε3t (32)

with εit
i.i.d.∼ N (0, σ2), t = 1, . . . , T , independent for i = 1, 2, 3. The unconditional mean, 0.1/(1− φ),

of model M1 is closed to the one of model M2 , for φ = 0.6, and to the one of model M3 , for

φ = 0.84. For such values of the persistence parameter, the unconditional variance σ2/(1 − φ2) is

0.0039 and 0.0084 respectively, and is very close to the UV of models M2 and M3 , i.e. 0.0033 and

0.0026 respectively.

For different values of the persistence parameter and when φ is far from 0.6 and 0.84, a combination

approach without learning (see filtered weights in the left column of Fig. 4) is able to detect the true

model, i.e. model M1. In fact, the filtered weights are close to one for M1 and to zero for the other

models. However, in that part of the parameter space where these three models share similarities

in terms of predictive ability, i.e. φ = 0.6, 0.84, and have the same unconditional mean, then the
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Figure 4: Filtered combination weights over time and for different values of the persistence parameter

φ ∈ (0, 1) of the true model M1 : y1t = 0.1 + φy1t−1 + ε1t with ε1t
i.i.d.∼ N (0, σ2). Left: results of the

combination scheme without learning. Right: results of the combination scheme with learning in the
weights dynamics.
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combination weights of model M1 are not close to one and the weights for model M2 and M3 are

not null.

We repeated the same experiments, while keeping fixed the seed of the simulated series in order to

reduce the variability of the results, and apply a combination procedure with learning. The results are

given in the right column of Fig. 4. These show that a learning mechanism, with parameters λ = 0.6

and τ = 10, is able to discriminate between models which have the same UM but differ in terms of

UV. In fact, for all values of φ ∈ (0, 1) the weights of model M1 are close to one.
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5.3 Linear and non-linear predictors

In the following simulation experiments we study the ability of our combination approach to discrim-

inate between an AR with stochastic volatility (AR-SV) and an AR without SV, i.e.

M1 : y1t = 0.01 + 0.02y1t−1 + σtε1t (33)

M2 : y2t = 0.01 + 0.02y2t−1 + σε2t (34)

with εit
i.i.d.∼ N (0, 1), t = 1, . . . , T , independent for i = 1, 2, σ = 0.05 and σt = exp{ht/2}, where

ht = φ+ αht−1 + γηt, ηt
i.i.d.∼ N (0, 1)

and ηt is independent of εs, ∀s, t. We assume the true model isM1 and consider two typical parameter

settings (see Casarin and Marin [2009]): low persistence in volatility, i.e. φ = 0.0025, γ = 0.1, α = 0.9

and high persistence in volatility, i.e. φ = 0.0025, γ = 0.01, α = 0.99, which can be usually found in

financial applications. For each setting we simulate T = 1000 observations and apply the combination

scheme presented in Section 2. Figure 5 shows the combination weights (black lines) and their high

credibility regions (coloured areas) for the two parameter settings.

We expect that non-overlapping regions indicate a high probability that the two weights take differ-

ent values. Our combination procedure is able to detect the true model assigning to it a combination

weight with mean equal to one. From a comparison with the results of the previous experiments,

notice that the learning period is longer than for the case in which the set includes only linear models.

Finally, a comparison between the two dataset, show that in the low-persistence setting the learning

about the model weights is slower than for the high-persistence setting.

5.4 Structural instability

We study the behavior of the model weights in presence of a structural break in the parameters of the

data generating process. We generate a random sample from the following autoregressive model with

breaks

yt = 0.1 + 0.3I(T0,T ](t) +
(
0.6− 0.4I(T0,T ](t)

)
yt−1 + εt (35)
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Figure 5: Filtered combination weights (dark lines) and high probability density region (coloured
areas) for the SV-AR model, M1 : y1t = 0.01 + 0.02y1t−1 + σtε1t, σt = exp{ht/2}, ht = φ+ αht−1 +

γηt, ηt
i.i.d.∼ N (0, 1) (solid line) and for the AR model M2 : y2t = 0.01 + 0.02y2t−1 + σε2t, (dashed

line), when assuming that the true model is M1. Left: low persistence in volatility, φ = 0.0025,
γ = 0.1, α = 0.9. Right: high persistence in volatility, φ = 0.0025, γ = 0.01, α = 0.99

Low persistence dataset High persistence dataset

for t = 1, . . . , T with εt
i.i.d.∼ N (0, σ2), σ = 0.05, T0 = 50 and T = 100 and where I(z)A takes a value 1

if z ∈ A and equals 0 otherwise. We apply our combination strategy to the following set of prediction

models

M1 : y1t = 0.1 + 0.6y1t−1 + ε1t (36)

M2 : y2t = 0.4 + 0.2y2t−1 + ε2t (37)

M3 : y3t = 0.9 + 0.1y3t−1 + ε3t (38)

with εit
i.i.d.∼ N (0, σ2) independent for i = 1, 2, 3 and assume yi0 = 0.25, i = 1, 2, 3 and σ = 0.05. Note

that the model set is incomplete, but it includes two models, i.e. M1 and M2, that are equivalent

stochastic version of the true model in the two parts, t < T0 and t ≥ T0 respectively, of the sample.

The results in Fig. 6 show that the combination strategy is successful in selecting with probability

close to one, model M1 for the first part of the sample and model M2 in the second part.

6 Empirical Applications

6.1 Comparing Combination Schemes

To shed light on the predictive ability of individual models, we consider several evaluation statistics

for point and density forecasts previously proposed in literature. We compare point forecasts in terms
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Figure 6: Filtered combination weights for the three models: M1 : y1t = 0.1 + 0.6y1t−1 + ε1t,

M2 : y2t = 0.4 + 0.2y2t−1 + ε2t and M3 : y3t = 0.9 + 0.1y3t−1 + ε3t, with εit
i.i.d.∼ N (0, 0.052),

independent for i = 1, 2, 3, when the parameters of the true model has a structural break at time
T0 = 50, i.e. yt = 0.1 + 0.3I(T0,T ](t) +

(
0.6− 0.4I(T0,T ](t)

)
yt−1 + εt, t = 1, . . . , T with T = 100 and

εt
i.i.d.∼ N (0, 0.052).
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of Root Mean Square Prediction Errors (RMSPE)

RMSPEk =

√√√√ 1

t∗

t∑
t=t

ek,t+1

where t∗ = t − t + 1 and ek,t+1 is the square prediction error of model k and test for substantial

differences between the AR benchmark and the model k by using the Clark and West [2007]’ statistic

(CW). The null of the CW test is equal mean square prediction errors, the one-side alternative is the

superior predictive accuracy of the model k.

We evaluate the predictive densities using two relative measures. Firstly, we consider a Kullback

Leibler Information Criterion (KLIC) based measure, utilizing the expected difference in the Log-

arithmic Scores of the candidate forecast densities; see for example Kitamura [2002], Mitchell and

Hall [2005], Hall and Mitchell [2007], Amisano and Giacomini [2007], Kascha and Ravazzolo [2010].

The KLIC chooses the model which on average gives higher probability to events that have actually

occurred. Specifically, the KLIC distance between the true density p(yt+1|y1:t) of a random variable

yt+1 and some candidate density p(ỹk,t+1|y1:t) obtained from model k is defined as

KLICk,t+1 =

∫
p(yt+1|y1:t) ln

p(yt+1|y1:t)
p(ỹk,t+1|y1:t)

dyt+1,

= Et[ln p(yt+1|y1:t)− ln p(ỹk,t+1|y1:t))]. (39)

24



where Et(·) = E(·|Ft) is the conditional expectation given information set Ft at time t. An esti-

mate can be obtained from the average of the sample information, yt+1, . . . , yt+1, on p(yt+1|y1:t) and

p(ỹk,t+1|y1:t):

KLICk =
1

t∗

t∑
t=t

[ln p(yt+1|y1:t)− ln p(ỹk,t+1|y1:t)]. (40)

Even though we do not know the true density, we can still compare multiple densities, p(ỹk,t+1|y1:t).

For the comparison of two competing models, it is sufficient to consider the Logarithmic Score (LS),

which corresponds to the latter term in the above sum,

LSk = − 1

t∗

t∑
t=t

ln p(ỹk,t+1|y1:t), (41)

for all k and to choose the model for which the expression in (41) is minimal, or as we report in our

tables, the opposite of the expression in (41) is maximal.

Secondly, we also evaluate density forecasts based on the continuous rank probability score (CRPS).

This CRPS circumvents some of the drawbacks of the LS, as the latter does not reward values from

the predictive density that are close but not equal to the realization (see, e.g., Gneiting and Raftery

[2007]) and it is very sensitive to outliers; see Gneiting and Ranjan [2011], Groen et al. [2012] and

Ravazzolo and Vahey [2012] for applications to inflation density forecasts. The CRPS for the model k

measures the average absolute distance between the empirical cumulative distribution function (CDF)

of yt+h, which is simply a step function in yt+h, and the empirical CDF that is associated with model

k’s predictive density:

CRPSk,t+1 =
∫ (
F (z)− I[yt+1,+∞)(z)

)2
dz (42)

= Et|ỹt+1,k − yt+1| − 1
2Et|ỹt+1,k − y′t+1,k|, (43)

where F is the CDF from the predictive density p(ỹk,t+1|y1:t) of model k and ỹt+1,k and ỹ′t+1,k are

independent random variables with common sampling density equal to the posterior predictive density

p(ỹk,t+1|y1:t). Smaller CRPS implies higher precisions and, as for the log score, we report in tables

the average CRPSk for each model k.
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The distribution properties of a statistical test to compare density accuracy performances, both

measured in terms of LS and CRPS, are not derived when working with nested models and expanding

data window for parameter updating, such as in our exercise. Therefore, following evidence in Clark

and McCracken [2012] for point forecasts, we apply the methodology in Groen et al. [2012] and test

the null of equal finite sample forecast accuracy, based on either a LS and CRPS measures, versus the

alternative that a model outperformed the AR benchmark using the Harvey et al. [1997] small sample

correction of the Diebold and Mariano [1995] and West [1996] statistic to standard normal critical

values.2

Finally, following the idea in Welch and Goyal [2008] for cumulative squared prediction error

difference, and in Kascha and Ravazzolo [2010] for cumulative log score difference, we compute the

cumulative rank probability score difference

CRPSDk,t+1 =

t∑
s=t

dk,s+1, (44)

where dk,s+1 = CRPSAR,s+1−CRPSk,s+1. If CRPSDk,t+1 increases at observation t+1, this indicates

that the alternative to the AR benchmark has a lower CRPS at time t+ 1.

6.2 GDP growth and PCE inflation

We consider K = 6 time series models to predict US GDP growth and PCE inflation: an univariate

autoregressive model of order one (AR); a bivariate vector autoregressive model for GDP and PCE,

of order one (VAR); a two-state Markov-switching autoregressive model of order one (ARMS); a two-

state Markov-switching vector autoregressive model of order one for GDP and inflation (VARMS);

a time-varying autoregressive model with stochastic volatility (TVPARSV); and a time-varying vec-

tor autoregressive model with stochastic volatility (TVPVARSV). Therefore, our model set includes

constant parameter univariate and multivariate specification; univariate and multivariate models with

discrete breaks (Markov-Switiching specifications); and univariate and multivariate models with con-

tinuous breaks. See Appendix A for further details.

First we evaluate the performance of the individual models for forecasting US GDP growth and

PCE inflation. Results in Table 1 indicate that the time-varying AR and VAR models with stochastic

2We use the left tail p-values for the CRPS based test since we minimize CRPS and right tail for the LS based test
since we maximize LS.
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volatility produce the most accurate point and density forecasts for both variables. Clark and Ravaz-

zolo [2012] find similar evidence in larger VAR models applied to US and UK real-time data; see also

Korobilis [2011] and D’Agostino et al. [2011].

Secondly, we apply four combination schemes. The first one is a Bayesian model averaging (BMA)

approach similar to Jore et al. [2010] and Hoogerheide et al. [2010]. Following the notation in the

previous section, model predictions are combined by:

yt+1 = Wt+1ỹt+1 (45)

The combination is usually run independently for each series, l = 1, .., L. The weights Wt are computed

as in (7) where xlk,t is equal to the cumulative log score in (41). See, e.g., Hoogerheide et al. [2010] for

further details.

The second method (BMAopt) follows intuition in Hall and Mitchell [2007] and derivation in Geweke

and Amisano [2010b], and computes optimal log score weights. The method maximizes the log score

of the equation (45) to compute Wt+1:

t∑
t=t

log(Wt+1ỹt+1) (46)

subject to the restrictions that weights for each series l = 1, . . . , L must be positive and sum to unity.3

See Geweke and Amisano [2010b] for further details.

The other two methods are derived from our contribution in equations from (1) to (3). We only

combine the i-th predictive densities of each predictor ỹk,t+1 of yt+1 in order to have a prediction

of the i-th element of yt+1 as in equation (5). One scheme consider time-varying weights (TVW)

with logistic-Gaussian dynamics and without learning (see equation (10)); the other scheme computes

weights with learning (TVW(λ, τ)) as in (14). Weights are estimated and predictive density computed

as in section 4 using N = 1000 particles. Equal weights are used in all three schemes for the first

forecast 1970:Q1.4

3We present results using the multivariate approach, therefore the same weight is given to each model for GDP
and inflation forecasts. The multivariate joint predictive densities for the univariate models is assumed to be diagonal.
Out-of-sample results are qualitative similar when combining each series independently.

4We also investigate a combination scheme based on equal weights but its (point and density) forecast accuracy was
always lower than that both of the best individual model and of the four schemes listed above. Results are available
upon request.
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Table 1: Forecast accuracy for the macro application.
GDP

AR ARMS TVPARSV VAR VARMS TVPVARSV BMA BMAopt TVW TVW(λ, τ)

RMSPE 0.881 0.907 0.850 0.875 1.001 0.868 0.852 0.844 0.649 0.648
CW 0.108 0.000 0.054 0.061 0.014 0.000 0.000 0.000 0.000
LS -1.320 -1.405 -1.185 -1.377 -1.362 -1.225 -1.211 -1.151 -1.129 -1.097
p-value 0.713 0.001 0.760 0.846 0.020 0.014 0.037 0.004 0.028
CRPS 0.478 0.472 0.445 0.468 0.523 0.452 0.445 0.447 0.328 0.328
p-value 0.342 0.000 0.103 0.984 0.010 0.008 0.000 0.000 0.000

Inflation

AR ARMS TVPARSV VAR VARMS TVPVARSV BMA BMAopt TVW TVW(λ, τ)

RMSPE 0.388 0.386 0.372 0.388 0.615 0.383 0.370 0.367 0.260 0.262
CW 0.034 0.001 0.172 0.077 0.053 0.003 0.001 0.000 0.000
LS -1.541 -1.381 -0.376 -1.277 -1.091 -0.609 -0.400 -0.385 0.252 0.223
p-value 0.213 0.147 0.201 0.349 0.160 0.152 0.122 0.058 0.057
CRPS 0.201 0.199 0.196 0.203 0.375 0.201 0.195 0.194 0.120 0.120
p-value 0.327 0.166 0.731 1.000 0.480 0.115 0.093 0.000 0.000

Note: AR, ARMS, TV PARSV , V AR, V ARMS, TV PV ARSV : individual models defined in Section 2. BMA:

constant weights Bayesian Model Averaging. BMA: log pooling with optimal log score weights. TVW : time-varying

weights without learning. TVW(λ, τ): time-varying weights with learning mechanism with smoothness parameter λ =

0.95 and window size τ = 9. RMSPE: Root Mean Square Prediction Error. CW: p-value of the Clark and West [2007]

test. LS: average Logarithmic Score over the evaluation period. CRPS: cumulative rank probability score. LS p-value

and CRPS p-value: Harvey et al. [1997] type of test for LS and CRPS differentials respectively.

The results of the comparison are given in Table 1. We observe that our combination schemes

both outperform BMA and the single models. In particular, the TVW(λ, τ), with smoothing factor

λ = 0.95 and window size τ = 9, which we mainly focus on the following analysis, outperforms the

TVW model in terms of RMSPE, LS and CRPS. See section 5 for properties of such weights in

simulation exercises. The values of λ and τ have been chosen on the basis of the optimal RMSPE as

discussed below. Gains are substantial and up to 30%. The top panel of Fig. 10 shows that GDP

density forecasts are wider than the inflation forecasts and they track accurately the realizations.5

When comparing differentials of CRPS as shown in Fig. 7, TVW(λ, τ) outperforms for both GDP and

inflation forecasting the benchmark and other density combinations all over the sample and not just

for specific episodes. The graphs also show that the two other combination schemes do not always

outperform the AR for inflation over the sample and optimal weights do not provide more accurate

forecasts.

The optimal values for the smoothing parameters and the window size are estimated via a grid

search. We set the grid λ ∈ [0.1, 1] with step size 0.01 and τ ∈ {1, 2, . . . , 20} with step size 1 and

5Unreported results show that all the densities are correctly specified following a Berkowitz [2001] test on PITs for
GDP, but just the densities from our combinations are for inflation.
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Figure 7: Cumulative Rank Probability Score Differential
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Note: Left: CRPSD of the TVW(λ, τ) versus the AR model (black dashed line); CRPSD of the BMA versus the AR

model (red dashed line); CRPSD of the BMAopt versus the AR model (blue solid line) for forecasting GDP. Right:

CRPSD as in left panel for forecasting inflation.

Figure 8: Optimal combination learning parameters
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and τ . We considered λ ∈ [0.1, 1] with step size 0.01 and τ ∈ {1, 2, . . . , 20} with step size 1. Dark gray areas indicate

low RMSPE.

on the GDP dataset, for each point of the grid we iterate 10 times the SMC estimation procedure

and evaluate the RMSPE for forecasting GDP.6 The level sets of the resulting approximated RMSPE

surface are given in Fig. 8. A look at the RMSPE contour reveals that in our dataset, for each τ in

the considered interval, the optimal value of λ is 0.95. The analysis shows that the value of τ which

gives the lowest RMSPE is τ = 9.

Fig. 9 shows for the TVW(λ, τ) scheme the evolution over time of the filtered weights (the

average and the quantiles at the 5% and 95%) conditionally on each one of the 1,000 draws from the

predictive densities. The resulting empirical distribution allows us to obtain an approximation of the

predictive density accounting for both model and parameter uncertainty. The figures show that the

6Other accuracy measures, such as LS or CRPS, and multiple series evaluation is also possible. We leave it for further
research.
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weight uncertainty is enormous and inference on the model relevance neglecting it may be misleading.

PCE average weights (or model average probability) are more volatile and have wider distributions

than GDP average probability. The TVPARSV and TVPVARSV models have higher probability and

VARMS a lower probability for both series, confirming CRPS ordering in table 1.

The residual 95% HPD plotted in the second panel of Fig. 10 represents a measure of incomplete-

ness of the model set. Above all for GDP, the incompleteness is larger in the 70’s, at beginning of 80’s

and in the last part of the sample during the financial crises, periods when zero does not belong the

HPD region. In the central part of our sample period, often defined as the Great moderation period,

standard statistical time-series models, such as the set of our models, approximate accurately the data

and the incompleteness for both GDP and inflation is smaller; see section 5 for a discussion of the

incompleteness properties.

Finally, our combined predictive densities can be used to nowcast recession probabilities at time

t, such as those given in the last row of Fig. 10. To define them we follow a standard practice in

business cycle analysis and apply the following rule

Pr (yt−3 < yt−1, yt−2 < yt−1, yt < yt−1, yt+1 < yt−1) (47)

where we use as yt the GDP growth rate at time t. The estimated probabilities are approximated as

follow

1

MN

M∑
j=1

N∑
i=1

(
I(−∞,yt−1)(yt−3)I(−∞,yt−1)(yt−2)I(−∞,yt−1)(yt)I(−∞,yt−1)(y

ij
t+1)

)
where yijt+1 is drawn by SMC from p(yt+1|y1:t). The estimated recession probabilities fits accurately

the US business cycle and have values higher than 0.5 in each of the recessions identified by the NBER.

Anyway, probabilities seems to lag at beginning of the recessions, which might be due to the use of

GDP as business cycle indicator. Equation (47) could also be extended to multi-step forecasts to

investigate whether timing can improve.

6.3 Returns to Standard & Poor’s 500

We use stock returns collected from the Livingston survey and consider a nonparametric estimated

density forecasts as one possible way to predict future stock returns, see discussion in Appendix A. We
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Figure 9: Time-varying weights with learning
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Note: Average filtered time-varying weights with learning (solid line) with 2.5% and 97.5% quantiles (gray area). Note

that the quintile are obtained using the different draws from the predictive densities.
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Figure 10: Combination forecasts for the TVW(λ, τ) . Left column: GDP. Right column: Inflation.

1970Q1 1980Q1 1990Q1 2000Q1 2009Q4
−2

0

2

4

6

%

1970Q1 1980Q1 1990Q1 2000Q1 2009Q4
−2

0

2

4

6

%
1970Q1 1980Q1 1990Q1 2000Q1 2009Q4
−4

−3

−2

−1

0

1

2

3

1970Q1 1980Q1 1990Q1 2000Q1 2009Q4
−4

−3

−2

−1

0

1

2

3

1970Q1 1980Q1 1990Q1 2000Q1 2009Q4
0

0.2

0.4

0.6

0.8

1

Note: First: estimated mean (dashed line) and 2.5% and 97.5% quintile (gray area) of the marginal prediction density
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combination scheme. Third: estimated recession probability (solid line). Vertical lines: NBER business cycle expansion

and contraction dates.

call these survey forecasts (SR). The alternative is a white noise model (WN).7 This model assumes

and thus forecasts that log returns are normally distributed with mean and standard deviation equal

to the unconditional (up to time t for forecasting at time t+ 1) mean and standard deviation. WN is

a standard benchmark to forecast stock returns since it implies a random walk assumption for prices,

which is difficult to beat (see for example Welch and Goyal [2008]). We apply our combination scheme

from (1) to (3) with time-varying weights (TVW) with logistic-Gaussian dynamics and learning (see

equation (10)).

Following the analysis in Hoogerheide et al. [2010] we evaluate the statistical accuracy of point

forecasts, the survey forecasts and the combination schemes in terms of the root mean square error

7In the interest of brevity, we restrict this exercise to two individual models.
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(RMSPE), and in terms of the correctly predicted percentage of sign (Sign Ratio) for the log percent

stock index returns. We also evaluate the statistical accuracy of the density forecasts in terms of the

LS and CRPS as in the previous section.

Moreover, as an investor is mainly interested in the economic value of a forecasting model, we

develop an active short-term investment exercise, with an investment horizon of six months. The

investor’s portfolio consists of a stock index and risk free bonds only.8

At the end of each period t, the investor decides upon the fraction αt+1 of her portfolio to be held

in stocks for the period t + 1, based on the forecast of the stock index return. We constrain αt+1 to

be in the [0, 1] interval, not allowing for short-sales or leveraging (see Barberis [2000]). The investor

maximize a power utility function:

u(Rt+1) =
R1−γ
t+1

1− γ
, γ > 1, (48)

where γ is the coefficient of relative risk aversion and Rt+1 is the wealth at time t+ 1, which is equal

to

Rt+1 = Rt ((1− αt+1) exp(yf,t+1) + αt+1 exp(yf,t+1 + ỹt+1)), (49)

where Rt denotes initial wealth, yf,t+1 the 1-step ahead risk free rate and ỹt+1 the 1-step ahead

forecast of the stock index return in excess of the risk free made at time t. Dangl and Halling [2012]

apply time-variation directly in the individual models and use a mean-variance approach to infer the

economic value of their models.

When the initial wealth is set equal to one, i.e. R0 = 1, the investor’s optimization problem is

given by

max
αt+1∈[0,1]

Et
(

((1− αt+1) exp(yf,t+1) + αt+1 exp(yf,t+1 + ỹt+1))
1−γ

1− γ

)
,

This expectation depends on the predictive density for the excess returns, ỹt+1. Following notation in

section 4, denoting this density as p(ỹt+1|y1:t), the investor solves the following problem:

max
αt+1∈[0,1]

∫
u(Rt+1)p(ỹt+1|y1:t)dỹt+1. (50)

8The risk free asset is approximated by transforming the monthly federal fund rate in the month the forecasts are
produce in a six month rate. This corresponds to buying a future on the federal fund rate that pays the rate for the next
six months. We collect the federal fund rate from the Fred database at the Federal Reserve Bank of St Louis.
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We approximate the integral in (50) by generating with the SMC procedure MN equally weighted

independent draws {ygt+1, w
g
t+1}MN

g=1 from the predictive density p(ỹt+1|y1:t), and then use a numerical

optimization method to find:

max
αt+1∈[0,1]

1

MN

MN∑
g=1

(
((1− αt+1) exp(yf,t+1) + αt+1 exp(yf,t+1 + ỹgt+1))

1−γ

1− γ

)
(51)

We consider an investor who can choose between different forecast densities of the (excess) stock return

yt+1 to solve the optimal allocation problem described above. We include three cases in the empirical

analysis below and assume the investor uses alternatively the density from the WN individual model,

the empirical density from the Livingston Survey (SR) or finally a density combination (DC) of the

WN and SR densities. We apply here the DC scheme used in the previous section.

We evaluate the different investment strategies by computing the ex post annualized mean portfolio

return, the annualized standard deviation, the annualized Sharpe ratio and the total utility. Utility

levels are computed by substituting the realized return of the portfolios at time t+ 1 into (48). Total

utility is then obtained as the sum of u(Rt+1) across all t∗ = (t− t+1) investment periods t = t, . . . , t,

where the first investment decision is made at the end of period t. We compare the wealth provided

at time t+ 1 by two resulting portfolios by determining the value of multiplication factor of wealth ∆

which equates their average utilities. For example, suppose we compare two strategies A and B.

t∑
t=t

u(RA,t+1) =

t∑
t=t

u(RB,t+1/ exp(r)). (52)

where u(RA,t+1) and u(RB,t+1) are the wealth provided at time T +1 by the two resulting portfolios A

and B, respectively. Following West et al. [1993], we interpret ∆ as the maximum performance fee the

investor would be willing to pay to switch from strategy A to strategy B.9 We infer the added value

of strategies based on individual models and the combination scheme by computing ∆ with respect

to three static benchmark strategies: holding stocks only (rs), holding a portfolio consisting of 50%

stocks and 50% bonds (rm), and holding bonds only (rb).

Finally, transaction costs play a non-trivial role since the portfolio weights in the active investment

strategies change every period (semester), and the portfolio must be rebalanced accordingly. Rebal-

9See, for example, Fleming et al. [2001] for an application with stock returns.
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Figure 11: Prediction densities for S&P 500
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Note: The figure presents the (99%) interval forecasts given by the White Noise benchmark model (WN), the survey

forecast (SR) and our density combination scheme (DC). The red solid line shows the realized values for S&P 500 percent

log returns, for each out-of-sample observation.

ancing the portfolio at the start of month t + 1 means that the weight invested in stocks is changed

from αt to αt+1. We assume that transaction costs amount to a fixed percentage c on each traded

dollar. As we assume that the initial wealth R0 equals to 1, transaction costs at time t+ 1 are equal

to

ct+1 = 2c|αt+1 − αt| (53)

where the multiplication by 2 follows from the fact that the investor rebalances her investments in

both stocks and bonds. The net excess portfolio return is then given by yt+1 − ct+1. We apply a

scenario with transaction costs of c = 0.1%.

Panel A in Table 2 reports statical accuracy forecasting results. The survey forecasts produce the

most accurate point forecasts: its RMSPE is the lowest. The survey is also the most precise in terms of

sign ratio. This seems to confirm evidence that survey forecasts contain timing information. Evidence

is, however, mixed in terms of density forecasts: the WH has higher log score whether the SR has the

lowest CRPS; the highest log score is for our combination scheme. Figure 11 plots density forecasts

given by the three approaches. The density forecasts of the survey are too narrow and therefore highly

penalized from the LS statistics when missing substantial drops in stock returns as at the beginning of

recession periods. The problem might be caused by the lack of reliable answers during those periods.

However, this assumption cannot be easily investigated. The score for the WN is marginally lower

than for our model combination. However the interval given by the WN is often too large and indeed
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Table 2: Active portfolio performance
γ = 4 γ = 6 γ = 8

WN SR DC WN SR DC WN SR DC

Panel A: Statistical accuracy

RMSPE 12.62 11.23 11.54 - - - - - -
SIGN 0.692 0.718 0.692 - - - - - -

LS -3.976 -20.44 -3.880 - - - - - -
CRPS 6.816 6.181 6.188 - - - - - -

Panel B: Economic analysis

Mean 5.500 7.492 7.228 4.986 7.698 6.964 4.712 7.603 6.204
St dev 14.50 15.93 14.41 10.62 15.62 10.91 8.059 15.40 8.254

SPR 0.111 0.226 0.232 0.103 0.244 0.282 0.102 0.241 0.280
Utility -12.53 -12.37 -12.19 -7.322 -7.770 -6.965 -5.045 -6.438 -4.787

rs 73.1 157.4 254.2 471.5 234.1 671.6 950.9 254.6 1101
rm -202.1 -117.8 -20.94 -114.3 -351.7 85.84 3.312 -693.0 153.5
rb -138.2 -53.9 43.03 -131.3 -368.8 68.79 -98.86 -795.1 51.32

Panel C: Transaction costs

Mean 5.464 7.341 7.128 4.951 7.538 6.875 4.683 7.439 6.136
St dev 14.50 15.93 14.40 10.62 15.62 10.89 8.058 15.40 8.239

SPR 0.108 0.217 0.225 0.100 0.233 0.274 0.098 0.230 0.272
Utility -12.53 -12.40 -12.21 -7.329 -7.804 -6.982 -5.050 -6.484 -4.799

rs 69.8 142.2 244.3 468.1 216.6 662.2 948.1 234.0 1094
rm -205.5 -133.1 -31.05 -117.7 -369.2 76.36 0.603 -713.5 146.3
rb -141.2 -68.81 33.22 -134.5 -385.9 59.62 -101.2 -815.3 44.44

Note: In Panel A the root mean square prediction error (RMSPE), the correctly predicted sign ratio (SIGN) and the

Logarithmic Score (LS) for the individual models and combination schemes in forecasting the six month ahead S&P500

index over the sample December 1990 - June 2010. WN, SR and DC denote strategies based on excess return forecasts

from the White Noise model, the Livingston-based forecasts and our density combination scheme in equation (1)-(3) and

(10). In Panel B the annualized percentage point average portfolio return and standard deviation, the annualized Sharpe

ratio (SPR), the final value of the utility function, and the annualized return in basis points that an investor is willing

to give up to switch from the passive stock (s), mixed (m), or bond (b) strategy to the active strategies and short selling

and leveraging restrictions are given. In Panel C the same statistics as in Panel B are reported when transaction costs

c = 10 basis points are assumed. The results are reported for three different risk aversion coefficients γ = (4, 6, 8).

the realization never exceeds the 2.5% and 97.5% percentiles.

Figure 12 shows the combination weights with learning for the individual forecasts. The weights

seem to converge to a {0, 1} optimal solution, where the survey has all the weight towards the end of

the period even if the uncertainty is still substantial. Changing regulations, increased sophistication

of instruments, technological advances and recent global recessions have increased the value added of

survey forecasts, although forecast uncertainty must be modeled carefully as survey forecasts often

seem too confident. When taking account for such drawback on the forecast uncertainty, we might
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Figure 12: Combination weights for the S&P 500 forecasts
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conclude that survey should always be selected. We add further analysis to show this is not always

the best strategy.

Figure 13 shows the contours for SR weight in our density combination scheme for four different

periods, 1992M12, 1997M12, 2008M6, 2008M12, times when forecasts are made. At beginning of the

sample (1992M12), WN has most of the weight in the left tail and the SR in the right tail. However,

there is a shift after five years, with SR having most of the mass in the left tail. The bottom panel

shows the SR weight before and after Lehman brothers collapse. SR has most of the mass in the left

tail for the forecast made in 2008M6. The SR density forecast results not very accurate in 2008M12

(as Figure 11 shows). Our methodology increases WN weights in the left tail when the new forecast is

made. All the four graphs reveal that weights have highly nonlinear multimodal posterior distributions,

in particular during crisis periods, and therefore just selecting one of the two models based on the

mode or the median might be not optimal.

The results for the asset allocation exercise strengthen previous statistical accuracy evidence.

Panel B in Table 2 reports results for three different risk aversion coefficients, γ = (4, 6, 8). The

survey forecasts give the highest mean portfolio returns in all three cases. But they also provide the

highest portfolio standard deviations. Our combination scheme gives marginally lower returns, but the

standard deviation is substantially lower, resulting in higher Sharpe Ratios and higher utility. In eight

cases of nine it outperforms passive benchmark strategies, giving positive r fees. The other forecast

strategies outperform the passive strategy of investing 100% of the portfolio in the stock market, but

not the mixed strategy and investing 100% of the portfolio in the risk free asset. Therefore, our

nonlinear distributional state-space predictive density gives the highest gain when the utility function

is also highly nonlinear, as those of portfolio investors. Results are robust to reasonable transaction

costs.
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Figure 13: SR weight contours
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Note: The plots show the contours for the survey forecast (SR) weight in our density combination scheme (DC) for four

different dates when the forecasts were made.

Finally, Fig. 14 plots the differential between the utility values given by the three active investment

strategies, u(RB,t+1) B=SR, WN, DC, versus that of the passive strategies which invest all in the risk

free asset or 50% in the risky asset and the remaining in the free risk asset. Results confirm intuitions

given by the statistical evaluation: the economic gains from our combination strategies are larger

during turbulent periods such as the 2001 and 2008 recessions. Relying on the SR individual models,

which perform more accurately during normal times, can reduce substantially investors’ economic

wealth.

Figure 14: Utility value evolution
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Note: Left: Power utility differentials of the three active investment strategies based on the predictive densities versus

a passive strategy to invest 50% on the risky asset and 50% on the risk free asset. Right: Power utility differentials of

the three active investment strategies based on the predictive densities versus a passive strategy to invest 100% on the

risk free asset. The risk aversion coefficient γ is set to 6.
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7 Conclusion

This paper proposes a general combination approach with time-varying weights for a set of predictive

densities of models that are commonly used in macroeconomics and finance. The proposed method is

based on a distributional state space representation of the weights in the combination scheme and on

Bayesian filtering of the optimal weights. The distributional state-space form and the use of Sequential

Monte Carlo allow us to extend the combination strategies to a nonlinear and non-Gaussian context

and generalize the existing optimal weighting procedures based on Kalman and Hamilton filters.

Our methodology can cope with incomplete models and different choices of the weight dynamics.

The operational use of the method is assessed first in simulation exercises and then using US GDP

and inflation forecast densities generated by some well known forecasting models and, also, through

densities of returns of the S&P500 generated by a survey and a white noise model. In the application

to macroeconomics, nonlinear density combination schemes with learning outperform, in terms of root

mean square prediction error; Kullback Leibler information criterion; and cumulative rank probability

score, BMA and BMA with optimal log score weights. Specifically, for the macro series we find that

incompleteness of the models is relatively large in the 70’s, the beginning of the 80’s and during the

recent financial crisis; while it is lower during the Great Moderation. The predicted probabilities of

recession accurately compare with the NBER business cycle dating. Model weights have substantial

uncertainty attached. The application to the financial forecasts shows that the proposed method allows

one to combine forecast densities of different nature, model-based and survey-based, and that it gives

the best predictive performance in terms of utility-based measures. Specifically, with respect to the

returns of the S&P 500 series we find that an investment strategy using a combination of predictions

from professional forecasters and from a white noise model put more weight on the white noise model

in the beginning of the 90’s and switches to giving more weight to the left tail of the professional

forecasts during the start of the financial crisis around 2008. Information on the complete predictive

distribution and not just basic moments turns out to be important in all cases investigated.

We end this paper by listing some topics for further research. The approach can be extended by

using a richer set of models. Then challenges are the computational burden and the use of approx-

imate methods, such as forgetting factor in the Kalman filter, see, e.g. Raftery et al. [2010], Koop

and Korobillis [2012] and Koop and Korobilis [2012]. Parallelization techniques using, for instance,
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Graphical Processing Units, are promising avenues for research. We intend to report on this in the

near future.
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Appendix A - Data

Gross Domestic Product and Inflation

The first data set focuses on US real GDP and US inflation. We collect quarterly seasonally adjusted

US GDP from 1960:Q1 to 2009:Q4 available from the US Department of Commerce, Bureau of Eco-

nomic Analysis (BEA). In a pseudo-real-time out-of-sample forecasting exercise, we model and forecast

the 1-step ahead quarterly growth rate, 100(log(GDPt) − log(GDPt−1))
10. For inflation we consider

the quarterly growth rate of the seasonally adjusted PCE deflator, 100(log(PCEt) − log(PCEt−1)),

from 1960:Q1 to 2009:Q4, also collected from the BEA website.

In forecasting we use an initial in-sample period from 1960:Q1 to 1969:Q4 to obtain initial pa-

rameter estimates and we forecast GDP and PCE growth figures for 1970:Q1. We then extend the

estimation sample with the value in 1970:Q1, re-estimating parameters, and forecast the next value

for 1970:Q2. By iterating this procedure up to the last value in the sample we end up with a total of

160 forecasts.

We consider K = 6 time series models which are widely applied to forecast macroeconomic vari-

ables. Two models are linear specifications: an univariate autoregressive model of order one (AR) and

a bivariate vector autoregressive model for GDP and PCE, of order one (VAR). We also apply four

time-varying parameter specifications: a two-state Markov-switching autoregressive model of order

one (ARMS) and a two-state Markov-switching vector autoregressive model of order one for GDP

and inflation (VARMS); a time-varying autoregressive model with stochastic volatility (TVPARSV)

and a time-varying vector autoregressive model with stochastic volatility (TVPVARSV). Therefore,

our model set includes constant parameter univariate and multivariate specification; univariate and

multivariate models with discrete breaks (Markov-Switiching specifications); and univariate and mul-

tivariate models with continuous breaks.

We estimate models using Bayesian inference with weak-informative conjugate priors and produce

1-step ahead predictive density via direct simulations for AR and VAR, see, e.g. Koop [2003] for details;

we use Gibbs sampling algorithm for ARMS and VARMS, see, e.g. Geweke and Amisano [2010a] and

TVPARSV and TVPVARSV, see e.g., D’Agostino et al. [2011] and Cogley and Sargent [2005] for

details. For both classes of models we simulate M = 1, 000 (independent) draws to approximate the

10We do not consider data revisions and use data from the 2010:Q1 vintage.
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predictive likelihood of the GDP and inflation. Forecast combination practice usually considers point

forecasts, e.g. the median of the predictive densities. The uncertainty around the point forecasts

is, however, very large and should be carefully estimated due to its key role in decision making, see

discussions in ,e.g., Geweke [2010]. The aim of our paper is to propose a general combination method

of the predictive densities which can cope with the uncertainty and increase the accuracy of both

density and point forecasts.

Survey Forecasts on Standard and Poor’s 500

Several papers have documented that survey expectations have substantial forecasting power for

macroeconomic variables. For example, Thomas [1999] and Mehra [2002] show that surveys outper-

form simple time-series benchmarks for forecasting inflation. Ang et al. [2007] make a comprehensive

comparison of several survey measures of inflation for the US with a wide set of econometric mod-

els: time series ARIMA models, regressions using real activity measures motivated by the Phillips

curve, and term structure models. Results indicate that surveys outperform these methods in point

forecasting inflation.

The demand for forecasts for accurate financial variables has grown fast in recent years due to

several reasons, such as changing regulations, increased sophistication of instruments, technological

advances and recent global recessions. But compared to macroeconomic applications, financial surveys

are still rare and difficult to access. Moreover, research on the properties of these databases such as

their forecasting power is almost absent. The exceptions are few and relate mainly to interest rates.

For example Fama and Gibbons [1984] compare term structure forecasts with the Livingston survey

and to particular derivative products; Lanne [2009] focuses on economic binary options on the change

in US non-farm payrolls.

We collect six month ahead forecasts for the Standard & Poor’s 500 (S&P 500) stock price index

from the Livingston survey.11 The Livingston Survey was started in 1946 by the late columnist Joseph

Livingston and it is the oldest continuous survey of economists’ expectations. The Federal Reserve

Bank of Philadelphia took responsibility for the survey in 1990. The survey is conducted twice a

year, in June and December, and participants are asked different questions depending on the variable

of interest. Questions about future movements of stock prices were proposed to participants from

11See for data and documentation www.philadelphiafed.org/research-and-data/real-time-center/livingston-survey/
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Figure 15: Livingston survey fan charts for the S&P 500. Left: survey data empirical densities. Right:
nonparametric density estimates
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Note: The shadowed areas (from dark to light gray level) and the horizontal lines represent the 1%, 5%, 10%, 50%, 90%,

95% and 99% percentiles of the corresponding density forecast and of the sample distribution respectively, the black

dashed line the point forecast and the red solid line shows the realized values for S&P 500 percent log returns, for each

out-of-sample observation. The dotted black line shows the number of not-missing responses of the survey available at

each date.

the first investigation made by Livingston in 1946, but the definition of the variable and the base

years have changed several times. Since the responsibility passed to the Federal Reserve Bank of

Philadelphia, questionnaires refer only to the S&P500. So the first six month ahead forecast we have,

with a small but reasonable number of answers and a coherent index, is from December 1990 for June

1991.12 The last one is made in December 2009 for June 2010, for a total of 39 observations. The

surveys provide individual forecasts for the index value, we transform them in percent log-returns using

realized index values contained in the survey database, that is ỹt+1,i = 100(log(p̃t+1,i)− log(pt)) with

p̃t+1,i the forecast for the index value at time t+ 1 of individual i made at time t and pt the value of

the index at time t as reported in the database and given to participants at the time that the forecast

is made. Left chart in Figure 15 shows fan charts from the Livingston survey. The forecast density

is constructed by grouping all the responses at each period. The number of survey forecasts can vary

over time (black dotted line on the left chart); the survey participants (units) may not respond and

the unit identity can vary. A problem of missing data can arise from both these situations. We do not

deal with the imputation problem because we are not interested in the single agent forecast process.

On the contrary, we consider the survey as an unbalanced panel and estimate over time an aggregate

predictive density. We account for the uncertainty in the empirical density by using a nonparametric

12The survey also contains twelve month ahead forecasts and from June 1992 one month ahead forecasts (just twice
at year). We focus on six month ahead forecasts, which is the database with more observations.
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kernel density estimator:

p(ỹt|y1:t−1) =
1

hNt

Nt∑
k=1

K(h−1(yt − ỹk,t)) (54)

on the survey forecasts ỹk,t, with k = 1, . . . , Nt, where Nt denotes that the time-varying number

of available forecasts. For the kernel K we consider a Gaussian probability density function with

an optimal bandwidth h (see for example Silverman [1986]). Our nonparametric density estimator

can be interpreted as density forecast combination with equal weights. For optimal weights in the

case of constant number of forecast, see Sloughter et al. [2010]. Zarnowitz [1992] derives combined

density by aggregating point and interval forecasts for each density moment individually. Then, we

simulate M = 1, 000 draws from the estimated density. The right chart in Figure 15 shows the

nonparametric simulated forecast densities. Left and right charts in Figure 15 look similar, but

the nonparametric estimated forecasts span wider intervals as further uncertainties are considered in

their construction. Both parametric and nonparametric estimates tend to understate the predictive

uncertainty as reported in Boero et al. [2008] and Lahiri and Sheng [2010].

The survey forecasts predict accurately some sharp upward movements as in the second semester

of 1995 or in the late 90’s, but miss substantial drops during recession periods. The figure also shows

that the forecast densities have time-varying volatility and fat-tails.

Appendix B - Combination schemes

Combining Prediction Density

A more parsimonious model than the one presented in Section 2 is given by

p(yt|Wt, ỹt) ∝ exp

−1

2

(
yt −

K∑
k=1

wk,tỹk,t

)′
Σ−1

(
yt −

K∑
k=1

wk,tỹk,t

) (55)

where wt = (w1,t, . . . , wK,t) ∈ ∆[0,1]K . In this model all the elements of the prediction yk,t given by

the k-th model have the same weight, while the weights may vary across the models.

Moreover, as an alternative to the Gaussian distribution, heavy-tailed distributions could be used

to account for extreme values which are not captured by the pool of predictive densities.
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Example 1 - (Student-t combination scheme)

In this scheme the conditional density of the observable is

p(yt|Wt, ỹt) ∝
(

1 +
1

ν
(yt −Wtỹt)

′Σ−1 (yt −Wtỹt)

)− ν+L
2

(56)

where Σ is the precision matrix and ν > 2 is the degrees-of-freedom parameter. The scheme could be

extended to asymmetric Student-t as in Li et al. [2010].
�

Example 2 - (Mixture of experts)

Similarly to Jordan and Jacobs [1994] and Huerta et al. [2003], the density of the observable is

p(yt|ỹt) =
K∑
k=1

p (Wk,t|y1:t−1, ỹ1:t−1) p (ỹk,t) (57)

where p (Wt|y1:t−1, ỹ1:t−1) is the mixture weight associated to model k, which might be specified

similarly to forms in section 3.

Such expression does not allow for the the assumption that all models are false and in the limit

one of the weight will tend to one as discussed in Geweke and Amisano [2010b].
�

Weights

We present two alternatives to the continuous weights we have discussed in 3.

Example 3 - (Dirichlet Weights)

The weight model based on the multivariate logistic transform does not lead to an easy analyti-

cal evaluation of the dependence structure between the weights. An alternative specification of the

weight dynamics makes use of the Dirichlet distribution DK (α1, . . . , αK) in order to define a Dirichlet

autoregressive model.

xlt ∼ DKL
(
ηl1,tφ, . . . , η

l
KL−1,tφ, η

l
KL,tφ

)
(58)

where φ > 0 is the precision parameter and ηlt = g(wl
t−1) with wl

t ⊥ εls, ∀ s, t. Due to the property of

the Dirichlet random variable, the multivariate transform of the latent process is the identity function

49



and it possible to set wl
t = xlt.

An advantage of using the Dirichlet model is that it is naturally defined on the standard K-

dimensional simplex and that the conditional mean and variance and the covariance can be easily

calculated. See for example the seminal paper of Grunwald et al. [1993] for a nonlinear time series

model for data defined on the standard simplex.

The main drawback in the use of this weighting distribution is that, conditional on the past, the

correlation between the weights is negative. Moreover it is not easy to model dependence between the

observable and the weights. A possible way would be to introduce dependence through a common

latent factor. We leave these issues as topics for future research.

�

Moreover, we consider weights with discontinuous dynamics. In fact, in many applied contexts the

discontinuity (e.g. due to structural breaks) in the data generating process (DGP) calls for a sudden

change of the current combination of the prediction densities.

Example 4 - (Markov-switching Weighting Schemes) We suggest the use of Markov-switching processes

to account for the discontinuous dynamics of the weights. In fact, in many applied contexts the

discontinuity (e.g. due to structural breaks) in the data generating process calls for a sudden variation

of the current combination of the predictive densities.

We focus on Gaussian combination schemes with the learning mechanism presented in the section

2. The weight specification strategies, presented in the following, can, however, be easily extended

to more general models to account for a more complex dependence structure between the weights of

different components for the various predictors yk,t.

Consider the following Markov-switching scheme.

p(yt|Wt,Σt, ỹt) ∝ exp

{
−1

2
(yt −Wtỹt)

′Σ−1t (yt −Wtỹt)

}
(59)

Σt =

R−1∑
r=0

DrI{r}(st) (60)

st ∼ P (st = i|st−1 = j) = pij , ∀i, j ∈ {0, . . . , R− 1} (61)
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where Dr are positive define matrices. The l-th row of Wt is wl
t = g(xlt) and is a function of the latent

factors xlt and ξt = (ξ1,t, . . . , ξL,t) with the following dynamics

p(xt|xt−1,µt,y1:t−1, ỹ1:t−1) ∝ exp

{
−1

2
(∆xt − µt + ∆et)

′ Λ−1 (∆xt − µt + ∆et)

}
(62)

µt = (µ1,t, . . . , µKL2,t) (63)

µl,t =

Q−1∑
r=0

dl,rI{r}(ξl,t) (64)

ξl,t ∼ P (ξl,t = i|ξl,t−1 = j) = pij , (65)

∀i, j ∈ {0, . . . , Q− 1}, with l = 1, . . . ,KL2. We assume ξl,t ⊥ su ∀t, u and ξl,t ⊥ ξj,u ∀l 6= j and ∀s, t.

It is possible to reduce the number of parameters to be estimated by considering the following

Markov-switching weighting structure

p(yt|Wt, st, ỹt) ∝ exp

−1

2

(
yt −

K∑
k=1

wk,t � ỹk,t

)′
Σ−1st

(
yt −

K∑
k=1

wk,t � ỹk,t

) (66)

Σst = Σψ(st) + (1− ψ(st))IL (67)

st ∼ P (st = i|st−1 = j) = pij , ∀i, j ∈ {0, 1} (68)

with wk,t = (w1
k,t, . . . , w

L
k,t) and ψ(st) : {0, 1} 7→ [0, 1]. We let ψ(0) = 1 and ψ(0) > ψ(1) as

identifiability constraint.

The dynamics of wl
t = (wl1,t, . . . , w

l
K,t)

′ = g(xlt) is driven by the latent factors

p(xlt|xlt,µlt,y1:t−1, ỹ1:t−1) ∝ exp

{
−1

2

(
∆xlt − µlt + ∆elt

)′
Λ−1

(
∆xlt − µlt + ∆elt

)}
(69)

µlt = µ0 + (µ1 − µ0)ξl,t (70)

ξl,t ∼ P (ξl,t = i|ξl,t−1 = j) = pij , ∀i, j ∈ {0, 1} (71)

with l = 1, . . . , L. We assume µk,0 < µk,1 for identifiability purposes and ξl,t ⊥ su ∀t, u and ξl,t ⊥ ξj,u

∀l 6= j and ∀s, t.
�
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Appendix C - Sequential Monte Carlo

As an example of the filtering procedure applied in our analysis, we give in the following the pseudo-

code of a simple sequential Monte Carlo procedure adapted to the basic TVW model. Let xt be the

vector of transformed weights and assume, to simplify the exposition, that the parameters are known.

Then at time t with t = 1, . . . , t, the SMC algorithm performs the following steps:

− Given {Ξjt}Mj=1, with Ξjt = {xi,jt , ω
i,j
t }Ni=1 and for j = 1, . . . ,M

• Generate ỹjt+1 from p(ỹjt+1|y1:t)

• For i = 1, . . . , N

1. Generate xi,jt+1 from NK(xi,jt ,Λ)

2. Generate yi,jt+1 from p(yt+1|xi,jt+1, ỹ
1
t+1, . . . , ỹ

M
t+1)

3. Update the weights

ω̃i,jt+1 ∝ ω
i,j
t exp

−0.5

(
yt+1 −

K∑
k=1

wi,jk,tỹ
j
k,t

)′
Σ−1

(
yt+1 −

K∑
k=1

wi,jk,tỹ
j
k,t

)
where wi,jk,t = exp(xi,jk,t)/

∑K
k=1 exp{xi,jk,t}

• Evaluate the Effective Sample Size (ESSjt )

• Normalize the weights ωi,jt+1 = ω̃i,jt+1/
∑N

i=1 ω̃
i,j
t+1 for i = 1, . . . , N

• If ESSjt ≤ κ then resample from Ξjt
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