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Abstract

This paper investigates the intraday volatility pattern of the E-mini SP500, quoted at the
Chicago Mercantile Exchange, one of the most traded American Stock Index futures. The
data set consists of round-the-clock hourly returns. The squared (and absolute) returns are
characterized by long memory and periodicity. In order to jointly model the long memory and
the periodic components in the returns volatility we introduce two new parameterizations.
The Fractionally Integrated Periodic EGARCH (FI-PEGARCH) and the Seasonal Fractional
Integrated Periodic EGARCH (SFI-PEGARCH). For both models we compute the popula-
tion kurtosis and the autocorrelation function of power transformations of absolute returns.
We find that during the Asian and European trading time the volatility is lower than during
the American trading time when we observe a sharp increase. The results seem to confirm
the fact that hourly returns sampled over the 24 hours across different markets are charac-
terized by a strong seasonal pattern with a statistically significant persistence. Finally we
present the in-sample and out-of-sample forecasts results of unrestricted and restricted long
memory periodic volatility models.
JEL classification: C22, G13.
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1 Introduction

The increased availability of high frequency financial 1 data has determined a growing number
of research studies examining the complex intraday return dynamics. 2

The analysis of financial microdata, i.e. high frequency data, is complicated by both the
presence of strong intraday seasonalities, especially in volatilities and volumes, and long mem-
ory. The latter is stronger when the sampling frequency increases. A numbers of papers have
noted that the autocorrelation function of power transformations of absolute returns are best
characterized by slowly mean-reverting hyperbolic rate of decay (see Ding, Granger, and Engle
(1993)). Moreover, a well documented characteristic of intraday return volatility and traded
volumes is the U -shaped pattern (or to be more precise, an inverted J ): they reach their high-
est values at the market opening, then go down and reach their lower point around the lunch
hours; finally they rise again at the market closing (Admati and Pfleiderer (1988), McInish and
Wood (1990), Gerety and Mulherin (1992) Sheikh and Ronn (1994)).

To make matters more complex, numerous studies found weekend effects and other calendar
effects at lower frequencies. In particular, the day-of-the-week effect has been studied in a
number of papers: French (1980), Hamon and Jacquillat (1990), to name a few.

Andersen and Bollerslev (1997) observe that conclusions on return volatility and market
microstructure variables at the intraday frequencies are likely subject to severe distortions due
to the strong periodicity in returns.

This suggests that volatility modeling should be flexible enough to account for the pres-
ence of different persistent periodic components. In the literature we can identify two different
approaches to this problem.

In the first one, pioneered by Andersen and Bollerslev (1997) the volatility process is the
outcome of the simultaneous interaction of different components, among these an intraday long
memory factor and an intraday periodic component. They allow the shape of the periodic
pattern to also depend on the current overall level of return volatility. This approach has
been frequently applied. Beltratti and Morana (1999) suppose that the cyclical component is
stochastic and represented by a stochastic volatility model in state-space form. Baillie, Han,
Myers, and Song (2007) study the volatility of high-frequency commodity futures returns and
find that, after removing the intraday periodicity using a deterministic flexible Fourier form
filter, an MA-FIGARCH model provides an excellent description of daily and high-frequency
returns data. Moreover, Martens, Chang, and Taylor (2002) show that filtering out the seasonal
pattern, that is deseasonalizing, improves the out-of-sample forecasting performance of volatility
models. They also find that the volatility forecasts obtained from a GARCH model estimated
with deseasonalized data, where a flexible Fourier Form is used to filter the intraday returns,
are only marginally worse than those of Periodic-GARCH model, estimated with raw data.

1We don’t distinguish between intradaily and high-frequency data.
2We can identify at least three related but distinct literatures: the first one, analyses the transmission of

information across international financial markets, that trade sequentially with little, if any, overlap in their
trading hours. Early empirical papers include Engle, Ito, and Lin (1990) and Becker, Finnerty, and Friedman
(1995), while more recent works are those of Connolly and Wang (2003), Wongswan (2003) and Ehrmann and
Fratzscher (2003) who examine spillover effects between U.S. and other countries’ financial markets. The second
one examines the links between asset prices and macroeconomic fundamentals as embodied in news announcements
effects: recent examples are Andersen and Bollerslev (1997), Balduzzi, Elton, and Green (2001), Hautsch and
Hess (2002), Andersen, Bollerslev, Diebold, and Vega (2003, 2004). The third strand of the intraday time-series-
oriented literature has been concerned with the role of information flow and other microstructure variables as
determinants of intraday returns and volatilities: seminal works are those of Bollerslev and Domowitz (1993),
and Goodhart, Hall, Henry, and Pesaran (1993). More recent works are Engle (2000), Bauwens and Giot (2002),
Rydberg and Shephard (2002), and Liesenfeld and Pohlmeier (2003).
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The second approach is based on seasonal fractional differencing. Arteche (2004) considers
a long memory in stochastic volatility model and the Gauss semiparametric estimation of the
memory parameter. A close approach is that of Bordignon, Caporin, and Lisi (2007a) with the
Periodic Long-Memory GARCH models and Bordignon, M.Caporin, and F.Lisi (2007b) with a
Gegenbauer-GARCH model.

Naturally, in order to establish to what extent the observed dynamics are due to long memory
factors and to periodic components, we should dispose of models that can provide the most
flexible representation of the interactions of these two features. A similar problem arises when
we consider the interplay between non linearity and long memory, in the sense that non linear
models can be considered, and then modeled, as long memory processes (Baillie and Kapetanios
(2007)).

The purpose of the present paper is to introduce a new parameterization that allows for
periodicity and long memory at different frequencies. We assume that the periodicity is known
but allowed to vary, like in the Periodic GARCH models introduced by Bollerslev and Ghysels
(1996). This class of models account for the periodic parameter variation observed in volatilities
of high-frequency returns, namely they are a representation of nonrepetitive cycles. As Bollerslev
and Ghysels (1996) underline the seasonal GARCH representation entails an informational loss
in efficiency relative to the true periodic GARCH. In fact, seasonal adjustment, by definition,
assumes that a time series can be split up into two independent components, a seasonal and a
non-seasonal component, that is clearly impossible when the model is periodic.

Periodic models have found application in the stochastic volatility framework too. Tsiakas
(2006) studies the day of the week, non-trading day, and month of the year seasonal effects in
the daily returns and volatility of the S&P500 index adopting a periodic stochastic volatility
model.

In the periodic GARCH models used so far with financial data (Bollerslev and Ghysels (1996),
Franses and Paap (2000)), positive and negative shocks have the same impact on the volatility.
A huge literature, starting from the seminal work of Black (1976) till the recent work of Dias
and Embrechts (2004) has observed instead, the existence of a negative correlation between the
current return and the future volatility, and this leverage effect becomes even stronger when we
consider intra-daily data.

We present two new models to capture the long-memory features and the periodic patterns
observed in high-frequency volatilities. In both models, the Fractionally Integrated Periodic
EGARCH (FI-PEGARCH), which is an extension of the Fractionally Integrated EGARCH
(Baillie, Bollerslev, and Mikkelsen (1996), Bollerslev and Mikkelsen (1996)), and the Seasonally
Fractionally Integrated Periodic EGARCH (SFI-PEGARCH), the volatility process is periodic
with long memory and leverage effect. The FI-PEGARCH and the SFI-PEGARCH have a
different autocorrelation structure. The former is periodic with long memory in each period,
the latter is periodic with seasonal long memory. A relevant characteristics of both models is
that the population kurtosis and the autocorrelation functions of absolute observations vary
with the season and with the asymmetric effects in the volatility process. Both models have
enough flexibility, which is given by the long memory periodic structure, to account for the
observed features of the high-frequency returns volatility process. The FI-PEGARCH and SFI-
PEGARCH can be thought of as an extension of the Periodic Long-Memory GARCH models
(Bordignon, Caporin, and Lisi (2007a)).

The models and the nested restrictions are fitted to the hourly returns of E-mini SP500
futures contracts quoted at the Chicago Mercantile Exchange. The empirical analysis shows
that while the conditional mean can be modeled by a non-periodic process with no harm, the
conditional volatility is characterized by a strong seasonal and persistent structure. Particularly,
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we found that during the Asian and European trading time the volatility is much lower than
during the American trading time when we observe a sharp increase.

The estimated fractional parameter d ranges, across the different models, between 0.1836
and 0.4112. The diagnostics tests and estimation statistics show that fractional models have a
better fit than corresponding non fractional models, and, quite interestingly, that neglecting a
complete modeling of the periodic pattern produces higher estimates of the persistence para-
meter, while a fully periodic model is far less persistent. This confirms that the long memory
estimation is strictly connected to the periodicity modeling. Restricting the latter increases
the former, and viceversa. This suggests that models which restricts the periodicity patterns
such as those based on fractional seasonal filtering can lead to biased estimates, in particular of
the long memory parameter. In the empirical analysis of the E-mini returns volatility, we find
that the Fractionally Integrated PEGARCH is very close in terms of log-likelihood function and
diagnostics to the Seasonally Fractionally Integrated PEGARCH.
In the examined case a restricted FI-PEGARCH(1,d,0) turns out to provide the best approxi-
mation to the underlying process. Result that is also confirmed by the analysis of the relative
forecasting performances, based on the use of the hourly realized volatility as a proxy of the
unobserved volatility process.

The sequel of the paper is organized as follows. In Section 2 we review the current state of
the art for what concerns the modeling of long memory and periodicity. In section 3 we present
a general expression for periodic EGARCH models. In section 4 we introduce the Fractionally
Integrated Periodic EGARCH (FI-PEGARCH) model and the Seasonally Fractionally Integrated
Periodic EGARCH (SFI-PEGARCH), along with a discussion of the properties. Section 5
presents the data and the preliminary analysis. Section 7 reports the empirical results while
Section 9 concludes.

2 Periodicity and long memory in intraday return volatility

2.1 Long memory

Long memory is defined in terms of decay rates of long-lag autocorrelations, or in the frequency
domain in terms of rates of explosion of low frequency spectra. A long-lag autocorrelation
definition of long memory is

γ(τ) = cτ2d−1 τ →∞
the correlations of long memory process decay with a hyperbolic rate. They are not summable.
An alternative, although not equivalent, definition of long range dependence can be given by
using the spectral density f(λ) of the process:

lim
λ→0+

f(λ)
cf |λ|−2d

= 1 0 < cf < ∞.

The spectral density f(λ) has a pole and behaves like a constant cf times λ−2d at the origin. A
popular approach to the modeling of long memory is represented by the ARFIMA class intro-
duced by Granger and Joyeux (1980) and Hosking (1981). They generalize the class of ARIMA
models by allowing a fractional degree of differencing.

It is possible to have long memory at one or more other frequencies between 0 and π (Arteche
and Robinson (2000)). In this case the spectral density

lim
λ→0+

f(ω + λ)
cf |λ|−2d

= 1 0 < cf < ∞.
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where ω ∈ (0, π). There is a pole at ω if d > 0 and a zero if d < 0. ω represents either one of
the seasonal frequencies or the cycle. For instance, the model

(1− LS)dyt = εt t = 1, 2, . . .

where L is the lag operator, and εt is a short memory process, has a spectral density for yt which
has poles at ωj = 2πj/S with j = 1, . . . , S/2.

2.2 Seasonal patterns and long memory

A general problem encountered in modeling the intraday volatilities is to account for periodic
or seasonal patterns and long memory. In the literature we have different possible solutions:

• Deterministic filtering (Andersen and Bollerslev (1997), Baillie, Han, Myers, and Song
(2007)) (or stochastic filtering (Beltratti and Morana (1999)))

• Seasonal fractional differencing (Woodward, Cheng, and Gray (1998), Arteche (2004),
Bordignon, Caporin, and Lisi (2007a), Bordignon, M.Caporin, and F.Lisi (2007b))

The deterministic filtering model by Andersen and Bollerslev (1997) is based on the following
decomposition of the return for intraday period n and day t:

yt,n = E(yt,n) + (h1/2
t st,nzt,nN−1/2)

ht is the conditional variance of daily returns, st,n is a deterministic function to represent intraday
seasonality, zt,n ∼ i.i.d(0, 1) independent of the daily volatility process ht, and N number of
return intervals per day. Taking logs

xt,n ≡ 2 log |yt,n −E(yt,n)| − log (ht) + log (N) = log (s2
t,n) + log (z2

t,n)

A generated x̂t,n is obtained as

x̂t,n = 2 log |yt,n − yt,n| − log (ĥt) + log (N)

the observable variable xt,n is then a nonlinear regression on the time interval n, and daily
volatility σt, or

xt,n = f(θ; t, n) + ut,n

ut,n = log (z2
t,n)−E[log (z2

t,n)] ∼ i.i.d.(0, 1)

where

f(θ; t, n) =
J∑

j=0

σj
t



µ0j + µ1j

n

N1
+ µ2j

n2

N2
+

P∑

p=1

[δc,p cos (2πpn/n) + δs,p sin (2πpn/n)]





with

N1 =
1
N

N∑

i=1

i =
N + 1

2
N2 =

1
N

N∑

i=1

i2 =
(N + 1)(2N + 1)

6

If J = 0 reduces to the flexible Fourier Form (Gallant (1981)). We can estimate the parameters
by OLS. The intraday periodicity for interval n, on day t is then estimated as

ŝt,n =
T

[
exp

( bft,n

2

)]

∑T/N
t=1

∑N
n=1 exp (f̂t,n/2)
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where
f̂t,n ≡ f(θ̂; t, n).

The high frequency returns are then filtered by the estimated intraday periodicity series ŝt,n to
generate the filtered returns

ỹt,n =
yt,n

ŝt,n

The filtered returns are eventually modeled allowing long memory in volatility. This approach
has been generalized in a stochastic volatility framework by Beltratti and Morana (1999).
An alternative to the above procedure is to model the seasonal long memory patterns present
in the volatility process. For instance by introducing periodic lags in conditional variance as
in Bordignon, Caporin, and Lisi (2007a). They introduce the Periodic long memory GARCH
(PLM-GARCH):

yt = E(yt|Φt−1) + εt

εt =
√

htηt

Φt−1 being the information up to time t−1. ε2t has a Seasonal ARFIMA, or SARFIMA(p, d, q)S ,
specification:

(1− LS)dφ(L)ε2t = ω + [1− β(L)]vt

φ(L) =
∑m

i=1 φiL
i, β(L) =

∑p
i=1 βiL

i, with L, such that xt−1 = Lxt. The long-memory para-
meter 0 ≤ d ≤ 1 and vt = ε2t − σ2

t . The conditional variance of εt is then given by

(1− β(L))ht = ω + [1− β(L)− (1− LS)dφ(L)]ε2t .

The PLM-EGARCH is readily obtained as:

(1− LS)dφ(L)[lnht − ω] = α(L)gt(ηt−1)

with ω = E[lnσ2
t ]. A possible extension is represented by the k -factor representation of the

Gegenbauer and GARMA models put forward by Woodward, Cheng, and Gray (1998) (Arteche
(2004), Bordignon, M.Caporin, and F.Lisi (2007b)). Bordignon, M.Caporin, and F.Lisi (2007b)
define a Gegenbauer-GARCH as:


(1− L)d0(1 + L)dhI(E)

h−1∏

j=1

(1− 2 cos (λj)L + L2)dj


φ(L)ε2t = γ + [1− β(L)]vt

where I(E) = 1 if S is even and zero otherwise and h + 1 = [S/2] + 1− I(E). λj(j = 0, . . . , h)
are frequencies at which the long-memory behavior occurs, dj(j = 0, . . . , h) are long-memory
parameters indicating how slowly the autocorrelations are damped. The conditional variance:

ht = γ + β(L)ht

+



1− β(L)−


(1− L)d0(1 + L)dhI(E)

h−1∏

j=1

(1− 2 cos (λj)L + L2)dj


φ(L)



 ε2t

This implies that in the G-GARCH framework each frequency is modeled by means of a specific
long-memory parameter di.
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3 The Periodic EGARCH process

Periodic models for the volatility process constitute an alternative representation for the seasonal
patterns observed in volatility. Periodic GARCH have been introduced by Bollerslev and Ghysels
(1996), and used for the analysis of periodicity in volatilities by Franses and Paap (2000), Taylor
(2004), among others, and in stochastic volatility model by Tsiakas (2006). Representing the
Periodic EGARCH as a vector process makes clear how we can extend this model to include the
possibility of long memory.
We denote by Pt the asset price at time t, and by yt the continuously compounded return
yt = 100 × [ln (Pt) − ln (Pt−1)], where yt is observed S times intradaily, for a total number of
observations which is T .

The Periodic EGARCH(p, q) process (Bollerslev and Ghysels (1996)) {yt}, defined on some
probability space (Ω,A,P), is a time varying coefficient model for the conditional variance of
the returns:

yt = ηt

√
ht t = 1, . . . , T

ht = V ar[yt|Φs
t−1] t = 1, . . . , T

where ηt ∼ i.i.d.(0, 1) is defined on the same probability space (Ω,A,P). Φs
t−1 is a modified

Borel σ-field filtration in which the Borel σ-field filtration based on the realization of the {yt}
process up to time t − 1 is augmented by a process defining the stage of the periodic cycle at
each point in time.
The logarithm of the conditional variance process is modeled as:

lnht = ωs +
p∑

i=1

δis lnht−i +
q∑

j=1

αjsgs(ηt−j) t = 1, . . . , T s = 1, . . . , S

or using the lag operator:

(1− δs(L)) lnht = ωs + αs(L)gs(ηt−1)

where
gs(ηt) = ψs [|ηt| − E (|ηt|)] + γsηt

αs(L) = 1 + α1sL + . . . + αqsL
q

δs(L) = δ1sL + . . . + δpsL
p
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The Periodic EGARCH(p,q) can be rewritten as a vector process, with S > p



1 0 0 . . . 0
−δ12 1 0 . . . 0
−δ23 −δ13 1 . . . 0

...
. . . . . . . . .

...
. . . −δpS . . . −δ1S 1







ln ht+1
...

ln ht+S


 =




ω1
...

ωS


 +




0 . . . δp1 . . . δ11

0 . . . 0 δp2 . . . δ22
...

...
...

...
...

0 . . . . . . 0 0







ln ht+1−S
...

ln ht


+

+




αq1 . . . α11

0 . . . 0
...

...
0 . . . 0







g1(ηt−q+1)
...

g1(ηt)


 +




0 . . . 0
αq2 . . . α12
...

...
0 . . . 0







g2(ηt−q+2)
...

g2(ηt+1)


 + . . . +

+




0 . . . 0
...

...
0 . . . 0

αqS . . . α1S







gS(ηt+S−q)
...

gS(ηt+S−1)




with

Xt+s = [ln ht+1, . . . , ln ht+S ]′

Gt+j = [gj+1(ηt−q+1+j), . . . , gj+1(ηt+j)]′, j = 0, . . . , S − 1

Ψi =




0 . . . 0
...

...
αqi . . . α1i
...

...
0 . . . 0




i = 1, . . . , S

the system can be compactly expressed as

Φ0Xt+s = ω + Φ1Xt + Ψ1Gt + . . . + ΨsGt+s−1

or
Xt+s = Φ−1

0 ω + Φ−1
0 Φ1Xt + Φ−1

0 Ψ1Gt+s−1 + . . . + Φ−1
0 ΨsGt+s−1

The matrix Φ0 is a lower triangular matrix with no zeros on the diagonal, it is always invertible.

Φ(L)Xt+s = Ψ(L)Gt+s

where

Φ(L) = Φ0 −Φ1L
S

Ψ(L) = Ψ1L + . . . + ΨsL
S

The system is periodically stable if and only if the roots of
∣∣Φ0 −Φ1z

S
∣∣ = 0
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lie outside the unit circle, i.e. |z| > 1.

For instance, the Periodic EGARCH(1,0) process

ln ht = ωs + δ1s lnht−1 + gs(ηt−1)

is weakly stationary if and only if ∣∣∣∣∣
S∏

s=1

δ1s

∣∣∣∣∣ < 1. (3.1)

We can identify three distinct types of integrated process.

• Nonseasonally and Nonperiodically Integrated Periodic EGARCH(p, q) if (1− δs(L)) con-
tains the common factor 1− L, but the vector process (1− L)Xt+s is stationary.

• Seasonally integrated Periodic EGARCH(p, q) if (1 − δs(L)) contains the common factor
1− LS , with the matrix representation for (1− LS)Xt+s being a stationary process.

• Periodically integrated if
∣∣Φ0 −Φ1z

S
∣∣ contains the factor (1−LS) but this is not common

to each polynomial (1− δs(L)).

4 Long memory in periodic models

A model that captures the salient features of the volatility of high-frequency returns should
account for both seasonally periodic patterns and long memory. We propose two models, the
Fractionally Integrated Periodic EGARCH (FI-PEGARCH) and the Seasonally Fractionally
Integrated Periodic EGARCH (SFI-PEGARCH).

In the FI-PEGARCH the log conditional variance has long memory with a periodic short
memory while the SFI-PEGARCH is characterized by seasonal long memory with a periodic
short memory structure.

4.1 Fractionally Integrated Periodic EGARCH

When we assume that long memory is common to all different seasons, that is (1 − δs(L)) =
(1− βs(L))(1− L)d we obtain the Fractionally Integrated Periodic EGARCH(p,d,q) model:

(1− βs(L))(1− L)d(lnht − ωs) = αs(L)gs(ηt−1) (4.1)

with the roots of (1 − βs(z)) = 0 strictly outside the unit circle. This excludes the possibility
of periodic integration. All long memory properties of the model are captured in (1 − L)d.
The process is, by analogy to the ARFIMA models, covariance stationary and invertible for
−1/2 ≤ d ≤ 1/2, and strictly stationary and ergodic for d < 1/2 (from Theorem 2.1 in Nelson
(1991))(Bollerslev and Mikkelsen (1996)).
When d > 0 the process is long memory. It is particularly useful, especially in the estimation
process, to express the process in infinite ARCH form. The infinite ARCH representation of the
FI-PEGARCH(p, d, q) process is:

lnht = ωs + (1− βs(1))−1(1− L)−dαs(L)gs(ηt−1). (4.2)

For instance, the Fractionally Integrated Periodic EGARCH(1,d,1) can be represented as an
infinite ARCH process, where −1/2 < d < 1/2:

ln ht = ωs + (1− β1sL)−1(1− L)−d(1 + α1sL)gs(ηt−1) (4.3)
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with

(1− β1sL)−1(1− L)−d =

(
1 +

∑

i=1

βi
1sL

i

)
1 +

∞∑

k=1




k∏

j=1

j − 1 + d

j


Lk




= 1 +
∞∑

i=1

λi,sL
i = λs(L) (4.4)

where

λ0,s = 1
λi,s = πi + πi−1β1s + . . . + π1β

i−1
1s + π0β

i
1s, i > 1 (4.5)

πk ≡
k∏

j=1

j − 1 + d

j
, π0 = 1

or

λi,s =
i−1∑

j=0

Γ(j + d)
Γ(j + 1)Γ(d)

βi−j−1
s (4.6)

where Γ(·) is the Gamma function. Finally, the process can be compactly rewritten as

ln ht = ωs + λs(L)(1 + α1sL)gs(ηt−1).

Given that (1 − L)0 = 1 this model nests the covariance stationary Periodic EGARCH(p, q)
model. Moreover, it can be extended to the case where the long-memory parameter d is periodic
(Koopman, Ooms, and Carnero (2007)).

4.2 Seasonally Fractionally Integrated Periodic EGARCH

If we consider the possibility that each regime be seasonally persistent, that is (1−δs(L)) = (1−
βs(L))(1−LS)d, (Ooms and Franses (2001) propose a seasonal periodic long memory model for
the conditional mean), we have the Seasonally Fractionally Integrated Periodic EGARCH(p, d, q):

(1− βs(L))(1− LS)d(lnht − ωs) = αs(L)gs(ηt−1) t = 1, 2, . . . , T (4.7)

Just as in the case of FI-PEGARCH model the process is covariance stationary and invertible
for −1/2 ≤ d ≤ 1/2, and strictly stationary and ergodic for d < 1/2, with d > 0 the process is
characterized by long memory.

The infinite ARCH representation of SFI-PEGARCH(1, p, q) is given by:

lnht = ωs + (1− βs(L))−1(1− LS)−dαs(L)gs(ηt−1) t = 1, 2, . . . , T

For a SFI-PEGARCH(1, d, 1) the infinite ARCH representation is:

lnht = ωs + (1− β1sL)−1(1− LS)−d(1 + α1sL)gs(ηt−1)

The inverse of the fractional differential operator is:

(1− LS)−d = 1 +
∞∑

k=1




k∏

j=1

j − 1 + d

j


LkS

= 1 +
∞∑

k=1

πkL
kS
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with πk ≡
∏k

j=1
j−1+d

j . A compact expression for (1− β1sL)−1(1− LS)−d is given by

(1− β1sL)−1(1− LS)−d = 1 + β1sL + . . . + (βS
1s + π1)LS + (β1sπ1 + βS+1

1s )LS+1 + . . .

= 1 +
∞∑

k=1

λk,sL
k = λs(L).

We can express the coefficients of the polynomial λs(z), as follows

λi·S+j,s =

{
βiS+j

1s + β
(i−1)S+j
1s π1 + . . . + βS+j

1s πi−1 i = 1, 2, . . . j = . . . ,−2,−1, 1, 2, . . .

βiS
1s + β

(i−1)S
1s π1 + . . . + βS

1sπi−1 + πi i = 1, 2, . . . j = 0
(4.8)

where k = i · S + j. From eq.(4.8) is evident that whenever s = S the λk coefficient is increased
by πS , with πS > 0, when d > 0. Therefore the SFI-PEGARCH(1,d,q) in ARCH(∞) form is
written as:

ln ht = ωs + λs(L)αs(L)gs(ηt−1) (4.9)

The differences between these two models can be highlighted plotting the λs(L) for both. For
instance, setting βs = 0.8 and d = 0.3 in FI-PEGARCH(1, d, 0) and in SFI-PEGARCH(1, d, 0)
we have two different patterns as in fig.1. The polynomial of FI-PEGARCH(1, d, 0) shows
a smoothing decaying, while, as expected, the SFI-PEGARCH is characterized by a jagging
behavior.

4.3 The kurtosis

He, Tersvirta, and Malmsten (2002) have derived the kurtosis and the autocorrelations of ab-
solute and squared observations for the short memory first order EGARCH process. From
Theorem 2 (p.870) in He, Tersvirta, and Malmsten (2002), we can compute the kurtosis for
season s.

Proposition 4.1 Consider the FI-PEGARCH(1, d, 0) or the SFI-PEGARCH(1, d, 0) process
and assume that the fourth moment ν4 ≡ E(η4

t ) < ∞ , that E[egs(ηt)] and E[e2gs(ηt)] exist
and that |β1s| < 1, ∀s holds. Then the kurtosis of yt for period s exists and is given by:

ky,s = ν4

∏∞
i=0 E [exp{2λi,sgs(ηt)}]

{∏∞
i=0 E [exp{λi,sgs(ηt)}]}2 (4.10)

where λi,s is defined in (4.5) and (4.8) for the FI-PEGARCH(1,d,0) and the SFI-PEGARCH(1,d,0)
respectively.

Proof. See the Appendix A.
It is evident from the expression (4.10) that for both models the kurtosis results to be periodic.
Moreover, the kurtosis increases as the magnitude of the leverage parameter (γs) increases (see
for an analogous analysis Ruiz and Vega (2008)). In fig.2 the kurtosis of the FIPEGARCH(1, d, 0)
is displayed. It is evident that the tail thickness of the unconditional distribution of the process
increases with the short-memory parameter β1s as well as with the parameter ψs which represents
the effect of large shocks to the log-conditional variance. Moreover, larger values for the long
memory parameter, d, are reflected in an increase of the kurtosis.
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4.4 The autocorrelation function of absolute observations

It is possible to derive the autocorrelation function of |yt|2m for season s by applying Proposition
4.1 and a recursion similar to that of Theorem 3 (p.872) in He, Tersvirta, and Malmsten (2002).

Proposition 4.2 Consider the FI-PEGARCH(1,d,0) or the SFI-PEGARCH(1,d,0)and assume
that ν4m ≡ E(η4m

t ) < ∞ , E[|ηt|2memgs(ηt)] < ∞ and E[e2mgs(ηt)] < ∞ for 0 < m < ∞, and that
|β1s| < 1, ∀s holds. Then the autocorrelation function of |yt|2m for season s and lag n equals

ρm,s(n) =
E[y2m

t y2m
t−n]− [E(y2m

t )][E(y2m
t−n)]

(
E[y4m

t ]− [E(y2m
t )]2

)1/2 (
E[y4m

t−n]− [E(y2m
t−n)]2

)1/2
for n ≥ 1. (4.11)

where the numerator is

E[y2m
t y2m

t−n]−[E(y2m
t )][E(y2m

t−n)] = ν2m exp {m[(ωr + ωs) + βn
1s(ωr − ωs)]}×

E
[
η2m

t exp {mχn−1,sgs(ηt)}
] n−2∏

i=0

E [exp {mχi,sgs(ηt)}]×
∞∏

i=n

E [exp {mχi,sgs(ηt)}]
∞∏

i=1

E [exp{m(1 + βn
1s)λi,rgr(ηt)}]−

ν2
2m exp{m(ωs + ωr)}

( ∞∏

i=0

E [exp{mλi,sgs(ηt)}]
)
×

( ∞∏

i=0

E [exp{mλi,rgr(ηt)}]
)

r denotes the season which occurs at t− n.3 The denominator is
(
E[y4m

t ]− [E(y2m
t )]2

)1/2 (
E[y4m

t−n]− [E(y2m
t−n)]2

)1/2 =

exp{m (ωr + ωs)}

ν4m

∞∏

i=1

E [exp{2mλi,sgs(ηt)}]− ν2
2m

( ∞∏

i=0

E [exp{mλi,sgs(ηt)}]
)2




1/2

×


ν4m

∞∏

i=1

E [exp{2mλi,rgr(ηt)}]− ν2
2m

( ∞∏

i=0

E [exp{mλi,rgr(ηt)}]
)2




1/2

(4.12)

with λs(L) = (1−L)−d(1−β1sL)−1 and χs(L) = (1−L)−d
n∑

i=1
βi−1

1s Li−1 for the FI-PEGARCH(1,d,0)

and λs(L) = (1 − LS)−d(1 − β1sL)−1, and χs(L) = (1 − LS)−d
n∑

i=1
βi−1

1s Li−1 for the SFI-

PEGARCH(1,d,0).

Proof. See the Appendix.
From Proposition 4.2 follows that the autocorrelation function of the seasonal fractionally inte-
grated EGARCH(1,d,0):

(1− β1L)(1− Ls)d(lnht − ω) = g(ηt−1) t = 1, 2, . . . , T

3If n = 1 then
Qn−2

i=0 E [exp {mχi,sgs(ηt)}] = 1.
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is given by
Using the theorem A1.1 in Nelson (1991) we can further simplify the expressions for the kur-

tosis and the periodic autocorrelation function, since under the hypothesis of ηt ∼ i.i.d.N(0, 1),
we have that:

E [exp {mλi,sgs(ηt)}] =
{
Φ[m(ψs + γs)λi,s] exp [m2λ2

i,s(γs + ψs)2/2] +

Φ[m(ψs − γs)λi,s] exp [m2λ2
i,s(ψs − γs)2/2]

}×
exp [−mλi,sψs

√
(2/π)] < ∞.

for finite real scalars m and λi,s. For m > 0 and any finite real χn−1,s (see Lemma 1 in He,
Tersvirta, and Malmsten (2002)) we have that

E
[|ηt|2m exp {mχn−1,sgs(ηt)}

]
=

1√
2π

Γ(2m + 1) exp

{
−

√
2
π

mψsχn−1,s

}
×

exp
{

1
4
m2(γs + ψs)2χ2

n−1,s

}
×

{
D−(2m+1)[−mχn−1,s(γs + ψs)]+

exp
{−m2χ2

n−1,s(γsψs)
}

D−(2m+1)[−mχn−1,s(ψs − γs)]
}

where D−(2m+1)(·) is the parabolic cylinder function (see Gradshteyn and Ryzhik (1980)), de-
fined as

D(−p)[q] =
exp{−q2/4}

Γ(p)

∫ ∞

0
xp−1 exp{−qx− x2/2}dx p > 0

and Γ(·) is the gamma function.
When p = 2, He, Tersvirta, and Malmsten (2002) show that

∫ ∞

0
x2 exp (−qx− x2

2
)dx = −q +

√
2π(1 + q2)Φ(−q) exp (q2/2)

5 The data

Our data set consists of transaction prices of the E-mini stock index futures SP500, recorded
every 60 minutes on the electronic market Chicago Mercantile Exchange, from March 14, 2004
through March 10, 2006, comprising 12,312 observations. The prices of the futures contracts
used have been built with the futures contracts closest to expiration, while missing data were
substituted with the last available price.4 The hourly returns are shown in fig.(3). The contract,
besides being the most important stock index futures, has the characteristics of being quoted
almost 24 hours a day: to be more precise, there is normal ”pit” trading from 9.30 to 16.15 - New
York time - (named Regular Trading Hour, RTH ), and an electronic session from 16.45 until
9.15 the day after (Globex ). The Monday morning session in Asian markets starts at 17.00 NY
time, that correponds to sunday afternoon in the US. The index contains the most liquid stocks
from the corresponding market and hence the problem of spurious autocorrelation induced by
non-synchronous trading should not arise.The main descriptive statistics are reported in Table
1. The sample kurtosis per hour varies across the day, and the night time returns are charac-
terized by extremely leptokurtic distributions. There is also some evidence of asymmetry. This

4Data from Computer Information Systems 101 Holly Ridge Monroe, LA 71203 U.S.A.
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confirms that the E-mini stock index futures SP500 hourly returns are not normally distributed.

Seasonality. The sample autocorrelation functions (see fig. 3) don’t suggest a seasonal
pattern in the hourly returns. In the following analysis we do not make any attempts to correct
for the lower frequency interdaily patterns. Moreover, in the series of Emini-SP500 returns we
have an increase in the percentage of zeros returns in the night time (fig.8). This is common
feature of assets priced over the 24 hours, and is related to the traded volume. It is evident that
the Asian and European trading times are mostly affected by this.
For what concerns volatility, we compute an ex-post volatility measure, namely the aggregated
squared returns over the hour (i.e. hourly realized volatility), from the 5-minutes returns. Even
though this estimate can be biased, in this context it represents a first attempt to describe the
intraday pattern of the volatility process. In particular, to evaluate the intraday periodicity of
the returns volatility we plot in figure 6 the average realized volatility over the hour interval for
the 24 hours. This exhibits the classical U -shaped pattern. It reveals a pronounced difference
in the volatility over the day. This pattern is closely linked to the cycle of market activity in
the various trading times around the globe. It increases sharply during the overlap of afternoon
trading in Europe and the opening of the U.S. market.5

Long memory. According to Granger and Ding (1996) a series is said to have long-memory
if it displays a slowly declining autocorrelation and an infinite spectrum at zero frequency. The
autocorrelograms of squared and absolute returns in figure 4 clearly show the presence of a
strong persistent periodic behavior. In particular, they seem to be characterized by a decay at
a very slow mean-reverting hyperbolic rate.

The spectrum estimates (using Bartlett’s window) of absolute and squared returns have
a peak in correspondence of a cycle with a period of 24 hours (see fig. 5). The profile of
the spectrum estimate of the hourly realized volatility is very close to that of the absolute
and squared hourly returns, and like those has a peak at a frequency corresponding to a cyclical
component of period 24 (see fig. 7). The estimates of the fractional difference parameter obtained
with the Geweke, Porter-Hudak estimator (GPH estimator) (Geweke and Porter-Hudak (1983)),
and the local Whittle local estimator see table 2) and the associated test statistics suggest
the presence of persistence or long memory behavior in both series. The GPH estimator of
persistence in volatility is based on an ordinary linear regression of the log-periodogram of a
series that serves as a proxy of a financial time series, i.e. the squared returns or the absolute
returns.

6 Estimation

In this paper we estimate the model parameters θ by maximization of the conditional likelihood
function. Let f(ηt, ψ) be the density of ηt, the log-likelihood for the t-th observation is given
by:

ln L(ηt; θ) = ln f(ηt;ψ)− 1
2

ln ht.

We assume that the standardized innovations are normal. When the assumption of conditional
normality is violated, asymptotically valid inference can be carried out on the basis of the re-
sults of the theory of quasi maximum likelihood estimation (Bollerslev and Wooldridge (1992)).
However adopting alternative conditional distributions can lead to significant differences in pa-
rameter estimates in finite samples.

5Andersen and Bollerslev (1997) note that ”return volatility varies systematically over the trading day and
that this pattern is highly correlated with the intraday variation of trading volume”.
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The computation of the conditional log-likelihood necessitates the truncation of the infinite
lag polynomial. In order to retain the long-run dependencies in the conditional variance process
we set the truncation lag at 1, 008. One well known problem in the estimation of long-memory
ARCH models is the treatment of initial conditions required to start up the recursions for the
conditional variance function. Given the sample size, we use as starting values in the recursion for
the calculation of log ht the first 1008 standardized residuals, η̂t, where the conditional variances
are replaced with the sample variance. Thus the sample size used in the estimation is reduced
to 11311 observations.

7 Empirical Results

In this section we present the estimation results for a battery of models fitted to the Emini-
SP500 data. The starting point is that a seasonal periodic heteroskedastic long memory model
may be adequate to capture the dynamics in the conditional variance of the series.
We also consider a Periodic Long Memory EGARCH(1, 0) (PLM-EGARCH, hereafter) as a
benchmark. This model is particularly interesting because is based on fractional seasonal filter
of the log-conditional variance, which is a simple alternative to the FI-PEGARCH and SFI-
PEGARCH. First, we present models based on 24 seasons, then we illustrate the results for
restricted models.

7.1 Models with twenty-four seasons

From the preliminary analysis the conditional mean equation is specified as

yt = c + ηt

√
ht

while for the log-conditional variance we consider the following models:

• PLM-EGARCH(1,0):

(1− βL)(1− LS)d(lnht − ω) = ψ(|ηt−1| − E |ηt−1|) + γηt−1, s = 1, . . . , 24

• PEGARCH(1,0) with periodic ω, ψ and β and constant γ:

(1− βsL) lnht = ωs + ψs(|ηt−1| − E |ηt−1|) + γηt−1, s = 1, . . . , 24

• FI-PEGARCH(1,d,0) with periodic ω, ψ and β and constant γ:

(1− βsL)(1− L)d(lnht − ωs) = ψs(|ηt−1| − E |ηt−1|) + γηt−1, s = 1, . . . , 24

• SFI-PEGARCH(1,d,0) with periodic ω, ψ and β and constant γ:

(1− βsL)(1− LS)d(lnht − ωs) = ψs(|ηt−1| − E |ηt−1|) + γηt−1, s = 1, . . . , 24

The estimates are presented in table 3.6 The main results can be summarized as follows:

1. Conditional Mean: The Ljung-Box tests on the standardized residuals in levels and squared,
computed for the normal case, reported in table 4, clearly show that the conditional mean
can be modeled by a non-periodic process with no harm.

6To economize on the estimation output we omit standard errors.
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2. PLM-EGARCH : The diagnostic tests in table 4 show that the PLM-EGARCH (Bordignon,
Caporin, and Lisi (2007a)) provides an adequate fit of the long memory component of the
log-volatility while is clearly unable to catch the periodic patterns in volatility, as it is well
shown by the rejection of the null hypothesis of the seasonality test, based on a simple
regression of the standardized squared returns on a set of seasonal dummies.

3. PEGARCH : The estimated β’s satisfy the condition of stationarity for a periodic EGARCH
model, in fact

∏
s β̂s < 1. The leverage effect, given by γ, is strongly statistically signif-

icant and the sign is negative which confirms the presence of an asymmetric effect of
returns shocks on volatility. The diagnostic tests in table (4) suggest that the estimated
PEGARCH is able to fit the periodic features of the volatility process but is unable to fit
the long memory components as the rejection of the null of the Ljung-Box test statistic of
long autocorrelation in the squared standardized residuals testifies.

4. FI-PEGARCH : The estimates of the coefficients of the size effect, ψs, are markedly differ-
ent, across the the 24 hours, nonetheless they are similar in signs. An analogous considera-
tion holds for the estimated β’s. As in the PEGARCH γ is strongly statistically significant
in all cases considered. The long-memory coefficient is within the stationary bounds. The
estimate of fractional integration parameter d of the squared standardized residuals, using
the GPH estimator, indicates that there is no persistence that survives after the filtering.
The models are estimated considering different truncations of the infinite autoregressive
polynomial in (4.4), and the presented results are based on a truncation equal to 1008.
In our experience, the estimates of the long memory parameter turn out to be sensible to
this choice.

For what concerns the possible nested restrictions, the Wald test statistic, table 4, rejects
the null of FI-PEGARCH(1,d,0). The squared standardized residuals have no seasonal
components as the F statistics of the seasonality test confirms (table 4).

5. SFI-PEGARCH : The estimates of the ω’s are fairly close to those of FI-PEGARCH.
Differences arise in the p-values of the t of the coefficients of the size effect, ψs. Fur-
thermore the estimated β’s follow a different pattern. Again γ is strongly statistically
significant. Like in the FI-PEGARCH case, the estimate of the long memory parameter
of the squared standardized residuals is not statistically different from zero. Just as in the
case of FI-PEGARCH the estimated long-memory parameter is within stationary bounds.
The residuals have no seasonal components as the F statistics of seasonality test confirms.

Moreover, we find that during the Asian and European trading time the volatility is
much lower than during the American trading time when we observe a sharp increase.
These results seem to confirm the fact that hourly returns sampled over the 24 hours
across different markets are characterized by different seasonal patterns with a statistically
significant persistence.7 The Wald test statistics for the null of d = 0 and constant β’s
are, like the FI-PEGARCH, strongly rejected.

6. FI-PEGARCH vs SFI-PEGARCH : The diagnostic tests highlight no major differences
among the two models and the Schwarz criteria as well as the log-likelihood are very close.

7We do not report the graphs of the estimated conditional volatilities for sake of space. However, they are
available from the authors upon request.
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7.2 Models with constrained patterns of periodicity

When S is large, like the case we are examining, the number of periodic parameters can be limited
assuming that their seasonal variation is described by periodic functions like combinations of
cosine and sinus. Following Jones and Brelsford (1967) we assume that the periodic parameters
in the FI-PEGARCH(1,d,0) and SFI-PEGARCH(1,d,0) are modeled in the following way:

ωs = ω̃0 + ω̃1 cos
(

2πs

S
− ω̃2π

)

βs = β̃0 + β̃1 cos
(

2πs

S
− β̃2π

)

ψs = ψ̃0 + ψ̃1 cos
(

2πs

S
− ψ̃2π

)

γs = γ̃0 + γ̃1 cos
(

2πs

S
− γ̃2π

)

For parameter identification we restrict ω̃2, β̃2, ψ̃2, γ̃2 ∈ [0, 1) as cos (x + kπ) = (−1)k cos (x)
for k ∈ Z and x ∈ R. This specification is very close to the Flexible Fourier Form GARCH
adopted by Taylor (2004). Estimation results are reported in table 5. The estimated parameters
of the FI-PEGARCH are all significant, while the parameters in the function of γs for the
SFI-PEGARCH result to be statically not different from zero. The d̂ for both models are
sensibly higher than those estimated in the unconstrained models. This finding confirms that
restricting the periodicity pattern leads to an increase in the estimate of the fractional integration
parameter.

7.3 Models with three seasons

It is evident that models with twenty-four seasons can be heavily overparameterized, and this
can lead to some loss of efficiency.

We can hypothesize a more parsimonious model based on three periods. The first corresponds
to the ASIA-EUROPE trading period (17.00 − 09.00), the second to the morning in the US
(10.00− 13.00) and the third to the afternoon (14.00− 16.00).

We estimate the FI-PEGARCH(1, d, 0) and SFI-PEGARCH(1, d, 0), where all parameters
are periodic.
The FI-PEGARCH(1, d, 0):

(1− βsL)(1− L)d(lnht − ωs) = ψs(|ηt−1| − E |ηt−1|) + γsηt−1, s = 1, . . . , 24

The SFI-PEGARCH(1, d, 0):

(1− βsL)(1− LS)d(lnht − ωs) = ψs(|ηt−1| − E |ηt−1|) + γsηt−1, s = 1, . . . , 24

Let
θs = ωs, ψs, βs, γs

the parameters in the models follow the following pattern:

θs =





θ1 s = 1, . . . , 17
θ2 s = 18, . . . , 21
θ3 s = 22, 23, 24
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The results are reported in table 7. In this case, like the models with restricted periodic pa-
rameters, the estimated d’s are larger than those estimated for the unrestricted models. The
diagnostic tests in table 8 suggest that the SFI-PEGARCH provides a slight better fit. However
both models fail to account for the periodicity as the seasonality test clearly highlights. The
Ljung-Box statistic for the autocorrelation in the squared standardized disturbances at 500 lags
rejects the null hypothesis for both models.

8 Forecasts

8.1 In-sample forecasting performance

In this section we present some measures of the in-sample forecasting performances of the models
presented in the previous sections.

The evaluation and comparison of univariate (and multivariate) volatility forecasts, is made
difficult by the fact that the object of interest is unobservable, even ex post. Thus the evaluation
and comparison of volatility forecasts must rely on direct or indirect methods of overcoming this
difficulty. Direct methods use a volatility proxy, i.e. some observable variable that is related to
the latent variable of interest.

The estimated models considered in the previous sections are used to generate time-consistent
1-step-ahead forecasts of conditional return volatility. These forecasts are obtained by first
estimating the parameters of the model on the full sample and performing a series of static one-
step ahead forecasts. The forecasting performances are evaluated on the basis of the the bias, the
Mean Absolute Error (MAE), the Mean Square Error (MSE). The MAFE is a commonly used
measure for forecast evaluation but it imposes the same penalty on over- and under-predictions
of volatility and is not invariant to scale transformations. The mean absolute percentage error
(MAPE) accommodates possible heteroskedasticity in forecast errors but it can be unstable if
volatility is very low. Following Andersen and Bollerslev (1998) we report the statistics of the
Mincer-Zarnowitz regressions of the hourly realized volatility on a constant and the various
model forecasts based on time t− 1 information:

rvt = a + bĥt + et t = 1, . . . , T

The OLS parameter estimates will be less accurately estimated the larger the variance of (rvt−
ht), where rvt is the hourly realized volatility and ĥt is the volatility forecast. The results
are shown in table 9. For the purpose of benchmark provision we also consider the forecasts
generated by a Periodic EGARCH(1, 0) and a PLM-EGARCH(1, d, 0). First of all it is important
to note that omitting the long memory component, like in the Periodic EGARCH(1, 0), sensibly
affects the quality of the forecasts. In the case of Periodic EGARCH(1, 0) we find the lowest R2

and the largest MSE.
Second, the SFI-PEGARCH models behave worse than the corresponding FI-PEGARCH

modelsin terms of MAE, MAPE and MSE, while for the bias the results are mixed. Moreover
the PLM-EGARCH has a better performance than the restricted SFI-PEGARCH in terms of
R2 while the situation is reversed for the other statistics. Finally, The FI-PEGARCH(1, d, 0)
with 3 periods is the best model in terms of MSE and R2 of the Mincer-Zarnowitz regression. In
fig. 9 and 10 the average of the in-sample forecasts for the FI-PEGARCH and SFI-PEGARCH
are reported along with the average hourly realized volatility. It is interesting to note that the
unrestricted models fit much better than the restricted ones, which means that they are able
to catch the change in volatility observed in the round-the-clock returns. Instead, the latter
seem to be penalized by the imposed restricted periodicity patterns. Moreover, this seems to
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be independent of the kind of long memory structure adopted. Indeed, the fit provided by FI-
PEGARCH model with three periods (mid panel fig. 9) and the one with constrained periodicity
(botton panel fig. 9) are very similar to the ones obtained with the restricted SFI-PEGARCH,
in fig.10 mid and botton panel, respectively.

8.2 Out-of-sample forecasting performance

While in-sample forecasting provides a general indication of the predictive ability, it is only
the evaluation of the out-of-sample forecasts that can assess the models capability of providing
sensible predictions for financial decision making. The forecasts are based on parameter esti-
mates from rolling samples with fixed sample sizes of 11312 hours. For every date t > 11312 in
the sample, we estimate the parameters of each specification over the 11312 data points up to
including date t. We calculate 120 out-of-sample forecasts. We compute the Mincer-Zarnowitz
regressions and the F test statistic for the null hypothesis that a = 0∩ b = 1, which corresponds
to the unbiasedness of the forecast. Table 9 reports the results. It turns out that the best
model in terms of bias, MAE, and MSE is the SFI-PEGARCH with three periods. Moreover is
important to note that for this model the null hypothesis is accepted.

9 Conclusions

This paper presents a new approach to the modeling of volatility of financial returns that takes
into account persistence, periodicity and asymmetry.
The proposed models are used to investigate the features of the returns volatility of the E-mini
SP500 futures contracts. The empirical application shows that the proposed models, and in par-
ticular the FI-PEGARCH, provide an adequate description of high-frequency volatility returns.
Furthermore the results confirm that the volatility is characterized by long memory, periodic-
ity and asymmetric responses to return shocks. They confirm that restricting the periodicity
patterns lead to a larger estimate of the long memory parameter, which comes out to biased.
This seems to suggest that a model of the periodicity pattern, which cannot fully accounted
for the time-varying periodicity overestimates the long memory component. This seems to be
characteristic of models based on seasonal fractional differencing. It is worth emphasizing that
predictability and seasonality of stock returns and volatility found in this work need not imply
market inefficiency. Although our results can be useful in the real-world investment process,
they do not imply that profitable trading strategies yielding superior returns when adjusted for
transaction cost exist. A further investigation into the economic significance of futures returns
volatility seasonality is therefore called for. Besides, there are other lines for future research:
for example, how to achieve estimation parsimony when dealing with a high number of seasons
and/or high autoregressive order is surely one of the most interesting and compelling topic of pe-
riodic modeling. In a similar fashion, a multivariate extension can imply a wealth of parameters
to estimate and a dramatic loss of efficiency.
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Figure 1: Series expansion of (1 − L)−d(1 − β1L)−1 and (1 − LS)−d(1 − β1L)−1 with d = 0.3,
β1 = 0.8
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Figure 2: FI-PEGARCH(1,d,0) - Kurtosis as a function of model parameters

Figure 3: Hourly returns and the autocorrelation function
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Figure 4: Autocorrelation functions of squared and absolute Emini-SP500 returns

Figure 5: Spectrum estimates of squared and absolute Emini-SP500 returns
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Figure 6: Average RV per hour

Figure 7: Autocorrelogram and Spectrum Estimate of Emini SP 500 Realized Volatility
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Figure 8: Percentages of zero returns per hour
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Mean Std. Dev. Skewness Kurtosis 1st quartile Median 3rd quartile
16-17 -0.0514 1.3256 -0.6030 5.0005 -0.8042 0.0000 0.6849
17-18 -0.0519 0.5732 -1.7946 19.8279 -0.2217 0.0000 0.2075
18-19 0.0749 0.6773 -1.1281 25.7040 -0.2143 0.0000 0.4153
19-20 0.0158 0.5019 1.7944 16.5357 -0.2206 0.0000 0.2204
20-21 0.0334 0.5564 0.6275 9.5416 -0.2111 0.0000 0.2227
21-22 -0.0104 0.5024 0.1781 14.4292 -0.2211 0.0000 0.2115
22-23 0.0123 0.4021 -0.3018 4.9239 -0.2103 0.0000 0.2193
23-24 -0.0051 0.6260 1.0740 32.5273 -0.2112 0.0000 0.2108
24-01 0.0584 0.5647 3.4963 35.5868 -0.2062 0.0000 0.2119
01-02 0.0151 0.4791 0.1724 5.2854 -0.2158 0.0000 0.2180
02-03 0.1200 0.5794 0.0328 3.8995 -0.2125 0.0000 0.4312
03-04 0.0859 1.0149 0.0847 3.9003 -0.5851 0.0000 0.6541
04-05 -0.0245 0.9196 -0.3762 6.3901 -0.5506 0.0000 0.4379
05-06 -0.0233 0.9411 -4.6837 62.6113 -0.4211 0.0000 0.4171
06-07 0.0003 0.6807 0.0648 4.6483 -0.4086 0.0000 0.4141
07-08 0.0603 0.8662 0.3258 7.3379 -0.4152 0.0000 0.6017
08-09 0.0690 1.4594 -0.5409 14.1448 -0.6189 0.0000 0.7897
09-10 0.0145 1.7878 0.0233 3.7637 -1.1869 0.0000 1.0931
10-11 -0.1205 2.4923 -0.0762 3.4942 -1.6165 -0.1945 1.2283
11-12 0.0121 2.0090 0.0886 5.1103 -1.0207 0.0000 1.0530
12-13 0.1134 1.7749 -0.0477 5.2063 -0.8020 0.0000 0.9757
13-14 -0.0639 1.8822 -0.0662 3.6934 -1.2435 0.0000 1.0336
14-15 0.0384 2.4907 0.3397 5.2149 -1.4386 0.0000 1.3461
15-16 -0.1051 2.5121 -0.0479 5.1651 -1.5684 0.0000 1.3574

Table 1: Descriptive statistics for E-mini SP500 hourly returns
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y2
t

GPH d = 0 Whittle d = 0
m = 283 0.132 3.716 0.147 4.951

[0.035] (0.000) [0.030] (0.000)
m = 110 0.296 4.857 0.272 5.699

[0.061] (0.000) [0.048] (0.000)
|yt|

m = 283 0.253 5.912 0.245 8.245
[0.043] (0.000) [0.029] (0.000)

m = 110 0.366 5.805 0.356 7.465
[0.063] (0.000) [0.048] (0.000)

Table 2: Fractional integration estimation (d) of E-mini squared returns. Bandwidth parameter
set to m = T 0.6 = 283 and m =

√
T = 110, and testing (p-values in parenthesis, standard error

in square brackets)
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PEGARCH(1,0) FI-PEGARCH(1,d,0) SFI-PEGARCH(1,d,0)
estimate p-value estimate p-value estimate p-value

c 0.0283 0.000 0.0269 0.000 0.0264 0.000

ω1 -1.0186 0.284 0.5303 0.000 0.5830 0.000
ω2 -2.0680 0.000 -0.9670 0.000 -1.1316 0.000
ω3 0.2031 0.262 -0.6454 0.000 -0.7657 0.000
ω4 -1.3637 0.000 -1.0083 0.000 -0.9964 0.000
ω5 8.7465 0.216 -1.1049 0.000 -1.0658 0.000
ω6 0.9668 0.504 -1.1152 0.000 -1.0890 0.000
ω7 -0.9025 0.001 -1.5939 0.000 -1.5289 0.000
ω8 4.1819 0.001 -0.8860 0.000 -0.7688 0.000
ω9 -0.7229 0.000 -1.0549 0.000 -1.1099 0.000
ω10 -0.9889 0.000 -1.3726 0.000 -1.2582 0.000
ω11 0.7381 0.174 -0.6718 0.000 -0.6413 0.000
ω12 0.7860 0.001 0.2285 0.029 0.2507 0.020
ω13 -0.1787 0.030 0.0346 0.742 0.0395 0.717
ω14 -0.2780 0.030 -0.4452 0.000 -0.5530 0.000
ω15 -0.4204 0.004 -0.5606 0.000 -0.5386 0.000
ω16 0.2405 0.232 -0.2536 0.034 -0.2861 0.008
ω17 0.9354 0.000 0.8662 0.000 0.6742 0.000
ω18 0.5013 0.044 1.1961 0.000 1.1689 0.000
ω19 0.4202 0.434 1.9086 0.000 1.9245 0.000
ω20 0.0323 0.931 1.4371 0.000 1.3717 0.000
ω21 -2.6784 0.009 1.5162 0.000 1.4513 0.000
ω22 0.8347 0.000 1.3647 0.000 1.2512 0.000
ω23 0.0819 0.874 1.9722 0.000 1.9457 0.000
ω24 0.4080 0.567 1.8983 0.000 1.7702 0.000

ψ1 0.2145 0.002 0.1748 0.041 0.0368 0.090
ψ2 0.7379 0.000 0.6557 0.000 0.5263 0.000
ψ3 0.9108 0.000 0.7693 0.000 0.8436 0.000
ψ4 0.0305 0.001 0.0982 0.002 0.1033 0.000
ψ5 0.0880 0.173 0.0245 0.026 0.0532 0.004
ψ6 0.3648 0.000 0.3127 0.000 0.3266 0.000
ψ7 0.1704 0.000 0.2543 0.001 0.2431 0.000
ψ8 0.7533 0.000 0.4860 0.000 0.1765 0.000
ψ9 0.2645 0.000 0.2625 0.000 0.3648 0.000
ψ10 0.1853 0.005 0.4121 0.005 0.1262 0.000
ψ11 0.2790 0.000 0.1272 0.000 0.1661 0.000
ψ12 0.1583 0.023 0.1207 0.023 0.1262 0.018
ψ13 0.1629 0.004 0.0533 0.004 0.0884 0.000
ψ14 0.3931 0.000 0.4055 0.000 0.3653 0.000
ψ15 0.0735 0.284 0.0472 0.022 0.0674 0.003
ψ16 0.1782 0.005 0.0250 0.206 0.0370 0.091
ψ17 0.0793 0.034 0.0216 0.007 -0.0350 0.703
ψ18 0.1442 0.005 0.1316 0.143 0.1482 0.034
ψ19 0.1077 0.029 0.2813 0.017 0.2020 0.003
ψ20 0.0712 0.043 0.0603 0.086 0.0635 0.191
ψ21 0.1462 0.076 0.1667 0.000 0.2183 0.000
ψ22 0.0664 0.157 0.0305 0.145 0.0663 0.396
ψ23 -0.0209 0.738 0.0429 0.098 0.0636 0.036
ψ24 0.0524 0.600 0.2630 0.000 0.2583 0.000

β1 0.8929 0.109 0.2710 0.513 0.9661 0.000
β2 1.5351 0.000 0.3800 0.002 0.7395 0.000
β3 0.8549 0.000 0.2229 0.006 0.5393 0.000
β4 0.0088 0.022 0.9054 0.000 0.9653 0.000
β5 7.2564 0.156 0.9746 0.000 0.9819 0.000
β6 1.9289 0.084 0.7214 0.000 0.8974 0.000
β7 0.6906 0.000 0.7723 0.000 0.9357 0.000
β8 2.8731 0.000 0.2235 0.037 0.9272 0.000
β9 0.5283 0.000 0.6298 0.000 0.7678 0.000
β10 0.4180 0.000 0.3046 0.288 0.9542 0.000
β11 1.1302 0.000 0.9025 0.000 0.9537 0.000
β12 0.7048 0.000 0.8037 0.000 0.9222 0.000
β13 0.7627 0.003 0.9266 0.000 0.9540 0.000
β14 1.1841 0.000 -0.1568 0.379 0.2102 0.341
β15 0.8692 0.000 0.9533 0.000 0.9775 0.000
β16 0.7133 0.000 0.9411 0.000 0.9648 0.000
β17 0.5857 0.004 0.9672 0.000 -0.2977 0.658
β18 0.8644 0.015 0.5591 0.113 0.7527 0.000
β19 1.2737 0.010 0.1593 0.718 0.8088 0.000
β20 0.7225 0.001 0.7854 0.000 0.8038 0.000
β21 2.8092 0.000 0.8653 0.000 0.9285 0.000
β22 0.3837 0.001 0.9058 0.000 -0.5625 0.036
β23 1.3539 0.001 0.9257 0.000 0.9573 0.000
β24 0.7395 0.068 0.5940 0.000 0.7673 0.000

γ -0.0290 0.000 -0.0337 0.000 -0.0626 0.000
d 0.2441 0.000 0.1836 0.000

Table 3: Model estimates with obtained Gaussian QML. The t statistics are computed using
robust standard errors Bollerslev and Wooldridge (1992). P-values are reported.
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FI-PEGARCH(1,d,0) SFI-PEGARCH(1,d,0)
estimate p-value estimate p-value

c 0.0262 0.000 0.0358 0.000

ω̃0 0.9756 0.000 0.4009 0.000
ω̃1 -1.0642 0.000 -1.2548 0.000
ω̃2 0.6680 0.000 0.7074 0.000

ψ̃0 0.1797 0.000 0.2482 0.000
ψ̃1 0.1816 0.000 0.2671 0.000
ψ̃2 0.9833 0.000 0.9362 0.000

β̃0 0.3449 0.000 0.6797 0.000
β̃1 0.6232 0.000 0.3105 0.000
β̃2 0.0671 0.000 0.0959 0.000

γ̃0 -0.0797 0.000 -0.0258 0.003
γ̃1 0.0709 0.000 -0.0134 0.253
γ̃2 0.0144 0.003 0.3102 0.528

d 0.4952 0.000 0.3526 0.000

Table 5: Quasi-maximum likelihood estimates of the models with 24 periods but with constrained
parameters periodicity (see section 7.2).
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FI-PEGARCH(1,d,0) SFI-PEGARCH(1,d,0)

Qbηt
(5) 4.479 4.420

p-value 0.483 0.491
Qbηt

(25) 34.377 38.738
p-value 0.100 0.039
Qbηt

(500) 530.819 534.264
p-value 0.164 0.140
Qbη2

t
(5) 7.610 5.073

p-value 0.179 0.407
Qbη2

t
(25) 15.059 11.503

p-value 0.940 0.990
Qbη2

t
(500) 732.945 571.422

p-value 0.000 0.015

F-test seasonality (p-value): 0.000 0.000

d̂ (η̂2
t ) m = 110 -0.012 -0.0023

(0.081) (0.073)
Log-likelihood function -15307.579 -15386.09

Schwarz criterion (SC) 2.498 2.510

Table 6: Diagnostic tests for models with constrained periodic parameters. The test statis-
tics are computed for models estimated with the normal density. Ljung-Box test statistics
for standardized residuals (Qbηt

) and square standardized residuals (Qbη2
t
) are computed for the

number of lags reported in parentheses. The Schwarz Information Criterion is computed as
SC = −L(θ̂)/T + p ln T

T . where p is the number of parameters and T is the number of ob-
servations. The seasonality test is the F test of the regression of the standardized squared
residual (η̂2

t ) on a set of 23 dummies, one for each hour. d̂ is the estimated fractional integration
parameter of the standardized squared residuals, standard error is in parenthesis.

29



FI-PEGARCH(1,d,0) SFI-PEGARCH(1,d,0)
estimate p-value estimate p-value

c 0.0201 0.008 0.0126 0.072

ω1 -0.0937 0.103 0.1808 0.002
ω2 1.6477 0.000 1.6084 0.000
ω3 1.8104 0.000 1.7112 0.000

ψ1 0.3990 0.000 0.3835 0.000
ψ2 0.0902 0.000 0.0014 0.300
ψ3 0.1048 0.001 0.0907 0.000

β1 0.1134 0.077 0.5557 0.000
β2 0.7320 0.000 0.9916 0.000
β3 0.6960 0.000 0.8793 0.000

γ1 -0.0982 0.000 -0.0367 0.002
γ2 -0.0222 0.093 -0.0140 0.000
γ3 -0.0721 0.002 -0.0816 0.000

d 0.3010 0.000 0.4112 0.000

Table 7: Quasi-maximum likelihood estimates of models with three periods (see section 7.3).
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FI-PEGARCH(1,d,0) SFI-PEGARCH(1,d,0)

Qbηt
(5) 6.315 4.413

p-value 0.277 0.492
Qbηt

(25) 36.723 39.271
p-value 0.061 0.035
Qbηt

(500) 565.355 537.689
p-value 0.023 0.118
Qbη2

t
(5) 1.017 6.500

p-value 0.961 0.261
Qbη2

t
(25) (25 lags) 30.437 28.170

p-value 0.208 0.300
Qbη2

t
(500) 1175.941 605.941

p-value 0.000 0.001

F-test seasonality (p-value): 0.000 0.000

d̂ (η̂2
t ) m = 110 -0.016 -0.0071

(0.071) (0.072)
Log-likelihood function -15956.20 -15712.17

Schwarz criterion (SC) 2.603 2.563

Table 8: Diagnostic tests of models estimated with three periods. The test statistics are
computed for models estimated with the normal density. Ljung-Box test statistics for stan-
dardized residuals (Qbηt

) and square standardized residuals (Qbη2
t
) are computed for the num-

ber of lags reported in parentheses. The Schwarz Information Criterion is computed as
SC = −L(θ̂)/T + p ln T

T . where p is the number of parameters and T is the number of ob-
servations. The seasonality test is the F test of the regression of the standardized squared
residual (η̂2

t ) on a set of 23 dummies, one for each hour. d̂ is the estimated fractional integration
parameter of the standardized squared residuals, standard error is in parenthesis.
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Figure 9: Average of in-sample forecasts of FI-PEGARCH(1,d,0) (dashed line) and average
hourly realized volatility (solid line). Top panel FI-PEGARCH(1,d,0) with 24 periods, mid
panel FI-PEGARCH(1,d,0) with three periods, FI-PEGARCH(1,d,0) with restricted pattern in
the bottom panel

Figure 10: Average of in-sample forecasts of SFI-PEGARCH(1,d,0) (dashed line) and average
hourly realized volatility (solid line). Top panel SFI-PEGARCH(1,d,0) with 24 periods, mid
panel SFI-PEGARCH(1,d,0) with three periods, SFI-PEGARCH(1,d,0) with restricted pattern
with restricted pattern in the bottom panel
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A Proofs

Proof of Proposition 4.1.
The FI-PEGARCH(1,d,0) can be written as:

(1− β1sL) log ht = (1− β1s)ωs + (1− L)−dgs(ηt−1)

Take the exponential and raise both sides of the equation to the power m

hm
t = exp{m(1− β1s)ωs} exp{m(1− L)−dgs(ηt−1)}hmβ1s

t−1 (A.1)

If we solve (A.1) recursively we get

hm
t = exp

{
m(1− β1s)ωs

n∑

i=1

βi−1
1s

}
exp{m(1− L)−d

n∑

i=1

βi−1
1s gs(ηt−i)}hmβn

1s
t−n (A.2)

Assuming that |β1s| < 1, ∀s and letting n →∞ then

hm
t = exp{mωs} exp

{
m(1− L)−d

∞∑

i=1

βi−1
1s gs(ηt−i)

}
(A.3)

using (4.4)
hm

t = exp{mωs} exp {mλs(L)gs(ηt−1)} (A.4)

Now, given that ht and ηt are uncorrelated, the even moments of yt are equal to

E
[|yt|2m

]
= E

[
|ηt

√
ht|2m

]

= E[|ηt|2m] E[hm
t ]

= ν2m exp{mωs}E [exp {mλs(L)gs(ηt−1)}]

= ν2m exp{mωs}
∞∏

i=0

E [exp{mλi,sgs(ηt−1−i)}] .

where ν2m = E[|ηt|2m]. Since the kurtosis of yt is defined as ky,s = E[(yt)4]
E[(yt)2]2

, setting m = 1 for
the numerator and m = 2 for the denominator, respectively, we obtain

ky,s = ν4

∏∞
i=0 E [exp{2λi,sgs(ηt−1−i)}]

{∏∞
i=0 E [exp{λi,sgs(ηt−1−i)}]}2 . (A.5)

The same procedure is followed for the SFI-PEGARCH(1,d,0), where λs(L) = (1− β1sL)−1(1−
LS)−d.
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Proof of Proposition 4.2
The autocorrelation function is defined as

ρm,s(n) =
E[y2m

t y2m
t−n]− [E(y2m

t )][E(y2m
t−n)]

(
E[y4m

t ]− [E(y2m
t )]2

)1/2 (
E[y4m

t−n]− [E(y2m
t−n)]2

)1/2
. (A.6)

Multiply both sides of (A.2) by hm
t−n and η2m

t η2m
t−n, knowing that

n−1∑
i=0

βi
1s = (1− βn

1s)(1− β1s)−1,

y2m
t y2m

t−n = η2m
t η2m

t−n exp {m(1− βn
1s)ωs} exp

{
m(1− L)−d

n∑

i=1

βi−1
1s gs(ηt−i)

}
h

m(1+βn
1(s)

)

t−n . (A.7)

and taking expectations yields

E[y2m
t y2m

t−n] = ν2m exp {m(1− βn
1s)ωs}E

[
η2m

t−n exp

{
m(1− L)−d

n∑

i=1

βi−1
1s gs(ηt−i)

}]
×

E
[
h

m(1+βn
1s)

t−n

]
. (A.8)

By eq.(A.4), we know that

E
[
h

m(1+βn
1s)

t−n

]
=exp{mωr(1 + βn

1s)}
∞∏

i=1

E [exp{m(1 + βn
1s)λi,rgr(ηt−n−i)}] (A.9)

where r denotes the period corresponding to time t−n. Then, replacing E
[
h

m(1+βn
1s)

t−n

]
in (A.8)

with the expression in (A.9) we obtain

E[y2m
t y2m

t−n] = ν2m exp {m[(ωr + ωs) + βn
1s(ωr − ωs)]}

E

[
η2m

t−n × exp

{
m(1− L)−d

n∑

i=1

βi−1
1s gs(ηt−i)

}]
×

∞∏

i=1

E [exp{m(1 + βn
1s)λi,rgr(ηt−n−i)}]

denoting χs(L) = (1− L)−d
n∑

i=1
βi−1

1s Li−1 = 1 + χ1,sL + . . ., then

E[y2m
t y2m

t−n] = ν2m exp {m[(ωr + ωs) + βn
1s(ωr − ωs)]}E

[
η2m

t−n

∞∏

i=0

exp {mχi,sgs(ηt−1−i)}
]
×

∞∏

i=1

E [exp{m(1 + βn
1s)λi,rgr(ηt−n−i)}]

= ν2m exp {m[(ωr + ωs) + βn
1s(ωr − ωs)]}E

[
η2m

t−n exp {mχn−1,sgs(ηt)}
]

n−2∏

i=0

E [exp {mχi,sgs(ηt)}]
∞∏

i=n

E [exp {mχi,sgs(ηt)}]
∞∏

i=1

E [exp{m(1 + βn
1s)λi,rgr(ηt)}]
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Furthermore, we know that

E[y2m
t ] = ν2m exp{mωs}

∞∏

i=0

E [exp{mλi,sgs(ηt)}]

The numerator in (4.11) is equal to

E[y2m
t y2m

t−n]− [E(y2m
t )][E(y2m

t−n)] =ν2m exp {m[(ωr + ωs) + βn
1s(ωr − ωs)]}

E
[
η2m

t exp {mχn−1,sgs(ηt)}
] n−2∏

i=0

E [exp {mχi,sgs(ηt)}]×
∞∏

i=n

E [exp {mχi,sgs(ηt)}]
∞∏

i=1

E [exp{m(1 + βn
1s)λi,rgr(ηt)}]−

ν2
2m exp{m(ωs + ωr)}

( ∞∏

i=0

E [exp{mλi,sgs(ηt)}]
)
×

( ∞∏

i=0

E [exp{mλi,rgr(ηt)}]
)

.

The variance of y2m
t is given by

E[y4m
t ]− (E[y2m

t ])2 = ν4m exp{2mωs}
∞∏

i=1

E [exp{2mλi,sgs(ηt)}]−

ν2
2m exp{2m ωs}

( ∞∏

i=0

E [exp{mλi,sgs(ηt)}]
)2

then the denominator is

exp{m (ωr + ωs)}

ν4m

∞∏

i=1

E [exp{2mλi,sgs(ηt)}]− ν2
2m

( ∞∏

i=0

E [exp{mλi,sgs(ηt)}]
)2




1/2

×


ν4m

∞∏

i=1

E [exp{2mλi,rgr(ηt)}]− ν2
2m

( ∞∏

i=0

E [exp{mλi,rgr(ηt)}]
)2




1/2

The same procedure can be followed for the SFI-PEGARCH(1,d,0) simply setting λs(L) ≡
(1− LS)−d(1− β1sL)−1, and χs(L) = (1− LS)−d

n∑
i=1

βi−1
1s Li−1.

41


	prima q210.pdf
	Long memory and Periodicity in Intraday Volatilities
	of Stock Index Futures


