Bertoletti, Paolo

Working Paper

Logarithmic quasi-homothetic preferences

Quaderni di Dipartimento, EPMQ, Università degli Studi di Pavia, No. 161

Provided in Cooperation with:
University of Pavia, Department of Economics and Quantitative Methods (EPMQ)

Suggested Citation: Bertoletti, Paolo (2004) : Logarithmic quasi-homothetic preferences, Quaderni di Dipartimento, EPMQ, Università degli Studi di Pavia, No. 161

This Version is available at:
http://hdl.handle.net/10419/87145

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Logarithmic Quasi-Homothetic Preferences

Paolo Bertoletti
(Università di Pavia)

161 (02-04)

Dipartimento di economia politica
e metodi quantitativi
Università degli studi di Pavia
Via San Felice, 5
1-27100 Pavia

Febbraio 2004
Logarithmic Quasi-Homothetic Preferences

PAOLO BERTOLETTI

Dipartimento di economia politica e metodi quantitativi
University of Pavia

Abstract
We study a class of symmetric, quasi-homothetic preferences that result in demands logarithmic in own prices when these have a negligible impact on aggregate price indices (as in monopolistic competition models). Thus marginal revenues are computationally friendly, and decreasing whenever demands are elastic. Preferences can be represented either by an additive negative exponential direct utility function, or by an expenditure function which depends on two price indices. A parameter accounts for any number of commodities. Another one affects the relevant demand elasticities, which are not constant. Commodities can be either substitutes or complements according to the size of consumption.

J.E.L. Classification: D1, D2.

Keywords: Negative exponential utility function, logarithmic demand, quasi-homotheticity, price indices.

§ I am grateful to Guido Ascari and Antonio Lijoi for useful discussions. Errors are mine.
¥ Corresponding address: c/o Dipartimento di economia politica e metodi quantitativi, Università di Pavia, Via San Felice, 7, I-27100 Pavia, ITALY; Telephone: +39 0382 506202; Fax +39 0382 304226; Email: paolo.bertoletti@unipv.it
1. Introduction

Dixit-Stiglitz (1977: sections I and III) popularized the use of constant-elasticity-of-substitution (CES) homothetic preferences to model the Chamberlinian “large group” monopolistic competition. However, they also showed that more general additive forms (allowing more general commodity substitutability) highlight different results: see e.g. Dixit-Stiglitz (1977: section II) and Krugman (1979). In this paper we consider a class of non-homothetic preferences that explicitly exhibit variable demand elasticities. Preferences are symmetric, and no commodity plays a special role independently from prices and income. In fact, the expenditure function (the indirect utility function) only depends on a price index and a price dispersion index. Preferences are indeed additive, which is both useful, because implies a parsimonious parameterization, and restrictive, because rules out inferior goods and net complements. However, it turns out that commodities can be either gross substitutes or complements, according to the size of consumption (this can be “controlled” using a single parameter). In addition, while the expenditure shares depend on the income, as it is economically reasonable, the Engel curves are linear, which is formally convenient (i.e., preferences are quasi homothetic: see e.g. Deaton-Muellbauer, 1980: section 5.4). Finally, once a large group of commodities is considered (a parameter accounts for any number of them), both uncompensated (Marshallian) and compensated (Hicksian) demands just depend on the logarithm of the own price, which is computationally friendly (marginal revenues are decreasing whenever demands are elastic).

2. The negative exponential utility function

Suppose that consumer preferences over a large number \(N \) of commodities can be represented by the following “negative exponential” utility function:

\[
U(x) = -\frac{1}{\alpha} \sum_{h=1}^{N} x_h e^{-\alpha x_h},
\]

where \(x_h \geq 0 \) indicates the consumption of commodity \(h = 1, N \) and \(\alpha \) is a positive parameter. Clearly, preferences are additive: see e.g. Deaton-Muellbauer (1980: section 5.3). Note that if only commodities indexed from 1 to \(n \) are actually consumed, this is easily accounted for by introducing the negative-integer parameter \(k = n - N \):

\[\text{As is well known, the so-called “constant absolute risk aversion” utility function } U(x) = -\alpha^2 e^{-\alpha x} \text{ is used in macroeconomics because it implies a variable “instantaneous” elasticity of substitution: see for example Blanchard-Fisher (1988: p. 44).}\]
Obviously, $U(\cdot)$ embodies a “taste for variety”, since it is strictly concave and increasing with respect to n. Note that it is well defined over the non negative orthant of the relevant Euclidean space. Thus, according to standard results, it implies regular and well-defined demand functions for (strictly) positive prices and income.

By using the condition:

$$MRS_{ij}(x) = e^{-\alpha(x_i - x_j)} = \frac{p_i}{p_j},$$

where p_i is the price of commodity i, and MRS_{ij} stands for marginal rate of substitution between commodities i and j ($i,j = 1,n$), it is easily computed that the expenditure function dual to (1’) is given by:

$$E(p,u) = -\frac{1}{\alpha} P(p)(H(p) + \ln(k - \alpha u)),$$

where u is the utility “level”. $P(p) = \sum p_i$ is a linearly homogeneous price index, and $H(p) = \sum \hat{p}_h \ln \hat{p}_h$, where $\hat{p}_i = p_i/P$, is the so-called “entropy index” of price dispersion (heterogeneity): see e.g. Stuart-Ord (1994: p. 115). Note that $H \in (-\infty,0)$ for positive prices, achieves its minimum -\ln n if $p_i = p$ for all $i = 1,n$, and it is homogeneous of degree zero.

By Shephard’s Lemma, the compensated demand for commodity i is given by:

$$h_i(p,u) = \frac{\partial E(p,u)}{\partial p_i} = \frac{1}{\alpha} (\ln P(p) - \ln p_i - \ln(k - \alpha u)),

$$

which implies that the elements of the Slutsky matrix are given by:

$$\frac{\partial h_i(p,u)}{\partial p_j} = \frac{1}{\alpha P(p)}, \quad \frac{\partial h_i(p,u)}{\partial p_i} = \frac{1}{\alpha} \left(\frac{1}{P(p)} - \frac{1}{p_i} \right).$$

Equations (3)-(5) summarize the main feature of preferences underlying (1). In particular, note from (5) that net substitutability takes a very simple structure (no special relationship exists between any couple of compensated demands independently from prices).

In addition, the expenditure function (3) has the Gorman generalized polar form, which implies that the Engel curves are linear: see e.g. Deaton-Muellbauer (1980: pp. 130-1 and 144-6). To see quasi homotheticity, solve (3) with respect to u to get the following indirect utility function:
\[V(p, y) = \frac{k - e}{\alpha} \left(-\frac{\alpha y}{P(p)} + H(p) \right) , \]

(6)

where \(y \) is the nominal expenditure and \(y/P \) is a real expenditure (quantity) index. By Hotelling’s Lemma, the uncompensated demand for commodity \(i \) is given by:

\[x_i(p, y) = -\frac{\partial V(p, y)}{\partial p_i} \]
\[= -\frac{y}{P(p)} - 1 \left(\ln p_i - \ln P(p) - H(p) \right). \]

(7)

Note that (7) is linear with respect to \(y \) (all goods are normal) and that, if \(p_i = p \) for all \(i = 1, n \), then \(x_i = y/(np) \). On the contrary, in general the Marshallian demand function (7) will depend on \(\ln p_i \) and on the vector price \(p \) both through \(P \) and \(H \).

However, one can exploit the assumption of additive preferences (see e.g. Deaton-Muellbauer, 1980: pp. 138-42) to show that, if \(n \) is large enough, the marginal utility of outlay \(\lambda = \partial V/\partial y \) is approximately constant with respect to single prices. In particular, by manipulating the first-order condition \(e^{-\alpha x_i} = \lambda p_i \), one get:

\[x_i(p, y) = -\frac{1}{\alpha} (\ln p_i + \ln \lambda(p, y)). \]

(8)

It can be shown that \(\partial \ln \lambda/\partial \ln y = -\alpha y/P \) and thus \(\varepsilon_i = \partial \ln x_i/\partial \ln y = y/(\alpha x_i P) \). Note that the parameter \(\alpha \) is the reciprocal of the income elasticity of demand in any symmetric equilibrium with \(p_i = p \) for all \(i = 1, n \). Since:

\[\theta_i(p, y) = \frac{\partial \ln \lambda(p, y)}{\partial \ln p_i} = -\frac{p_i}{P(p)} (\alpha x_i(p, y) - 1), \]

(9)

it follows that, if \(p_i \) and \(x_i \) are not disproportionate, \(\theta_i \) is of the same order of magnitude as \(1/n \). Thus (8) can be used as a Marshallian demand which is logarithmic in its own price, with:

\[\varepsilon_i^o(p, y) = \frac{\partial \ln x_i(p, y)}{\partial \ln p_i} = -\frac{\theta_i(p, y) + 1}{\alpha x_i(p, y)} \approx -\frac{1}{\alpha x_i(p, y)}, \]

\[\varepsilon_j^o(p, y) = \frac{\partial \ln x_j(p, y)}{\partial \ln p_j} = -\frac{\theta_j(p, y)}{\alpha x_i(p, y)} = 0. \]

(10)

(11)
Of course, one might also assume that the influence of single prices on price indices P and H is negligible, leading to the same results (this might be appropriate in macroeconomic contexts or in monopolistic competition settings). In fact, one might start from assuming that the expenditure function (the indirect utility function) only depends on price indices, as exploited by Datta-Dixon (2000) and (2001) in the case of homothetic preferences.

Finally, note that (8) implies that the revenue function $R(p_i) = p_ix_i$ is strictly concave with respect to p_i, and that there exists a finite choke-off price \bar{p}_i such that $x_i = 0$ if $p_i \geq \bar{p}_i$ (as it is also evident in (7)). This is sufficient to ensure that the problem of optimally setting p_i in order to maximize profit is well behaved. In fact, marginal revenue is decreasing with respect to x_i whenever demand is elastic (marginal revenue is positive only if $\alpha x_i < 1$). Also note that, from (9) and (11), commodities i and j are gross complements if and only if $\alpha x_j > 1$. To compare logarithmic quasi-homothetic preferences with CES (homothetic) preferences (see e.g. Dixit-Stiglitz, 1977, section I), notice that in the former case the (partial) Allen-Uzawa elasticities of substitution (which can be derived from (3)) are given by $\sigma_{ij} = y/(\alpha x_i x_j P)$. Thus, similarly to the others, elasticities of substitution are not constant and not necessarily equal. Note that, as is well known, the condition of gross substitutability between commodities i and j is $\sigma_{ij} > \epsilon_j$. Also notice that σ reduces to $y/(\alpha \epsilon_i)$ in any symmetric equilibrium with $p_i = p$ (and $x_i = x$) for all $i = 1, n$ (see Dixit-Stiglitz, 1977: p. 304).

3. The case of two commodities

To fully grasp the implication of (1), consider the case of only two goods. The Marshallian demand of commodity i (7) reduces to ($i \neq j$, $i, j = 1, 2$):

$$x_i(p_1, p_2, y) = \frac{\alpha y - p_j \ln p_i}{p_j} / (p_i + p_j).$$

(12)

$x_i(\cdot)$ is always decreasing and strictly concave with respect to p_i when $x_i > 0$. Notice that the choke-off price $\bar{p}_i(p_j, y, \alpha)$ is given by:

$$\bar{p}_i(p_j, y, \alpha) = p_j e^{(\alpha y)/p_j}.$$

(13)

There might also exist a price p_i such that (12) reduces $x_i = y/p_i$ for all $p_i \leq \bar{p}_i$ (commodity j is not bought at all). If it exists, $\bar{p}_i(p_j, y, \alpha)$ is implicitly defined by the condition:

2 Notice that this condition is not symmetric due to non-homotheticity.
which can be satisfied only if $\alpha \gamma e \leq p_j$ (note that if $p_i(p_j, y, \alpha)$ is well defined, it must be the case that $\alpha \gamma / p_j < 1$). This case is illustrated in Figure 1.

\[
\ln p_j = \frac{\alpha \gamma}{p_i} + \ln p_i, \quad (14)
\]

$\hat{x}_i(\cdot)$ is increasing with respect to p_j (commodities are gross substitutes) only if $\alpha \gamma > 1$, and in such a case the cross demand is also convex (note that this can be controlled by using the parameter α). On the contrary, cross demand is concave if:

\[
\frac{p_j}{p_i} + 1 \geq \ln \frac{p_i}{p_j}. \quad (15)
\]

Define $\hat{p}_i(p_j, y, \alpha)$ by the condition $x_i(\hat{p}_i, p_j, y) = 1/\alpha$; two cases are possible, according to the existence of $p_i(p_j, y, \alpha)$. They are illustrated in Figure 2.
In this paper we have studied the case of symmetric, logarithmic quasi-homothetic preferences. They can account for any number of goods and generate demand curves that are more general than the commonly used ones, which come from CES preferences. In particular, they have demand elasticities (both with respect to income and prices) which are not constant, and exhibit finite choke-off prices. Nevertheless, by exploiting the properties of additive preferences, we can argue that when the number of good is so large that the influence over the marginal value of income of single prices is negligible, the demands are just logarithmic with respect to the own price, and the revenue functions are well defined, computationally friendly and strictly concave.

Our results are related to those presented in Datta-Dixon (2000) and (2001), where homothetic preferences are developed which generate demands that depend on aggregate price indices and are simple functions of the own price. In our case, the relevant dual functions depend on a straightforward price index and on a well-known index of price dispersion. Moreover, they also account for some non homothetic behaviour. Logarithmic quasi-homothetic preferences should then be useful in all the applications suggested by Datta-Dixon (2001), namely the analysis of pass-through with price-setting behaviour, and of (asymmetric) Cournot oligopoly. In addition, they can

3 Differently from the case of Datta-Dixon (2001: pp. 161-2), we are able to present also the primal utility function representation for the class of logarithmic preferences.
be used in international trade models à la Krugman (1979) (see Bertoletti, 1998), and should also prove suitable for multi-sector growth and monopolistic competition settings.

References

List of the lately published Technical Reports
(available at the web site: "http://economia.unipv.it/Eco-Pol/quaderni.htm").

Quaderni di Dipartimento

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>06-02</td>
<td>I.Epifani</td>
<td>Exponential functionals and means of neutral to the right priors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A.Lijoi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I.Pruenster</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>06-02</td>
<td>P.Bertoletti</td>
<td>A note on third-degree price discrimination and output</td>
</tr>
<tr>
<td>146</td>
<td>12-02</td>
<td>P.Berti</td>
<td>Limit theorems for predictive sequences of random variables</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L.Fratelli</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.Rigo</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>01-03</td>
<td>A. Lijoi</td>
<td>Practicable alternatives to the Dirichlet process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I. Pruenster</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>02-03</td>
<td>A. Lijoi</td>
<td>Extending Doob’s consistency theorem to nonparametric densities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pruenster</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.G.Walker</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>02-03</td>
<td>V.Leucari</td>
<td>Compatible Priors for Causal Bayesian Networks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G.Consonni</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>02-03</td>
<td>L. Di Scala</td>
<td>A Bayesian Hierarchical Model for the Evaluation of a Web Site</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L. La Rocca</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G.Consonni</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>02-03</td>
<td>G.Ascari</td>
<td>Staggered Prices and Trend Inflation: Some Nuisances</td>
</tr>
<tr>
<td>152</td>
<td>02-03</td>
<td>G.Ascari</td>
<td>How inefficient are football clubs?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.Gagnepain</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>03-03</td>
<td>P.Dellaportas</td>
<td>An evaluation of the Spanish arms race</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C.Tarantola</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>05-03</td>
<td>A. Lijoi</td>
<td>Categorical data squashing by combining factor levels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pruenster</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>09-03</td>
<td>P.Berti</td>
<td>A note on the problem of heaps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.Rigo</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>09-03</td>
<td>P.Giudici</td>
<td>Finitely additive uniform limit theorems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C.Tarantola</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>09-03</td>
<td>M.A.Maggi</td>
<td>Web Mining pattern discovery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U.Magnani</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.Menegatti</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>10-03</td>
<td>P.Bertoletti</td>
<td>On the Relationships between Absolute Prudence and Absolute Risk Aversion</td>
</tr>
<tr>
<td>159</td>
<td>01-04</td>
<td>G.Ascari</td>
<td>Uniform Pricing and Social Welfare</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.Rankin</td>
<td>Perpetual Youth and Endogenous Labour</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Supply: A Problem and a Possible Solution</td>
</tr>
</tbody>
</table>