
Rossi, Eduardo; Santucci de Magistris, Paolo; Fantazzini, Dean

Working Paper

Long memory and tail dependence in trading volume and
volatility

Quaderni di Dipartimento - EPMQ, No. 209

Provided in Cooperation with:
University of Pavia, Department of Economics and Quantitative Methods (EPMQ)

Suggested Citation: Rossi, Eduardo; Santucci de Magistris, Paolo; Fantazzini, Dean (2008) : Long
memory and tail dependence in trading volume and volatility, Quaderni di Dipartimento - EPMQ,
No. 209, Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi
(EPMQ), Pavia

This Version is available at:
https://hdl.handle.net/10419/87144

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/87144
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 

Quaderni di Dipartimento 
 
 
 
 
 

Long Memory and Tail dependence in Trading Volume and Volatility 
 

 
Eduardo Rossi 

(Università di Pavia) 
 

Paolo Santucci de Magistris 
(Università di Pavia) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

# 209 (12-08) 
 
 
 
 
 
 
 

Dipartimento di economia politica 
e metodi quantitativi 

Università degli studi di Pavia 
Via San Felice, 5 

I-27100 Pavia 
 

Dicembre 2008 



Long Memory and Tail dependence in Trading Volume
and Volatility ∗

Eduardo Rossi
University of Pavia, Italy

Paolo Santucci de Magistris
University of Pavia, Italy

Dean Fantazzini
M.V. Lomonosov Moscow State University, Russia

December 10, 2008

Abstract

During the last decades a wide literature has focused on the relationship volume-
volatility on financial markets. This paper investigates the temporal dynamics of volatil-
ity and volumes, supposing, as in Bollerslev and Jubinski (1999), that the link has to be
found in their long-run dependencies, that are supposed to be driven by the same infor-
mative process. We analyze the volume-volatility relationship using IBM stocks data.
In particular, we rely on the realized volatility based on five minutes stock prices. Tail
dependence analysis is carried out with two alternative estimators of the continuous
part of the volatility process. The analysis shows that log-realized volatility and log-
volumes are characterized by upper and lower tail dependence, where the positive tail
dependence is mainly due to the jump component. We also investigate the possibility
that volumes and volatility are driven by a common fractionally integrated stochastic
trend, i.e. they have the same degree of long memory and are fractionally cointegrated
as the Mixture Distribution Hypotesis prescribes. Moreover, we estimate a bivariate
ARFIMA specification that explicitly considers the long run relationship between the
two series and the tail dependence in the shocks, by parameterizing the joint density
by means of different copula functions. The evidence from the model estimates, the
simulation results and the forecasts comparison with HAR model highlight the ability
of the bivariate ARFIMA with copula density specification to account for the common
long memory pattern and tail dependence.
Keywords. Realized Volatility, Trading Volume, Long memory, Fractional Cointegra-
tion, Copula Modeling.
J.E.L. classification. C32, C13, G1.
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1 Introduction

An extensive empirical literature has focused, during the last decades, on the temporal de-
pendencies between volumes and volatility on financial markets. The investigation of the
price volatility-volume relationship has important implications in terms of microstructure
of financial markets. Numerous empirical investigations find a positive and strong con-
temporaneous correlation between both absolute returns and volumes. One explanation
for the positive price volatility-volume correlation is provided by the sequential informa-
tion model, see Copeland (1975). In this model, the information is disseminated to only
one trader at time and intermediate equilibria occur prior than the final equilibrium. Se-
quential information imply that there is a positive correlation between price volatility and
trading volume in a sequential manner. In the simplest version of the Mixture Distribution
Hypotesis (MDH, hereafter), see Clark (1973) and Epps and Epps (1976), price volatility
and volume should be positively correlated because the joint dependence on a common
underlying variable, that is interpreted as the rate of information flow. According to this
theory, the dynamics of volumes and volatility are driven by a common and contempora-
neous informative process and both bad news and good news are accompanied by above
average volumes and volatility. However, this informative process is unobservable.
Given the leptokurtic distribution of daily returns, with respect to the normal, the MDH
implies that data are generated by a conditional stochastic process with variance parame-
ter that varies over time. In particular, MDH helps to explain the high degree of positive
correlation between volumes and volatility (see Karpoff (1987)).
The literature on MDH can be classified in two groups. The first one, under the assumption
of MDH, focuses on estimation of the model parameters and latent variables to evaluate the
goodness of fit with respect to real data.1 The second one concentrates on the properties of
the observed series, relying on an observable (realized) measure of volatility, see Bollerslev
and Jubinski (1999) and Luu and Martens (2003). MDH is deeply related to the market
microstructure theory which provides a theoretical justification for the contemporaneous
correlation between volumes and volatility.

Bollerslev and Jubinski (1999) version of MDH explicity takes into account this stylized
fact. In this model volume and volatility are supposed to be driven by an informative
common process with long memory, while the short run dynamics are not necessarly the
same. The authors interpret the MDH as a long run phenomenon in which the information
arrival process has long memory properties. The low degree of persistence, found in the
previous articles, is motivated by the use of very low order autoregressive type formulation.
Suppose, instead, that the impact of a given day’s news will last for a random number of
days. It follows that the latent aggregate information process has long memory. The MDH
theory implies that the long run dependence of the latent informative process will induce
the same decay of the autocorrelation functions of volume and volatility.

For all the individual shares of S&P100, they estimate the long memory parameter
of volatility and volumes using the log-periodogram regression proposed by Geweke and
Porter-Hudak (1984). Then, they test for a common long run hyperbolic rate of decay across
the volatility and trading volume series relying on the procedure presented in Robinson
(1995).

The main purpose of our paper is to model the relationship between volumes and volatil-
ity where both are supposed to be driven by an unobserved long memory process (as in

1See the approach presented in Andersen (1996) and Liesenfeld (2001).
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Bollerslev and Jubinski (1999)). To this end we use a realized measure of volatility based
on the high frequency intraday squared returns (as in Luu and Martens (2003)). This is
a consistent estimator of the true daily integrated volatility. The results of the Robinson
(1995) test, in order to establish whether the two variables share the same order of long
run dependence, are supportive of the idea that the two series share the same degree of
fractional integration, as reported in table 5. This finding is supportive of the theory of
MDH, at least in the version of Bollerslev and Jubinski (1999). Moreover, we investigate
the possibility that volumes and realized volatility are fractionally cointegrated. In fact, if
the two series were driven by the same long memory latent process, we would expect that
there exists a linear combination of the two series that dampens the long run dependence.
The evidence of the Nielsen and Shimotsu (2007) test for fractional cointegration does not
seem to support this conclusion.

This suggests that we can model the long-run relationship between the logarithm of the
realized volatility and the logarithm of volumes by a long memory bivariate model, that is
a vector ARFIMA.
From the univariate analysis is evident that the filtered log-volumes and log-realized
volatility are characterized by leptokurtosis. Moreover the analysis of the tail-dependence
of the filtered series suggests that a careful treatment of this aspect is needed. This natu-
rally calls for a suitable choice of the joint distribution. To fully exploit the flexibility of the
univariate process, we specify the multivariate distribution function as a copula distribu-
tion. These functions provide a flexible tool to model a multivariate distribution when only
marginal distributions are known.
An out-of-sample forecast exercise has been carried out in order to evaluate the ability
of the model to predict one-period ahead. The benchmark model is a bivariate extension
of the HAR model introduced by Corsi (2003). The results are in favor of the multivari-
ate ARFIMA specification with copulae densities. Finally, a simulation exercise is carried
out to evaluate the ability of the bivariate ARFIMA model, with different copulae spec-
ifications, to account for some sample statistics. The evidence from the estimation and
simulation results highlight the ability of the bivariate ARFIMA to account for the com-
mon long memory pattern that is observed in the data.
This paper is organized as follows. Section 2 briefly reviews the theoretical framework be-
side the concept of realized volatility and its decomposition. In Section 3 a brief description
of the data appears. In Section 4 tail dependence analysis is carried out. Section 5 investi-
gates the long memory property of volatility and volumes. Section 6 sets up the model for
volumes and volatility. Section 7 presents the copulae functions adopted in the estimation
while Section 8 reports the estimation results. Section 9 illustrates the forecasts results
while Section 10 describes the simulation study for the validation of the model, and Section
11 concludes.

2 Realized variation and its decomposition

In recent years, thanks to the availability of high frequency databases, the series of daily
realized volatility (RV) is obtained from high frequency intraday squared returns.
Suppose that the model for the variation of the price is a diffusive process:

dpt = µtdt + σtdWt (1)

that describes the trajectories of a semimartingale in continuous time. Wt is the Wiener
process at time t, while σt is called spot volatility. The integrated volatility, for day t, is
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defined as the integral of the spot volatility

IVt =
∫ t

t−1
σ(s)2ds (2)

The integrated volatility is the realization that is directly comparable with parametric (or
ex ante) volatility measurement. Daily squared returns, as a volatility measure, consti-
tute a poor ex post estimator, because they overestimate the volatility. Integrated volatility
is, instead, a good ex post measure and a theoretical benchmark for other volatility esti-
mations. A non parametric measure for integrated volatility is called realized volatility.
Barndorff-Nielsen and Shephard (2002) have demonstrated that the quadratic variation of
a semimartingale that is defined as

[Yt] = p lim
tj<t∑

j=1

(Ytj − Ytj−1)
2 (3)

is equivalent to the integrated volatility when returns move as described in (1) and the
drift element is continuous.
The sum of successively high-frequency squared returns converges to the quadratic vari-
ation of price, (see Meddahi (2002) and Andersen, Bollerslev, Diebold, and Ebens (2001)).
The realized volatility is a consistent estimator of integrated volatility as the sampling fre-
quency increases.
However, prices sampled at high frequency are affected by the so called microstructure bias
and the estimation of integrated volatility becomes imprecise. This fact has been analyzed
and solved in different ways (see Ait-Sahalia (2003), Hansen and Lunde (2006) and Bandi
and Russell (2003)). The simplest way to deal with this problem is sampling at lower fre-
quencies (for example 5 minutes as in Corsi, Kretschmer, Mittnik, and Pigorsch (2005) or
Bollerslev, Kretschmer, Pigorsch, and Tauchen (2005)).
More generally, assume that the price, pt, follows a continuous-time semimartingale process,

pt =
∫ t

0
µsds +

∫ t

0
σsdWs +

Q(s)∑

j=1

k(sj) (4)

where the mean process µt is continuous and of finite variation, σt > 0 denotes, as usual,
the cad-lag instantaneous volatility. Q(t) is a counting process that takes value 1 if a jump
occurs at t, while k(t) refers to magnitude. In this case, the quadratic variation process is
given by

[p]t = plim

tj<t∑

j=1

(ptj − ptj−1)
2 =

∫ t

0
σ2

sds +
Q(s)∑

j=1

k2(sj) = IVt +
Q(s)∑

j=1

k2(sj) (5)

When we allow for the presence of jumps, the quadratic variation is equal to the sum of
integrated volatility and jumps. As before, the quadratic variation can be estimated by the
sum of the intradaily squared return, rt,j

2

RVt =
M∑

j=1

r2
t,j t = 1, ..., T (6)
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where M is the number of intraday observations. In this case, realized volatility converges
to integrated volatility plus the jump component.
Barndorff-Nielsen and Shephard (2004), have shown that RV allows for a direct nonpara-
metric decomposition of the total price variation into its two separate components: a contin-
uous part, called Bipower Variation (BPV), and a discontinuous one, the jumps. Incorporat-
ing a measure of jumps is important because, as it has been noted by Huang and Tauchen
(2003), their relative contribution to the total price variability is about 7%. Moreover, the
realized variance decomposition, into a continuous and jump part, could be particularly
interesting, in this context, if we think at daily volumes as the sum of a noise and an in-
formed component.
The BPV is defined as

BPVt =
π

2

M∑

j=2

|rt,j ||rt,j−1| t = 1, ..., T (7)

and converges to IVt as M diverges.
Mancini (2007) propose an alternative method for identifying the continuous part of real-
ized volatility based on the following truncation:

TRVt =
M∑

j=1

r2
t,j · I(|rt,j | < θ) (8)

where θ is a threshold function. This method will throw out more returns as jumps during
a high volatility period than during a low volatility period. In a recent paper, Mancini and
Renò (2006) recur to a time varying threshold:

θt = cθ · ht

where ht is the conditional variance obtained by the estimation of a GARCH model. The
parameter cθ is set equal to 9, meaning that the estimator cuts observations whose varia-
tions are three conditional standard deviations away from zero and it is more accurate in
detecting jumps when the diffusive variance is high, that is when a large movement could
be more likely due to the diffusive component instead of a jump.
Corsi, Pirino, and Renò (2008) show that the apparent puzzle found in Andersen, Boller-
slev, and Diebold (2005), where the jumps seem to not have forecast ability for the future
volatility is due to a measurement bias, introduced by the bipower variation in finite sam-
ples. In fact, suppose rt,j contains a jump. In the case of bipower variation, it will multiply
two adjacent returns, rt,j−1 and rt,j+1. Asymptotically, both these returns will vanish and
bipower variation will converge to integrated continuous volatility. But when M is finite,
these returns will not vanish, causing a positive bias which will be larger as rt,j increases.
This consideration suggests that the bias of multipower variation will be extremely large
in case of consecutive jumps. This causes a positive bias when the bipower variation is
used to account for the continuous part of volatility, in particular when two jumps occur in
the same daily trajectory.
Corsi, Pirino, and Renò (2008) provide an alternative estimator of the continuous part of
volatility, the Corrected Threshold Bipower Variation, hence after CTBPV , that is

CTBPVt =
π

2

M∑

j=2

Z1(rt,j , θj)Z1(rt,j−1, θj−1) t = 1, ..., T (9)
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where Z1(rt,j , θj) is a special function equal to |rt,j | when rt,j < θj , and equal to 1.094
√

θj

when rt,j ≥ θj , and θj is the threshold that is a multiple of local variance, V̂j , that is chosen
according to an iterative procedure, so that

θj = cθ · V̂j

Even if CTBPVt and TRVt converge to IVt when δ → 0, for δ > 0 we have that

CTBPVt → BPV as cθ →∞
TRVt → RV as cθ →∞.

The residual jump component is then calculated as the difference between the realized
volatility and the CTBPV

Jt = RVt − CTBPVt t = 1, ..., T (10)

3 Data

Our data set consists of 5-minutes IBM transaction prices from January 1, 1995 through
December 31, 2003. Returns, ri,t, over five minutes interval are then calculated, and re-
alized volatility is obtained as the sum of 81 intraday squared returns over five minutes
intervals. Daily volumes are given by the sum of intraday volumes.2

The series consists of 2267 daily observations. BPVt and Jt are obtained as in formulas (7)
and (10). The logarithm of volumes and realized volatility are presented in figure 1. This
means that periods with volatility (or volumes) above the mean are followed by periods of
volatility (or volumes) below the mean. There is no graphical evidence of the presence of
a strong time trend. However, we fit a quadratic trend and consider for the subsequent
analysis the detrended series.3 Some descriptive statistics of the sample are presented in
the table 1.

The Box-Pierce portmanteau test statistic (in table 2) shows that volatility and volumes
have high degrees of autocorrelation, while returns and Jt are much less persistent.

4 Tail Dependence

Once the series of daily volatility and volumes are obtained from intradaiy data, it would
interesting to investigate the kind of dependence between the two series. In table 3 we
report the estimated contemporaneous correlations. Notice the high correlation between
realized measures of volatility and volumes. Other proxies of volatility, such as the squared
daily returns, have a very low correlation with the log-volumes. This difference highlights
the crucial role of the volatility measurement for the analysis of the volatility-volume re-
lationship. This reinforces the idea of using an high frequency based estimator for the
analysis of the dependence between volatility and volumes.

2The total number of observations is 183627. The raw data are the tick-by-tick prices and volumes on IBM
relative to the open market (from 9:30 am to 4:15 pm). Using the method of previous tick, the series of prices
over a grid of five minutes have been created, as well the volumes, as the sum of the number of transactions
since the last interval. Week-end and festivity are excluded from the database to avoid seasonality effects.

3In the rest of the paper, we refer to log RVt, log BPVt, log CTBPVt and log Vt as the detrended versions
of the corresponding measures. These are obtained simply regressing log-volatilities and log-volumes on a
constant, a time trend and a squared time trend.
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Figure 1: log RVt and log Vt

Mean Std. Dev. Skewness Kurtosis
rt -0.0002 0.0192 0.2562 4.1045
log RVt 0.000 0.7169 0.6516 1.6067
log BPVt 0.000 0.7203 -0.2677 0.6299
log TV Rt 0.000 0.7025 0.4984 0.8729
log CTBPVt 0.000 0.6324 -0.0279 0.3597
log Vt 0.000 0.4198 0.2235 1.1686

Table 1: Descriptive statistics of IBM returns (rt), log-realized volatility (log RVt), log-
bipower variation (log BPVt), log-threshold realized volatility (log TRVt), log-corrected
threshold bipower variation (log CTBPVt), jump component (Jt) and log-volume (log Vt) of
IBM returns.

The Pearson correlation measure only applies to observations that are not far out in
the tails. The MDH does not provide an explanation for possible positive or negative
upper/lower tail dependence. Nevertheless, the exploration of the extremal dependence
structure, between volume and volatility, becomes fundamental for identifying and mod-
eling their joint-tail dependence. In order to characterize tail dependence it is helpful to
remove the influence of marginal aspects first by transforming the original variables into
a common marginal distribution:

U = Flog RV (log RV ) V = Flog V (log V )

As the variables U and V are defined on a common scale events of the form {U > u} and
{V > u} correspond, for large values of u, to equally extreme events for each variable. By
defining the limit

χ = lim
u→1

Pr{V > u|U > u}
where 0 ≤ χ ≤ 1, we say that when χ > 0 the variables are asymptotically dependent while
when χ = 0 they are asymptotically independent. χ measures the degree of dependence
that is persistent in the limit. However, χ(u) ≡ Pr{V > u|U > u} has a lower power to
detect the asymptotic independence. Coles, Heffernan, and Tawn (1999) propose a depen-
dency measure based on Pr{V > u|U > u}:

χ(u) =
2 log Pr{U > u}

log Pr{U > u, V > u} − 1

7



ρ1 ρ2 ρ3 ρ4 BP (5) BP (10) BP (40)
rt -0.0158 0.0016 0.0125 0.0198 5.94 12.49 54.74
log RVt 0.5638 0.4677 0.4160 0.3918 2260.1 3318.3 5756.1
log BPVt 0.5870 0.4882 0.4384 0.4111 2482.6 3673.2 6370.7
log TV Rt 0.5800 0.4827 0.4287 0.4053 2411.9 3594.0 6305.8
log CTBPVt 0.5875 0.4996 0.4607 0.4351 2633.7 4006.3 7643.6
Jt 0.0628 0.0255 0.0269 0.0228 13.56 15.19 27.83
log Vt 0.5638 0.4677 0.4160 0.3917 2023.6 2591.2 3684.0

Table 2: Sample autocorrelation function (ρj , j = 1, . . . , 4). Box-Pierce Portmanteau test
statistic for 5, 10 and 40 lags of log-realized volatility (log RVt), log-bipower variation
(log BPVt), log-threshold realized volatility (log TRVt), log corrected threshold bipower vari-
ation (log CTBPVt), jump component (Jt) and log-volume (log Vt) of IBM returns.

rt log BPVt log Vt Jt log r2
t log RVt log CTBPVt TV Rt

rt 1.0000 0.0024 0.0218 0.0692 0.0096 0.0218 0.0258 0.0316
log BPVt 1.0000 0.6243 0.2927 0.2469 0.9536 0.9543 0.9598
log Vt 1.0000 0.2671 0.2213 0.6247 0.5876 0.6121
Jt 1.0000 0.1292 0.4466 0.2064 0.3171
log r2

t 1.0000 0.2610 0.2310 0.2554
log RVt 1.0000 0.9374 0.9855
log CTBPVt 1.0000 0.9022
log TV Rt 1.0000

Table 3: Correlation Matrix. The table reports correlation estimates of returns (rt), log-
bipower variation (log BPVt), log-volumes (log Vt), log-relative jump (Jt), log-squared re-
turns (log r2

t ), log-realized volatility (log RVt), log-corrected threshold bipower variation
(log CTBPVt), and log-threshold realized volatility (log TRVt)

and
χ = lim

u→1
χ(u)

χ > 0 when (U, V ) are positively associated in the extremes, χ = 0 when are exactly inde-
pendent, and χ < 0 when are negatively associated. The pair of dependence (χ, χ) mea-
sures together provides all the necessary information to characterize the form and degree
of extremal dependence. For asymptotically dependent variables, we have χ = 1 with the
degree of dependence given by χ > 0. For asymptotically independent variables we have
χ = 0 with the degree of dependence given by χ. It is important to test first χ = 1 before
drawing conclusions about asymptotic dependence based on estimates of χ.

In order to estimate χ it is convenient to transform log RV and log V via the Fréchet
marginals. Let S and T be the unit Fréchet marginals of log RV and log V ,

S = −1/ log F (log RV ) T = −1/ log F (log V ) (11)

Following Poon, Rockinger, and Tawn (2004), we calculate the Hill estimator, that is a non
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parametric measure of the degree of tail dependence between volatility and volumes,

̂̄χ =
2
nu




nu∑

j=1

log
(zj

u

)

− 1 (12)

where nu is the number of observation over the threshold u, zj is the j-th order statistic
from Z = min(S, T ). where F (·) is the univariate empirical distribution function. The
variance is given by:

V ar[χ̂] =
(χ̂ + 1)

nu

If there is evidence that χ̂ < 1, χ̂ + 1.96
√

V ar[χ̂] < 1 then we can infer that the variables
are asymptotically independent Only if there is no significant evidence to reject χ̄ = 1, we
can estimate the degree of tail dependence that is

χ̂ =
u · nu

T
(13)

with variance,

V ar[χ̂] =
u2nu(T − nu)

T 3

The parameter χ measures the degree of upper tail dependence, that is the probability of
observing a large value of volatility given a large realization of volumes. The analysis of
the lower tail dependence is symmetric to the right tail, since the data are multiplied by
−1. Figures 2 and 3 report the calculated degree of tail dependence, ˆ̄χ, between the raw
series of volatility (including bipower variation, threshold realized volatility and corrected
threshold-bipower variation) and log V , for different choices of the threshold u.

Figure 2: Hill estimator of the left tail dependence. X-axis measures nu = 20, ..., 200.

We have repeated the tail dependence analysis on the series filtered by the long memory
component, where the parameter d has been estimated with the exact Whittle estimator,
see figure 4 and 5. Choosing a threshold u equal to 2.5% of observations, so that nu = 57,

9



Figure 3: Hill estimator of the right tail dependence, X-axis measures nu = 20, ..., 200.

the log V and log RV show left tail dependence, the same is true for the filtered series. For
what concerns the right tail dependence, log RV and log BPV show positive dependence
with log V , in particular when the series are fractionally differenced. From the standard
error expression is clear that decreasing u we increase the estimate uncertainty. The esti-
mated degree of right tail dependence between log BPV and log V , χ̂, is positive, χ̂ = 0.3306,
with 2.5% of observations on the right tail. log RV present a significant level of asymptotic
upper and lower tail dependence with respect to log-volumes. The estimated χ̂ is equal to
0.3622 and 0.2904, with 2.5% of observations respectively on right and left tail, when con-
sidering the fractionally differenced series.
Interestingly, we don’t find the same evidence for the for the log CTBPV . In fact, even if
for nu = 57 it shows asymptotic right tail dependence, the confidence band for the Hill esti-
mator between log CTBPV and log V does not contain the value 1 in most cases. Moreover,
the log TRV does not show right tail dependence, while behaves exactly as the log RV on
the left tail. The χ̂ in this case is positive and equal to 0.3245 and to 0.2904 when the series
is fractionally differenced.

Figures 2 and 3 highlight three important features that characterize the relationship
between volatility and volumes.

• First, log-realized volatility and log-volumes display positive upper and lower tail
dependence. This means that, given an extreme positive value of volumes, there is
a positive probability (0.3989) to observe very high volatility the same day. There is
also evidence of positive left tail dependence, i.e. when the trades are few, volatility
and volumes are asymptotically positively correlated.

• Second, the positive upper tail dependence is mainly due to the contribution of jumps
to the realized volatility. In fact, log CTBPV , that is the continuous part of realized
volatility, and log V are asymptotically independent. This highlights the importance
of a good estimation of the jump component of realized volatility. As noted by Corsi,
Pirino, and Renò (2008), the bipower variation underestimates the jump component,
in particular in case of two consecutive jumps in the intradaily returns. Moreover, the

10



Figure 4: Hill estimator of the left tail dependence of the fractionally differenced series.
X-axis measures nu = 20, ..., 200.

log TRV well describes the continuous component of realized volatility when positive
jumps occur, while seems to be unable to account for jumps with negative sign, that
determine the level of left tail dependence.

• Third, the positive lower and upper tail dependence is not due to the long memory
component. The positive tail dependence is still present after the fractional differenc-
ing.

5 The MDH as a Long Memory Relationship

There is accordance in literature (Andersen, Bollerslev, Diebold, and Labys (2003), Corsi,
Kretschmer, Mittnik, and Pigorsch (2005) and Bollerslev, Kretschmer, Pigorsch, and Tauchen
(2005)) on some stylized facts:

• the distribution of realized volatility is asymmetric and leptokurtic, but the density
of logarithm of the series is close to the Normal.

• both volatility and volumes seems to be fractionally integrated. This means that the
effect of a shock decays slowly. This fact is in contrast with an ARMA representation
(which implies an exponential decay) or a unit root process.

A suitable model for this observed feature can be an ARFIMA(0, d, 0) process where d is the
long memory parameter:

(1− L)dyt = εt t = 1, ..., T (14)

in this way yt is a fractionally integrated process of order d and εt is an i.i.d. (0, σ2) se-
quence, and (1− l)d is defined by its binomial expansion

(1− l)d =
∞∑

j=0

Γ(j − d)
Γ(−d)Γ(j + 1)

Lj , Γ(z) =
∫ ∞

0
tz−1e−tdt.

11



Figure 5: Hill estimator of the right tail dependence of the fractionally differenced series,
X-axis measures nu = 20, ..., 200.

If |d| ∈ (0, 1/2) the process is stationary. In particular, if d ∈ (0, 1/2), it presents long
memory; instead, if d ∈ (−1/2, 0) the process is antipersitent with short memory.

As noted by Bollerslev and Jubinski (1999), the high contemporaneous correlation of
volatility and volumes could be explained by a modified version of MDH theory, accounting
for a common latent stochastic component with long memory that drives their dynamics
over time. This hypothesis can be easily verified, estimating the fractional integration
parameters for both series, dlogRV and dlogV , and then checking if these are statistically
equal. Lieberman and Phillips (2006) provides an analytical explanation for the evidence
of long memory in the series of realized volatility. In fact, the autocovariance structure of
the realized volatility estimator depends on those of the intraday returns. Then, even if
the intraday increments are short memory, the sampling scheme renders the RV to be long
memory. This suggest that the latent information arrival process, that is approximated by
the realized volatility, should also have long memory, since it is the sum of independent
intraday information arrivals.
Given this analytical result, the MDH theory can be tested by comparing the degree of
fractional integration of the two series. As already noted by Bollerslev and Jubinski (1999)
and Luu and Martens (2003), the MDH theory prescribes that the fractional integration
order, d, of volumes and volatility is the same, since they are both driven by the same long
memory process.
We estimate d with the semiparametric estimator of Geweke and Porter-Hudak (1984). Let
Ii(ωj) denote the sample periodogram for series i at the j-th Fourier frequency, λj = 2πj/T ,
where T is the number of observations in the sample. The estimator of di is then based on
the regression

log[Ii(λj)] = α− 2di log(λj) + εi (15)

where i = 1, 2 for volatility and volume, respectively, and j = 1, ..., m where m is such that

1
m

+
T

m
→ 0 (16)
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as T goes to infinity. The results of the estimation are presented in the table 5.4 The two
series are fractionally integrated and stationary, namely, the estimated d is between 0 and
0.5 for both series. Moreover, we investigate the possibility that the two series exhibit the
same degree of fractional integration. Robinson (1995) provides a framework for testing
the equality in the fractional integration order. We implement the test to assess if volume
and volatility shares the same long run dependence. The test statistic, that is distributed
asymptotically as a χ2

1 under the null d1 = d2, is

ξ =
(d1 − d2)2

z′(X ′X)−1z · f ′Ω̂f
(17)

where

z =
[

0
1

]
, X =




1 −2 lnλ1
...

...
1 −2 ln λm


 , f =

[ −1
−1

]
, Ω =

[
V ar(ε1) Cov(ε1, ε2)

Cov(ε1, ε2) V ar(ε1)

]
,

Table 5 reports the GPH estimates of the fractional integration parameter d for each series,
and for different choices of the bandwidth parameter m. All d estimates are below 1/2, this
suggests that both series are covariance-stationary long memory series. We find evidence
that the two series share the same degree of fractional integration (as in Luu and Martens
(2003)). The Robinson test accept the null hypothesis, i.e. dlog RV = dlog V . This finding is
supportive of the theory of MDH, at least in the version of Bollerslev and Jubinski (1999).
The univariate analysis suggests that both volatility and volume are characterized by long
memory and that they are, as expected, strictly connected. Nevertheless, this finding it
is not sufficient to guarantee the validity of the MDH theory. In fact, if the MDH theory
were verified, there should exist a common stochastic trend, that is the information arrival
process, with long memory, that drives the dynamics of volatility and volumes through
time. Hence, the analysis of the validity of the MDH should be carried out investigating
the degree of fractional cointegration of volume and volatility.

5.1 Fractional cointegration analysis

According to the definition in Granger (1986), two (or more) I(d) series are fractionally
cointegrated if there exists a linear combination that is I(de), with de < d. Thus the errors
are of lower order of fractional integration than the levels. This means that the series
share fractionally integrated stochastic trends of different orders (I(d) and I(de)), and a
linear combination eliminates the largest. More precisely, suppose that zt is a vector (p×1)
of observables, where the i-th element zit ∼ I(di), with di > 0, i = 1, . . . , p, we say that they
are fractionally cointegrated if there exists a vector α 6= 0

et = α′zt ≡ I(de) 0 ≤ de < min
1≤i≤p

di

This is possible if and only if di = dj , some i 6= j; a necessary condition for α to be a
cointegrating vector is that its i-th component be equal to zero if di > dj for all i 6= j. When

4The simulation results of Hurvich, Deo, and Brodsky (1998) suggest to choose m = T 4/5 for the bandwidth.
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d1 = . . . = dp = d it is usual to write zt ≡ CI(d, b), b = d − de. A typical situation is when
zt = (x′t, yt) ∈ I(d) and et ∈ I(de) with d > de ≥ 0 in the model

yt = β′xt + et. (18)

Cointegration is commonly thought of as a stationary relation between nonstationary vari-
ables

di ≥ 1
2

∀i and de <
1
2
.

But another possibility is represented by 0 ≤ di < 1
2 ∀i when zt and et are stationary. Thus

the case where d > 0, de ≥ 0 and d + de ≤ 1/2 is called stationary fractional cointegration.
The main drawback of fully specified parametric models is that they provide inconsistent
estimators of the long-run parameters if the model is not correctly specified. Robinson
(1994) shows that conventional estimators, and in particular OLS are inconsistent when
the errors are fractionally integrated. He introduces narrow-band least squares, a semi-
parametric method, and proves it is consistent even in situations where the error term is
correlated with the regressors. Robinson and Marinucci (2003) and Marinucci and Robin-
son (2001) show that these semiparametric estimators are consistent for general orders of
fractional integration d for the individual series and de for the errors in the cointegrating
(18) relation and for arbitrary short run dynamics. Define the discrete Fourier transform
of an observed vector {at, t = 1, . . . , T}

wa(λ) =
1√
2πT

T∑

t=1

ateitλ.

If {bt, t = 1, . . . , T} is an another observed vector, the cross periodogram matrix between at

and bt is
Iab(λ) = wa(λ)w∗b (λ) = Ic

ab(λ) + iIq
ab(λ)

where the asterisk is transposed complex conjugation, and c, q indicate the co- and quadra-
ture periodogram, respectively. The discretely averaged co-periodogram

F̂ab(k, l) =
2π

T

l∑

j=k

Ic
ab(λj), 1 ≤ k ≤ l ≤ T − 1

for λj = 2πj/T . Thus we obtain the frequency domain least squares (FDLS) estimator

β̂m = F̂−1
xx (1,m)F̂xy(1,m) (19)

of β in regression (18). If
1
m

+
m

T
→ 0 as T →∞ (20)

then β̂m is called a narrow-band FDLS estimator, since it uses only a degenerating band of
frequencies around the origin. Robinson and Marinucci (2003) show, under some assump-
tions and 20,

β̂im − βi = Op

((
T

m

)de−di
)

, i = 1, . . . , p− 1 as T →∞.
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Under fractional cointegration de < min(di), so the estimator β̂m is consistent for β. More-
over, if the integration order of the raw data series is common, i.e. di = d for all i = 1, . . . , p
the stochastic order of magnitude of the estimator varies with the strength of the cointe-
grating relation b = d− de.

MDH prescribes full cointegration, in the sense that b = d. A necessary condition for
fractional cointegration is that the two largest orders of integration are equal.
A simple way to test the hypothesis of fractional cointegration is examining the degree of
persistence of the residuals of the following regressions

log Vt = βRV log RVt + et (21)

and
log Vt = βCTBPV log CTBPV t + ut (22)

under the assumption that volatility and volumes have the same d.
The parameter β is estimated by the Frequency Domain Least Squares. The results are
reported in table 6. The first part of the table shows the results for the regression 21 and
22. The residuals from the Narrow Band Least Square estimation of equations (21) and
(22) show a high estimated order of integration, that is the residuals possess long mem-
ory. Given the standard errors we can reject the null hypotheses de = 0 and du = 0. The
estimates of the fractional integration parameters, d̂e and d̂u, are not inferior to that of vol-
umes. This means that is not de < d or du < d. In particular, the 95% confidence intervals,
obtained from the standard error of the parameters d̂e and d̂u, contain the estimated frac-
tional integration parameter, d̂log V , of log-volumes. Moreover, considering different band-
widths, the estimates of βRV and βCTBPV turn out to be much smaller than 1. Thus we can
conclude that volumes and volatility are not fractionally cointegrated. We also consider
the possibility of fractional cointegration carrying out a test based analysis. Breitung and
Hassler (2002) propose a trace test statistic, similar to that proposed by Johansen (1988),
based on the solution of a generalized eigenvalue problem. However, they consider only
the cointegration relation between non-stationary variables, such that d > 0.5. Instead,
Robinson and Yajima (2002) discuss a semi-parametric procedure for determining the coin-
tegration rank, focusing on stationary series. Nielsen and Shimotsu (2007) extend the
analysis of Robinson and Yajima (2002), in order to consider cointegration for both station-
ary and non-stationary variables. In particular, they apply the exact local Whittle analysis,
and estimate the rank of spectral cointegration of the dth differenced process around the
origin. Since the presence or absence of cointegration is not known when the fractional
integration order is estimated, they propose, as in Robinson and Yajima (2002), a test sta-
tistic for the equality of integration orders that is informative in both circumstances, in the
bivariate case

T̂0 = m(Sd̂)′
(

S
1
4
D̂−1(Ĝ¯ Ĝ)D̂−1S′ + h(T )2

)−1

(Sd̂) (23)

where ¯ denotes the Hadamard product, S = [1,−1]′, h(T ) = log(T )−k for k > 0 , D =
diag(G11, G22), while Ĝ = 1

m

∑m
j=1 Re(Ij) (see Nielsen and Shimotsu (2007) for more de-

tails). If the variables are not cointegrated, that is the cointegration rank r is zero, T̂0 → χ2
1,

while if r ≥ 1, T̂0 → 0. A significantly large value of T̂0, with respect to χ2
1, can be taken as

an evidence against the equality of the integration orders.
Moreover, the estimation of the cointegration rank r is obtained by calculating the eigen-
values of the estimated matrix Ĝ. The estimator Ĝ uses a new bandwidth parameter m1.
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Let δ̂i the ith eigenvalue of Ĝ, it is possible to apply a model selection procedure to deter-
mine r. In particular,

r̂ = arg min
u=0,1

L(u) (24)

where

L(u) = v(T )(2− u)−
2−u∑

i=1

δ̂i (25)

for some v(T ) > 0 such that

v(T ) +
1

m
1/2
1 v(T )

→ 0. (26)

Table 7 shows the results of the Nielsen and Shimotsu (2007) fractional cointegration
analysis, with two different choices for the bandwidths, m used in the estimation of d’s
in the exact local Whittle estimation, and m1 used in the estimation of L(u). The values of
the fractional orders are close to that obtained with the GPH procedure. The T̂0 statistic
takes values 1.048 and 1.9716. Since the 95% critical value of a χ2

1 is 3.841 we do not reject
the null of equality of the integration orders in both cases. The analysis of the cointegra-
tion rank confirms the absence of cointegration, in fact r̂ = 0 in all cases. This finding
reinforces our belief against the idea of MDH theory as a long memory relationship.

6 The Model

Given the results of the fractional cointegration and tail dependence analysis, it is inter-
esting to study the long run dependence of the two series and their interdependencies in a
multivariate framework defined as a system of two equations:

Φ(L)D(L)Xt = εt (27)

D(L) =
[

(1− L)d1 0
0 (1− L)d2

]

where Xt = (log RVt, log Vt)
′, Φ(L) = I2 − Φ1L− ...− ΦpL

p, εt = (ε1t, ε2t)′, with E(εt) = 0 and
V ar(εt) = Σ. This model is a Fractionally Integrated VAR (FIVAR). We assume that the εt

have a joint distribution εt ∼ G (εt;ψ), with G(.) continuous density function. The vector
ψ = (ϕ, ν) contains the parameters of the conditional mean, variances and covariance (ϕ)
and the nuisance parameters (ν). We can specify the joint multivariate density by means
of a copula function density. The copula theory provides an easy way to deal with the
(otherwise) complex multivariate modeling. The essential idea of the copula approach is
that a joint distribution can be factorized into the marginals and a dependence function
called copula. The joint distribution G (ε1,t, ε2,t; ψ) can be expressed as follows, thanks to
the so-called Sklar’s theorem (1959):

(ε1,t, ε2,t)
′ ∼ G (ε1,t, ε2,t; ψ) = C (F1,t(ε1,t; δ1), F2,t(ε2,t; δ2); γ) (28)

that is the joint distribution G(.) of a vector of innovations εt is the copula C ( · ; γ) of the cu-
mulative distribution functions of the innovations marginals F1,t(ε1,t; δ1) F2,t(ε2,t; δ2), where
γ, δ1, δ2 are the copula and marginals parameters, respectively. Setting u1 = F1,t(ε1,t; δ1)
and u2 = F1,t(ε2,t; δ2), the copula probability density function is defined as

c(u1, u2; γ) =
∂2C (u1, u2; γ)

∂u1∂u2
(29)
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7 Copula Modeling

The copula couples the marginal distributions together in order to form a joint distribution.
The dependence relationship is entirely determined by the copula, while scaling and shape
(mean, standard deviation, skewness, and kurtosis) are determined by the marginals (see
Sklar (1959), Joe (1997) and Nelsen (1999). Cherubini, Luciano, and Vecchiato (2005) pro-
vide a detailed discussion of copula techniques for financial applications). Copulae can
therefore be used to obtain more realistic multivariate densities than the traditional joint
normal one, which is simply the product of a normal copula and normal marginals; mar-
ginals can be entirely general, e.g. Skewed Student’s t marginals, while the normal depen-
dence relation can be preserved using a normal copula.

7.1 Elliptical Copulae

The class of elliptical distributions provides useful examples of multivariate distributions
because they share many of the tractable properties of the multivariate normal distrib-
ution. Furthermore, they allow to model multivariate extreme events and forms of non-
normal dependencies. Elliptical copulae are simply the copulae of elliptical distributions
(see Fang, Kotz, and Ng (1990) for a detailed treatment of elliptical distributions).

We present two copulae belonging to the elliptical family that will be later used in the
empirical applications: the Gaussian and Student’s t-Copula.

1. The probability density function of the Gaussian copula is:

c(Φ(x1),Φ(x2)) =
1

|R|1/2
exp

(
−1

2
ζ ′(R−1 − I)ζ

)
(30)

where ζ =
(
Φ−1(u1), . . . , Φ−1(un)

)′ is the vector of univariate normal inverse distribu-
tion functions, ui = Φ (xi), while R is the correlation matrix.

2. On the other hand, the copula of the multivariate Student’s t distribution is the Stu-
dent’s t-Copula, and its density function is:

c(Tνc(x1),Tνc(x2)) = |R|−1/2 Γ
(

νc+2
2

)

Γ
(

νc
2

)
[

Γ
(

νc
2

)

Γ
(

νc+1
2

)
]2

(
1 + ζ′Σ−1ζ

νc

)− νc+2
2

2∏
i=1

(
1 + ζ2

i
νc

)− νc+1
2

(31)

where ui = Tνc(xi) and Tνc(xi) is the univariate Student’s t cdf, ζ = (T−1
νc

(u1), T−1
νc

(u2))′

is the vector of univariate inverse distribution functions, νc are the degrees of free-
dom, and R is the correlation matrix.

The Student’s t-copula generates symmetric tail dependence, i.e. lower and upper tail
dependence are equal, while the normal copula generates zero tail dependence, instead.

7.2 Archimedean Copulae

An alternative to the elliptical copulae is the class of Archimedean copulae. Archimedean
copulae provide analytical tractability and a large spectrum of different dependence mea-
sures. They present several advantages: the ease with which they can be constructed, the

17



large number of parametric families of copulae belonging to this class, the great variety
of different dependence structures (see Embrechts, Lindskog, and McNeil (2003) and Joe
(1997)).

Among the different Archimedean copulae, we will make use of the Gumbel copula:

C(u1, u2) = exp
{
−

[
(− log u1)θ + (− log u2)θ

] 1
θ

}
(32)

where θ > 1 is the copula parameter, whereas the density is given by

c(u1, u2) = C(u1, u2) · u−1
1 u−1

2

[
(− log u1)θ + (− log u2)θ

]−2+2/θ

[log u1 log u2]
θ−1 ×

{
1 + (θ − 1)[(− log u1)θ + (− log u2)θ]−

1
θ

}

The degree of upper tail dependence for the Gumbel copula is equal to 2 − 2
1
θ . This is a

measure of dependence between random variables in the extreme upper joint tails. Broadly
speaking, we can say that the upper tail dependence measures the probability of an ex-
tremely large positive realization in one covariate, given that we have observed a large
positive realization in another.
We also use the Clayton (or Cook Johnson) copula, which corresponds to copula B4 in Joe
(1997):

C(u1, u2) = max




(
2∑

i=1

u−θ
i − 1

)−1/θ

, 0




when the copula parameter θ > 0 the copula simplifies to

C(u1, u2) = (u−θ
1 + u−θ

2 − 1)−1/θ (33)

whereas the density is given by

c(u1, u2) = (1 + θ)(u1u2)−θ−1

(
2∑

i=1

u−θ
i − 1

)− 1
θ
−2

.

It has positive lower tail dependence. This is a measure of dependence between random
variables in the extreme lower joint tails. The Clayton copula implies a degree of tail
dependence equal to 2(−1/θ). See Joe (1997) and Cherubini, Luciano, and Vecchiato (2005)
for more details.

7.3 Copula and Marginals Estimation

Let Θ = (δ1, δ2; γ) be the parameters vector to be estimated, where δi, i = 1, 2 are the
parameters of the marginal distribution Fi and γ is the vector of the copula parameters.
It follows from (28) that the log-likelihood function for the joint conditional distribution
Ht( · ; θ) is given by

l(Θ) =
T∑

t=1

log(c(F1(x1,t; δ1), F2(x2,t; δ2); γ)) +
T∑

t=1

2∑

i=1

log fi(xi,t; δi,t). (34)

where c is the copula density, whereas fi are the marginals densities. Hence, the log-
likelihood of the joint distribution is just the sum of the log-likelihoods of the margins and
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the log-likelihood of the copula. Standard ML estimates may be obtained by maximizing
the above expression with respect to the parameters (δ1, . . . , δn; γ). In practice this can in-
volve a large numerical optimization problem with many parameters which can be difficult
to solve. However, given the partitioning of the parameter vector into separate parameters
for each margin and parameters for the copula, one may use (34) to break up the optimiza-
tion problem into several small optimizations, each with fewer parameters. This multi-step
procedure is known as the method of Inference Functions for Margins (IFM), see Joe and
Xu (1996) and Joe (1997). According to the IFM method, the parameters of the marginal
distributions are estimated separately from the parameters of the copula. In other words,
the estimation process is divided into the following two steps:

1. Estimate the parameters δi, i = 1, . . . , n of the marginal distributions Fi using the ML
method:

δ̂i = arg max li(δi) = arg max
T∑

t=1

log fi(xi,t; δi), (35)

where li is the log-likelihood function of the marginal distribution Fi;

2. Estimate the copula parameters γ, given the estimations performed in step 1):

γ̂ = arg max lc(γ) = arg max
T∑

t=1

log(c(F1(x1,t; δ̂1), F2(xn,t; δ̂n); γ)), (36)

where lc is the log-likelihood function of the copula.

Joe (1997) compares the efficiency of the IFM method relative to full maximum likelihood
for a number of multivariate models and finds the IFM method to be highly efficient. There-
fore, we think it is safe to use the IFM method and benefit from the huge reduction in
complexity it implies for the numerical optimization. The models are estimated with a con-
ditional maximum likelihood technique that considers the infinite AR representation of a
long memory process (see Beran (1994))5.
The log-likelihood functions for each model are:

• NORMAL COPULA (NCOP):

lt(Θ) =
2∑

i=1

log


 Γ(νi+1

2 )√
νiπΓ(νi

2 )

(
1 +

ε2i,t
νi

)−(
νi+1

2
)

 + log

(
(1− ρ2)−0.5

)

+
(
−1

2
(1− ρ2)−1(ε21,t + ε22,t − 2ρε1,tε2,t) · 1

2
(ε21,t + ε22,t)

)

• CLAYTON COPULA (CCOP):

lt(Θ) =
2∑

i=1

log


 Γ(νi+1

2 )√
νiπΓ(νi

2 )

(
1 +

ε2i,t
νi

)−(
νi+1

2
)



+ log
(
(1 + θ)(u1,tu2,t)−θ−1(u−θ

1,t + u−θ
2,t − 1)−(2+θ−1)

)

5A preliminary analysis conducted on the filtered series suggest that the optimal lag choice shuold be 1 in
the VAR specification.
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• T-COPULA (TCOP):

lt(Θ) =
2∑

i=1

log


 Γ(νi+1

2 )√
νiπΓ(νi

2 )

(
1 +

ε2i,t
νi

)−(
νi+1

2
)



+ log

(
Γ

(
νc+2

2

)
Γ

(
νc
2

)

Γ
(

νc+1
2

)2 · |R|− 1
2

(
1 +

ζ ′tR−1ζt

νc

)− νc+2
2

)

+
2∑

i=1

log
(

1 +
ζ2
it

νc

)( νc+1
2 )

• GUMBEL COPULA (GCOP):

lt(Θ) =
2∑

i=1

log


 Γ(νi+1

2 )√
νiπΓ(νi

2 )

(
1 +

ε2i,t
νi

)−(
νi+1

2
)



+ log
(

C(u1, u2) · u−1
1 u−1

2

[
(− log u1)θ + (− log u2)θ

]−2+2/θ
[log u1 log u2]

θ−1

)

+ log
{

1 + (θ − 1)[(− log u1)θ + (− log u2)θ]−
1
θ

}

8 Estimation Results

The maximum likelihood estimates of dlogRV and dlogV are always close to the semi-parametric
estimates obtained with the Geweke and Porter-Hudak (1984) estimator. The R2 are about
30% for both log-volumes and log-volatility. The estimated parameters, φij , turns out to be
statistically significant in the equation of the realized volatility, meaning that lagged fil-
tered log-volumes give some information on the actual filtered realized log-volatility. This
indicates that, once the long memory of the series is accounted for, volumes leads volatility.
However, this finding contrasts the results in Luu and Martens (2003) that ascertain, in a
VAR framework, a bidirectional Granger causality from realized volatility to volumes and
in the other way round6.
The copula estimates show a positive dependence: if we compute a common dependence
measure -such as the Kendall’s tau - by using the parameters’ estimates, it ranges from
0.43 obtained with the t-copula up to 0.50 with the Gumbel copula. Instead the three
copulae differ on the degree of tail dependence, that is dependence in the extremes: the
Gumbel estimates are characterized by a strong upper tail dependence (0.5864), whereas
the t-copula presents a lower value (0.3916). Clayton copula shows a strong positive lower
tail dependence equal to 0.6746. The tail dependence coefficient is zero for the normal
copula by construction. In a recent large scale simulation study, Fantazzini (2008) found
that if the true marginals show positive skewness, then using symmetric marginals causes
the Clayton parameter αc to be positively biased, thus overestimating the tail dependence
coefficient.
These results are in accordance with the findings of the preliminary non parametric analy-
sis which highlights positive upper and lower tail dependence. In particular, the tail de-
pendence value associated with the t-copula model is very close to the one obtained with
the Hill’s estimator. Besides, Kole, Koedijk, and Verbeek (2007), by using a new goodness-

6The Granger causality test, given a VAR(1) model for our series, results in the acceptance of causality in
both directions at 5% of significance. This results is robust to different choices of the lags of the VAR.

20



of-fit testing procedure, found that the Gaussian copula underestimates the probability of
joint extreme downward movements, while the survival Gumbel copula overestimates this
risk, and they provide evidence in favor of the Student’s t-copula.

9 Forecasts

An out-of-sample forecast exercise has been carried out in order to evaluate the ability of
the model to predict one-period ahead. A rolling window of 2167 observations has been used
for the parameter estimation and 100 for the one-period ahead forecast. As a benchmark
provision, we adopt an extension of the bivariate HAR model, introduced by Corsi (2003).
This simple model emphasizes the idea of heterogeneity among different financial investors
on the financial markets. For this reason, Corsi (2003) suggests that the present volatility
depends on the past daily, weekly and monthly realizations. We also include the volumes,
so the extended bivariate HAR model is

log Vt = ω1 + δ11 log RVt−1 + δ12 log RV W
t−1 + δ13 log RV M

t−1 + ψ11 log Vt−1

+ψ12 log V W
t−1 + ψ13 log V M

t−1 + η1t

log RVt = ω2 + δ21 log RVt−1 + δ22 log RV W
t−1 + δ23 log RV M

t−1 + ψ21 log Vt−1

+ψ22 log V W
t−1 + ψ23 log V M

t−1 + η2t

where (η1t, η2t)′ is distributed as a bivariate normal with zero mean and variance and co-
variance matrix, Γ, while log RV W

t−1 = 1
5

∑5
i=1 log RVt−i and log RV M

t−1 = 1
22

∑22
i=1 log RVt−i,

analogously for log V W
t−1 and log V M

t−1. The model is estimated by maximum likelihood. Table
10 reports the estimation results for the HAR model:

First, we compute the following loss functions:

• Mean Squared Error,

MSE =
1
N

N∑

i=1

(Xt+i − X̂t+i|t+i−1)
2 (37)

• Root Mean Squared Error, RMSE,

RMSE =

√√√√ 1
N

N∑

i=1

(Xt+i − X̂t+i|t+i−1)2 (38)

• Mean Absolute Error,

MAE =
1
N

N∑

i=1

|Xt+i − X̂t+i|t+i−1| (39)

where X̂t+i|t+i−1 is the one-period ahead model forecast and N is equal to 100. Table 11
reports the above statistics. We notice a mild forecasting superiority for the volatility of
the bivariate ARFIMA with respect to the benchmark HAR model.

We also implement a Diebold and Mariano (1995) test, to directly compare the forecast-
ing ability of the bivariate ARFIMA with respect to the HAR model. The Diebold-Mariano

21



test, in fact, is a statistic based on the difference between the loss functions of two alter-
native model forecasts. In the case of one-step ahead forecast, the Diebold-Mariano test
reduces, under the null li = l∗, to

DM =
1
N

li − l∗
si

≈ N(0, 1) (40)

where li is the loss function of the forecast relative to the i-th model, while l∗ is the loss
function relative to the benchmark model; si is the variance of the difference between the
loss functions of the two competing models. The alternative hypothesis is li 6= l∗ Following
Patton and Sheppard (2007), we select six alternative loss functions that weight differently
the forecast errors of the respective models. These are

• MSE-LOG=(log Xt+i − log X̂t+i|t+i−1)2,

• MAE-LOG=| log Xt+i − log X̂t+i|t+i−1|;

• MSE-SD=
(√

Xt+i −
√

X̂t+i|t+i−1

)2

;

• MAE-SD=|√Xt+i −
√

X̂t+i|t+i−1|;

• MSE-PROP=
(

X̂t+i|t+i−1

Xt+i
− 1

)2

;

• MAE-PROP=
∣∣∣∣
X̂t+i|t+i−1

Xt+i
− 1

∣∣∣∣;

As shown in table 12, the Diebold-Mariano test highlights a forecasting superiority of the
bivariate ARFIMA model, in fact the signs are always negative, and sometimes they are
statistically different from 0. The difference is particularly significant when the propor-
tional loss function is used.

We also test the the joint null hypothesis α = 0 and β = 1 in a Mincer and Zarnowitz
(1969) regression setup, where, Xt is regressed on a constant and on the model forecast,
X̂t|t−1

Xt+h = α + βX̂t+h|t+h−1 + vt (41)

As shown in table 13, the null hypothesis is α = 0∩β = 1 cannot be rejected in all the cases
under exam with the exception of the HAR model.

Tables 11, 12 and 13 illustrate the importance of accounting for the long memory prop-
erty of volatility and volumes, in particular using a dynamic model that allows for frac-
tional integration.

10 Model Simulations

In the previous section, we discuss the model estimation results in terms of goodness of fit
and their interpretations in the copula framework. Now, through the use of simulations,
we consider, for the different model specifications, the ability to account for the sample
characteristics of the observed data (see table 14 and 15). According to the different copula
specifications, we generate the model innovations from the corresponding bivariate distri-
bution; 4267 observations from the estimated system are generated by our Monte Carlo
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exercise, keeping only the last 2267 observations corresponding to the sample size of our
data. The first 2000 simulated observations serve as a burn-in period. Then we repeat

Figure 6: Simulated paths of log-Volatility and log-Volumes.

this simulation 1000 times, in order to obtain 1000 daily sample paths for the logarithmic
volumes and volatility. Figure 6 displays two simulated path for the logarithmic volumes
and volatility from the Normal copula model. The similarity with the observed series is
notable.
From the 1000 simulated path, we calculate the model-implied sample distribution for the
respective descriptive statistics. Table 14 and 15 report the descriptive statistics of log RV
and log V , respectively, and the 95% simulated confidence intervals. We also report actual
quantiles and simulated confidence interval.
For what concerns the log-realized volatility, nearly all of the sample statistics, including
all of the reported 0.01 to 0.99 quantiles, lie within the simulated confidence bands obtained
with FIVAR with copula densities. However, for all copula models the simulated confidence
intervals do not include the sample skewness. The same is true for the HAR model. Notice
that the confidence interval from the simulation of a bivariate HAR contain neither the
upper nor the lower empirical quantiles. The results are better in the case of log V .
Moreover, we explore the dynamic implications of the models, in terms of ability to account
for the hyperbolic rate of decay of the autocorrelation functions. Figure 7 shows the sam-
ple autocorrelations and the corresponding simulated 95% confidence bands. Our bivariate
long memory models, for log RVt and log Vt, reproduce the highly significant and very slowly
decaying sample autocorrelations over longer multi-month lags.
These results show how our bivariate FIVAR well describes the dynamics of both volumes
and volatility. In fact, the long memory bivariate model is able to reproduce both the sam-
ple statistics and the long run dynamics of the observed data in particular when the joint
distribution is described by the copula.

11 Conclusions

This paper has focused on the relation between volatility and volumes. Thanks to the re-
cent developments on high-frequency based realized volatility, the former can be estimated
rather precisely from the high frequency returns. We disentangle the realized volatility in
a continuous and jump component, showing that volumes are highly correlated with the
continuous part of volatility and that jumps are much less persistent than bipower varia-
tion and volumes. We also show that there exist a strong upper and lower tail dependence

23



between the volatility and volumes that is due to the presence of jumps. We don’t pro-
vide a specific model for jumps, but we investigate the long memory property of realized
volatility and volumes, showing that the two series have the same degree of fractional in-
tegration but they do not appear to be fractionally cointegrated, in the sense that a linear
combination of them does not reduce the degree of fractional integration. This finding is
not supportive of the presence of a common stochastic long memory informative process for
both volumes and volatility as in the MDH version of Bollerslev and Jubinski (1999).
Given the result of fractional integration and cointegration analysis, we propose and es-
timate a bivariate model for the volumes and realized volatility, which takes into account
their long memory pattern and their dependence. Different hypothesis for the joint mul-
tivariate density are investigated. In particular, we adopt different copulae for the joint
distribution of the logarithm of the realized volatility and volume. The whole system is
estimated with an efficient full information maximum likelihood technique with different
degrees of tail dependence. The evidence from the forecasting and simulation exercise
highlights the predictive ability of our bivariate model with respect to other competitive
models. Moreover, our model well account for the long run dynamics of both volatility and
volumes and their sample distribution.
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m = T 4/5 = 483 m = T 0.7 = 223 m = T 2/3 = 103
dlogRV 0.3707 0.3920 0.4476
dlogV 0.3732 0.3520 0.3726
ξ 0.0097 2.3941 8.5162
p-value 0.9214 0.1217 0.0035

Table 5: Fractional integration estimation. ξ is the Robinson test statistic for H0 : dlog RV =
dlog V

log Vt = βRV log RV t + et

Bandwidth β̂m d̂e

m = T − 1 0.3658 0.3754 (0.0315)
m = 20 0.2697 0.3722 (0.0315)
m = 15 0.2412 0.3683 (0.0315)
m = 9 0.2362 0.3697 (0.0315)
m = 6 0.2165 0.3725 (0.0315)

log Vt = βCTBPV log CTBPV t + ut

Bandwidth β̂m d̂u

m = T − 1 0.3901 0.3912 (0.0315)
m = 20 0.2829 0.3805 (0.0315)
m = 15 0.2604 0.3767 (0.0315)
m = 9 0.2496 0.3747 (0.0315)
m = 6 0.2196 0.3686 (0.0315)

Table 6: Fractional Cointegration Analysis: the log-volumes log Vt are regressed respec-
tively on log RV t and log CTBPV t, the bandwidth for the calculation of the fractional or-
ders with GPH is T 0.8 = 483. Standard errors in parentheses
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Panel A
m = T 0.5 = 48 m = T 0.6 = 103

dlog RV 0.4314 0.4391
(0.0721) (0.0492)

dlog V 0.3317 0.3476
(0.0721) (0.0492)

T̂0 1.048 1.9716
Panel B

m1 = T 0.4 = 22 m1 = T 0.5 = 48
δ1 0.0152 0.0106
δ2 0.0613 0.0557
L(u) v(T ) = m−0.45

1 v(T ) = m−0.35
1

m = 48,m1 = 22
L(0) −1.4918 −1.3109
L(1) −1.3287 −1.2383
r̂ 0 0
L(u) v(T ) = m−0.45

1 v(T ) = m−0.35
1

m = 103,m1 = 48
L(0) −1.6463 −1.4802
L(1) −1.4737 −1.3906
r̂ 0 0

Table 7: Panel A: Fractional integration estimation with exact local Whittle estimator
(standard error in parenthesis). The T̂0 test statistic is calculated with h(T ) = log(T ).
Panel B: Fractional cointegration estimation. The table reports the estimated eigenvalues
(δi) and the value of the function L(u) for different choices of m and m1.
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Copula Kendall’s Tau Tail Dependence
NORM 2

π · arcsin(ρ) 0.4311 0 0
TCOP 2

π · arcsin(ρ) 0.4298 2tν+1

(
−√ν+1

√
1−ρ√

1+ρ

)
0.3780

GUMB 1− θ 0.4998 2− 21/θ 0.5857
CLAY αc/(αc + 2) 0.4627 2(−1/αc) 0.6687

Table 9: Kendall’s Tau and Tail Dependence.

log RV log V

ω1 0.0004 ω2 −0.0028
δ11 0.4576a δ21 0.2337a

δ12 0.1460a δ22 −0.2088b

δ13 0.1928a δ23 −0.1398
ψ11 0.0177 ψ21 0.2227a

ψ12 0.0237 ψ22 0.4059a

ψ13 −0.0292 ψ23 0.2422a

Qη̂(10) 4.8217 3.9089
(0.4380) (0.5627)

Table 10: System Estimation for HAR model: a,b and c stands for 1%, 5% and 10% sig-
nificance level of the corresponding t-ratio test. Bottom lines reports the Ljung-Box test
statistic, Qη̂(10), for ten lags of both equation residuals, and the corresponding p − values
in parentheses.

Realized Volatility Volumes
MSE RMSE MAE MSE RMSE MAE

NCOP 0.0638 0.2526 0.1960 0.0575 0.2399 0.1617
TCOP 0.0651 0.2551 0.1990 0.0575 0.2399 0.1639
GCOP 0.0651 0.2551 0.1990 0.0575 0.2399 0.1639
CCOP 0.0651 0.2551 0.1990 0.0575 0.2399 0.1639
HAR 0.0660 0.2569 0.2079 0.0574 0.2395 0.1650

Table 11: Forecast Statistics.
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Realized Volatility
MSE-LOG MAE-LOG MSE-SD MAE-SD MSE-PROP MAE-PROP

NCOP-HAR -1.3353 -0.8938 -1.0704 -0.8762 -1.9887b -1.7326c

TCOP-HAR -1.3050 -0.6133 -0.9708 -0.6110 -2.2212b -1.6965c

GCOP-HAR -1.3552 -0.5552 -0.9698 -0.5849 -2.7274a -1.7686c

CCOP-HAR -0.9962 -0.6345 -0.8382 -0.5929 -1.4600 -1.1900
Volumes

MSE-LOG MAE-LOG MSE-SD MAE-SD MSE-PROP MAE-PROP
NCOP-HAR -0.5067 -0.9550 -0.1125 -0.7530 -0.7870 -1.4623
TCOP-HAR -0.8561 -1.1618 -0.3052 -0.9674 -2.1527b -2.0041b

GCOP-HAR -0.7130 -1.1646 -0.3075 -0.9774 -1.0727 -1.6744c

CCOP-HAR -0.7188 -0.9813 -0.1359 -0.7870 -2.5329b -2.0221b

Table 12: Diebold-Mariano Test. a,b and c stands for 1%, 5% and 10% significance level of
the test.

Realized Volatility Volumes
α β α = 0 ∩ β = 1 α β α = 0 ∩ β = 1

HAR 0.1149 0.7648 2.2680 -0.0181 1.0001 0.2780a

NCOP 0.1022 0.8050 0.9224a -0.0025 1.0012 0.0022a

TCOP 0.1094 0.7935 1.0240a 0.0016 0.9959 0.0030a

GCOP 0.1150 0.7890 1.0147a -0.0031 1.0020 0.0017a

CCOP 0.0944 0.8102 1.0186a 0.0065 0.9895 0.0056a

Table 13: Mincer-Zarnowitz Regression. a,b and c stands for 1%, 5% and 10% significance
level of the test.
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Figure 7: Simulated ACF confidence intervals of volatility and volumes.
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