
Ascari, Guido; Di Cosmo, Valeria

Working Paper

Determination of total factor productivity in Italian regions

Quaderni di Dipartimento - EPMQ, No. 170

Provided in Cooperation with:
University of Pavia, Department of Economics and Quantitative Methods (EPMQ)

Suggested Citation: Ascari, Guido; Di Cosmo, Valeria (2004) : Determination of total factor
productivity in Italian regions, Quaderni di Dipartimento - EPMQ, No. 170, Università degli Studi di
Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ), Pavia

This Version is available at:
https://hdl.handle.net/10419/87139

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/87139
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 
 
 
 
 

 
 
 
 
 
 

Determination of Total Factor Productivity in Italian Regions  
 

 
Guido Ascari 

(Università di Pavia) 
 

Valeria Di Cosmo 
(Università di Pavia) 

 
 
 
 
 

# 170 (12-04) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dipartimento di economia politica 
e metodi quantitativi 

Università degli studi di Pavia 
Via San Felice, 5 
I-27100 Pavia 

 
Dicembre 2004 

 



Determinants of Total Factor Productivity in the 

Italian Regions* 

 

Guido Ascari† 
University of Pavia 

 

Valeria Di Cosmo 
University of Pavia 

 

 
October 2004 

 
 

Abstract 

This paper investigates the determinants of TFP for Italian regions. We find 
strong evidence in favour of the factors commonly suggested by the 
theoretical literature. In particular, R&D expenditures and the number of 
researchers are positively related to regional TFP. Moreover, human 
capital is an important determinant of TFP. Finally, we find a strong 
difference between Northern and Southern regions, particularly regarding 
the effect of research activity and social capital. Our results are robust 
across different estimation methods. 
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1. Introduction 

 
The role of technological progress has been the subject of an increasing attention in the literature 

to understand the differences between developed and undeveloped countries. Prescott (1998), 

Prescott and Parente (2004) highlight the role of total factor productivity (TFP) in explaining 

international income differences (see also Easterly, 2001). As shown in Parente and Prescott (2004), 

TFP, together with human capital, can explain a large part of the income differences across 

countries. As Prescott (1998) writes, the standard economic growth theory first needs to analyse the 

TFP determinants to become also a theory of international income differences.  

The same is true if one wants to explain the different degree of development within a country. 

This seems particularly critical for countries whose areas or regions are characterised by very 

different degree of development, as it is clearly the case of Italy. In this paper we look at the main 

determinants of TFP across Italian regions, using a panel data approach.  

There are two obvious candidates to explain the different levels of TFP across countries or across 

regions within countries. The more important one is the amount of research carried out in that 

region/country. A vast literature investigating the national sources of economic growth (e.g., 

Cameron, 2003, Griffith et al., 2000, 2001) underlines the linkage between R&D expenditures TFP, 

and growth. 

The second one is human capital. A sufficient level of knowledge in the workforce is necessary 

to acquire and exploit technology. Hence, the level of human capital is considered a natural 

necessary condition for high TFP level. There is however a potential problem: human capital can be 

thought as an input in the production process rather than a source of higher TFP (see, e.g., Mankiw 

et al., 1992 and Parente and Prescott, 2004). In this case, it is not clear if human capital should work 

also as a TFP determinant, through knowledge externality, as e.g., Lucas (1998). In the paper, we 

will tackle this issue constructing two different measures of TFP for Italian regions (one with and 

one without human capital as production input) and testing for human capital effects. 

The literature analysed a third important channel that can affect TFP. Coe and Helpman (1995) 

find that international technological spillovers due to investments in R&D activity drive economic 

growth in underdeveloped countries. The authors stress the role of international trade in driving 

technological spillovers through the imitative process that determines the technological 
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performance of countries that cannot sustain an endogenous technological growth process.1 

Cameron (2001) includes in TFP analysis R&D expenditures, human capital and the import/GDP 

ratio and finds that only R&D expenditures raise the rate of innovation, while international trade 

simply enhances the speed of technology transfer form the highly technological country. 

The literature proposes other possible sources of TFP. Cameron (2003) includes in his analysis 

the proportion of manual male workers covered by collective agreements multiplied by the 

proportion of manual males in the workforce, to understand the role played by labour unions in the 

productivity growth. Senhadji (2000) and RiveraBatiz (2002), instead, investigate the social 

components of TFP, as external shocks, political stability and democracy. Many of these effects 

however have a country dimension so that they are common to regions in the same country. More 

generally, one may think that the so-called “social capital” differs across regions within a country. 

However, it is difficult to come up with a good proxy for social capital (see Temple, 2001). 

Finally we have to consider the contribution of information and communications technology 

(ICT) to productivity. In the analysis proposed by Stiroh (2002) emerges that the relationship 

between ICT and TFP is weak: first, it is difficult to account for heterogeneity across productivity 

and industries when analysing ICT and TFP linkages and secondly, there is evidence of variation in 

the productive impact of different types of ICT capital. In other words, as found in Griliches (1994), 

the measurement errors are an overwhelming problem to account for the ICT role in TFP changing. 

The above quoted analysis proposed to identify TFP determinants are principally direct to the US 

or UK economies. In this paper we would like to present an empirical approach for the 20 Italian 

regions. Using a panel data approach with a sample period from 1985 to 2000, we allow for 

heterogeneity across regions in estimating the TFP determinants. This is particularly important in 

analysing Italian economy since Italian regions present a great variability in income levels and 

almost opposite, if not divergent, development paths of two macro-regions: the North and the 

South. 

Some recent works investigated TFP across Italian regions. Our paper is close in spirit to Aiello 

and Scoppa (2000). Aiello and Scoppa (2000) first make a growth accounting exercise for the year 

1997 showing that a large part of regional disparities are due to differences in TFP level across 

regions; then estimate a model of TFP determinants in a cross section referred to the 20 Italian 

regions for the year 1997. Our paper expands this analysis to a panel data approach using a sample 

period ranging from 1985 to 2000. 

                                                 
1 See also Keller (1998) and Edmund (2001) for a critique of Coe and Helpman (1995). 
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Marrocu et al. (2000) instead estimate the TFP across Italian regions and economic sectors, 

relaxing the assumption of constant return to scale, with a panel cointegration approach. The 

authors find the presence of constant return to scale at a national level, while the estimates of 

individual production functions for Italian regions show great differences in factor elasticities across 

regions and sectors. 

Di Liberto et al. (2004) employ a panel data approach (based on Islam, 1995) to study if TFP is 

converging across Italian regions. This paper also highlights the heterogeneity of TFP levels across 

regions. While linked to ours, Di Liberto et al. (2000) deal with a different topic, focusing on TFP 

convergence and showing that only in the sub-period 1963-1978 they can detect convergence in 

TFP levels across regions. 

Finally, La Ferrara and Marcellino (2000) analyse the link between public capital and TFP. They 

find an equivocal relationship between TFP and public infrastructure, that is, the growth rate of 

public capital is generally negative or not significant in determining the TFP growth rate, except for 

the South. Following these results, we abstract from public capital in determining TFP at the 

regional level. 

The empirical literature therefore emphasizes the large differences in TFP levels across Italian 

regions, coherently with the well-known dualism between Northern and Southern Italy. None of the 

above paper however investigates the reasons of such heterogeneity and what are the key factors in 

determining such differences. This is instead clearly an important task also from a policy 

perspective. In this paper we therefore explore if the TFP determinants, as suggested by the 

theoretical literature, could explain the different regional TFP estimates. 

The structure of the paper is as follows. Section 2 introduces the measure of TFP at national 

level and describes the behaviour of regional TFP across time and regions. Section 3 presents our 

benchmark econometric analysis and results. Section 4 modifies the TFP measure to take into 

account the possibility of human capital being an input to the production process. In Section 5 we 

break our dataset in two macro-regions, the North and the South and provide econometric estimates 

of our benchmark equation for these two macro-regions. Section 6 concludes. 
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2. Measurement and data description 

2.1. Measurement of inputs and output 
 

We measure output as the value added at factor costs, in real Italian lire, at constant prices of 

1995, source ISTAT. Labour input is simply the labour workforce, that is, we include both of 

autonomous and subordinate workers. The only measure of labour input available from ISTAT is 

the number of workforce, so there is no labour quality measure. 

As a measure for capital input we use the gross capital stock data constructed from gross 

investment data, by Bonaglia and Picci (2000) and Picci (1999). Since this dataset ends in 1995, we 

calculate the capital stock for the sample 1996-2000 employing the perpetual inventory method and 

using a fixed depreciation rate calculated to be the average depreciation rate of the years 1990-1995.  

2.2. TFP: measurement and description 

We calculate TFP applying the standard Solovian growth accounting methodology. Denote 

regions by i =1,....N. GDP (Y) in each region at time t is produced with labour (L) and physical 

capital (K) according to a standard neoclassical production technology, 

Yit = Ait F(Kit, Lit) (1) 

where Ait is the TFP. We consider a traditional Cobb-Douglas production function with constant 

return to scale, that is 

ii
itititit LKAY αα−= 1  (2) 

Consequently, TFP is simply defined by:
ii

itit

it
it LK

YA αα−= 1 . To calculate hence the TFP levels we 

just need a value for αi. Under the (heroic) assumption of perfect factor markets, the exponent αi 

equals the labour share of output, hence 
i

iid
i Y

Lw=α , where idw is the nominal wage of subordinate 

workers at constant prices.2 Note that we allow αi to vary across regions, but not across time. This 

is because of the high variability across time of the labour share in the different regions, reflecting 

forces that are most probably not linked with technology. αi instead is a technological parameter 

                                                 
2 Since for Italian regions, there are no data available for the wages of autonomous workers, we consider the 
subordinate workers nominal wage idw  as a proxy for the autonomous one. 
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and should not vary too much in a sample of just 15 years. We therefore calculate αi as the average 

of the labour share across the sample period for each region. 

Before proceeding with the econometric analysis, it is instructive to describe the main features of 

the TFP levels of the Italian regions. As noted in the introduction, the literature suggests a large 

degree of heterogeneity among the Italian regions. Our results confirm such finding. Figure 1 plots 

the time series behaviour of TFP levels for Italian regions. Some features are evident: 

1) Different regions exhibit very different TFP levels: the highest level (Lazio) is almost 3 

times as large as the lowest one (Basilicata) along the sample period. 

2) There is also a very high degree of persistence in the ranking of TFP levels across regions, 

which basically does not change along the sample. 

3) There is mixed evidence on convergence. Figure 3 shows the standard deviation of TFP 

levels across regions. As regard TFP, while the ‘80’s seem to be a period in which the gap 

between rich and poor regions widened, in the second part of the ‘90’s some convergence 

took place. 

4) As expected, TFP levels of Northern and Central regions (North) are substantially bigger 

than the ones of Southern regions (South), as evident from Figure 2 and Figure 4.3 Figure 2 

plots the average of TFP across the sample period for each region, showing that the 

Northern and Central regions are basically all above the average (roughly 0.15), while the 

Southern ones are below it. Figure 4 also visualises the same fact across time periods. 

Finally, note that from equation (2) we can write: 
i

it

it
it

it

it

L
KA

L
Y

α−











=

1

, which shows that the level 

of labour productivity is explained only by two factors: TFP and the capital-labour ratio. It follows 

that the regional differences in labour productivity can be explained through disparities in these two 

factors. Figure 5 shows that most of the heterogeneity in output-per-worker among different regions 

is explained by TFP rather than by the capital-labour ratio. Indeed, the correlation between TFP and 

output per worker is always above 0.9 in each year of the sample, while the correlation between 

capital-labour ratio and output per worker is rather low. 

                                                 
3 We define North the macro-region composed of Northern and Central regions, that is, Piemonte, Valle d’Aosta, 
Lombardia, Trentino Alto Adige, Friuli, Liguria, Emilia Romagna, Toscana, Umbria, Marche and Lazio. The macro-
region South is instead made up by Abruzzo, Campania, Puglia, Basilicata, Calabria, Sicilia and Sardegna. 
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Figure 1. TFP levels of Italian regions 

 

 

Figure 2. Average TFP levels for Italian regions 1980-200 
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Figure 3. Standard deviation of TFP across Italian regions, 1980-2000 

Figure 4. Average TFP levels for Central-Northern and Southern regions, 1980-2000 

Figure 5. Correlation between TFP, output per worker and capital per worker, 1980-2000 
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3. Empirical results 

As argued in the Introduction, the theoretical literature suggests the following variables as main 

candidates to affect the total factor productivity: research activity, human capital, trade and social 

capital. We therefore use the following variables in our benchmark regression equation: 

- R&D, the stock of private enterprises spending in R&D divided by the total fixed 

investments; 

- RICPOP, the number of researcher on total workforce; 

- IMPORT, the ratio of total imports on GDP; 

- EDU, the average years of schooling of the labour force; 

- SOCIALK, used as a proxy for social capital. This variable is the main common factor of 

three indicators of crime and lawsuits. As stressed by Temple (2001), it is difficult to find a 

suitable variable for “social capital”, but we propose to use SOCIALK as a proxy for trust 

and cohesion within the local community.4 

Finally, we try to control the potential non-linear relation between the dependent variable and 

regressors taking the natural logarithm of TFP in our final regression. Our benchmark regression 

equation is then: 

itiit

itititititititit

ez

zSOCIALKEDUIMPORTRICPOPDRTFP

ν

αααααα

+=

++++++=
where

&log 54321

 (3) 

 
3.1 Static Panel 

In this section we present the results of estimation of (3) for the sample 1985-2000.5 We use the 

within group estimator (LSDV), since the Hausman test rejects the null hypothesis of no correlation 

between regressors and error term itν . In this case then GLS would be inconsistent and inefficient.  

Moreover, the Breusch-Pagan test suggests that the LSDV estimates better fit the true model than 

the pooled OLS estimates. The results are reported in Table 1. 

                                                 
4 We gratefully thank Giacomo Degli Antoni, from the University of Parma, who kindly provided us with this variable. 
The way Degli Antoni builds this variable is described in the Appendix. Sources of all the data series are also presented 
in the Appendix. 
5 We have to restrict the sample with respect to the Figures in Section 2, because some of the regressors are available 
only from 1985. 
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Table 1. LSDV estimation results 
 

logTFP  Coefficients 
 
IMPORT 
 

  
-.0940337 
(0.775) 

R&D  .6543859 * 
(0.205) 

RICPOP  2.48803 * 
(1.141) 

EDU  .0987666 * 
(0.003) 

SOCIALK  -.0042198 
(0.006) 

 Piemonte -2.818383 
(0.474) 

 Valle D’Aosta -2.530978 
(0.036) 

 Lombardia -2.566246 
(0.050) 

 Trentino Alto Adige -2.560995 
(0.039) 

 Veneto -2.646425 
(0.039) 

 Friuli -2.941153 
(0.040) 

 Liguria -2.783094 
(0.043) 

 Emilia Romagna -2.60142 
(0.039) 

 Toscana -2.686813 
(0.038) 

 Umbria -2.917172 
(0.037) 

 Marche -2.878422 
(0.036) 

 Lazio -2.613788 
(0.044) 

 Abruzzo -2.820766 
(0.039) 

 Molise -3.138294 
(0.035) 

 Campania -3.021776 
(0.037) 

 Puglia -2.90485 
(0.035) 

 Basilicata -3.229748 
(0.040) 

 Calabria -3.064465 
(0.037) 

 Sicilia -2.775011 
(0.035) 

 Sardegna -2.954355 
(0.036) 

2R   0.728 

),( Xbucorr i   0.1542 
 

Standard errors shown in parenthesis below each coefficient. Coefficient with * are significant at 5% level. 
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Note that both the variables relating to research activity (R&D and RICPOP) and human capital 

(EDU) are largely significant in the regression with the expected positive sign. Hence: (i) 

technological progress is an important determinant of Solow residuals; (ii) there are positive 

spillover effects from human capital and skilled labour workers on TFP (see also Cameron, 2001). 

As we noted, the theoretical literature suggests these two factors as the most important determinants 

of TFP, and our estimates do confirm this conjecture. 

On the other hand, IMPORT and SOCIALK are not significant, even at 10% level. Our data 

hence seem to disagree with Coe and Helpman (1995) that point to trade as a possible important 

source of technology spillover. We are more inclined to think, however, that our data are not well 

suited to test for the effect of trade on TFP. Indeed, since there are no data for interregional trade, 

we cannot control whether the imported goods stay in the region or are just passed over to other 

regions in the country. Indeed, this seems to be the case: quite obviously there are some natural 

places (e.g., Milan, Rome) and borders (e.g., Brennero, Monte Bianco, Brindisi) that act just as a 

commercial entry to Italy for international goods that are then redistributed throughout the country. 

A second important reason why our data on import are not a particular good proxy for trade as a 

source of technology spillover lies in the fact that we cannot disentangle the type of imported goods 

to control for the amount of embedded technology and knowledge. Importing food is not the same 

as importing microelectronic equipments, as regards to possible technology spillover. 

Unfortunately, however, again our data do not allow us to do that. There are therefore good reasons 

for IMPORT to be not significant. 

With respect to SOCIALK, the data show that social capital does not seem to be a determinant 

for regional TFP for Italy (but see Section5). 

3.2 Dynamic Panel  

The high t-values of intercepts in fixed effect estimates advise that in the static panel estimation 

above the regressors are unable to completely determine the dependent variable. To cope with the 

potential problem of omitted variables in the regression leads us to modify (3) to 

itiit

ititit

ez

zSOCIALKEDUIMPORTRICPOPDRTFPTFP

ν

αααααγ

+=

++++++= −

with
&loglog 554311

 (4) 

d.distributey identicall andnormally  supposed , itie ν  
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It is well known that in the dynamic case, the LSDV estimator is inconsistent as the average of 

the lagged endogenous variable is always related with the vector of residuals. 

Kiviet (1995) proposes a correction for panel data with a small time dimension, based on a two 

step procedure, where the residuals from a first step consistent estimator (typically obtained using 

Andersen and Hsiao instrumental variables) are used in a second stage calculation of the bias. We 

call the Kiviet corrected estimator LSDVc6. 

We can rewrite the (4) as  

itiititit exTFPTFP ναγ +++= − ')log()log( 1        (5) 

We can also assume that 0iTFP may be correlated with ie  but not respect to itν , that is: 

 
unknown))(log(
0))(log(

0

0

=
=

ii

iti

eTFPE
TFPE ν

                 (6) 

and that 

1 1

1 '  converges to ( ) , where det( ) 0
N T

it it ij n n
i t

x x A a A
NT ×

= =

= ≠∑∑             (7) 

Now (5) can be rewritten as 

νιαγ +⊗++= − eIXTFPTFP TN )()log()log( )1(       (8) 

where 

1011 11 11 1

( 1)

( 1)

log( )log( ) ' 1
.. . . . .
.log( ) , log( ) , , , ,. . . . .
.. . . . .

log( )log( ) ' 1

T

N TNT NT NT N

TFPTFP x e

TFP TFP X e

TFPTFP x e

ν

ν ι

ν

−

−

         
        
        
 = = = = = =       
        
        
                 


 
 
 
 
 
 

   

Defining 

( 1)log( )  and ' ( , ')W TFP X δ γ α− = = �  

                                                 
6 To perform the LSDVc estimator we use the procedure for STATA of Adam (1998). 
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then (8) can be written as 

νιδ +⊗+= eIWTFP TN )()log(          (9) 

the LSDV estimator of δ , can be expressed as 

1ˆ ( ' ) ' log( )W AW W A TFPδ −=          (10) 

in which TTTTTN T
IAAIA '1 and ιι−=⊗= ; which is inconsistent for T finite and ∞→N  as 

expressed above.  

As a result, the estimated bias is given by: 

{ }1 1ˆ( ) ( ' ) ' ( ( ) ) ( ' ) 'N TE E W AW W A W I e E W AW W Aδ δ δ ι ν δ ν− − − = + ⊗ + − =    (11) 

Kiviet (1995) proposes a correction for the Nickell (1981) estimated bias for the γ coefficient, 

calculating the bias for δ̂  which includes both γ̂  and α̂  coefficients. As expected, under the 

assumption of a normal and independent error terms distribution and the hypothesis (6) and (7), in 

the model without exogenous regressors, Nickell (1981) finds a bias with a residual term smaller 

than the one given by (11). Kiviet (1995) performs simulations to assess the sample bias of the 

LSDV estimator, and then corrects the LSDV estimator for this bias for dynamic models. In order to 

implement the unbiased estimator, one would need to know the variance of the residuals (namely, 
2

νσ ). The correct residuals are obtained using an instrument variables dynamic estimator, as 

specified above. Monte Carlo evidence presented by the author and confirmed by Judson and Owen 

(1996) and by Blundell et al. (2001), finds that the LSDV corrected estimator perform better than 

the GMM estimator for a panel with a small temporary dimension (and large N). 

Table 2 shows the coefficient estimates corrected for the bias due to the small T dimension using 

Kiviet’s algorithm. The results confirm the strong persistence of the TFP series and indeed, the 

lagged TFP is strongly significant. Unfortunately, the other variables loose their explanatory power. 

We interpret this fact as due to the small cross-sectional dimension of our panel, since typically 

dynamic panel data estimator are advocated for panel with very high cross-sectional dimension. 
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Table 2. Kiviet correction bias for panel with small temporary dimension estimates 

logTFP Coefficient
TFP(-1) 0.977* 

(0.352) 
IMPORT 0.079 

(0.096) 
R&D 0.119 

(0.1785) 
RICPOP 1.259** 

(0.723) 
EDU 0.0040 

(0.0216) 
SOCIALK -0.01* 

(0.0037) 
Standard errors shown in parenthesis below each coefficient. Coefficient with * are significant at 5% level, with ** at 10%. 

 
 

To investigate the robustness of our results, we also present the Arellano and Bond (1991) GMM 

estimation procedure, bearing in mind again the caveats of using dynamic panel estimator in 

macroeconomic studies where typically the N dimension is short. 

The basic idea of Arellano and Bond (1991) GMM estimation procedure is that, given (5) and 

(6), assuming that both transient errors not serially correlated 

[ ] 15...2,19...1for  0 === tiE isitνν  

and  

[ ]  011 =iiTFPE ν and [ ] 19..1,15..2for  0 ===∆ itxeE iti  

imply the following m=0.5(T-1)(T-2) moment restrictions  

[ ] 15...3for  0),( ==∆−− txTFPE itsitsit ν         (12) 

In other terms: 

[ ] 0' =∆ iiZE ν  

with 
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The standard GMM estimator is then obtained simply differencing (5) and considering the 

residual condition7 

' 2 ( )i i NE I Gνν ν σ ∆ ∆ = ⊗           (13) 

in which G is a matrix given by 
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
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..........

....021
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G  

as iν∆  is a MA(1) process. 

We control for potential problems due to the presence of endogenous regressors, by using as 

instruments the lagged values of observed itx  and itTFP  series dated (T-2) and earlier which, given 

our assumptions, are valid instruments for (5) in differences. Otherwise, the GMM estimator could 

not be used with persistent series, since it is seriously biased as the autoregressive parameter 

approaches unity or as 
i

2 2 increases with respect to 
ie νσ σ , although the presence of other regressors, 

different from the lagged endogenous variable, may improve the behavior of GMM estimates. (See 

Blundell and Bond, 2001; Bond et al 2001). The GMM estimator implies the use of lagged level 

instruments and yields a consistent estimator for γ  as ∞→N  and T is fixed. Since consistency is 

for ∞→N , again we stress that these estimators are well suited for micro studies where typically 

the N dimension is very large.  

                                                 
7 The GMM estimator considers the residual condition given by (13) and use the orthogonality condition expressed in 
(12). Having these two conditions, the GMM is thus more efficient than the Andersen-Hsiao IV estimator. 
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The results of GMM estimation are shown in Table 3. 

Table 3. Arellano-Bond dynamic panel data estimation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 GMM1 assumes regressors are exogenous, GMM2 assumes regressors are only weakly exogenous. 
 Robust standard errors are shown in parenthesis.  
 Coefficient with * are significant at 5% level, with ** at 10% level. 
 

In the GMM case, the results are quite similar to the static panel one since both R&D and 

RICPOP are significant (even if now R&D is significant only at the 10% level). Moreover, both 

IMPORT and SOCIALK are again not significant. There is an important difference however with 

respect to the variable EDU, that becomes not significant at the conventional levels. This fact is 

surprising given the very strong significance level of this variable in the LSDV estimation. A first 

interpretation is that  EDU was just picking up some of the strong autocorrelation of the TFP series, 

working then as a proxy for TFP-1, which is indeed very strongly significant in the GMM Arellano-

Bond and Kiviet estimates. Another possibility, after investigating the properties of the series, is 

that the strong significance of the EDU variable in the LSDV estimate may be due to a spurious 

regression problem. Both the TFP levels (see Figure 1) and the variable EDU in fact are 

characterised by a positive trend, which is instead not common to the other variables in the 

regression.  

3. TFP and human capital as an input to production 

After the seminal works of Lucas (1988) and Mankiw et al. (1992), it is common in the literature 

to consider human capital as an input of the production function. In this case, we can recalculate the 

TFP as 

ii
ititit

it
it HLK

YA αα )(1−=  (14) 

logTFP GMM1 GMM2 
logTFP(-1) .793868 * 

(0.055) 
.8669724 * 
(0.055) 

R&D .2812823 **
(0.170) 

.2190665 **
(0.121) 

IMPORT .1339532  
(0.090) 

.0908795 
(0.721) 

RICPOP 1.968069 * 
(0.659) 

1.441213 * 
(0.531) 

EDU .0078583  
(0.017) 

-.0115748 
(0.010) 

SOCIALK -.0013027 
(0.004) 

-.0034515 
(0.003) 
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Figure 1. TFP levels of Italian regions, considering human capital as an input to production 

 

Figure 6 plots the time series behaviour of the TFP for the sample 1980-2000. The main regional 

TFP features described in Section 2 are qualitatively still valid, especially regarding the North vs. 

South difference. The main, and important, change is that now the TFP does not show any evident 

trend.8 

We then perform the same analysis of section 3. We would like, however, to test for possible 

external effects generated by human capital, as put forward first by Lucas (1988). In particular, we 

want to catch the idea of possible spillover effects when the labour force is composed of a large 

fraction of specialised workers. Following Temple (2001) and Cameron (2003), we therefore define 

the variable SKILL, that is the proportion of administrative workers on the total labour force. We 

can estimate the following equation 

1 2 3 4 5log &
where

it it it it it it it it

it i it

TFP R D RICPOP IMPORT SKILL SOCIALK z

z e

α α α α α α

ν

= + + + + + +

= +
 (15) 

As in the previous section, we employ different estimation methods to check the robustness of 

our results. The results are summarised in Table 4. The main finding is that the variables related to 
                                                 
8 This may suggest that TFP and EDU were cointegrated in the regressions of the previous section. We chose to ignore 
the non-stationarity issue in the econometric treatment of the previous section for two reasons. (i) 15 time observations 
do not seem to be enough to allow any sensible panel cointegration analysis; (ii) the analysis in this section does not 
seem to suffer of this problem, while it anyway confirms our result. Cointegration analysis is then left to further 
research. 
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research activity (R&D and RICPOP) are always significant across estimation methods.9 This is an 

important result since it indicates that research activity is the main determinant of TFP and the main 

cause of TFP (and income) differences across Italian regions. This finding is robust across 

estimation methods and TFP definitions. 

Table 4. Estimation results for the TFP calculated considering human capital as an input to 

production 

  LSDV LSDVc GMM1 GMM2 
logTFP(-1)   0.9527645* 

(0.385) 
.7014857 * 
(0.057) 

.7886282 * 
(0.054) 

IMPORT  .0874451 
(0.076) 

0.09392705 
(0.107) 

.1926244 ** 
(0.104) 

.145223 
(0.088) 

R&D  .4272384 * 
(0.020) 

0.1286362 
(0.181) 

.2254378** 
(0.147) 

  .2285486 * 
(0.116) 

RICPOP  2.349573 * 
(1.155) 

1.2317725** 
(0.708) 

2.174854 * 
(0.642) 

1.813295 * 
(0.534) 

SOCIALK  -.0051879 
(0.006) 

-0.03461425* 
(0.005) 

-.0067923 
(0.004) 

-.0063622 
(0.004) 

SKILL  .1897384 * 
(0.072) 

-0.06345312 
(0.008) 

-.1452536 
(0.142) 

-.1313839 
(0.111) 

      
Fixed effects Piemonte -3.599025  

(0.040) 
   

 Valle D’Aosta -3.27663  
(0.029) 

   

 Lombardia -3.238216  
(0.045) 

   

 Trentino Alto 
Adige 

-3.328551  
(0.030) 

   

 Veneto -3.374345  
(0.031) 

   

 Friuli -3.822226  
(0.034) 

   

 Liguria -3.590201  
(0.037) 

   

 Emilia Romagna -3.276014  
(0.030) 

   

 Toscana -3.433604  
(0.031) 

   

 Umbria -3.739752  
(0.028) 

   

 Marche -3.724728  
(0.026) 

   

 Lazio -3.358764  
(0.043) 

   

 Abruzzo -3.600242  
(0.030) 

   

 Molise -4.095354  
(0.026) 

   

 Campania -3.942216  
(0.034) 

   

 Puglia -3.22703 
(0.030) 

   

 Basilicata -4.218584  
(0.026) 

   

 Calabria -3.942645  
(0.032) 

   

 Sicilia -3.594486  
(0.033) 

   

 Sardegna -3.788179 
(0.029) 

   

      

                                                 
9 With the exception of R&D in Kiviet’s LSDVc. 
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For the GMM1 case the significance is at the 10% level, but we present this case just for 

completeness, since it is clear that the variable SKILL cannot be considered exogenous, and 

therefore the GMM2 estimations are more reliable for our model. 

With respect to the spillover effects of a qualified workforce, the evidence is mixed. While the 

static LSDV estimator finds a strongly significant and positive external effect, SKILL is not 

significant using the dynamic GMM Arellano-Bond estimator. As in the previous section the human 

capital variable is strongly significant in the static estimates, but its significance vanishes in the 

dynamic ones, as if the human capital variable was able to catch some of the persistence of the TFP. 

5. TFP: North and South 

In this section, we analyse the well-known dichotomy between the North and the South among 

Italian regions. Our data allow us to separately investigate the TFP determinants for the Northern 

regions (i.e., Piemonte, Valle d’Aosta, Lombardia, Trentino Alto Adige, Friuli, Liguria, Emilia 

Romagna, Toscana, Umbria, Marche and Lazio) and the Southern ones (i.e., Abruzzo, Campania, 

Puglia, Basilicata, Calabria, Sicilia and Sardegna). For this exercise we use the TFP as calculated in 

our benchmark model in section 3. 

Given the previous result and the discussion in section 3, we exclude from our analysis the 

variable IMPORT, basically because both this type of data cannot pick up the correct external trade 

of the different regions and it is never significant in the regressions presented above. So, the 

benchmark equation given by (4) becomes: 

1 2 3 4log &
in which

it it it it it it it

it i it

TFP R D RICPOP EDU SOCIALK z

z e

α α α α α

ν

= + + + + +

= +
   (16) 

 

5.1 North 

The Hausman test suggests estimating the model with random effects10. Table 5 shows that in 

this case all the variables have the expected positive effect on the endogenous variable, and they are 

all strongly significant, except for RICPOP , that is significant at 10% level.  

 
Table 5. Estimates for the Northern regions 

 
                                                 
10 The test accepts the null hypothesis with a p value of 0.9999 
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LogTFP GLS LSDVc GMM1 GMM2 
logTFP(-1)  0.921165* 

(0.393) 
.8735172 * 
(0.007) 

.9027004* 
(0.0798) 

R&D .3950904 * 
(0.175) 

0.053582 
(0.169) 

.0915161 
(0.106) 

.0944263 
(0.1048) 

RICPOP 1.425288 ** 
(1.025) 

0.259528 
(0.811) 

.7402415 
(0.446) 

.485252 
(0.4904) 

EDU .0800056 * 
(0.004) 

-0.00202 
(0.022) 

.0082371 
(0.015) 

.0110651 
(0.0149) 

SOCIALK .0213811 * 
(0.010)  

0.006935 
(0.011) 

.0033585 
(0.006) 

.0053312 
(0.0072) 

R2 0.747    
Standard errors are reported in parenthesis, coefficients wit * are significant at 5% level, with ** at 10% level. 

 

Note that the estimates for the Northern regions exhibit a significant effect of the social capital 

variable. This is noteworthy since in the previous sections SOCIALK was not significant when all 

the Italian regions were included in the panel. The positive sign is the expected one, meaning that 

TFP increases  with this social capital variable, considered as a proxy for unity and trust in the 

social community. This would signal that a more friendly and serene relationship within the 

community creates the right environment for the development of economic activity. 

When we perform dynamic estimation, all coefficients became non significant at standard levels, 

except the lagged endogenous variable. We interpret this result as evidence that the undersized 

cross-sectional dimension do not justify the use of either the Kiviet and the GMM estimators. 

5.2 South 

We estimate the static panel with random effects, because Hausmann test accepts the null 

hypothesis with a p-value of  1.000. Moreover, we again stress that the use of dynamic estimators 

with such a low numbers of regions may be not justified, but we choose to present the estimates 

mainly for completeness. 

Table 6. Estimates for the Southern regions 

 

Standard errors are reported in parenthesis, coefficients with * are significant at 5% level, with ** at 10% level. 
 

logTFP GLS LSDVc GMM1 GMM2 
logTFP(-1) 
 

 0.915626 
(0.6971) 

.76341 * 
(0.107) 

.7794907 * 
(0.112) 

R&D -.3633251 
(1.115) 

0.307919 
(1.134) 

.1565446  
(0.497)  

.2162585 
(0.431) 

RICPOP 3.159734 
(2.944) 

4.443149* 
(1.9721) 

4.390318 * 
(1.412) 

4.440764 * 
(1.469) 

EDU .1477072 * 
(0.007)   

0.00667 
(0.667) 

.0829374 ** 
(0.044) 

.0772602 ** 
(0.044) 

SOCIALK -.0143419 ** 
(0.008) 

-0.00549 
(0.008) 

-.0082565 * 
(.0024) 

-.0088776 * 
(0.002) 

R2 0.8417    
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Strangely enough, however, the variable R&D, which so far has been always significant across 

estimation techniques, is now not significant in all our performed estimations for the South. 

RICPOP is also not significant in the GLS estimates, while it is significant in the dynamic ones (i.e., 

LSDVc and GMM). These findings suggest that the amount of research activity is a less important 

determinant of TFP in the Southern regions with respect to the Northern ones.  

Moreover, the SOCIALK variable is significant but with a negative sign. Together with the 

opposite finding for the North, this reconciles the evidence of a not significant SOCIALK variable 

for Italy as a whole in the regressions of section 3 and 4. This result however stresses even further, 

and possibly in a more worrying way, the Italian North-South dichotomy. There are in fact two 

possible interpretations for a negative coefficient on the SOCIALK variable. The first one is simply 

that this variable is not a good proxy for the social capital in the Southern regions, but then it is not 

clear why it should on the contrary be so for the Northern ones. The second one, instead, points to 

the strong peculiarity of the Italian Mezzogiorno: a widespread and powerful organised crime. A 

quiet environment can then basically correspond to a “social peace” secured by organised crime 

with a detrimental effect of economic activity and TFP: Whatever one may think, surely, the 

estimated regression model works much better for the North than for the South, pointing to a 

peculiarity of the South which deserves further research. 

6. Conclusions 

A large literature by now points to TFP as the main determinant of income differences across 

countries and regions within countries. In this paper we try to empirically assess the determinants of 

TFP levels for Italian regions. This seems a quite important task given the great disparity in the 

level of development between the different Italian regions. 

Our results do confirm the prediction of the theoretical literature, pointing to research activity 

and human capital as the main determinants of TFP differences across Italian regions. This I 

particularly true for the static panel estimations. Moreover, we do use also dynamic panel data 

estimation techniques, namely Kiviet’s (1995) LSDVc and Arellano and Bond’s (1991) GMM, even 

if we acknowledge from the outset that the limited cross sectional dimension of our panel put some 

doubts on the reliability of these dynamic estimates. Overall we con conclude that our results are 

quite robust across different estimation procedure, and particularly the GMM2 dynamic estimates 

tend to confirm the results from the static panel. Finally, when we divide the Italian regions in two 

macro-regions (North and South), the notorious dualism of Italian development clearly emerges, 
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with respect both to TFP levels and to estimation result, notably with respect to the social capital 

variable. 
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Data Appendix 

 
    Real Output: Data on real output are taken from the Office of National Statistics (ISTAT). As in 
1995 a new accounting methodology (Sec95) was imposed by the new European classification, we 
recalculate the old series (Sec79) as follows. We assume that the proportion existing between the 
new 1995 series and the old one also exist between the old series (1980-1994) and the new ones. 
That is, we impose the condition 
 

 
79

7995
95 1995

1994*19951994
Sec

SecSec
Sec =  

    Value added :Data are taken from the CRENoS database NewRegio02 available on the web site 
www.crenos.it 
    Labour input : Total employment is from  the Office of National Statistics (ISTAT). 
    Capital input: Data for individual capital are supplied by Bonaglia and Picci (2000) and Picci 
(1999).  
    Total Factor Productivity: This is calculated from data on real output, labour input and capital 
input as  above. As explained in the main text, the measure of TFP is based on growth accounting 
methodology. 
    R&D: data on enterprise R&D spending are provided by ISTAT, as enterprise total fixed 
investments. 
    RICPOP: the source is again ISTAT and it is just the number of researchers over the total 
workforce. 
    SKILL: This measure of human capital, as suggested by Cameron (2003), is the ratio of non-
manual (i.e. administrative, clerical and technical staff to total workers) to total workers. This is 
taken from ISTAT. 
    EDU: We define the total stock of human capital of the labour force as Di Liberto and Symons 
(1998), that is: 
 
 ∑ ⋅=

J
JiJii HKASEDU   

where J is the schooling level, ASJi is the number of years of schooling represented by level J, and 
HKJ is the fraction of the labour force for which the Jth level of education represents the highest 
level attained. Within the Italian system, primary level includes eight years of schooling, secondary 
level is attained after 5 years, and we consider that university courses include four years of 
attendance. As explained by Di Liberto and Symons (1998), this indicator represents a measure of 
the average years of schooling of the labour force. Data are again taken from ISTAT. 
     SOCIALK : This is a proxy for social capital, obtained by Giacomo Degli Antoni, University of 
Parma, through the statistical analysis of principal component of three variable (all provided by 
ISTAT): (i) the number of bill protests, (ii) reports to the police, (iii) labour lawsuit proceedings. 
SOCIALK is then the first principal component. Degli Antoni shows that this common factor 
explains around 75% of the comovement of the variables. 
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