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A Note on The Cournot-Betrand Pro�t
Di¤erential: A Reversal Result in a Di¤erentiated

Model with Wage Bargaining

Rattanasuda Poolsombat�, Gianluigi Vernascay

May 2005

Abstract

We consider an oligopolistic model with product di¤erentiation in which
�rm�s costs are not given exogenously but are the result of a wage bargain-
ing process between �rms and local unions. Using a generalised version of the
model of Lopez and Naylor (2004) we compare Cournot and Bertrand equi-
libria. We show that, contrary to standard results that Cournot equilibrium
pro�ts always exceed those under Bertrand competition, Bertrand pro�ts can
be higher than Cournot pro�ts for some particular values of the parameters of
the wage bargaining. This holds even if there are more than two �rms in the
economy. However, there is a critical level in the number of �rms above which,
independently on the values of the parameters of the model, the standard result
conitnues to hold.

1 Introduction

Lopez and Naylor (2004) discuss the nature of competition in Bertrand and Cournot
markets using the di¤erentiated duopoly framework developed by Singh and Vives
(1984). They extended the analysis of Singh and Vives (1984) introducing endogneous
costs, by assuming that the wages paid by each �rm is the outcome of a strategic
bargain with its labor union. They show that the standard result that Cournot
equilibrium pro�ts exceed those under Bertrand competition-when the di¤erentiated
duopoly game is played in imperfect substitutes- is reversible. Whether equilibrium
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pro�ts are higher under Cournot or Bertrand competition is shown to depend upon
the nature of the labor unions�preferences and the distribution of bargaining power
over the wage paid by each �rm.
Häckner (2000) extends th3 analysis of Singh and Vives (1984) allowing for n � 2

in the economy. He shows that the result concerning the dominance of Cournot over
Bertrand pro�ts is sensitive to the duopoly assumption. In our paper, we use a similar
framework as Häckner (2000), but while Häckner (2000) extends the standard model
horizontally through increasing the number of �rms within the product market, our
paper extends the analysis vertically by examining the consequences of introducing
upstream suppliers to the downstream �rms, as in Lopez and Naylor (2004). Thus,
our paper can be thought as a generalization of Lopez and Naylor (2004), since we
allow for n � 2 �rms, but also a generalization of Häckner (2000), since we endogenise
the costs faced by �rms through a wage bargaining process.
Our aim is to check whether the standard result on the ranking of Cournot and

Bertrand equilibrium outcomes under a di¤erentiated oligopoly are robust to the
inclusion of a decentralised wage-bargaining game played by each �rm and a �rm
speci�c labour union. Our model is a two-stage game, with wage bargaining played
in the �rst stage, while in the second stage, we consider both Cournot and Bertrand
solutions to the non-cooperative product market game. In our analysis we assume
that there is symmetry across all the union-�rm wage bargains as in Lopez and
Naylor (2004). The paper is structured as follows. In Section 2 we consider Cournot
competition, in Section 3 we consider the Bertrand competition case, in Section 3 we
compare the two outcomes, �nally, Section 4 concludes.

2 Cournot Equilibrium under Unionised Market

We consider a di¤erentiated oligopoly market as in Häckner (2000), that is a gen-
eralisation of Singh and Vives (1984) and Qiu (1987). We analyse a two-stage non-
cooperative game in which �rms produce imperfect substitutes goods. As in Lopez
and Naylor (2004), in the �rst stage, each �rms independently bargains over its wage
with a local labour union, while in the second stage, each �rm sets its output, give
the wage outcome of stage one, to maximise pro�ts. Our equilibrium notion is the
standard sub-game perfect and the model is solved through backward induction. The
utility function of the representative consumer is given by:1

U (q) = �
nX
i=1

qi �
1

2

 
nX
i=1

q2i + 2
nX
k 6=i

qiqk

!
+ I

The parameter  2 [0; 1] represents the degree of substitutability between the
products, � > 0: If  = 0, each �rm has monopolistic market power, while if  =

1See Häckner (2000).
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1, the products are perfect substitutes.2 The utility function is quadratic in the
consumption of q-goods while is linear in the consumption of the other goods I: The

budget constraint is simply:
nP
i=1

qipi + I � M; where M is the income level. The

�rst-order conditions determining the optimal consumption of good i is

@U

@qi
= �� qi � 

nX
k 6=i

qk � pi = 0 (1)

The �rm i�s inverse demand function can be solved for directly from Eq. (1):

pi (qi;q�i) = �� qi � 
nX
k 6=i

qk: (2)

with pi as the price of the product and q�i =
nP
k 6=i
qk. Production technology is very

simple. Each �rm produces one unit of the output by the use of one unit of labour.
So the pro�t function of a typical �rm in the industry is

�i (q) =

 
�� qi � 

nX
k 6=i

qk � wi

!
qi (3)

with wi as the wage paid by �rm i and q =
nP
i=1

qi:

Firms set quantities to maximise pro�ts, �i, taking the other �rms�quantities as
given. Firm i�s reaction function is

qi (q�i) =

�� wi � 
nP
k 6=i
qk

2
: (4)

As  > 0, by assumption, the best-reply functions are downward sloping: Under
the Cournot assumption, the product market game is played in strategic substitutes.

Summing over all �rms equations (4); and using the fact that
nP
i=1

qi = qi +
nP
k 6=i
qk, we

can solve for labour demand in equilibrium of �rm i, given wi and w�i:

qi (wi) =
(2� )�� ( (n� 2) + 2)wd;i + wd;�i

(2� ) ( (n� 1) + 2) (5)

with w�i =
nP
k=1

wk�wi. The equilibrium output of a �rm (and hence, equilibrium

level of employment) is decreasing with its own wage, while it is increasing with the
other �rm�s wage. The pro�t function under Cournot competition is then given by:

2When goods are substitutes, the degree of substitutability could be interpreted in terms of
horizontal product di¤erentiation.
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�i =

�
(2� )�� ( (n� 2) + 2)wd;i + wd;�i

(2� ) ( (n� 1) + 2)

�2
(6)

A �rm�s pro�t rises with the wage of the competitors in that industry, because the
competition situation improves. Accompanied with this improvement is an increase
in the equilibrium output. Furthermore, as we expect, �rm�s pro�t falls with �rm�s
speci�c wage. Notice that when n = 2 we obtain the same pro�t function as in Lopez
and Naylor (2004).

2.1 The Wage Bargaining

We now solve for stage 1 of our game. Assume that, in stage 1, �rm i bargains over
the wage wi, with a local union, union i, whose utility function is given by

ui = (wi � w)� q1��i ; (7)

where � denotes the relative strength of the union�s preference for wages over
employment and 0 � � � 1 and w is the disagreement payo¤ available to the union
(for example, the level of unemployment subsidies). This functional form is quite
general and encompasses common assumptions such as rent-maximization, arising
when � = 1

2
and total wage bill maximization when � = 1

2
and w = 0. The general

asymmetric Nash bargain over wages between union-�rm pair i solves:

�i = argmax
wi

(ui � u)� (�i � �)1�� (8)

where � is the union�s Nash bargaining parameter and � 2 [0; 1]. In the two-stage
sequential game, the union and �rm bargain over wages only: the �rm is assumed to
have the right-to-manage autonomy over employment. We rule out the special case
in which � = � = 1:
Substituting (5), (6) and (7) into (8) yields

�i = argmax
wi

(wi � w)�� (qi)2��(1+�) (9)

From (5) and (9), the �rst-order condition yields

wCi =
�� [(2� )�+ w�i] + ( (n� 2) + 2) (2� � (1 + �))w

( (n� 2) + 2) (2� �) (10)

which de�nes the sub-game perfect best-reply function in wages of union-�rm pair
i under the assumption of a non-cooperative Cournot-Nash equilibrium in the product
market. From (10), the slope of union-�rm pair i�s best-reply function is given by

@wCi
@w�i

=
��

( (n� 2) + 2) (2� �) (11)
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The slope of the best-reply wage function is positive for  > 0; � > 0; � > 0;
con�rming that the labour market game is played in strategic complements. In a
symmetric sub-game perfect equilibrium we have that wi = w�i and hence, from
(10), equilibrium wages are given by

wCi = w
C
�i =

�� (2� )�+ ( (n� 2) + 2) (2� � (1 + �))w
[(2� �) ( (n� 2) + 2)]� �� (n� 1) (12)

Note that wC = w if either � = 0 or � = 0: From substitution of (12) in (6), we
conclude that sub-game perfect equilibrium pro�ts under Cournot competition are
given by

�C =

�
[ (n� 2) + 2 (2� � (1 + �))] (�� w)

( (n� 1) + 2) [(2� �) ( (n� 2) + 2)� �� (n� 1)]

�2
(13)

3 Betrand Equilibrium under Unionised Market

In this section of the paper, we suppose that the product market game in stage 2 is
characterized by price-setting behaviour by �rms. Summing over all �rms, Eq. (1)
can be written as

n��
nX
i=1

qi �  (n� 1)
nX
i=1

qi �
nX
i=1

pi = 0 (14)

Eq. (1) and (14) then yield �rm i�s demand function,

qi (pi;p�i) =
(1� )�� ( (n� 2) + 1) pi + p�i

(1� ) ( (n� 1) + 1) (15)

where p�i =
nP
k 6=i
pk:Pro�ts of �rm i is are then given by

�i (pi;p�i) =

�
(1� )�� ( (n� 2) + 1) pi + p�i

(1� ) ( (n� 1) + 1)

�
(pi � wi) (16)

From (16), the �rst-order condition for pro�t-maximisation gives

pi (p�i) =
(1� )�+ ( (n� 2) + 1)wi + p�i

2 ( (n� 2) + 1) (17)

Summing equations (17) over all �rms, and using the fact that
nP
i=1

pi = pi +
nP
k 6=i
pk;

we obtain the price setting rule for each �rm.
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pi (w) =

[(1� ) ( (2n� 3) + 2)]�+  ( (n� 2) + 1)w�i
+ [( (n� 2) + 1) ( (n� 2) + 2)]wi
( (2n� 3) + 2) ( (n� 3) + 2) (18)

and hence, for  > 0; the Betrand product market game is played in strategic
complements. Hence, substituting (18) in (15) yields the equilibrium quantities and
pro�ts, given wages, under Bertrand competition:

qi =

( (n� 2) + 1)
�
(1� ) ( (2n� 3) + 2)�+  ( (n� 2) + 1)w�i
� [( (n� 2) + 1) ( (n� 2) + 2)� 2 (n� 1)]wi

�
(1� ) ( (n� 1) + 1) ( (2n� 3) + 2) ( (n� 3) + 2) (19)

�i =
(1� ) ( (n� 1) + 1) q2i

( (n� 2) + 1) (20)

3.1 The Wage Bargaining

As for the case of Cournot competition, the general asymmetric Nash bargain over
wages between union-�rm pair i solves:

�i = argmax
wi

(ui � u)� (�i � �)1�� (21)

and as before, � is the union�s Nash bargaining parameter and � 2 [0; 1]. In the
two-stage sequential game, the union and �rm bargain over wages only: the �rm is
assumed to have the right-to-manage autonomy over employment. Again, we rule
out the special case in which � = � = 1:
Substituting (7), (19) and (20) into (21) yields

�i = argmax
wi

(wi � w)�� (qi)2��(1+�)
�
(1� ) ( (n� 1) + 1)

( (n� 2) + 1)

�1��
(22)

where w is again the disagreement payo¤. From (22), the �rst-order condition
yields

wBi =

�� [(1� ) ( (2n� 3) + 2)�+  ( (n� 2) + 1)w�i] +
[( (n� 2) + 1) ( (n� 2) + 2)� 2 (n� 1)] (2� � (1 + �))w

[( (n� 2) + 1) ( (n� 2) + 2)� 2 (n� 1)] (2� �) (23)

which de�nes the sub-game perfect best-reply function in wages of union-�rm
pair i under the assumption of a non-cooperative Bertrand-Nash equilibrium in the
product market. From (23), the slope of union-�rm pair i�s best-reply function is
given by
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@wCi
@w�i

=
�� ( (n� 2) + 1)

[( (n� 2) + 1) ( (n� 2) + 2)� 2 (n� 1)] (2� �) (24)

The slope of the best-reply wage function is positive for  > 0; � > 0; � > 0;
con�rming that the labour market game is played in strategic complements. In sym-
metric sub-game perfect equilibrium, wi = w�i and hence, from (23), equilibrium
wages are given by

wBi = w
B
�i =

�
�� (1� ) ( (2n� 3) + 2)�+

[( (n� 2) + 1) ( (n� 2) + 2)� 2 (n� 1)] (2� � (1 + �))w

�
[( (n� 2) + 1) ( (n� 2) + 2)� 2 (n� 1)] (2� �)

��� (n� 1) ( (n� 2) + 1)
(25)

Note that wB = w if either � = 0 or � = 0: From substitution of (25) in (20),
we conclude that sub-game perfect equilibrium pro�t under Bertrand competition ais
given by

�B =

24 ( (n� 2) + 1)�
(1� ) ( (2n� 3) + 2)��

[( (n� 2) + 1) ( (n� 2) + 2)�  (n� 1) ( (n� 1) + 1)]w

�2 35
24 (1� ) ( (n� 1) + 1)��

�� [( (n� 2) + 1) ( (n� 2) + 2)�  (n� 1) ( (n� 1) + 1)]
[( (2n� 3) + 2) ( (n� 3) + 2)]

��2 35
(26)

4 The Cournot-Bertrand Pro�ts Comparison

In this section we compare the Cournot pro�t function, given by equation (13);
and the Bertrand pro�t function given by (26): We shall show which pro�t func-
tion is higher given some values of the parameters (�; ; �; n): In order to analyse the
Cournot-Bertrand pro�t di¤erential, we de�ne the following ratio under a symmetric
equilibrium:

�C

�B
=

((n� 2) + 2)2 ((n� 1) + 1)(2 + (n� 3))2h
(((n� 2) + 1)((n� 2) + 2)� 2(n� 1))2 (2� �)� ��((n� 2) + 1)

i
((n� 1) + 2)2 ((2� �)((n� 2) + 2)� ��(n� 1))2

((n� 2) + 1)(1� ) [((n� 2) + 1)((n� 2) + 2)� 2(n� 1)]2
(27)
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Figure 1: � and � as a function of n:

We want to show under which values of the parameters of the model, that ration
is greater or less than 1. Notice that equation (27) does not depend on the dis-
agreement payo¤w and on the intercept of the demand function �:Lopez and Naylor
(2004) showed that, with 2 �rms, the ratio in (27) is less than 1 for high values of
� and �: That means that in a di¤erentiated duopoly with wage bargaining, in the
sub-game perfect equilibrium, the Bertrand pro�ts exceed Cournot when unions are
both relatively powerful in the wage bargaining process and attach relatively high im-
portance to the wages in their objective function.3 Here we shall show if their result
is still valid when there are more than two �rms in the market. Following Lopez and
Naylor (2004) we evaluate ratio (27) for  = 0:5: We �rst de�ne the critical values of
� and � that can make the ratio (27) equal to 1. Consider �rst the case with  = 0:5
and � = 1; we �nd the values of � as a function of n; that can make �C

�B
= 1: Then

consider the case  = 0:5 and � = 1; we �nd the values of � as a function of n; that
can make �C

�B
= 1: Those relationships between �; � and n are plotted in the following

�gure:
We can notice that the initial values of � = 0:91 and � = 0:84 for n = 2 are the

ones considered by Lopez and Naylor (2004). The values of � and � described in
the Figure above may be thought as the critical values (for a given n and  = 0:5)
above which the ratio in 27) may fall under one. As we can see those critical values
are increasing in the number of �rms. In the following proposition we state the main

result about the Cournot-Bertrand pro�t di¤erential in our model:

Proposition 1 In the sub-game perfect equilibrium, for high values of � and �; the
3Lopez and Naylor (2004) use numerical evaluation to �nd their result. In particular, they use

 = 0:5; � > 0:84 and � > 0:91:
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Figure 2: Relationship between ratio (27) and n:

pro�ts under Bertrand is higher than the pro�ts under Cournot competition even if
n > 2: However, there is a critical value of n� > 2, such that, for any value of the
parameters (�; � and ) the pro�ts under Cournot are always higher than pro�ts under
Bertrand competition.

The results in Proposition 1) are displayed in the following �gure, that is obtained
with the following parametrisation:  = 0:5; � = 0:98� and a = 0:98: In that �gure is
plotted the relationship between the ratio (27) and the number of �rms. As we can
notice, for n not too high but greater than 2, the ratio (27) is less than one. We can
notice that in the �gure the critical value of n� is equal to 8, however, that critical
value depends on the values of �; � and :

Another important feature of the relationship between the ratio �C

�B
and the num-

ber of �rms is the role of product di¤erentiation : We can see that higher is  and
higher is the possibility that the ratio �C

�B
is less than the one, for n not too high. In

the next �gure, we show the relationship between �C

�B
and  for two di¤erent values

of n: The �gure is obtained using � = 0:98 and � = 0:97; that are two values that
can assures that ratio (27) can be less than 1 for some values of n:
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Figure 3: Relationship between ratio (27) and ; for di¤erent values of n:

When n = 3; higher is  and higher are pro�ts under Bertrand respect to the
ones under Cournot. When n = 10, there are no values of the parameters that can
make the Bertrand�s pro�ts higher that Cournot�s ones. Thus, there are two di¤erent
elements that a¤ects the Cournot-Bertrand pro�t di¤erential in our model. On one
hand, there is the e¤ect of the wage bargaining parameters (� and �) and product
di¤erentiation () on the level of competition: On the other hand there is the e¤ect
of the number of �rms. When n is small enough, the e¤ect of higher values of �; �
and  is dominant, and Bertrand competition can lead to higher pro�ts than Cournot
competition. As n increases, the e¤ect of the number of �rms on the competition
level becomes more relevant and thus, Bertrand competition becomes �ercer than
Cournot competition, and so the pro�ts under price setting behaviour become lower.

5 Conclusions

In this paper, we have considered an oligopolistic model with product di¤erentiation
in which �rm�s costs are not given exogenously but are the result of a wage bargaining
process between �rms and local unions. Our aim was to test the robustness of the
standard result arising in duopoly model with product di¤erentiation and exogenous
costs that pro�ts under Cournot competition is always higher than pro�ts under
Bertrand competition. Using a generalised version of the model of Lopez and Naylor
(2004), we showed that if unions are su¢ ciently powerful and care about wage more
than employment, then Bertrand pro�ts exceed Cournot pro�ts in the sub-game
perfect equilibrium when goods are imperfect substitutes and �rms bargain over costs.

10



That result holds even if �rms in the economy are more than two. Furthermore,
higher is the level of product di¤erentiation and higher are Betrand pro�ts relative to
Cournot pro�ts if the number of �rms is small enough. However, there is a critical level
in the number of �rms above which, independently on the values of the parameters
of the model, Cournot pro�ts are always higher than Bertrand pro�ts.
There are obviously various directions for further work. For example, it may be

interesting to consider the case of e¢ cient bargaining where �rms and unions bargain
over wages and employment levels simultaneously.
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