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Abstract

Multivariate GARCH models are in principle able to accommodate the features
of the dynamic conditional correlations processes, although with the drawback, when
the number of financial returns series considered increases, that the parameterizations
entail too many parameters.In general, the interaction between model parametriza-
tion of the second conditional moment and the conditional density of asset returns
adopted in the estimation determines the fitting of such models to the observed dy-
namics of the data. This paper aims to evaluate the interactions between conditional
second moment specifications and probability distributions adopted in the likelihood
computation, in forecasting volatilities and covolatilities. We measure the relative
performances of alternative conditional second moment and probability distributions
specifications by means of Monte Carlo simulations, using both statistical and finan-
cial forecasting loss functions.
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hood, Monte Carlo methods
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1 Introduction

Predicting the second order moments in assets returns is important for many issues in
financial econometrics and in applications like asset pricing, portfolio optimization, risk
management, etc. The results on multivariate GARCH models show that this class of
multivariate volatility models is able to accommodate the features of dynamic correlation
processes. The main drawback is a rapidly increasing number of parameters with the
cross-sectional dimension of the dataset considered.

More recently, several models have been proposed that have a fair amount of generality
while keeping the number of parameters at a reasonable level. However, simpler conditional
covariance models can be highly misspecified, yielding severely distorted forecasts.

Moreover, it is well know that the interaction between the covariance parametrization
and the conditional density of asset returns adopted in the quasi-maximum likelihood
estimation procedures determines the fitting of such models to the dynamics of the data.

This paper aims to evaluate the interactions, in forecasting volatilities and covolatili-
ties, between conditional second moment specifications and probability distributions adopted
in the likelihood computation. We measure, by means of Monte Carlo simulations, the rel-
ative performances of alternative conditional second moment and probability distributions
specifications using both statistical and financial forecasting loss functions.

In order to compare the competing models, we adopt simulated datasets. The Data
Generator is a generalization of the multivariate stochastic volatility model proposed by
Danielsson (1998). Our generator is able to generate time-varying dynamic correlations,
leverage effects within and between assets, volatility clustering and asset specific kurtosis
and skewness. The Monte Carlo analysis is motivated by the fact that the precision
of the ex-post analysis is affected by the observability of the true volatilities which are
indeed unobservable on the markets. As for the choice of the Data Ganerating Process,
we choose a process external to the class of models compared in our analysis for two sets
of reasons: first, multivariate stochastic volatility models are coherent with the hypothesis
that asset prices in a no-arbitrage and frictionless market follow semi-martingale processes
(see e.g. Shephard and Andersen (2008)); second, considering as DGP a structure which
is external to the class of competing models allows us to fairly compare the alternative
forecasts. We limit our analysis to bivariate models, hence our Monte Carlo experiment
does not take into account the problems connected with the curse of dimensionality and
feasibility considerations in general.

More in details, the results of our Monte Carlo experiment illustrate the effect that the
choices of the conditional covariance process, assumed to be multivariate GARCH, and
of the log-likelihood used in the estimation (both misspecified by construction) have on
the prediction performances, as measured by statistical loss functions and Value-at-risk
forecasting.

The models considered are the Dynamic Conditional Correlations (DCC) Model, the
Asymmetric DCC-EGARCH, and the BEKK parametrizations using quasi maximum like-
lihood with Normal, Student’s t Copula, multivariate Laplace, multivariate t and the
recently introduced Multiple Degrees of Freedom Student’s t distribution (Serban et al.,
2007).

The forecasts are evaluated through several statistical criteria, among which we also
consider the results from the Mincer-Zarnowitz regressions and the related hypothesis
testing procedures.

Finally, to rank the models with respect to their asset allocation performances we
forecast the Value-at-Risk (VaR) metric at 99% over an holding period of 1 day, and we
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evaluate these forecasts by means of the unconditional coverage rate and of the Dynamic
Quantiles (DQ) test (Engle and Manganelli (1999)).

First, for what concerns the results, our exercise shows that explicitly modeling the
leverage effects present in the data strongly improves the forecasting ability only if the
leptokurtosis is correctly accounted for.

While both DCC specifications, with Gaussian disturbances, lead to strong under-
estimation of the VaR, assuming DCC specifications and allowing for leptokurtic error
distributions leads to a sensible enhancement in the risk measurement performances of
these models. BEKK models with Normal distributions completely fail to describe the
tail behavior of our data set, while assuming Laplace and multivariate t distributions for
the innovations leads to a strong overestimation of the VaR. Finally, for the BEKK models
coupled with the Multiple Degree of Freedom t, the mean fraction of VaR violations is the
best match of the correct one and, the number of DQ rejections is the lowest among all
the models considered.

The paper is structured as follows. The models are introduced in Section 2, while
Section 3 reports the log-likelihoods for each model and density function considered. The
Data Generating Process and the evaluation measures are introduced in Section 4; Section
5 reports the results of the Monte Carlo experiments. Finally, Section 6 concludes the
paper.

2 The models

We suppose that the N -vector of asset returns rt has a conditional distribution:

rt|ℑt−1 ∼ D(0,Ωt) t = 1, . . . , T (1)

whereD is a continuous distribution and ℑt−1 is the information set at time t−1 (Et−1[·] ≡
E[·|ℑt−1], hereafter). Ωt is the conditional variance-covariance matrix, assumed to be time-
varying.
We consider the following Multivariate GARCH (MGARCH, hereafter) parameterizations
of Ωt:

• The Dynamic Conditional Correlation GARCH (DCC )

• The Asymmetric DCC EGARCH (ADCC )

• The Scalar BEKK (SBEKK )

• The Diagonal BEKK (DBEKK )

We estimate each of the above models using different densities for the likelihood function.
The assumed processes for the conditional covariances are misspecified by construction,
as explained in Section 4.

2.1 Dynamic Conditional Correlation Models

2.1.1 DCC-GARCH

In the Dynamic Conditional Correlation GARCH, introduced by Engle (2002), as an
extension of Bollerslev’s Constant Conditional Correlation Model (Bollerslev (1990)), the
conditional variance-covariance matrix is written as:

Ωt = HtRtHt t = 1, . . . , T
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where Rt is the conditional correlation matrix, and the standardized returns are defined
as:

ǫt = H−1
t rt t = 1, . . . , T

where Ht = diag{σ1t, . . . , σNt} with

σit = V art−1[rit]
1/2 i = 1, . . . , N t = 1, . . . , T

where the σ2
it are modeled as univariate GARCH processes. The conditional variance-

covariance matrix of ǫt is the conditional correlation matrix of the asset returns,

Et−1(ǫtǫ
′
t) = H−1

t ΩtH
−1
t = Rt = {ρij,t} t = 1, . . . , T.

The conditional correlation can be expressed as a function of the conditional covariance,
qijt = Et−1[ǫitǫjt], and of the conditional variances, qiit = Et−1[ǫ

2
it] that is

ρij,t =
qij,t√
qii,tqjj,t

.

The conditional covariances and variances are modeled with a GARCH(1,1) model:

qij,t = ρij + α(ǫi,t−1ǫj,t−1 − ρij) + β(qij,t−1 − ρij) (2)

where ρij = Corr(ǫitǫjt). The unconditional variance of ǫi,t is ρii = 1. Finally, it is
assumed that

ρij
∼= qij.

The conditional covariance matrix of ǫt, Qt, is positive definite as long as it is a weighted
average of positive definite and semidefinite matrices. In matrix form:

Qt = (1 −A−B)Q+A(ǫt−1ǫ
′
t−1) +B(Qt−1) (3)

where Q is the unconditional covariance matrix of ǫt, and A and B are two scalars. The
DCC model specification is:

rt|ℑt−1 ∼ D(0,Ωt)

ǫt = H−1
t rt

σ2
it = ωi + αir

2
it−1 + βiσ

2
it−1 (4)

Qt = (1 −A−B)Q+A(ǫt−1ǫ
′
t−1) +B(Qt−1) (5)

Rt = diag{Qt}−1/2 Qt diag{Qt}−1/2. (6)

The unconditional correlation matrix Q is estimated by the sample correlation matrix
S = 1

T

∑
t ǫ̂tǫ̂

′
t.

2.1.2 Asymmetric DCC-EGARCH

The DCC can be extended to include an asymmetric term. The asymmetric DCC speci-
fication, with conditional variances modeled as an EGARCH(1,0), is:

ǫt = H−1
t rt

σ2
it = exp

(
ωi + αiǫit−1 + δi (|ǫit−1| − E [ǫit−1]) + βi log(σ2

it−1)
)

(7)

Qt = (Q−AQ−BQ− CN) +A(ǫt−1ǫ
′
t−1) +B(Qt−1) + C(ηt−1η

′
t−1) (8)

Rt = diag{Qt}−1/2Qt diag{Qt}−1/2. (9)
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ηt = I(ǫt < 0) ⊙ ǫt

(⊙ is the Hadamard product) with A, B and C scalars and

N = E
[
ηtη

′
t

]
.

The unconditional covariance of negative shocks N is estimated by

1

T

T∑

t=1

η̂tη̂
′
t.

2.2 BEKK parameterization of MGARCH

2.2.1 Diagonal BEKK

The Multivariate GARCH(1,1) model can be parameterized as follows:

Ωt = CC ′ +Art−1r
′
t−1A

′ +BΩt−1B
′ (10)

where this parameterization, called BEKK (from the authors: Baba Engle Kraft and
Kroner), guarantees the positive definiteness of the conditional variance matrix Ωt (see
Engle and Kroner (1995)). An obvious restriction is to assume that the matrices A and
B are diagonal.

2.2.2 Scalar BEKK

We can further restrict the matrices A and B to be scalars, a and b, so that

Ωt = CC ′ + a2rt−1r
′
t−1 + b2Ωt−1 (11)

in this way the only difference among the individual conditional variances and covariances
lies in the intercept term.

3 The likelihoods

3.1 DCC - Normal log-likelihood

When the conditional density of rt, D(0,Ωt), is a Multivariate Normal density, i.e. N(0,Ωt)

f(rt; 0,Ωt) =
1

((2π)N |Ωt|)1/2
exp

(
−(r′tΩ

−1
t rt)

2

)

the log-likelihood of the DCC-GARCH model can be expressed as:

LT (θ) = −1

2

T∑

t=1

(
N log(2π) + log |Ht|2 + r′tH

−2
t rt + ǫ′tR

−1
t ǫt − ǫ′tǫt + log |Rt|

)

The parameter vector θ includes the parameters in the conditional variance processes σ2
it,

ψ, as well as φ, the parameters in the correlation processes Rt. The log-likelihood function
can be written as the sum of two components. The first is the Volatility component:

LV (ψ) ≡ LV,T (ψ) = −1

2

T∑

t=1

(N log(2π) + log |Ht|2 + r′tH
−2
t rt)

= −1

2

T∑

t=1

N∑

i=1

(
log (2π) + log (σ2

it) +
r2it
σ2

it

)
(12)
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The second is the Correlation component:

LC(ψ, φ) ≡ LC,T (ψ, φ) = −1

2

T∑

t=1

(ǫ′tR
−1
t ǫt − ǫ′tǫt + log |Rt|) (13)

Once we have estimated the returns conditional variances σ2
it we can compute the stan-

dardized residuals ǫ̂it = rit/σ̂it and employ them in the maximization of LC .

3.2 DCC - Laplace log-likelihood

An alternative assumption for the conditional distribution of the returns is represented
by the asymmetric multivariate Laplace (see Cajigas and Urga (2007)). The conditional
asymmetric Laplace multivariate density of the vector rt is given by:

f(rt;m,Ωt) =
2 exp (r′tΩ

−1
t m)

(2π)N/2|Ωt|1/2

(
r′tΩ

−1
t rt

2 +m′Ω−1
t m

)ν/2

Kν

(√
(2 +m′Ω−1

t m)(r′tΩ
−1
t rt)

)
,

where ν = (2− d)/2 and Kν(u) is the modified Bessel function of the second kind (see the
Appendix for details). The log-likelihood of DCC models is

LT (θ) =
T∑

t=1

{
r′tΩ

−1
t m− 1

2
log |Ωt| +

ν

2

(
log (r′tΩ

−1
t rt) − 2 log (2 +m′Ω−1

t m)
)}

+

T∑

t=1

{
logKν

(√
(2 +m′Ω−1

t m)(r′tΩ
−1
t rt)

)}

then replacing Ωt = HtRtHt

LT (θ) =
T∑

t=1

{
r′t(HtRtHt)

−1m− 1

2
log |HtRtHt| +

ν

2

(
log (r′t(HtRtHt)

−1rt)
)}

+

T∑

t=1

{
−ν

2
log (2 +m′(HtRtHt)

−1m)

+ logKν

(√
(2 +m′(HtRtHt)−1m)(r′t(HtRtHt)−1rt)

)}
. (14)

We assume that m = 0 (which corresponds to the symmetric stable Laplace distribution).
We can now proceed with the maximization of (14) w.r.t. θ.

3.3 DCC - Copula log-likelihood

The multivariate density of rt is in this case constructed using copulae. There are many
types of parametric copulae that can be used to model different dependency relationship.
In this paper we adopt a conditional multivariate distribution where each of the conditional
univariate margins follows a t distribution linked via a Student’s t Copula (see Serban et
al. (2007) for a similar application). The Student copula function is defined as

CRt,ν(u1, . . . , uN ) = TRt,ν(t
−1
ν (u1), . . . , t

−1
ν (uN ))

where TRt,ν is the c.d.f. of the multivariate t with conditional correlation matrix Rt

and common degree of freedom parameter ν, with t−1
ν being the inverse of the univariate

5



Student’s t distribution. The density function for the Student copula is

c(u1, . . . , uN |Rt, νC) = |Rt|−1/2
Γ
(

νC+N
2

) [
Γ
(

νC

2

)]N (
1 + 1

νC
ζ ′R−1

t ζ
)−(νC+k)/2

[
Γ
(

νC+1
2

)]N
Γ
(

νC

2

)∏N
i=1

(
1 +

ζ2
i

νC

)−(νC+1)/2
(15)

where ζi = t−1
νC

(ui).
The marginal model for each return series is:

rit =

√
νi − 2

νi
σityit

yit ∼ i.i.d.t(0, 1, νi), i = 1, . . . , N are i.i.d. Student’s t with νi degrees of freedom.

fi(rit; νi) =
Γ((νi + 1)/2)√
(νi − 2)πΓ(νi/2)

(
1 +

r2it
(νi − 2)σ2

it

)−(νi+1)/2

σ−1
it νi > 2

The σit are modeled as in Eq. (4) or Eq. (7). The component of the log-likelihood for the
t-th observation corresponding to the marginal densities is:

lm,t(ψ) =
N∑

i=1

{
log Γ

(
νi + 1

2

)
− log Γ

(νi

2

)
− 1

2
log π − 1

2
log (νi − 2)

−νi + 1

2
log

(
1 +

r2it
(νi − 2)σ2

it

)
− 1

2
log σ2

it

}
(16)

while that from the Student copula is:

lc,t(φ) = − 1

2
log |Rt| + log Γ

(
νC +N

2

)
− νC +N

2
log

(
1 +

1

νC
ζ ′R−1

t ζ

)

+ (N − 1) log
[
Γ
(νC

2

)]
−N log

[
Γ

(
νC + 1

2

)]
− νC + 1

2

N∑

i=1

log

(
1 +

ζ2
i

νC

)

(17)

The correlation matrix Rt in the Student copula (15) is modeled as in Eq. (5)-(6) or
as in Eq. (8)-(9).
Thus the log-likelihood function is obtained as the sum of the two parts:

lt(ψ, φ) = lm,t(ψ) + lc,t(φ)

and it is sequentially maximized. We firstly maximize the marginal components with
respect to the vector ψ, which includes the parameters of the processes σ2

it and the degree
of freedom parameters νi, different in each marginal density, and secondly the copula part,
with respect to the parameters in φ, that is νC and those in the processes of Rt.

A drawback of the proposed copula model is that the copula correlation is not exactly
the correlation between returns. Instead, it is the correlation between the transformed
returns. In other words, we can see in Eq. (15) that the arguments of the Student copula
are the transformations ζi = t−1

ν (ui). Thus, Rt is the correlation matrix between these
transformed marginals. The actual correlations between returns can be obtained using
simulations as in Serban et al. (2007), even if the approximation error is negligible, at
least in the bivariate case.
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3.4 BEKK - Normal log-likelihood

Let θ = (vec(C)′, vec(A)′, vec(B)′)′ be the parameter vector of the diagonal BEKK. The
normal log-likelihood in this case is:

lt (θ) = −N
2

log (2π) − 1

2
log |Ωt| −

1

2
ǫ′tΩ

−1
t ǫt. (18)

3.5 BEKK - Laplace log-likelihood

The BEKK Symmetric Multivariate Laplace log-likelihood for observation t is:

lt(θ) = −1

2
log |Ωt| +

ν

2

(
log (r′tΩ

−1
t rt) − 2 log (2)

)
+ logKν

(√
2(r′tΩ

−1
t rt)

)

3.6 BEKK - Multivariate Student’s t log-likelihood

A natural alternative to the multivariate Gaussian density is the Student density, see
Harvey et al. (1992) and Fiorentini et al. (2003). The latter has an extra scalar parameter,
the degrees of freedom parameter, denoted ν hereafter. When this parameter tends to
infinity, the Student density tends to the normal density. When it tends to zero, the tails
of the density become thicker and thicker. The value of ν indicates the order of existence
of the moments: e.g. if ν = 2 , the second-order moments do not exist, but the first-
order moments exist. For this reason, it is convenient (although not necessary) to assume
that ν > 2, so that Ωt is always interpretable as a conditional covariance matrix. The
multivariate Student’s t density for rt is

f

(
rt; 0,

ν − 2

ν
Ωt, ν

)
=

Γ
(

ν+N
2

)

Γ
(

ν
2

)
[π(ν − 2)]N/2

|Ωt|−1/2

[
1 +

r′tΩ
−1
t rt

ν − 2

]−N+ν

2

then the log-likelihood function for observation t results to be:

lt(θ) = log Γ

(
ν +N

2

)
− log Γ

(ν
2

)
− N

2
log π − N

2
log (ν − 2)

− N + ν

2
log

(
1 +

r′tΩ
−1
t rt

ν − 2

)
− 1

2
log |Ωt| .

3.7 BEKK - Multiple Degrees of Freedom Student’s t log-likelihood

To allow different levels of heavy tailedness for different error terms we adopt the Multiple
Degrees of Freedom t (MDFt, hereafter) introduced by Serban et al. (2007). Let the
returns be generated as:

rt = Ω
1/2
t zt t = 1, . . . , T

with

zit =

√
νj − 2

νj
yit i = 1, . . . , N t = 1, . . . , T

where yit ∼ i.i.d.t(0, 1, νi), i = 1, . . . , N

f(yit; 0, 1, νi) =
Γ((νi + 1)/2)√
(νiπ)Γ(νi/2)

(
1 +

y2
it

νi

)−(νi+1)/2

νi > 2

7



then zit is a standardized student’s t random variable with density:

g

(
zit; 0,

νi − 2

νi
, νi

)
=

Γ((νi + 1)/2)√
(νi − 2)πΓ(νi/2)

(
1 +

z2
it

νi − 2

)−(νi+1)/2

νi > 2

Given the independence assumption of yit the joint density of zt = (z1t, . . . , zNt)
′ is given

by

G(zt; ν) =
N∏

j=1

g

(
zit; 0,

νi − 2

νi
, νi

)

with ν = (ν1, . . . , νN )′, therefore the conditional density of rt is:

D(rt; θ) = G(Ω
−1/2
t rt; ν)|det Ω

−1/2
t |

with

G(Ω
−1/2
t rt; ν) =

N∏

j=1

√
νj − 2

νj

N∏

j=1

f

(
u′jΩ

−1/2
t rt√

(νj − 2)/νj

; νj

)

,

or alternatively

G(Ω
−1/2
t rt; ν) =

N∏

j=1

√
νj − 2

νj

N∏

j=1

g
(
u′jΩ

−1/2
t rt; νj

)
,

with uj = (0, . . . , 1, . . . , 0)′ where 1 is in the j -th position. Finally the t-th contribution
to the log-likelihood function is

lt(θ) =
K∑

j=1

log

√
νj − 2

νj
+

K∑

j=1

log f

(
u′iΩ

−1/2
t rt√

(νj − 2)/νj

; νj

)
− 1

2
log |Ωt|.

4 Data Generating Process and Monte Carlo setup

In order to obtain simulated data which are able to mimic as closely as possible the stylized
facts observable in real financial time series at daily frequency, we decide to implement
a Data Generating Process simulator as in Danielsson (1998). Despite the fact that this
Multivariate Stochastic Volatility model is able to accomodate volatility clustering and
leverage effects both within and across assets, we further generalize the model in order
to introduce different levels of excess kurtosis in the shocks of both the returns and the
volatilities. This has been achieved coupling univariate Student’s t distributions with
νj, j = 1, . . . , 4 degrees of freedom for each innovation with a Student’s t copula with νC

degrees of freedom. In addition, we relaxed the original assumption of constant correlation
between the innovations of the returns, allowing this correlation to evolve through time
following a function of the cosine of the time index.

In particular, we assume that the bivariate Data Generating Process is defined as:

yt = Ψtǫt (19)

where Ψ′
tΨt = Ωt is the 2 × 2 covariance matrix and ǫt is a 2 × 1 vector of independent

shocks to returns. The covariance matrix can be further decomposed as follows:

Ωt = HtRtHt (20)
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Table 1: Parameters of the Data Generating Process

Univariate volatility parameters

ω1 δ1 γ1 ω2 δ2 γ2

0.01 0.96 0.23 -0.04 0.95 0.34

Degrees of freedom

ν1 ν2 ν3 ν4 νC

7 12 5 10 8

Leverage parameters and volatility innovations correlation

L11 L22 L12 ς
-0.4 -0.3 -0.1 0.32

where Ht is a diagonal matrix containing the square root of the univariate volatilities, and
Rt is the time varying correlation matrix.

The volatility of each asset is modeled via the univariate stochastic volatility process

ht,i = exp[ωi + δi log(ht−1,i) + γiηt,i], i = 1, 2 ; (21)

while for the dynamic correlation matrix we adopt the specification shown in Eq.(22),
which allows the correlation to oscillate between the maximum of 0.7 and the minimum
of 0.3 within a period of 1000 observations:

R12,t = R21,t = ρt

ρt = 0.5 + 0.2 cos

(
2πt

1000

)
. (22)

As far as the volatility shocks ηt are concerned, we impose unit variance and fixed
covariance ς to these shocks. Finally, in order to introduce both within and across assets
leverage effects, we impose that the covariance matrix of returns and volatilities shocks
L = E(ǫtη

′
t) 6= 0. The diagonal elements of L contain the within asset leverage effects,

while the non-diagonal elements induce the across assets leverage.
The values of the parameters chosen for our Monte Carlo experiment are shown in

Table 1. Choosing these values for the parameters of the DGP, we are able to closely
match the descriptive statistics of the NASDAQ 100 and of the S&P 500 indexes.

4.1 Copula simulation and Monte Carlo setup

Obtaining innovations with a dependence structure described by an elliptical copula is
straightforward, even if the computational burden is almost fifteen times bigger than that
associated to the simulation of a multivariate normal distribution.

Firstly, we need to draw the innovations from a four-variate t distribution with νC

degrees of freedom and correlation matrix given by

CC =





Rt L

L
1 ς
ς 1




.
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There is statistical dependence between these four variables, and each has a Student’s t
marginal distribution.

Next, we apply the Student’s t cumulative distribution function separately to each
variable, changing the marginal distributions into Uniform distributions over the interval
(0, 1). At this point the statistical dependence is that proper of the multivariate t distri-
bution, but the marginal distributions are Uniforms over the interval (0, 1): we obtained
a sample with a t Copula distribution with νC degrees of freedom and correlation matrix
given by CC . Finally, we exploit the fact that applying the inverse c.d.f. of any distribution
F to a U(0, 1) random variable results in a random variable whose distribution is exactly
F ; hence, we apply to each variable inverse t c.d.f. with d.o.f ν1 . . . ν4 and this concludes
our simulation algorithm.

Using the Danielsson model as Data Generating Process, we generate 100 independent
datasets with 3000 observations each, discarding the first 1000 observations of each sample
to minimize the initialization bias1.

A typical dataset obtained with this simulation algorithm is depicted in the left panel
of Figure 1, as well as the corresponding univariate volatilities. Table 2 reports summary
statistics for the same dataset.

Table 2: Descriptive statistics of a sample obtained with the Danielsson Generator

Statistic Series 1 Series 2

Mean 0.027 -0.016
Variance 1.215 0.602
Max 10.989 4.780
Min -4.783 -4.006
Skewness -0.810 0.273
Kurtosis 10.365 7.710
p-Normal < 1% < 1%

The first 1500 observations of each sample are used to estimate the 14 competing
models. The in-sample performances of the models are compared on the basis of the
mean Log-Likelihood, the mean Bayesian Information Criterion, the Mean Absolute Error
of the estimated correlation with respect to the true correlation and the mean distance
between the estimated conditional variance matrix and the true variance matrix, using
the Frobenius norm as decision criterion. These quantities are shown in Table 3.

4.2 Out-of-sample evaluation criteria

In order to assess the out-of-sample performances of the competing models, we use the last
500 observations of each sample to compare the one-step-ahead forecasting capabilities of
the models from both statistical and financial points of view. As statistical performance
criteria, we compute the Mean Absolute Forecasting Error for each model m over the 100
Monte Carlo replications:

1We decided to limit the number of simulations to 100 in order to contain the machine time of the
experiment to about 50 hours. All the routines were developed in Matlab

c© and the experiment run on a
PC equipped with an Intel

c© Q6600 CPU and 4GB of RAM.
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Figure 1: Typical bivariate dataset obtained with the Multivariate Stochastic Volatility
Generator with parameters chosen as in Table 1 (Left Panel) and corresponding volatilities
(Right Panel)

MAFE(m) =
1

N

N∑

i=1

|(em,T+i+1)| (23)

whereN = 500, T = 1500 and em,i is the forecasting error at time i, computed as the differ-
ence between the forecasted volatility and the actual volatility. This error statistic presents
the shortcoming that the underlying loss function is symmetric, since over-predictions and
under-predictions have the same weight. This is not a realistic assumption from a practical
point of view. In fact, for example, an under-prediction of stock price volatility will lead
to a downward biased estimate of the call option price, given the positive relation between
the volatility of underlying stock prices and call option prices. This under-estimate of the
price is more likely to be of greater concern to a seller than to a buyer; the reverse is
clearly true for over-predictions of stock price volatility. Having said that, as additional
performance measures, we include in our analysis the Mean Mixed Error of Underpredic-
tion (MMEU) and the Mean Mixed Error of Overprediction (MMEO), as suggested by
Brailsford and Faff (1996). The MMEU can be defined as:

MMEU(m) =
1

N

(
NU∑

i=1

√
|(em,T+i+1)| +

NO∑

i=1

|(em,T+i+1)|
)

(24)

while the MMEO as:

MMEO(m) =
1

N

(
NO∑

i=1

√
|(em,T+i+1)| +

NU∑

i=1

|(em,T+i+1)|
)

(25)

where NU is the number of times that the predicted conditional variance is smaller than
the actual one and NO its complementary. While computing these statistics, when the
absolute value of the forecast error is larger than unity, we square the error in order to
achieve the desired penalty. Finally, a ’biased’ forecast model can be viewed as one which
systematically over- or under-predicts, whereas an ’unbiased’ forecast model, when not
providing a perfect forecast, should over-predict 50 percent of the time and under-predict
50 percent of the time.
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The last statistic evaluation criterion presented in this work entails the classical Mincer-
Zarnowitz regression, which involves the regression of the realization of a variable on
its forecast; the forecast is optimal if the null hypothesis of zero intercept and unity
slope coefficient cannot be rejected. In our simulation study, we perform this test simply
by regressing the true volatilities on the forecasted volatilities2 . The univariate Mincer-
Zarnowitz regression takes the form:

σi,T+t = α+ βσ̂i,T+t + ǫT+t (26)

where i = 1, 2 indicates the appropriate volatility, T = 1500 is our in-sample threshold,
t = 1, . . . , 500 selects the appropriate forecast and observation while σi,T+t and σ̂i,T+t are
respectively the true variance and its forecast at time T + t. The covariance matrix of
the estimated regression parameters is constructed using the Newey and West estimator,
in order to control for heteroscedasticity and autocorrelation in the residuals. If the null
hypothesis α = 0 ∩ β = 1 cannot be rejected by a Wald test, the forecast can be considered
optimal with respect to the relevant filtration.

Furthermore, we implement a multivariate version of the Mincer-Zarnowitz test; in
this latter case, we adopt a slightly different approach from that suggested in Patton
and Sheppard (2008), since we regress the diagonal of the actual covariance matrix on
the diagonal of the forecasted covariance matrix using a Seemingly Unrelated Regression
Equations approach, rather than a panel estimator as suggested in Patton and Sheppard
(2008). Hence in our framework the Multivariate Mincer-Zarnowitz regression takes the
form:

diag(ΩT+t) = α+ β ⊙ diag(Ω̂T+t) + ǫT+t (27)

where the diag operator stacks the diagonal elements of a matrix in a column vector and
⊙ indicates the Hadamard product; α and β are in this case 2×1 vectors. As an indicator
of goodness of fit in these SURE regressions we adopt the McElroy systemwide measure:

R2 = 1 − ǫ̂′Σ̂−1ǫ̂

y′
(
Ŝ−1 ⊗

(
I − ιι′

N

))
y

(28)

where N is the number of observations in each equation, I is an N ×N identity matrix, ι
is a N × 1 vector of ones and y = vec({diag(ΩT+t)

′}t=1,...,500).

After the comparison between the forecast capabilities of these models measured with
statistical indicators, we now focus on an exercise of asset allocation in order to inspect
the forecasting abilities of these models when exploited in a financial context.

In order to do so, we forecast the Value at Risk at 99% over an holding period of 1
day using the last 500 observations of each sample as back-testing data, considering an
equally weighted portfolio and a rolling window of 1500 observations. This exercise is then
repeated for every Monte Carlo iteration.

The vectors of Value at Risk violations and forecasts allow us to perform the Dynamic
Quantile test proposed by Engle and Manganelli (1999) to assess the accuracy of these
forecasts. Let us define

HITt ≡ I(rp,t < V aRt) − θ

where θ is the percentile of interest in the probability distribution of the portfolio returns
rp,t

3, V aRt is the VaR forecast for day t, while I(x) is an indicator function that assumes

2Since our datasets are simulated, we do not need to rely on volatility proxies as in Patton and Sheppard
(2008).

3The first percentile when the VaR threshold is 99%.
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value 1 when x is true and 0 otherwise. The HIT function assumes value 1 − θ every
time rp,t < V aRt (i.e., every time a violation is realized) and −θ otherwise. Clearly the
expected value of HIT is zero. Furthermore, the conditional expectation of HIT given any
information known at t− 1 must also be zero. In particular, HITt must be uncorrelated
with any lagged HITt−k, with the forecasted V aRt and with a constant. If HITt satisfies
these moment conditions, then there will be no autocorrelation in the violations and there
will be the correct fraction of exceedences. A way to test this condition is to construct
the artificial regression:

HITt = δ0 + δ1HITt−1 + . . .+ δpHITt−p + δp+1V aRt + ut .

In matrix form:
HITt = Xδ + ut

where ut − θ ∼ Bernoulli(θ). A good forecasting model should produce a sequence of
unbiased and uncorrelated VaR violations, therefore the explanatory power of this artificial
regression should be zero. In this case the null hypothesis should be H0 : δ = 0. The
asymptotic distribution of the OLS estimator under the null is

δ̂ = (X ′X)−1X ′HIT
a∼ N

(
0, θ(1 − θ)(X ′X)−1

)
.

Hence, the Dynamic Quantile test statistic is

δ̂′X ′Xδ̂

θ(1 − θ)

a∼ χ2
p+2 .

5 Results

5.1 In sample results

Table 3 reports some decision criteria based on the in-sample performances of the com-
peting models. The entries of the Table are simply the averages over the 100 Monte Carlo
replications of the log-likelihoods and of the Bayesian Information Criteria4.

Looking at the Table, we can affirm that the more general formulations (ADCC-
EGARCH vs. DCC-GARCH and Diagonal vs. Scalar BEKK) are preferred by the BIC
criterion. The direct parametrization of the conditional correlation sensibly increases
the likelihood and decreases the fitting errors, for every distribution of the innovations.
Furthermore, we compare the estimated correlations with the true correlations by Mean
Absolute Error:

MAE =
1

T

∑
|ρ̂t − ρt| , (29)

and the estimated conditional variances with the true variances by the average Frobenius
norm of the difference between the diagonal elements of the estimated covariance matrices
and the diagonal elements of the true covariance matrix. These indicators confirm that
the DCC specifications are preferred to the BEKK parametrizations.

Looking now at the different performances induced by the choice of the distribution
for the innovations, we can observe how the Laplace distribution outperforms both the
Gaussian distribution and the t Copula. We expected this result with respect to the

4Unfortunately, we cannot compare the likelihood values of the models estimated using the Laplace
distribution with the Gaussian and Student’s t counterparts because of a constant involved in the numerical
integration of the modified Bessel function of the second kind.
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Table 3: Mean log-likelihood, Bayesian Information Criterion, Frobenius norm and Mean
Absolute Error of the 14 competing models

Model DCC N DCC L DCC C ADCC N ADCC L ADCC C

Log-like -3376.6 -1065.9 -3235.4 -3352.9 -1049.2 -3208.6
BIC 4.5417 1.4599 4.3670 4.5234 1.4525 4.4367
Frobenius 0.9108 0.8806 0.9088 0.8591 0.8226 0.8530
MAE 0.0881 0.0840 0.0962 0.0804 0.0963 0.1005

Model SBEKK N SBEKK L SBEKK t DBEKK N DBEKK L DBEKK t

Log-like -3505.2 -2860.7 -3361.3 -3495.1 -2838.3 -3352.1
BIC 4.7078 3.8484 4.5208 4.6845 3.8088 4.4986
Frobenius 0.9147 1.1300 0.8913 0.8980 1.0801 0.8869
MAE 0.1317 0.1264 0.1234 0.1291 0.1239 0.1261

Model SBEKK MDFt DBEKK MDFt

Log-like -3376.7 -3369.7
BIC 4.5364 4.5368
Frobenius 0.8890 0.8971
MAE 0.1205 0.1190

Gaussian distribution, but the relatively poor performance of the Copula model is indeed
puzzling, given that the data were drawn from a model with a structure rather close to
the structure of a Copula DCC.

Another interesting evidence of our experiment is that, considering the leverage effects
in volatilities, we sensibly improve the variance fitting, deteriorating at the same time the
correlation fitting.

Finally, estimating the BEKK models allowing for a non standard t Distribution with
different values of degrees of freedom for each univariate series, we are able to match
the performance of the BEKK models with the classic Multivariate t in terms of fitting
of the conditional volatilities, improving at the same time the fitting of the conditional
correlations.

5.2 Out of sample results

Table 4 reports the results of the out-of-sample comparison of the competing models
on the basis of the loss functions described in Eq. (23)-(24) and (25). The subscript
j = 1, 2 indicates the relevant volatility while NU and NO are, respectively, the number
of underpredictions and of overpredictions over the 500 out-of-sample observations. Every
entry in the Tables 4 and 6 is computed as the sample mean over the 100 Monte Carlo
replications of the relevant statistic.

We can observe, in general, how the DCC-GARCH and the BEKK specifications have
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similar performances as indicated by the MAFE criterion. On the other hand, the ADCC-
EGARCH parametrizations, able to capture the leverage effects present in the data, lead
to a substantial improvement of the forecasting accuracy. Quite interestingly, looking
at the forecasting accuracy of the first series characterized by an higher kurtosis of the
shocks of both the return and the volatility, we can observe how the MAFE criterion
prefers a Laplace distribution over a Student’s t when analyzing DCC models, whereas
the opposite holds when considering BEKK models. Focusing now on the second series,
less leptokurtic, we can observe how these differences in accuracy fade away, with the
simple Normal distribution being preferred by the MAFE criterion when coupled with the
DCC-GARCH and Scalar BEKK models.

Looking now more in detail at the BEKK performances, we can observe how the
forecasting accuracy of the diagonal specification is lower than the accuracy of the simpler
scalar specification for every distribution of the innovations analyzed, with the Multivariate
t preferred to the Multivariate Laplace which is, surprisingly, clearly outperformed even
by the Gaussian.

Concluding, we obtain some counterintuitive results; it seems, in fact, that increasing
the flexibility in the specification of the conditional variances (Diagonal BEKK vs. Scalar
BEKK) and/or in the distribution of the innovations (Student’s t marginal and Copula
vs. Multivariate Laplace and Multiple Degrees of Freedom t vs. Multivariate t) in order
to capture the heterogeneity of the 2 series, the forecasting accuracy is not improved,
despite the increased numerical complexity of the estimation procedures. On the other
hand, explicitly modeling the leverage effects present in the data strongly improves the
forecasting results.

Looking now at the asymmetric loss functions, we can observe how every model, with
the exceptions of the Scalar and Diagonal BEKK when coupled with Laplace innovations,
strongly underpredicts both the volatilities, given that the difference between MMEU and
MMEO is positive. Forecasting the second series, characterized by a lower kurtosis in
both the return and volatility shocks, is in a certain sense easier, and this is confirmed by
the shrinkage of the differences between MMEU and MMEO and by much more balanced
numbers of under and over predictions. This situation suggests how, forecasting the second
series, we underpredict the volatility in a smaller number of cases but the magnitude of
these underpredictions is bigger than that observed forecasting the first series.

If we now focus on the DCC models, we can observe how, with both series and every
probability distribution, modeling the leverage effects, both the MMEU and the MMEO
are decreased, increasing at the same time the difference between the number of under and
over predictions. This means that, despite the increased number of underpredictions, the
magnitude of these events has reduced substantially; this can be interpreted as another
evidence of the centrality of capturing the leverage effects when comparing forecasting
performances with these loss functions. On the other hand, we are not able to improve
the forecasting performances neither allowing for flexible distribution functions of the
univariate processes nor increasing the dimensionality of the BEKK parametrizations.

The analysis of the correlation between point forecasts reported in Table 5 reveals two
main interesting features. First, if we focus on the single class of models, e.g. DCC, we
notice that the forecasts are highly correlated across the distributions, suggesting that the
error distribution assumed for the estimation has a negligible impact on the description
of the dynamics of the data. Second, it seems that correlations across models are mainly
driven by the presence of an asymmetric specification, both in the conditional volatilities
and in the conditional correlations. For instance, the DCC is highly correlated with
BEKK specifications (both classes are symmetric) while the correlation between ADCC
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Table 4: Out of sample forecasting accuracy measures

Model MAFE1 MMEU1 MMEO1 NU1 NO1 MAFE2 MMEU2 MMEO2 NU2 NO2

DCC N 0.6585 1.3321 0.7637 329 171 0.4179 0.8607 0.6043 243 257
DCC L 0.6378 1.2210 0.7917 302 198 0.4213 0.8237 0.6399 228 272
DCC C 0.6504 1.2210 0.7677 322 178 0.4184 0.8237 0.6341 235 265
ADCC N 0.6191 1.2670 0.6938 346 154 0.3930 0.8853 0.5269 246 254
ADCC L 0.5834 1.1392 0.6810 313 187 0.3939 0.8345 0.5488 226 274
ADCC C 0.6098 1.2347 0.6878 340 160 0.3918 0.8403 0.5354 238 262

SBEKK N 0.6424 1.2093 0.8105 309 192 0.4143 0.9100 0.5508 239 261
SBEKK L 0.8057 1.0848 1.5192 133 368 0.5187 0.8082 0.8834 123 377
SBEKK t 0.6344 1.1824 0.8174 294 206 0.4151 0.8918 0.5603 231 269
DBEKK N 0.6523 1.3362 0.7468 318 182 0.4179 0.8679 0.5960 235 265
DBEKK L 0.7495 1.0924 1.1338 143 357 0.5481 0.7915 1.0878 119 381
DBEKK t 0.6434 1.3010 0.7520 304 196 0.4170 0.8423 0.6037 229 271
SBEKK MDFt 0.6359 1.2163 0.7901 300 200 0.4154 0.9158 0.5487 238 262
DBEKK MDFt 0.6530 1.3530 0.7494 311 189 0.4157 0.8505 0.5915 234 266
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and BEKK forecasts is lower. This tendency is less definite in the forecasts of the second
series, which is characterized by a milder leverage effect.

We can conclude that while analyzing point forecasts, when the Data Generating
Process is characterized by strong asymmetric effects, the explicit description of these
effects in the estimated model is far more crucial than the density specification.

The results of the Multivariate Mincer-Zarnowitz regressions are shown in the left
panel of Table 6; the performances of the competing models are extremely poor, with
rejection rates over 98 % in every case. The explanatory power of the regressions, as
described by the McElroy systemwide measure (Eq. 28), is constant over the whole range
of models, with the interesting exception of the ADCC-EGARCH specifications. Even in
this case, capturing the leverage effects allows to sensibly increase the explanatory power
of the regressions, even if the rejection rate fails to lower. Once again we can observe the
poor results obtained by the BEKK models when coupled with the Laplace distribution,
characterized by an extremely strong overprediction of the volatilities.

Keeping in mind the fact that the first series shows a more extreme behavior than
the second series in term of kurtosis of the innovations, we perform the same test in an
univariate framework, implementing autonomous regressions for the two forecast series.
The results are shown in the right panel of Table 6. With the exception of the Diagonal
BEKK model with Laplace innovations, we can conclude that forecasting the second series
is less problematic, given the reduced kurtosis in the variance shocks, as confirmed by the
lower rejection rate for every model considered.

Interestingly enough, the rejection rate relative to the first series increases with the
ADCC-EGARCH models, while the opposite is true if we look at the second series. This
confirms that the benefit in forecasting accuracy induced by explicitly modeling the lever-
age effect present in the data quickly disappears as the probability of extreme shocks
increases. Once again, when coupled with DCC models, the Multivariate Laplace Distri-
bution clearly outperfoms the Normal and the t-Copula with Student’s t marginals; this
result is fascinating, since the Data Generating Process innovations are drawn exactly
from a t-Copula with univariate marginal t distributions.

Looking now at the BEKK models, we have another confirmation of the hypothesis
that the use of the more general specification does not imply an increase in the forecasting
performances when additional forms of heterogeneity are present in the data beside the
persistence of the innovations.
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Table 5: Average correlations between forecasts

Average Correlations between 1st series volatility forecasts

DCC ADCC SBEKK DBEKK
N L C N L C N L t MDFt N L t MDFt

DCC N 1,000 0,994 0,982 0,846 0,856 0,845 0,984 0,990 0,984 0,985 0,982 0,979 0,982 0,971
L 1,000 0,985 0,844 0,854 0,843 0,982 0,990 0,982 0,986 0,982 0,980 0,982 0,974
C 1,000 0,834 0,844 0,834 0,970 0,975 0,970 0,975 0,969 0,968 0,969 0,963

ADCC N 1,000 0,993 0,993 0,844 0,848 0,844 0,841 0,841 0,845 0,841 0,836
L 1,000 0,997 0,855 0,859 0,855 0,853 0,850 0,851 0,850 0,845
C 1,000 0,842 0,846 0,842 0,841 0,839 0,842 0,839 0,836

SBEKK N 1,000 0,990 1,000 0,986 0,982 0,972 0,982 0,964
L 1,000 0,990 0,989 0,985 0,980 0,985 0,970
t 1,000 0,986 0,982 0,972 0,982 0,964

MDFt 1,000 0,986 0,980 0,986 0,981
DBEKK N 1,000 0,984 1,000 0,968

L 1,000 0,984 0,988
t 1,000 0,968

MDFt 1,000

Average Correlations between 2nd series volatility forecasts

DCC ADCC SBEKK DBEKK
N L C N L C N L t MDFt N L t MDFt

DCC N 1,000 0,998 0,998 0,922 0,922 0,921 0,977 0,976 0,977 0,970 0,985 0,959 0,985 0,986
L 1,000 0,999 0,923 0,923 0,923 0,976 0,975 0,976 0,969 0,985 0,956 0,985 0,986
C 1,000 0,923 0,923 0,923 0,975 0,973 0,975 0,968 0,986 0,956 0,986 0,986

ADCC N 1,000 0,996 0,995 0,913 0,915 0,913 0,911 0,921 0,902 0,921 0,922
L 1,000 0,998 0,912 0,913 0,912 0,908 0,919 0,899 0,919 0,921
C 1,000 0,912 0,912 0,912 0,908 0,918 0,897 0,918 0,921

SBEKK N 1,000 0,991 1,000 0,986 0,985 0,984 0,985 0,984
L 1,000 0,991 0,990 0,983 0,989 0,983 0,986
t 1,000 0,986 0,985 0,984 0,985 0,984

MDFt 1,000 0,980 0,985 0,980 0,991
DBEKK N 1,000 0,981 1,000 0,986

L 1,000 0,981 0,975
t 1,000 0,986

MDFt 1,000
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Table 6: Mincer-Zarnowitz tests results

Model MZ % Rej. R2 MZ1 % Rej.1 R2
1 MZ2 % Rej.2 R2

2

DCC N 259.24 98 0.34 42.62 94 0.31 22.73 82 0.35
DCC L 244.44 100 0.35 34.18 88 0.32 22.32 80 0.35
DCC C 253.89 98 0.35 40.96 90 0.32 22.59 82 0.35
ADCC N 281.58 100 0.42 50.48 98 0.41 16.87 76 0.40
ADCC L 221.76 100 0.42 34.46 90 0.42 15.17 72 0.40
ADCC C 271.24 100 0.42 48.62 96 0.42 15.93 76 0.40

SBEKK N 190.37 98 0.34 38.90 94 0.32 14.25 74 0.35
SBEKK L 757.88 100 0.34 83.80 96 0.32 46.64 80 0.35
SBEKK t 183.33 98 0.34 34.03 92 0.32 13.31 66 0.35
DBEKK N 239.00 98 0.34 37.11 94 0.31 19.51 80 0.35
DBEKK L 698.22 98 0.34 50.45 80 0.31 69.59 92 0.35
DBEKK t 212.61 100 0.34 32.03 88 0.31 17.60 74 0.35
SBEKK MDFt 178.68 100 0.34 34.40 90 0.32 13.46 74 0.35
DBEKK MDFt 219.13 100 0.34 34.97 92 0.31 17.26 76 0.35

5.3 VaR forecasting results

Looking now at the results of the backtesting of the 99% Value at Risk depicted in Table 7,
we can draw some general conclusions about the overall performances of the competing
models when coupled with different distributions for the innovations. First of all, when
coupled with Gaussian disturbances, both DCC specifications lead to a strong underesti-
mation of the Value at Risk, resulting in about 50% rejection rate in the Dynamic Quantile
test. Analyzing the causes of these rejections, we observe how in all the cases the rejec-
tions are due to a number of Value at Risk violations higher than the theoretical coverage
rate. It is worth noting that in a real application these rejections could lead to regulatory
consequences, as provided for in the Basel Protocol, for the financial institution that used
these models as risk measuring tools.

Assuming DCC specifications and allowing for leptokurtic error distributions leads to
a sensible enhancement in the asset allocation performances of these models. In fact, both
Laplace and Copula t distributions allow to obtain a fraction of VaR violations much
closer to the correct value of 1% and to register a number of DQ test rejections much
lower than the rejection rate observed with the Gaussian distribution. In addition to this,
when a leptokurtic distribution is assumed, taking into account the leverage effect with an
ADCC-EGARCH specification leads to an improvement in the performances of the mod-
els, given that the distribution assumed for the innovations is able to correctly describe
the tail behavior of the dataset. In fact, estimating an ADCC-EGARCH with Laplace
and t Copula distributions sensibly reduces the number of rejections of the DQ test and
leads to an unconditional coverage closer to the correct value. When the more general
specification is coupled with Gaussian errors, instead, we are not able to detect any of
these improvements. Another interesting evidence that emerges from our experiment is
that, taken as given the variance specification, the Laplace models outperform the models
estimated assuming the t Copula, even if the t Copula is the distribution of the Data
Generating Process. This result is even more important if we take into account the addi-
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tional difficulties introduced in the estimation of the model by considering a multivariate
distribution built via copula functions and the fact that the Value at Risk for a portfolio
built with assets distributed as a multivariate Laplace is available in closed form (at least
when considering one step ahead forecasts).

Looking at the results of the BEKK models, we can observe once again how the Normal
distribution completely fails to describe the tail behavior of our data, leading to a rejection
rate of the DQ test of 56% with both the BEKK specifications. It is worth noting that
even in this case all the rejections are explained by a number of VaR violations higher
than the correct one.

On the other hand, both Laplace and multivariate t BEKK models largely overestimate
the Value at Risk. In particular, when we assume a multivariate t distribution for the
innovations, we registered a rejection rate in the DQ test of 74% and 52% for the scalar
and diagonal BEKK respectively. All these rejections (and those of the Laplace BEKK
models) are coupled with zero VaR violations over the 500 observations. The two Laplace
BEKK perform better than the Multivariate t ones, but even in this cases the Value
at Risk overestimation is significant, especially considering the scalar specification. As
Table 4 suggests, the overestimation of the Value at Risk shown by BEKK models has two
different natures. In the Laplace case, the models greatly overestimate the conditional
variance, while the Multivariate t distribution seems to underestimate the value of the
degrees of freedom of the distribution, since the overestimation of the Value at Risk is
coupled with a substantial underprediction of the conditional variance.

Even considering BEKK models, allowing for a more general variance specification
induces benefits in VaR forecasting only when leptokurtic distributions are considered.

Finally, we look at the results for the BEKK models coupled with Multiple Degrees
of Freedom t. The mean fraction of VaR violations is the best match of the correct one
and the number of DQ rejections is the lowest among all the models considered. This is
very interesting, considering that these BEKK specifications are not able to capture the
leverage effects that we imposed to the data.

The drawback related to this class of models is that we can not exploit the two stage
estimation as in DCC models, so the computational burden will become unmanageable
as we let the cross-sectional dimension of the sample increase. Another difficulty arises
in the estimation of the Value at Risk, given that we do not know in closed form the
distribution of the return of the portfolio if the assets returns are drawn from a Multiple
Degrees of Freedom t. Hence, we need to simulate it in order to compute the Value at
Risk. This simulation is, to tell the truth, numerically much simpler than the Value at
Risk simulation when we assume a multivariate distribution built via copula functions.
This is true because the Multiple Degrees of Freedom t VaR simulation does not involve
the computation of Cumulative Distribution Functions and the relative inverses.
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Table 7: VaR forecasting results

Model DCC N DCC L DCC C E-ADCC N E-ADCC L E-ADCC C

Fraction HIT 0.0189 0.0091 0.0123 0.0163 0.0080 0.0099
Rej. DQ 48% 22% 32% 48% 18% 26%
Num. failures 0% 0% 0% 9% 0% 0%

Model SBEKK N SBEKK L SBEKK t DBEKK N DBEKK L DBEKK t

Fraction HIT 0.0160 0.0033 0.0006 0.0164 0.0035 0.0010
Rej. DQ 56% 26% 74% 56% 16% 52%
Num. failures 10% 0% 0% 0% 1% 0%

Model SBEKK MDFt DBEKK MDFt

Fraction HIT 0.0099 0.0103
Rej. DQ 13% 11%
Num. failures 2% 1%

6 Conclusions

In this work we have applied a selection of widely adopted Multivariate GARCH models
to simulated data able to mimic the principal stylized facts of real financial data such as
volatility clustering and different levels of excess kurtosis across the time series.

The aim of our work is to understand the beneficial effects induced by more flexible
volatility structures and probability distributions of the innovations in a context where
both the conditional variance and the error distribution are misspecified.

Our main contributions can be summarized as follows. First of all, directly modeling
the conditional correlation matrix allows to obtain an increase in both in-sample and
out-of-sample performances. Secondly, comparing the models by means of forecasting
accuracy measures, we are able to show the paramount importance of explicitly modeling
the leverage effects present in the data; furthermore, adopting BEKK specifications we are
not able to identify any benefits induced by the Diagonal parametrization over the simpler
Scalar specification. Thirdly, all the models considered tend to strongly underestimate the
variance of the data, with the notable exception of the BEKK models when coupled with
the Laplace distribution. Analyzing the results of the Value at Risk forecasting, we can
observe how the Normal distribution is completely inadequate in our framework, leading
to strong and persistent under-predictions of the Value at Risk with both BEKK and DCC
class models.

More interestingly, modeling the leverage effect in the data presents substantial benefits
only if the excess kurtosis of the data is taken into account. These two results together
stress further the importance of capturing with suitable probability distributions the excess
kurtosis shown by the data.

In our experiments we also show that explicitly modeling the different levels of heavy
tailedness of the data with a Copula-DCC GARCH model leads to results very similar to

21



those obtained with the much computationally simpler Multivariate Laplace DCC model.
On the other hand, in the BEKK framework, this flexibility in modeling the tail behavior
of the different series greatly improves both in-sample and out-of-sample results.

A natural extension of this work can be the measurement of the costs associated with
a misspecification of the skewness of the Data Generating process.

Appendix: The Multivariate Laplace distribution

In the following pages, we review a few important elements of the multivariate asymmetric
Laplace distribution. A random vector Y ∈ R

d is said to have a multivariate asymmetric
Laplace distribution (hereafter AML) if its characteristic function is given by:

Ψ(t) =
1

1 + 1
2t

′Σt− im′t

where m ∈ R
d and Σ is a d× d nonnegative definite symmetric matrix.

The vector m is the location parameter and the matrix Σ is the scale parameter of this
distribution. The distribution is unimodal with the mode equal to zero. As a consequence
the parameter m also determines the level of asymmetry. The density of Y ∼ AML(m,Σ)
can be expressed as:

g(y) =
2ey

′Σ−1m

(2π)d/2|Σ|1/2

(
y′Σ−1y

2 +m′Σ−1m

)v/2

Kν

(√
(2 +m′Σ−1m) (y′Σ−1y)

)

where ν = (2 − d)/2 and Kν(u) is the modified Bessel function of the second kind as
described in Abramowitz and Stegun (1965):

Kν(u) =
(u/2)vΓ(1/2)

Γ(v + 1/2)

∫ ∞

1
e−ut(t2 − 1)v−1/2dt, v ≥ −1/2.

The class of AML is not closed under summation of independent r.v.’s: if X and Y
are independent AML r.v.’s, then in general X + Y does not possess an AML law.

LetX ∼ N(0,Σ) and W be an exponentially distributed r.v. with mean 1, independent
of X. Then

mW +W 1/2X → Y ∼ AML(m,Σ).

The first two moments of the asymmetric multivariate Laplace distribution are given by:

E[Y ] = m

Cov(Y ) = Σ +mm′

Finally it is worth noting the fact that linear transformations of AML-distributed
vectors have an AML distribution. Let Y = (Y1, . . . , Td)

′ ∼ AML(m,Σ) and A be an
l× d real matrix. Then the r.v. AY ∼ AML(mA,ΣA) where mA = Am and ΣA = AΣA′.
Let (Y1, . . . , Yn) ∼ AML(m,Σ), where Σ = (σij)

d
i,j=1, then:

• For all n ≤ d, (Y1, . . . , Yn) ∼ AML(m̃, Σ̃), where m̃ = (m1, . . . ,mn)′ and Σ̃ is an
n× n matrix with σ̃ij = σij for i, j = 1, . . . , n.

• For any b = (b1,...,bd
)′ ∈ R

d, the r.v. Yb =
∑d

k=1 bkYk is univariate AL(µ, σ) with
σ =

√
b′Σb and µ = m′b. Further, if Y is symmetric Laplace, then so is Yb.

• For all k ≤ d, Yk ∼ AL(µ, σ) with σ =
√
σkk and µ = mk.
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