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Abstract

The issue of finite-sample inference in GARCH-like models has
seldom been explored in the theoretical literature, although its po-
tential relevance for practitioners is self-evident. In some cases,
asymptotic theory may provide a very poor approximation to the
actual distribution of the estimators in finite samples.

The aim of this paper is to propose the application of the so-
called double length regressions (DLR) to GARCH-in-mean models
for inferential purposes. As an example, we focus on the issue of
Lagrange Multiplier tests on the risk premium parameter. Sim-
ulation evidence suggests that DLR-based LM test statistics pro-
vides a much better testing framework than OPG-based LM test
statistics, which is commonly used, in terms of actual test size,
especially when the GARCH process exhibits high persistence in
volatility. This result is consistent with previous studies on the
subject.

1 Introduction

A standard practice in applied econometrics is to check the adequacy of
the estimated models. The hypothesis of no conditional heteroskedas-
ticity, no error autocorrelation, linearity, and parameter constancy are
tested using various methods and procedures. In the case of GARCH
regression models, one of the key issues in model selection is to test for
the absence of feedback effects from the conditional variance to the con-
ditional mean. When the latter includes a conditional variance term,
we have a GARCH-in-mean model.

∗We are indebted to Gianni Amisano, Tim Bollerslev, Nunzio Cappuccio, Carlo Gian-
nini and James G. MacKinnon for comments on a previous version of this article. Need-
less to say, the usual disclaimer applies.



An attractive feature of a GARCH-in-mean model is that it can in-
terpreted as a reduced form model, because theoretical models (see (17))
make the market return a function of volatility, i.e. the risk premium
should be larger when the asset return is more volatile. Moreover, for an
agent making decisions at time t, the appropriate concept of volatility is
the conditional variance of the asset return over the holding period for
the asset. If the conditional variance is parametrised as in a GARCH
model, this leads to a GARCH-in-mean specification. A relevant prob-
lem in this context is to test for a GARCH model versus a GARCH-
in-mean model, for a given conditional variance specification. In gen-
eral, analysis of GARCH-in-mean models is much more complex than
that of pure GARCH models (see (19)). In the latter, the residuals ob-
tained from the conditional mean regression might be used for diagnos-
tic checking and specification. However, in the GARCH-in-mean model
it is impossible to estimate the disturbance term without first specifying
a valid model for the conditional variance, so that pre-estimation inves-
tigation is very difficult. The usual practice relies on post-estimation
investigation. A possible strategy to tackle with this problem is the LM
test.

There are several asymptotically equivalent ways to compute LM-
type tests; some of them require the explicit calculation of the Hessian
matrix, while some others do not. Since the latter are often computa-
tionally more convenient, we will focus on two methods for computing
LM-type tests which do not require the computation of the Hessian,
known as the OPG (Outer Product of Gradients Regression) and the
DLR (Double-Length Regression) methods (see (3; 4; 6)).

OPG regressions were first used as a computational shortcut in the
BHHH algorithm for maximising likelihoods, but were later also em-
ployed in the computation of LM-type statistics ((11)). The Double-
Length Regression is less known. The DLR is computational device
that can be used to evaluate quantities related to maximum likelihood
estimation and testing, such as the information matrix.

As is well known, asymptotic theory may provide a very poor ap-
proximation to the actual distribution of test statistics in finite samples.
Since there is some evidence that the DLR performs much better than
the OPG in many different settings, it is interesting to compare them on
the ground of model selection in a GARCH setting. In this paper, there-
fore, we will compare, by means of a Monte Carlo experiment, the OPG-
and DLR-based LM tests in testing hypotheses on the ‘risk-premium’
parameter of a GARCH-in-mean model. Such hypotheses are particu-
larly relevant in empirical finance applications where this parameter
has a structural interpretation ((9; 1; 20) refer to these models as mod-
els with risk terms). Since the two tests are asymptotically equivalent,
the analysis will focus on their behaviour on sample sizes typical of ap-
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plied finance work.
The plan of the paper is as follows: section 2 introduces briefly the

concept of artificial regressions and their connection to Lagrange Multi-
plier tests; in section 3 the model that we will analyse is described and
the formulae for the gradient are provided. In section 4 simulation re-
sults are shown and discussed. The conclusions, with some indications
for extending the basic model, are given in section 6.

2 Artificial regressions

The concept of an artificial regression was introduced by Davidson and
MacKinnon (1984). Given a parametric model characterized by an un-
known vector of parameters θ which belongs to a parameter space (Θ ⊆
Rk) and which can be estimated by minimizing a criterion function Q(θ)
using T observations. A generic artificial regression can be written as:

r(θ) = R(θ)b + residuals, (1)

where b is a k-vector of coefficients. Residuals are used here as a neutral
term to avoid any implication that (1) is a statistical model. For (1) to
constitute an artificial regression, the vector r(θ) and the matrix R(θ)
must satisfy certain defining properties. The two principal conditions
are the following:

R(θ)′r(θ) = g(θ)
1
T

R(θ)′R(θ)
p−→ I(θ)

where θ is any consistent estimator of θ, g(·) is the score vector and I(θ)
is the information matrix; see (6).

The two artificial regressions that we consider are the OPG (Outer
Product of Gradients) and the DLR (Double-Length Regression). The
OPG regression is based on the fact that the information matrix is de-
fined as the covariance matrix of the score vector. Given a sample of
T observations, define `t(θ) as the t-th contribution to the sample log-
likelihood, where θ is parameter vector with k elements and G is the
gradient contribution matrix, ie a T × k matrix such that

Gti(θ) =
∂`t(θ)
∂θi

.

The Lagrange Multiplier (LM) test can be written in the so-called
‘score form’ as

LM = T−1g(θ)′I(θ)−1g(θ), (2)
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where
g(θ) = G(θ)′ι

is the score vector for the log-likelihood summed over the whole sample
and I(θ) is the information matrix (ι is a vector of ones).

The OPG regression can be written as

ι = GbO + residuals.

Let θ̃ denote the constrained ML estimates obtained by imposing r re-
strictions when maximising the log-likelihood. Then the explained sum
of squares (ESS) from the OPG regression

ι = G̃bO + residuals,

where G̃ = G(θ̃) is the OPG form for the LM statistic, which is equal
to T times the uncentered R2. In other words, the OPG-based LM test
simply replaces the information matrix with its sample equivalent.

The OPG regression applies to a wide variety of models and requires
only first derivatives. In general, however, both estimated covariance
matrices and test statistics regression are not very reliable in finite
sample. A large number of papers has shown that, in finite samples, LM
tests based on the OPG regression tend to overreject the null hypoth-
esis. Therefore, the double-length regression (DLR), which has been
shown to have better finite sample properties, has been proposed as an
alternative device.

The class of models to which the DLR applies may be written as

ft (wt, θ) = ut t = 1, . . . , T (3)

where ft (·) is a smooth function that depends on the random vector
wt and on the parameter vector θ; wt contains the dependent variable
yt, and some exogenous and/or predetermined variables and/or lagged
dependent variables xt. Given a sequence of information sets =t (which
typically include xt), it is not essential that yt|=t follows the normal
distribution, although it is essential that the model can be transformed
so that (3) holds, and ft|=t

iid∼ N(0, 1) under the null hypothesis.
The t-th contribution to the log-likelihood can be written as

`t(θ) = const− 1
2
f2

t (θ) + kt(θ), (4)

where kt(θ) is a Jacobian term, which is log
∣∣∣∂ft

∂yt

∣∣∣.
It is useful to consider the derivatives of ft and kt with respect to the

parameter vector θ, i.e. the two Jacobian vectors such that
[

dft

dkt

]
=

[
Ft(θ)
Kt(θ)

]
dθ. (5)
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From the definition of Ft and Kt it is clear that the score vector for
observation t can be written as

gt(θ) = −ft(θ)Ft(θ) + Kt(θ), (6)

so that the matrices F, K and the vector f can be trivially defined, and
the gradient vector equals:

g = −F′f + K′ι.

In terms of equation (1), for the DLR we have :

R(θ) =
[ −F(θ)

K(θ)

]

r(θ) =
[

f(θ)
ι

]
.

The double-length regression is therefore
[

f
ι

]
=

[ −F
K

]
bD + residuals

The fundamental result that makes the DLR possible is that, for this
class of models, the information matrix satisfies (5):

1
T

(
F′F + K′K

) p−→ I (θ) ,

provided that the matrices F and K satisfy appropriate regularity con-
ditions.

If we run the DLR with the quantities F(θ), f(θ) and K(θ) evaluated
at θ̃, then DLR-based LM test can be written as

1
T

g̃′
(
Ĩ−1

)
g̃ =

(
ι′K̃− f̃ ′F̃

)(
F̃′F̃ + K̃′K̃

)−1 (
K̃′ι− F̃′f̃

)

where the right-hand side is the explained sum of squares from the
DLR, and

Ĩ =
1
T

(
F̃′F̃ + K̃′K̃

)

is a consistent estimator of I under the null hypothesis.
Note that both bO and bD can be written, apart from a scale factor, as

the product of a consistent estimate of I−1 times g. In practice, the OPG
and DLR regressions lead to asymptotically equivalent formulations of
a LM test. However, they differ because they use a different estimator of
the information matrix. (16) provide Monte Carlo evidence which sug-
gests that tests based on the DLR generally perform very much better
than tests based on the OPG regression in finite samples, although no
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analytical motivation for this is available. Since we cannot invoke any
formal proof for the superiority in finite samples of DLR-LM statistics
with respect to OPG-LM statistics, it is even more interesting to assess
the relative performances of the two procedures in specific situations.
In particular, we look at the behavior of these two statistics in a very
popular setting in applied finance, like GARCH-in-mean models, where
OPG-based LM test statistics are widely used.

3 The model

Let us consider a GARCH(1,1)-in-mean process, i.e. a process yt such
that

yt = xtπ + htφ + et = µt + et (7)

where {
et|=t−1 ∼ N(0, ht)

ht = c + ae2
t−1 + bht−1

(8)

where =t is the σ-field generated by {wt, wt−1, . . .}. The process is as-
sumed to be weakly stationary.

After gathering all the parameters in a vector θ = (π, φ, c, a, b)′, equa-
tion (8) means that a process ft can be defined as

ft =
et√
ht

,

and that it is a Gaussian white noise with unit variance. By doing so,
equation (4) applies, where kt equals −1

2 log ht in the present case.
The vectors Ft and Kt defined in equation (5) have to be evaluated

recursively, due to the recursive terms in (8). Let a “state vector” zt be
defined as

zt =
[

et

ht

]
.

For Ft we have

Ft = Jf
t Jz

t =
∂ft(θ)
∂zt(θ)

∂zt(θ)
∂θ

and
Kt = Jk

t Jz
t =

∂kt(θ)
∂zt(θ)

∂zt(θ)
∂θ

,

so that dft = Jf
t dzt and dkt = Jk

t dzt. From the definition of ft and kt it
can be immediately shown that

Jf
t = h

−1/2
t

[
1 − et

2ht

]
(9)

Jk
t =

[
0 − 1

2ht

]
(10)

6



The recursive term enters Jz
t , since we have from (8):

dzt =

[
det

dht

]
=

[
1 −φ
0 1

] {[
0 0

2aet−1 b

] [
det−1

dht−1

]
+

[ −xt −ht 0 0 0
0 0 1 e2

t−1 ht−1

]
dθ

}

or more compactly
dzt = Mtdzt−1 + Qtdθ,

where Mt and Qt are straightforwardly defined. By an induction argu-
ment, Jz

t must obey
Jz

t = MtJ
z
t−1 + Qt

and therefore, given a starting point1for Jz
0 , all the relevant quantities

can be calculated recursively, making it possible to evaluate F, K and
G for any given θ.

4 Simulations

In order to assess the finite sample properties of OPG- and DLR-based
LM tests on the parameter φ, we set up the following DGP:

yt = 0.2yt−1 + et (11)
ht = 1 + ae2

t−1 + bht−1, (12)

where et ∼ N(0, ht), namely an ordinary GARCH(1,1) model identical to
that shown in equation (7), with φ = 0.

The hypothesis we test by means of the OPG- and DLR-based LM
test is the absence of risk premium H0 : φ = 0. We do not consider the
power of tests, but only their size2.

Each replication was carried out on sample sizes of the order of mag-
nitude of those normally encountered in applied work. 250 observations
are roughly a year of daily data. Moreover, samples with 100 observa-
tions only were also considered, in order to consider the behaviour of
the statistics under extreme conditions.

The range of parameters for which simulations took place can be
basically explained as follows:

1It is convenient to assume as a starting point h0 = c/1− a− b, ie the unconditional
variance of et (see (18)). Its derivative is therefore:

∂h0

∂θ
=

[
0 0 1

1−a−b
c

(1−a−b)2
c

(1−a−b)2

]

2The same test could be obviously carried out in a number of ways, possibly less
complicated, for the present model; the purpose of investigating this specific hypothesis
is to use it as a test case to show that different ways of computing an LM test can have
dramatic consequences on finite-sample inference.
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1. In one set of simulations (reported in table 1), we focussed on
the issue of volatility persistence, to assess whether the finite-
sample size distortion for the two tests is significantly affected by
the memory of the variance process. Given that the unconditional
variance of et is given by

hu =
1

1− a− b
,

we analyse six cases; in each case, the parameters a and b were
adjusted3 so that b = 2a, with (a+b) ranging from 0.66 to 0.99. The
magnitude hu can be seen as the ratio between unconditional and
minimum conditional variance that, and is therefore interpreted
as a measure of the degree of conditional heteroskedasticity.

2. The other set of simulations (reported in table 2) keeps the uncon-
ditional variance constant, in order to explore what effects differ-
ent values of the parameters a and b have on the test size for a
given degree of conditional heteroskedasticity.

In practice, the LM test presupposes that a full-rank estimate of I
is available. This, however, may not happen. In fact, it is possible that
the maximum likelihood estimates lie on the boundary of the parameter
space; when a = 0, it is possible to show that the information matrix I
is singular, and the model is not identified. For a = 0, the G matrix
is not full rank, and therefore G′G is singular. The same happens to
F′F + K′K. In these cases, however, there would be little point in using
a classical test, because such tests are not applicable to points on the
boundary.

The probability of obtaining such an estimate can be shown to van-
ish asymptotically for θ0, the true vector of parameters, inside the pa-
rameter space; however, for a small sample size this probability is not
negligible. In fact, we have obtained many of these cases. Since our
objective is to evaluate the performance of tests that would be inappli-
cable anyway in those situations, we rejected those simulations where
the estimate for a was less than 1.0E-08.

Each set of simulations consists of 10000 replications. For each value
of hu two statistics were computed4:

OPG E ESS from the OPG regression, evaluated at θ̃

DLR E ESS from the DLR regression, evaluated at θ̃

3Since it is common in applied financial work to find b > a, these constraints on
parameters were chosen to ensure that our simulations reflected “real life” conditions.

4All computations were carried out using Ox for Linux 3.20 (see (7)); source listings
are available on request.
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where θ̃ is the constrained maximum likelihood estimate (namely the
unconstrained GARCH estimate, without the in-mean part). The simu-
lation results are reported in tables 1–3. Each table lists the frequency
of the event

S > χ2
1(α)

where S is the test statistic and α is the significance level. In each
table, entries in boldface indicate experiments in which the rejection
frequency was outside the upper and lower bound of a 95% confidence
interval; these are computed as

CB = α± 1.96×
√

α(1− α)
10000

,

by using the normal approximation to the binomial.
It is apparent that the DLR versions of the LM statistic always out-

perform their OPG counterparts (see table 1 and figure1). This is true
also for the case of parameter values (a + b = 1), that empirically corre-
sponds to the that of Integrated GARCH.

This is particularly true at smaller sample sizes, as was to be ex-
pected; moreover, the greater the conditional heteroskedasticity, the
more apparent the size distortion of the OPG LM is. On the other hand,
there seems to be little influence on the tests’ size by the values of a and
b for a given level of hu, as can be seen from tables 2–3.

It is also worth pointing out that, for heavily heteroskedastic pro-
cesses, the OPG-based LM statistic shows a significantly distorted ac-
tual size even for a sample size of 1000, whereas samples as big as 250
are sufficient to bring the DLR-based statistic close to its asymptotic
size.

It may be conjectured that the good performance of the DLR regres-
sion could be hindered in the presence of misspecification of the error
term distribution, since the very principle on which the DLR is based is
specific to the Normal distribution. In order to ascertain the extent of
this effect, some preliminary estimates (not reported here) were carried
out where the data were generated with a t-distributed error term with
6 degrees of freedom; such a distribution has moments up to the fifth
order, and a variance of 1.5; moreover, such a distribution is heavily
leptokurtic, which is a characteristic commonly found in empirical data
on returns. The results indicate that the accuracy of the test statis-
tics is much worse. However, that the DLR-based LM statistic does not
perform worse than the OPG-based one. In other words, the DLR test
statistic appears to be more precise but not not less robust than the
OPG test. This aspect, however, is still being investigated.

As far as more general models are concerned, the issue arises of
differentiating the log-likelihoods analytically in a manner suitable to
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Table 1: Variable hu

Sample size = 100
Model Rejection frequency

0.20 0.1 0.05 0.01
a b hu OPG DLR OPG DLR OPG DLR OPG DLR

0.220 0.440 2.941 0.2505 0.2094 0.1395 0.1067 0.0776 0.0545 0.0201 0.0114
0.242 0.484 3.650 0.2531 0.2094 0.1395 0.1056 0.0780 0.0542 0.0200 0.0103
0.264 0.528 4.808 0.2543 0.2090 0.1402 0.1035 0.0780 0.0524 0.0204 0.0106
0.286 0.572 7.042 0.2560 0.2052 0.1409 0.1047 0.0801 0.0530 0.0206 0.0098
0.308 0.616 13.158 0.2541 0.2045 0.1425 0.1037 0.0794 0.0534 0.0219 0.0103
0.330 0.660 100.00 0.2792 0.2135 0.1645 0.1104 0.0998 0.0571 0.0292 0.0123

Sample size = 250
Model Rejection frequency

0.20 0.1 0.05 0.01
a b hu OPG DLR OPG DLR OPG DLR OPG DLR

0.220 0.440 2.941 0.2180 0.1997 0.1169 0.1029 0.0625 0.0521 0.0147 0.0112
0.242 0.484 3.650 0.2177 0.1994 0.1180 0.1030 0.0641 0.0521 0.0156 0.0113
0.264 0.528 4.808 0.2221 0.2000 0.1207 0.1016 0.0639 0.0510 0.0159 0.0105
0.286 0.572 7.042 0.2268 0.2022 0.1218 0.1013 0.0631 0.0511 0.0153 0.0109
0.308 0.616 13.158 0.2329 0.2055 0.1268 0.1029 0.0645 0.0515 0.0155 0.0111
0.330 0.660 100.00 0.2492 0.2098 0.1391 0.1038 0.0749 0.0517 0.0187 0.0114

Sample size = 500
Model Rejection frequency

0.20 0.1 0.05 0.01
a b hu OPG DLR OPG DLR OPG DLR OPG DLR

0.220 0.440 2.941 0.2058 0.1976 0.1077 0.1005 0.0522 0.0493 0.0112 0.0092
0.242 0.484 3.650 0.2079 0.1985 0.1069 0.1002 0.0549 0.0498 0.0120 0.0101
0.264 0.528 4.808 0.2140 0.1995 0.1065 0.0994 0.0552 0.0487 0.0123 0.0103
0.286 0.572 7.042 0.2148 0.2000 0.1088 0.0980 0.0554 0.0497 0.0131 0.0103
0.308 0.616 13.158 0.2163 0.1980 0.1106 0.0971 0.0557 0.0477 0.0128 0.0105
0.330 0.660 100.00 0.2292 0.2004 0.1211 0.0984 0.0629 0.0486 0.0145 0.0096

Sample size = 750
Model Rejection frequency

0.20 0.1 0.05 0.01
a b hu OPG DLR OPG DLR OPG DLR OPG DLR

0.220 0.440 2.941 0.2094 0.2017 0.1062 0.1013 0.0540 0.0500 0.0112 0.0099
0.242 0.484 3.650 0.2117 0.2031 0.1059 0.0999 0.0528 0.0500 0.0115 0.0105
0.264 0.528 4.808 0.2125 0.2028 0.1080 0.1005 0.0552 0.0494 0.0116 0.0106
0.286 0.572 7.042 0.2134 0.2019 0.1071 0.1018 0.0532 0.0485 0.0120 0.0104
0.308 0.616 13.158 0.2124 0.1998 0.1130 0.0996 0.0560 0.0492 0.0130 0.0103
0.330 0.660 100.00 0.2185 0.1994 0.1152 0.1000 0.0619 0.0473 0.0141 0.0094

Sample size = 1000
Model Rejection frequency

0.20 0.1 0.05 0.01
a b hu OPG DLR OPG DLR OPG DLR OPG DLR

0.220 0.440 2.941 0.2057 0.2010 0.1052 0.0998 0.0537 0.0506 0.0112 0.0110
0.242 0.484 3.650 0.2070 0.2001 0.1048 0.1003 0.0535 0.0511 0.0117 0.0107
0.264 0.528 4.808 0.2076 0.2001 0.1085 0.1016 0.0530 0.0500 0.0114 0.0106
0.286 0.572 7.042 0.2099 0.2003 0.1060 0.0981 0.0540 0.0489 0.0111 0.0100
0.308 0.616 13.158 0.2111 0.1981 0.1075 0.1001 0.0565 0.0512 0.0124 0.0098
0.330 0.660 100.00 0.2247 0.2039 0.1171 0.1019 0.0619 0.0518 0.0137 0.0103
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Table 2: Fixed hu

Sample size = 100
Model Rejection frequency

0.20 0.1 0.05 0.01
a b hu OPG DLR OPG DLR OPG DLR OPG DLR

0.10 0.60 3.33 0.2504 0.2111 0.1371 0.1082 0.0752 0.0558 0.0213 0.0119
0.15 0.55 3.33 0.2494 0.2078 0.1385 0.1084 0.0770 0.0553 0.0214 0.0113
0.20 0.50 3.33 0.2505 0.2093 0.1393 0.1078 0.0784 0.0549 0.0206 0.0114
0.25 0.45 3.33 0.2515 0.2067 0.1387 0.1049 0.0769 0.0537 0.0200 0.0106
0.30 0.40 3.33 0.2600 0.2082 0.1430 0.1050 0.0814 0.0524 0.0204 0.0100
0.35 0.35 3.33 0.2591 0.2039 0.1428 0.1039 0.0832 0.0523 0.0202 0.0099
0.40 0.30 3.33 0.2591 0.2023 0.1435 0.1026 0.0828 0.0513 0.0197 0.0094
0.45 0.25 3.33 0.2652 0.2015 0.1468 0.0990 0.0820 0.0507 0.0211 0.0099
0.50 0.20 3.33 0.2686 0.1995 0.1486 0.1016 0.0847 0.0526 0.0222 0.0104
0.55 0.15 3.33 0.2696 0.1968 0.1501 0.1006 0.0856 0.0519 0.0224 0.0106
0.60 0.10 3.33 0.2712 0.1935 0.1517 0.0982 0.0838 0.0476 0.0207 0.0089

Sample size = 250
Model Rejection frequency

0.20 0.1 0.05 0.01
a b hu OPG DLR OPG DLR OPG DLR OPG DLR

0.10 0.60 3.33 0.2173 0.2013 0.1170 0.1057 0.0611 0.0535 0.0148 0.0115
0.15 0.55 3.33 0.2150 0.1982 0.1180 0.1030 0.0602 0.0517 0.0145 0.0108
0.20 0.50 3.33 0.2162 0.2000 0.1164 0.1034 0.0620 0.0512 0.0146 0.0109
0.25 0.45 3.33 0.2182 0.1999 0.1181 0.1042 0.0633 0.0518 0.0155 0.0114
0.30 0.40 3.33 0.2245 0.2022 0.1179 0.1024 0.0649 0.0504 0.0145 0.0103
0.35 0.35 3.33 0.2282 0.2033 0.1214 0.1027 0.0657 0.0518 0.0146 0.0106
0.40 0.30 3.33 0.2327 0.2042 0.1238 0.1041 0.0681 0.0529 0.0148 0.0099
0.45 0.25 3.33 0.2357 0.2032 0.1254 0.1025 0.0705 0.0549 0.0149 0.0094
0.50 0.20 3.33 0.2383 0.2029 0.1301 0.1015 0.0707 0.0521 0.0144 0.0097
0.55 0.15 3.33 0.2419 0.2022 0.1337 0.1012 0.0730 0.0495 0.0150 0.0097
0.60 0.10 3.33 0.2454 0.2008 0.1355 0.1007 0.0745 0.0488 0.0151 0.0097

Sample size = 500
Model Rejection frequency

0.20 0.1 0.05 0.01
a b hu OPG DLR OPG DLR OPG DLR OPG DLR

0.10 0.60 3.33 0.2036 0.1937 0.1054 0.0999 0.0537 0.0498 0.0112 0.0090
0.15 0.55 3.33 0.2043 0.1952 0.1044 0.0980 0.0528 0.0500 0.0109 0.0090
0.20 0.50 3.33 0.2068 0.1978 0.1065 0.1000 0.0534 0.0501 0.0114 0.0095
0.25 0.45 3.33 0.2083 0.1985 0.1073 0.1005 0.0542 0.0497 0.0119 0.0100
0.30 0.40 3.33 0.2111 0.1991 0.1099 0.1006 0.0551 0.0493 0.0121 0.0097
0.35 0.35 3.33 0.2159 0.2007 0.1117 0.0999 0.0562 0.0492 0.0123 0.0097
0.40 0.30 3.33 0.2178 0.2024 0.1133 0.0997 0.0591 0.0495 0.0123 0.0093
0.45 0.25 3.33 0.2202 0.2002 0.1145 0.1002 0.0604 0.0506 0.0130 0.0090
0.50 0.20 3.33 0.2232 0.2008 0.1156 0.0997 0.0613 0.0507 0.0134 0.0093
0.55 0.15 3.33 0.2261 0.1986 0.1189 0.0976 0.0624 0.0489 0.0139 0.0091
0.60 0.10 3.33 0.2290 0.1955 0.1221 0.0938 0.0628 0.0468 0.0140 0.0091
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Table 3: Fixed hu (continued)

Sample size = 750
Model Rejection frequency

0.20 0.1 0.05 0.01
a b hu OPG DLR OPG DLR OPG DLR OPG DLR

0.10 0.60 3.33 0.2071 0.2020 0.1038 0.0998 0.0536 0.0502 0.0109 0.0098
0.15 0.55 3.33 0.2077 0.2025 0.1047 0.1004 0.0536 0.0503 0.0112 0.0099
0.20 0.50 3.33 0.2084 0.2017 0.1053 0.1002 0.0542 0.0509 0.0112 0.0099
0.25 0.45 3.33 0.2116 0.2041 0.1053 0.1005 0.0531 0.0494 0.0114 0.0103
0.30 0.40 3.33 0.2135 0.2035 0.1085 0.1014 0.0535 0.0499 0.0118 0.0113
0.35 0.35 3.33 0.2130 0.2023 0.1111 0.1043 0.0546 0.0496 0.0120 0.0112
0.40 0.30 3.33 0.2135 0.2020 0.1137 0.1045 0.0570 0.0491 0.0119 0.0105
0.45 0.25 3.33 0.2148 0.2007 0.1153 0.1036 0.0582 0.0486 0.0123 0.0103
0.50 0.20 3.33 0.2171 0.1990 0.1177 0.1021 0.0597 0.0505 0.0128 0.0100
0.55 0.15 3.33 0.2185 0.1984 0.1189 0.1007 0.0607 0.0503 0.0124 0.0097
0.60 0.10 3.33 0.2234 0.1957 0.1183 0.1010 0.0621 0.0497 0.0119 0.0089

Sample size = 1000
Model Rejection frequency

0.20 0.1 0.05 0.01
a b hu OPG DLR OPG DLR OPG DLR OPG DLR

0.10 0.60 3.33 0.2046 0.2003 0.1047 0.1012 0.0538 0.0505 0.0113 0.0107
0.15 0.55 3.33 0.2042 0.1996 0.1047 0.1023 0.0526 0.0497 0.0119 0.0111
0.20 0.50 3.33 0.2058 0.2003 0.1051 0.1015 0.0534 0.0500 0.0117 0.0112
0.25 0.45 3.33 0.2072 0.2008 0.1042 0.0998 0.0537 0.0514 0.0114 0.0106
0.30 0.40 3.33 0.2065 0.2006 0.1049 0.0997 0.0541 0.0502 0.0118 0.0105
0.35 0.35 3.33 0.2095 0.2020 0.1053 0.1007 0.0547 0.0509 0.0108 0.0099
0.40 0.30 3.33 0.2115 0.2013 0.1088 0.1002 0.0553 0.0495 0.0113 0.0099
0.45 0.25 3.33 0.2134 0.1999 0.1100 0.1007 0.0561 0.0501 0.0122 0.0102
0.50 0.20 3.33 0.2131 0.1983 0.1096 0.0998 0.0577 0.0502 0.0127 0.0104
0.55 0.15 3.33 0.2121 0.1966 0.1096 0.0984 0.0587 0.0505 0.0133 0.0105
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Figure 1: Empirical size of the OPG and DLR tests
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implement the tests presented here. This can be difficult for some mod-
els. On the other hand, numerical differentiation can be used: in fact,
there is little computational overhead in computing `t(θ) as a function
of ft(θ) (most of which is typically a simple quadratic form) and kt(θ). As
a consequence, instead of differentiating `t(θ) numerically, it is possible
to differentiate numerically ft(θ) and kt(θ) to obtain Ft(θ) and Kt(θ) and
then compute gt(θ) via equation (6) whenever required.

On multivariate models, several problems arise: it is not obvious
how the concepts behind the DLR regressions can be generalised to
multivariate models. Moreover, the task of analytically differentiating
the log-likelihood of multivariate GARCH-in-mean models is a daunting
one. However, analytical derivatives for the widely used BEKK specifi-
cation (see (8)) have recently been presented by (12).

5 An illustrative example

One of the relevant results of our Monte Carlo simulations is that the
DLR versions of the LM statistic always outperform their OPG coun-
terparts, especially for small sample size. The practical implication is
that when we test for the presence of a risk term, using a thousand or
more observations, the difference between DLR and OPG can be irrel-
evant for the conclusions of the test. This is especially true when the
sample frequency of returns is daily or intra-daily. The results could be
slightly different when we use a sample size that does not exceed few
hundreds data points. This is the case when we conduct the test using
returns sampled at lower frequencies, e.g. weekly data. In this situa-
tion, the results of the two statistics can be markedly different, leading
to opposite conclusions. We provide a simple example of a such case.

We analyze the DAX30 German stock index weekly excess returns,
from 3/3/1999 to 10/12/2003, that is 250 observations. This is exactly
the sample size for which the two test statistics show significant differ-
ences in performances. The series seems to be characterized by a lep-
tokurtic distribution, as expected (see, tab.4). We propose two models
that differ only for the conditional mean equation. The first is a simple
GARCH(1,1)-in-mean model:

yt = π0 + φht + et (13)
ht = c + ae2

t−1 + bht−1 (14)

while the second one is an AR(1)-GARCH(1,1)-in-mean model:

yt = π0 + π1yt−1 + φht + et (15)
ht = c + ae2

t−1 + bht−1 (16)
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Table 4: Descriptive statistics
T 250
mean -0.236
st. dev. 4.173
skewness -0.202
kurt 4.947

We estimate both models only under the null hypothesis. The esti-
mation results are reported in table 5, where the DLR and OPG statis-
tics for the null hypothsis H0 : φ = 0 are also reported. In both cases,
we have contradictory results. In fact, looking at DLR we should reject
the null hypothesis of absence of risk premium term, at a 5% signif-
icance level, while using the OPG results we should accept the null.
Now, for this sample size, given the results of the Monte Carlo simula-
tions shown above, the DLR-version of the LM test seems to be more
reliable than the corresponding OPG version. Therefore, we conclude,
contrary to the OPG results, that the conditional variance does not en-
ter the conditional mean of this series.

It is interesting to note that estimating equations (13)–(14) and (15)–
(16) under the alternative hypothesis gives support to the conclusion
that the DLR-LM test provides more accurate indications. As an exper-
iment, we estimated the two models without the restriction φ = 0 and
then tested the restriction by means of a Wald test (using the robust
variance matrix estimator by (2)); in these settings, the hypothesis is
accepted for both models (p = 0.1282 for equation (13), p = 0.1426 for
equation (15)).

Table 5: Estimation results
Model 1 Model 2

Estimate s.e. z-stat p-val Estimate s.e. z-stat p-val
Constant -0.162 0.547 -0.295 0.768 -0.127 0.570 -0.223 0.823
yt−1 -0.100 0.069 -1.440 0.150
c 2.000 1.228 1.629 0.103 1.925 1.215 1.584 0.113
a 0.179 0.078 2.287 0.022 0.164 0.074 2.209 0.027
b 0.715 0.117 6.089 0.000 0.729 0.116 6.259 0.000
OPG 4.149 0.042 4.440 0.035
DLR 3.780 0.052 3.649 0.056

On the basis of the Monte Carlo evidence (see table 1) and the indica-
tions of the Wald-type tests, we can safely conclude that the OPG-based
LM tests leads to an incorrect rejection of the null, whereas the DLR-
based test leads to its acceptance.
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Figure 2: DAX Index: values and estimated conditional SD
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6 Conclusions

In this article we investigate the finite-sample properties of two alter-
native methods for computing LM-type tests: the OPG-based LM test
statistics and the DLR-based LM test statistics.

Monte Carlo evidence for a set of univariate AR time series mod-
els with GARCH(1,1) errors indicates that the finite sample size of the
DLR-LM test is much closer to its nominal value than the OPG-LM
test: the OPG-LM test overrejects to an extent that can lead to false in-
ferences on the risk premium parameter. This is especially true for data
characterised by a high level of conditional heteroskedasticity: in these
cases, the DLR-based LM statistics performs very well even for moder-
ate sample sizes, whereas its OPG counterpart requires very large sam-
ples to match asymptotic critical values. We also provide a real-data
example of a series of weekly returns in which the two test statistics
give conflicting results and we show that the DLR-basted test is to be
preferred.

Although our experiment is somewhat limited, we expect our find-
ings to be true in more general settings as well. Moreover, this exper-
iment suggests that future research should closely look at the possible
extensions of the DLR-based LM test to multivariate GARCH models.
In general, there seems to be no reason to prefer the OPG-LM test over
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the DLR-LM test, which has better properties under correct specifica-
tion, and requires only a small additional computational effort.
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