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A characterization of S-shaped utility functions
displaying loss aversion∗

Mario Alessandro Maggi†

Abstract

This paper deals with utility (or value) function for reference dependent mod-
els. A new characterization of S-shaped utility functions displaying loss aversion
is put forward. Then it is used to analyze some standard forms commonly used
in the literature. It is shown that, unless some parameters’ restrictions are
imposed, power and exponential S-shaped utilities can lead to prefer fair sym-
metric games to the status quo and do not display loss aversion. Finally two
new examples of simple S-shaped utility functions exhibiting loss aversion are
presented.

Keywords: reference dependence utility, loss aversion.
JEL Classification: D81
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1 Introduction
Reference dependent theory affords a framework where rational and psychological
factors explicitly enter the decision problem. Various works have proved that deci-
sions are taken evaluating separately gains and losses rather than consider the final
wealth as a whole: this happens because people differently perceive improvements
or deterioration of their reference wealth (see, e.g., Kahneman and Tversky (1979),
Thaler (1980), Tversky and Kahneman (1992), Kahneman et al. (1991) and Benartzi
and Thaler (1995)). The observation that losses matter more than gains is defined
as loss aversion. Furthermore, the fact that the perception of a change in wealth de-
creases with its distance from the reference point is termed diminishing sensitivity and
can be modelled by utility (or value) functions that are concave for gains and convex
for losses: precisely S-shaped utility functions. In this field some problems have not
already been fixed, such as a generally accepted formal definition of loss aversion and
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its measurement. Different proposals may be found in Kahneman and Tversky (1979),
Bowman et al. (1999), Köbberling and Wakker (2003) and Neilson (2002).
In standard utility theory there exist various classes of utility functions that can

describe different features of the behavior towards risk (for instance CARA and CRRA
functions), or that are endowed with some useful properties for dynamical program-
ming purposes (e.g. the HARA functions). In prospect theory general results are
available, but only a few functional forms of utility functions have been presented,
all can be derived by modifying some standard non-S-shaped functions: the linear,
the power, the exponential ones. Among them the power function can be adopted
by resorting to the widely observed power law of perception. In fact, the psycho-
logical perception theory, developed by Cognitive Psychology and Psychophysics, has
shown that power laws generally describe the sensorial stimuli perception: brightness,
loudness, sweetness, duration, etc., and — why not? — utility.
This paper aims to present a characterization of S-shaped utilities displaying loss

aversion. This characterization is then used to check the suitability of some analytical
forms of utility functions. The results can be a step towards a better understanding
of the tools to be employed in reference dependent expected utility theory.
I use standard notation, with u0 (x) for the usual derivative with respect to x of a

utility function u = u (x). The expressions f
¡
x−0
¢
, f
¡
x+0
¢
, f (+∞) and f (−∞) are

shorthands for the right and left side limits at x = x0 and the limits of a function f
for x diverging to +∞ and −∞, respectively. All functions I will employ are assumed
to be smooth enough to admit the required derivatives.

2 Loss aversion
There exist various definitions of loss aversion. Some of them are linked each other.
From Kahneman and Tversky (1979), a utility function (or value function) u = u (x)
of a loss averse individual is defined on the difference x between final wealth and a
reference wealth level (reference dependent utility) with u (0) = 0 and is endowed with
the following properties:

1. u is strictly increasing;

2. u is convex for x < 0 and concave for x > 0, i.e. it is S-shaped;

3. fair symmetric games are refused (if compared with the status quo): u (x) <
−u (−x), ∀x > 0;

4. u0 (x) < u0 (−x), ∀x > 0.

I remark that the last steepness condition can be characterized in a more general
sense that does not need differentiability (see by Wakker and Tversky (1993)). In the
present paper, however, the differentiability is assumed. The following other defini-
tions of loss aversion can complete the picture and provide a deeper understanding of
loss aversion:
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5. Köbberling and Wakker (2003) propose to define loss aversion as the property
u0 (0−) ≥ u0 (0+). This allows also to define an index of loss aversion λ =
u0 (0−)
u0 (0+)

.

6. Neilson (2002) introduces the concept of weak loss aversion:
u (z)

z
≥ u (y)

y
,

∀z < 0 and ∀y > 0.
7. Bowman et al. (1999) recognize loss aversion if u0 (z) ≥ u0 (y) , ∀z < 0 and
∀y > 0. This properly corresponds to the strong loss aversion proposed in
Neilson (2002).

In the next section I will try to put together all the relations above, looking for
some links and transfer them into formal conditions on u.

3 A unified approach
Define the general reference dependent utility function u (x) as follows

u (x) =

½
u+ (x) = v (x) , x ≥ 0
u− (x) = −v (−x)− c (−x) , x < 0,

(1)

being v and c continuous functions defined on x ≥ 0, vanishing at x = 0 and with v
strictly increasing and concave:

v (0) = 0, v0 (x) > 0, v00 (x) ≤ 0, ∀x > 0. (2)

This way u is null and continuous at x = 0, with first and second derivatives

u0 (x) =
½

v0 (x) , x > 0
v0 (−x) + c0 (−x) , x < 0

, u00 (x) =
½

v00 (x) , x > 0
−v00 (−x)− c00 (−x) , x < 0.

Now I translate the properties presented at the end of section 2 into corresponding
properties on c (x).

Property 1. u0 (x) > 0, ∀x: for x > 0 it is verified by assumption, whereas for x < 0,
this requires v0 (x) + c0 (x) > 0, ∀x > 0.

Property 2. S-shapedness, i.e. u00 (x) ≤ 0, ∀x > 0 and u00 (x) ≥ 0, ∀x < 0: the first
part is verified by assumption; the second one requires c00 (x) ≤ −v00 (x) , ∀x > 0.

Property 3. u (x) < −u (−x), ∀x > 0: this means c (x) > 0, ∀x > 0.

Property 4. u0 (x) < u0 (−x), ∀x > 0: that is c0 (x) > 0, ∀x > 0. Under defini-
tion (1) and properties (2), this property implies property 1.

Property 5. u0 (0+) ≤ u0 (0−) means c0 (0+) ≥ 0.
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Property 6. Weak loss aversion may be written as

sup
x>0

½
u (x)

x

¾
≤ inf

x<0

½
u (x)

x

¾
.

When u is S-shaped (property 2), this is equivalent to

u0
¡
0+
¢ ≤ lim

x→−∞
u (x)

x
,

and also, thanks to (1),

c0 (+∞) ≥ v0
¡
0+
¢− v0 (+∞) . (3)

Moreover the sign and the concavity of v (see (2)) imply that v0 (+∞) is finite
and not greater than v0 (0+). If v is not linear, condition (3) is satisfied only if
c (x) is unbounded above for x→ +∞. If the Inada condition at +∞ is verified
(i.e. if u0 (+∞) = 0), it remains to control whether the relation c0 (+∞) ≥
v0 (0+) > 0 holds.

Property 7. Strong loss aversion may be written as

sup
x>0

{u0 (x)} ≤ inf
x<0

{u0 (x)} ,

and again, the sign and the curvature of u guarantee that this is equivalent to

u0
¡
0+
¢ ≤ u0 (+∞) .

Thanks to definition (1), this can be written as v0 (0+) ≤ lim
x→−∞ (v

0 (−x) + c0 (−x)),
and a condition identical to (3) is obtained. Obviously the comment following
relation (3) applies here as well.

Starting from the utility function

u (x) =

½
u+ (x) , x ≥ 0
u− (x) , x < 0,

it is easy to recover c (x):

c (x) = −u+ (x)− u− (−x) , x > 0.

So the relations summarized in table 1 may be useful in investigating the properties of
a given utility function. It is clear that property 1 is implied by property 4, and that
properties 6 and 7 are equivalent for S-shaped functions (for a different derivation
of this last result, see Neilson (2002)). Moreover, under assumption 0, property 4
implies property 3.
The discussion above allows to state the following proposition and corollaries that

synthetize the results above. Their proofs directly stem from the relations listed in
table 1, where the conditions in the third column are equivalent to the corresponding
property in the second one.
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basic properties
0 u (0) = 0 c (0+) = 0

1 u strictly increasing v0 (x) + c0 (x) > 0, ∀x > 0

2 u S-shaped (convex/concave) c00 (x) ≤ −v00 (x) , ∀x > 0

3 u (x) < −u (−x), ∀x > 0 c (x) > 0, ∀x > 0

4 u0 (x) < u0 (−x), ∀x > 0 c0 (x) > 0, ∀x > 0

additional properties
5 u0 (0+) ≤ u0 (0−) c0 (0+) ≥ 0
6 weak loss aversion (provided 1 and 2) c0 (+∞) ≥ v0 (0+)− v0 (+∞)
7 strong loss aversion (provided 1 and 2) c0 (+∞) ≥ v0 (0+)− v0 (+∞)

Table 1: Properties

Proposition 1 Assume that the continuous utility function

u (x) =

(
u+ (x) , x ≥ 0
u− (x) , x < 0,

(4)

satisfies u (0) = 0 and let u+ (z) and u− (−z) be twice differentiable for z > 0. Define
the function

c (x) = −u+ (x)− u− (−x) , x > 0. (5)

Then the function u fulfils the property 1 to 4 if and only if c is positive, increasing,
vanishing at x = 0+, and its second derivative satisfies

c00 (x) ≤ −u00+ (x) ,∀x > 0.

Moreover, for S-shaped utilities weak and strong loss aversion are equivalent and hold
if and only if

c0 (+∞) ≥ u0+
¡
0+
¢− u0+ (+∞) .

Corollary 2 Provided that properties 1 to 4 are satisfied, u displays weak or strong
loss aversion if and only if one of the two following cases occurs: either u+ given
in (4) is linear, or c is unbounded above (i.e. c (+∞) = +∞). In any case, u− (x)
must be unbounded below: u− (−∞) = −∞.
Corollary 3 Provided that properties 1 to 4 are satisfied, if the Inada condition
u0 (+∞) = 0+ holds, then u enjoys weak or strong loss aversion if and only if
c0 (+∞) ≥ v0 (0+).

The proposition 1 can be interpreted as a characterization of S-shaped utility
functions displaying loss aversion. Moreover, given a utility function, it provides a
tool helping the check of S-shapedness and loss aversion. For instance, a simple linear
c (x) = λx, with λ > 0, satisfies the properties 1 to 5. In addition, if the coefficient is
greater enough (λ ≥ u0+ (0+)), properties 6 and 7 are verified as well.
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power S-shaped
c (0+) = 0 X
c (x) > 0 only for x > λ

1
α−β

c0 (x) > 0 only for x >

µ
λ
β

α

¶ 1
α−β

c00 (x) ≤ −u00+ (x) X
c0 (+∞) ≥ u0+ (0+)− u0+ (+∞) no

Table 2: Power function

4 Some standard S-shaped utility functions
Proposition 1 can be applied to focus the properties of some S-shaped utility functions
proposed in literature, namely: the power utility, the kinked linear utility, and the
exponential utility.

4.1 The power S-shaped utility function

The power S-shaped utility function (Benartzi and Thaler (1995), Thaler et al. (1997),
Fennma and Van Assen (1999), Tversky and Kahneman (1992) and Wakker and
Zank (2002))

u (x) =

(
xα, x ≥ 0
−λ (−x)β , x < 0,

(6)

with 0 < α ≤ β < 1 and λ ≥ 1, is associated, through proposition 1, to the following
c (x) = −xα + λxβ , x > 0.

As table 2 shows, the utility function (6) is continuous, increasing and S-shaped,
but does not fulfil some loss aversion features. Namely, although u0 (0+) ≤ u0 (0−),

the first derivative satisfies u0 (x) < u0 (−x) only for 0 < x <

µ
λ
β

α

¶ 1
α−β

; moreover,

fair symmetric games are not refused if the stake is small enough (i.e. if x < λ
1

α−β ).
Kahneman and Tversky (1979) estimated the parameter values α = β = 0.88

and λ = 2.25 > 1. With α = β < 1 and λ ≥ 1 the function c (x) becomes c (x) =
(λ− 1)xα, x > 0 and it is easy to check (see table 3) that in this case u displays all
properties but weak and strong loss aversion.

4.2 Kinked line

A special case of the power utility discussed above is the kinked linear utility function

u (x) =

(
x, x ≥ 0
λx, x < 0
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power S-shaped α = β

c (0+) = 0 X
c0 (x) > 0 X
c00 (x) ≤ −u00+ (x) X
c0 (+∞) ≥ u0+ (0

+)− u0+ (+∞) no

Table 3: Power function with equal exponents

kinked line
c (0+) = 0 X
c0 (x) > 0 X
c00 (x) ≤ −u00+ (x) X
c0 (+∞) ≥ u0+ (0+)− u0+ (+∞) X

Table 4: Kinked line

with λ ≥ 1. It can be obtained from the power utility (6) with α = β → 1. In
Benartzi and Thaler (1995) and in Thaler et al. (1997) this function is presented as
an introductory tool; in Shalev (2000) it is used with only formal differences; in Gneezy
and Potters (1997) this function is implicitly used (see section II). The corresponding
c (x) is

c (x) = x (λ− 1) , x > 0,

which is linear. Table 4 shows that the kinked linear utility function, although very
simple, enjoys all the required properties.

4.3 Exponential

The exponential S-shaped utility function

u (x) =


1− e−αx

α
, x ≥ 0

λ
eβx − 1

β
, x < 0,

(7)

with 0 < α ≤ β and λ ≥ 1, is associated, through proposition 1, to the following

c (x) = −1− e−αx

α
+ λ

1− e−βx

β
, x > 0.

The function (7) is just in the form presented in Köbberling and Wakker (2003). In
Schmidt and Zank (2002) the exponential function is used without the normalization
here introduced. Table 5 shows that the utility function (6) is continuous, increasing
and S-shaped, but does not fulfil some loss aversion features. Namely, although
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exponential S-shaped
c (0+) = 0 X

c (x) > 0
only for x < x̄ if λα

β < 1,

or ∀x > 0 if λα
β ≥ 1

c0 (x) > 0
only for x <

lnλ

β − α
if α < β and λ > 1,

or ∀x > 0 if α = β and λ > 1

c00 (x) ≤ −u00+ (x) X
c0 (+∞) ≥ u0+ (0

+)− u0+ (+∞) only if λ ≥ β α+1
α

Table 5: Exponential function

u0 (0+) ≤ u0 (0−), the first derivative satisfies u0 (x) < u0 (−x) only for x >
lnλ

β − α
if

λ > 1 and α < β, or ∀x > 0 if λ > 1 and α = β. Moreover, fair symmetric games are
not refused if the stake is large (i.e. if x > x̄, where x̄ is the solution, not obtainable
in an explicit way, of c (x) = 0).

5 Two new examples
In section (4) three classes of utility functions have been explored, obtaining the
following results:

• Unless the two exponents α and β of (6) are equal, power functions can not
describe the behavior of an individual who always refuses fair symmetric games.

• Moreover, if α < β < 1, the fair symmetric games with a small stack are more
valuable that the status quo.

• In any case power functions (6) are not feasible to model neither weak nor strong
loss aversion as defined in property 6 and 7.

• Kinked linear utility fulfil all the required properties, but it can not describe
the behavior of an individual who is risk averse over gains and/or risk seeking
over losses.

• Unless if in (7) α = β and λ > 1, exponential functions show a disappointing
fact: fair symmetric games with a large stack are more valuable than the status
quo. This flaw can be overcome by restricting the admissible values of x on the
interval where this behavior does not appear.

• In any case exponential functions (7) are not feasible to model neither weak nor
strong loss aversion.

In order to overcome some shortcomings of the standard functions above, I present
below two easy new examples of S-shaped utility functions displaying loss aversion.
This shows that it is an easy matter to find a function with the desired properties.
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sub-odd function
c (0+) = 0 X
c0 (x) > 0 λ > 1

c00 (x) ≤ −u00+ (x) λ > 0

c0 (+∞) ≥ u0+ (0+)− u0+ (+∞) λ ≥ v0 (0+)
v0 (+∞)

Table 6: Sub-odd function

5.1 Sub-odd function

Modifying a proposal of Köbberling and Wakker (2003), the following utility function
can be defined1:

u (x) =

(
v (x) , x ≥ 0
−λv (−x) , x < 0,

(8)

and named sub-odd as it recalls an odd function. Thanks to (5) it is straightforward
to find

c (x) = (λ− 1) v (x) , x > 0,

and to verify that property 1 to 4 are fulfilled if and only if λ > 1. Moreover, if

λ ≥ v0 (0+)
v0 (+∞) , then weak and strong loss aversion are satisfied as well. From table 6

it is clear that an S-shaped utility of the form (8) which satisfies the Inada condition
at +∞ can not display neither weak nor strong loss aversion.

5.2 Loss-linear function

A simple way to set up a candidate S-shaped loss averse utility is to merge a concave
function v (x) for x ≥ 0 and a linear one for x < 0:

u (x) =

(
v (x) , x ≥ 0
λx, x < 0,

so that the corresponding function c is

c (x) = −v (x) + λx, x > 0.

1The function (8) stems from the basic function (in the sense of Köbberling and Wakker (2002))

u (x) =

(
v (x) , x ≥ 0
−v (−x) , x < 0,

which is S-shaped and smooth even at 0.
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loss-linear function
c (0+) = 0 X
c0 (x) > 0 λ > v0 (0+)
c00 (x) ≤ −u00+ (x) X
c0 (+∞) ≥ u0+ (0

+)− u0+ (+∞) λ ≥ v0 (0+)

Table 7: Loss-linear function

Thanks to the sign and the concavity of u+, the equality sup
x>0

v0 (x) = v0 (0+) follows,

thus properties 1 to 4 are satisfied if and only if λ > v0 (0+). In this case the weak or
strong loss aversion are displayed as well, as in table 7.

6 Conclusion
Many definitions for S-shaped utility functions to describe loss aversion are available.
I have compared them and clarified their hierarchy. In this scheme of things I have
put forward a new characterization of S-shaped utility functions (proposition 1) that
allow to deal with S-shapedness nd loss version in an unified framework. In order
to get loss aversion under various definitions, I have shown how to constrain the
parameters of the most commonly used S-shaped utility functions (linear, power, and
exponential utility). Finally I have presented two simple new examples of loss averse
utility functions. I hope that my results can improve the understanding of the tools
to be employed in reference dependent expected utility theory.
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