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Building predictive models for feature

selection in genomic mining

Silvia Figini ∗

University of Pavia, Italy

Paolo Giudici

University of Pavia, Italy

Abstract

Building predictive models for genomic mining requires feature

selection, as an essential preliminary step to reduce the large number

of variable available. Feature selection is a process to select a subset

of features which is the most essential for the intended tasks such

as classification, clustering or regression analysis. In gene expression

microarray data, being able to select a few genes not only makes

data analysis efficient but also helps their biological interpretation.

Microarray data has typically several thousands of genes (features)

but only tens of samples. Problems which can occur due to the

small sample size have not been addressed well in the literature. Our

aim is to discuss some issues on feature selection in microarray data

in order to select the most predictive genes. We compare classical

approaches based on statistical tests with a new approach based on

marker selection. Finally, we compare the best predictive model with

a model derived from a boosting method.

∗Address for correspondence: Silvia Figini, Data mining laboratory, department of

economics and quantitative methods E-mail: silvia.figini@eco.unipv.it
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1 Introduction

Machine learning techniques have been used for many pattern recognition

problems. A large variety of learning techniques have been studied and

proved to be useful. For example, Decision Trees, Nearest-Neighbor, Sup-

port Vector Machines, and Neural Networks are all widely used methods in

many different fields. These methods often have applications in a variety

of areas such as bioinformatics, robotics, and vision. The general problem,

however, is similar regardless of the learning technique and area of appli-

cation. Given a data set with a number of samples, each of which with a

corresponding set of feature values and a classification, we want to find a

rule or model to classify each sample according to its feature values. The

existing learning techniques work well for most instances of this problem.

However, when the number of samples or the number of features in the data

is large, the performance of the learning methods degrades. The samples

may become noisy and unclassifiable, or the features may become irrelevant

to the classifications. Many authors, see e.g. [1] discuss the problem of

selecting relevant features, and the problem of selecting relevant samples

on data sets containing large amounts of irrelevant information. For large

data sets, we can usually choose only a few of the most relevant features

to build a model to classify the data. The resulting model will be at least

as good as the one built from all the features. Hence it is often useful to

select a subset of features of a data set to describe the data. Many fea-

ture selection algorithms have been devised for this task, see e.g. [2]. In

this paper, we focus on data sets with many features and a few samples.
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We discuss the different approaches for this problem, and review some of

the work on dealing with data sets with many features. In Section 2 we

present a review of statistical methods for feature selection. In Section 3

we describe our proposed method for feature selection and in Section 4 our

proposed predictive models. Finally in Section 5 we present the application

of our methods to the available data.

2 Feature selection: a review

The basic feature selection problem is an optimization problem, with a

performance measure for each subset of features to measure its ability to

classify the samples. The problem is to search through the space of feature

subsets to identify the optimal or near-optimal one with respect to the per-

formance measure. Feature selection is a fundamental process within many

classification algorithms. A large dictionary of potential, flexible features

often exists, from which it is necessary to select a relevant subset.

Feature selection is generally an empirical process that is performed prior

to, or jointly with, the parameter estimation process. Many successful fea-

ture selection algorithms have been devised. Yang and Honavar [3] classify

many existing approaches into three groups: exhaustive search, heuristic

search, and randomized search.

Exhaustive search is a brute force approach where every possible subset is

tested with the performance measure, and the best one is chosen. It guar-

antees the optimal subset as a result. However, if the number of features is

large, this approach is intractable.

Heuristic search is where certain heuristics are used to greedily but intelli-

gently search through the subset space to identify a subset with a reasonable

performance measure. Forward Selection and Backward Elimination [4] are

two examples of heuristic search. Forward Selection starts with the empty
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set of features. It evaluates all the one-feature subsets, and selects the one

with the best performance measure. It then evaluates all the two-feature

subsets that include the feature already selected from the first step, and

selects the best one. This process continues until extending the size of the

current subset leads to a lower performance measure. Backward Elimina-

tion starts with the complete set of features. It evaluates all the subsets

that are one less than the complete set, and selects the one with the best

performance measure. It then evaluates all the subsets with one less feature

than the best subset from the previous step, and selects the best one. The

process stops when decreasing the size of the current best subset leads to

a lower performance. There are many variants of Forward Selection and

Backward Elimination.

Randomized search uses randomized or probabilistic methods to search

through the subset space. Genetic Algorithms [3] and Scatter Search al-

gorithms [5] are examples of this approach. Neither heuristic search nor

randomized search techniques guarantee optimal results.

Another common way to classify feature selection algorithms is determined

by how the learning method is integrated into the algorithm. A filter ap-

proach is where the selection of features is independent of the learning al-

gorithm. On the other hand, if the features are generated and directly

evaluated by a learning algorithm, the method is known as a wrapper ap-

proach. Kira and Rendell’s Relief algorithm [6] is an example of a filter

approach. It uses a procedure that is independent of a learning algorithm

to assign weights to each feature. Then the features are selected based on

whether or not it is above a pre-specified threshold value. An example of

a wrapper approach is the Genetic Algorithm. Each subset of features is

evaluated using a learning algorithm in order to progressively generate new

and better subsets.

The feature selection algorithms discussed above have been tested to work
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well for many problem domains. In the field of high-dimensional gene ex-

pression data Xing, Jordan, and Karp [7] report on their use of a hybrid of

filter and wrapper approaches to a data set with 72 samples and 7129 fea-

tures. Golub et al. [8] describe a method for classification and prediction

for the same data set. Both groups achieved reasonable results for their

method’s ability to classify new samples. Xing et al. [7] specifically argue

that the reduced set of features perform significantly better than the full

set when used in classifying the samples. Califano, Stolovitzky, and Tu [9]

report on their use of a supervised learning algorithm to identify patterns

in gene expression data. Their data has 6817 genes or features, and their

method give reasonable results for classifying the samples. Breiman [10]

describes the use of Random Forests, a forest of decision trees built using a

randomized process, to classify the samples in a data set.

In this paper we present a new method in feature selection based on marker

selection, see e.g. [12] and we compare our approach with classical ap-

proaches based on chi-square selection.

3 Feature selection for genomic data

DNA microarrays have been used by biologists to monitor the level of gene

expression of thousands of genes in different biological tissues. This tech-

nology measures the expression of a gene in a cell by measuring the amount

of mRNA present for that gene, mRNA which is extracted from samples

of human tissues. A target sample and a reference sample are hybridized

with DNA. The log intensities of mRNA hybridizing is measured for a few

thousand genes. These numbers, that normally range beetwen -6 and +6,

represent the expression level of each gene in the target, relative to the refer-

ence sample, so that, for example, positive values indicate higher expression

in the target versus the reference.
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Microarray technologies produce gene expression patterns that provide dy-

namic informations about cell functions. These informations can be used

to investigate complex interaction within the cell. In this contest, data

mining methods can be used to determine co-regulated genes and suggest

biomarkers for specific diseases, or to ascertain and summarize the set of

genes responding to a certain level of stress in an organism.

A typical question in genomic mining, see e.g. Speed [11], is in fact ”which

gene is the most similar to which” in terms of gene expression. Another im-

portant aspect is the correlation between gene expressions and malignant

samples. Gene expression data being typically high-dimensional, they need

appropriate statistical features to discern possible patterns and to identify

mechanisms that govern the activation of genes in a organism.

Our approach was first to treat the problem of the correlation between gene

expression and malignant samples as a predictive problem with a categorical

predictor variables - genes - and a response binary variable being the sam-

ple’s status ’1’ (malignant) or ’0’ (normal). Then we have used association

rules to analyse genes resulting from these predictive methods. Mining of

association rules, in fact, had already been successfully applied on microar-

ray data by using the A priori algorithm. Associations rules can be used

to express associations between cell environmental effects and gene expres-

sions, to diagnose a profiled cancer sample, or to analyse drug treatment

effects.

In order to find the best predictive models, we have reduced the number of

input variables with feature selection. We have compared chi-square selec-

tion and a new approach on variable selection, based on marker selection.

The chi-square selection criterion is available for binary targets. This crite-

rion provides a fast preliminary variable assessment and facilitates the rapid

development of predictive models with large volumes of data. Variable se-

lection, based on chi-square, is performed using binary variable splits for
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maximizing the chi-square values of a contingency table. Each level of the

ordinal or nominal variables is decomposed into a binary variable. In high

dimensional data sets, identifying irrelevant inputs is more difficult than

identifying redundant inputs. A good strategy is to first reduce redundancy

and then tackle irrelevancy in a lower dimension space.

Marker selection approach, see e.g. R. Mott [12], is based on the structure

of the genes. Consider the general representation of the frequency distribu-

tion of a qualitative variable with K levels. Null heterogeneity, holds when

all the observations assume the same level. That is if pi = 1 for a certain i,

and pi = 0 for the other k-1 levels. Maximum heterogeneity, holds when the

observations are uniformly distributed amongst the k levels, that is pi = 1/k

for all i = 1, ..., k. Heterogeneity measures can be extended and applied to

gene expressions. As a measure of genes diversity, the entropy (E) can be

calculated using:

E = −

m∑

k=1

pilogpi,

where pi is the probability of gene i being activated, and K the number

of genes. Wanting to obtain a ’normalised’ index, which assumes values in

the interval [0,1], one can rescale E by its maximum value, obtaining the

following relative index of heterogeneity:

E ′ =
E

log(K)
,

In order to select the most predictive genes, genes are sequentially subdi-

vided in groups (as in a divisive cluster analysis algorithm). The previous

entropy is calculated for each chosen subset. It will continuously increase

starting from 0 up to a maximum of E. Grouping and, hence, gene marker

selection is stopped when a suitable threshold is reached (e.g. 0.95).

If s is a subset of t we have that E(s) ≺ E(t) ≺ E. The difference E(t) - E(s)

is a good measure of how nested subsets compare in describing the data. A
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sequence of marker subsets s1...sk generates a monotonic sequence of opti-

mal approximations (as measured by their entropy) to the gene structure

of the data. The probability of detecting an association between a marker

and a diseased phenotype decreases with the distance between the marker

and the actual position of the gene responsible for the phenotype. Thus,

one can maximize the probability of detecting disease linkage by choosing

markers as closely spaced as possible. This procedure is closely related to

principal component analysis and can be used as an alternative method for

eliminating redundant dimensions.

This type of variable clustering well finds groups of variables that are as cor-

related as possible among themselves and as uncorrelated as possible with

variables in other clusters. If the second eigenvalue for the cluster is greater

than a specified threshold, the cluster is split into two different dimensions.

The reassignment of variables to clusters occurs in two phases. The first

is a nearest component sorting phase, similar in principle to the nearest

centroid sorting algorithms described by Anderberg [15]. In each iteration

the cluster components are computed and each variable is assigned to the

component with which it has the highest squared correlation. The second

phase involves a search algorithm in which each variable in turn is tested

to see if assigning it to a different cluster increases the amount of variance

explained. If a variable is reassigned during the search phase, the compo-

nents of the two clusters involved are recomputed before the next variable

is tested.

In this paper, for marker selection we use the entropy as a measure of genes

diversity that attains a maximum if all genes are present in equal quanti-

ties. If only a subset s of genes were typed then some of the original might

become indistinguishable and hence will be merged. The sequence of genes

subset generates a monotonic sequence of optimal approximations (as mea-

sured by their entropy) to the structure of the data. This method has been
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implemented in a software code using simple recursive search algorithm,

which generates and evaluates all possible genes subsets. In this way we

select the variables that are most important to explain the patient disease.

4 Predictive models for genomic data

The interest in exploratory methods for evaluating patterns of association

between many variables has been reinforced by problems involving large-

scale gene expression studies. Problems of modeling structure under the

”‘large p, small n” paradigm challenge modern statistical science both con-

ceptually and computationally. Our approach is based in two modelling

steps:

• a descriptive step, based on association and link models;

• a predicitve step based on regression and tree models

For the descriptive step we use gene link analysis methodology, see e.g. [14].

The main output of a link analysis is a graph, formed of nodes and links.

In the graph, each gene is represented by a node, and links are placed be-

tween such nodes. A link is placed between two nodes if the count of the

corresponding sequence of order two is non null. The graph thus informs

on which nodes are connected, and which are not. Usually the thickness of

a link is directly related with the size of the count. The links are directed;

for instance, to orientate an edge between two nodes A,B the two counts of

A B and B A in the link dataset are compared; the higher determines the

orientation. Both orientations will be present in case of substantial parity.

The size of the nodes typically depend on a so-called centrality measure.

This concepts comes from ideas in social networks. A first order central-

ity measure basically means that the importance of a node depends on the

number of connections it has. On the other hand, a second order centrality
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measure means that the importance of a node depends on the number of

connections that the nodes connected to it have. In both cases each con-

nection and link can be weighted according to its count in the link dataset.

In our case we have chosen to use, to describe the size of a node, an un-

weighted first order centrality measure. We remark that the position of

a node may also depend on the counts. The counts between each pair of

pages are put in a proximity matrix. Multidimensional scaling is then used

to reproduce such proximities with a bidimensional Euclidean distance, and,

correspondingly, derive two X and Y coordinates. The higher the count,

the closer the points corresponding to the coordinates in a cartesian graph.

The second step of our modelling is predicitve. Predictive modeling tries

to find good rules (models) for guessing (predicting) the values of one or

more variables in a data set from the values of other variables in the data

set. Once a good rule has been found, it can be applied to new data sets

(scoring) that may or may not contain the variable(s) being predicted. In

a predictive model, one of the variables is expressed as a function of the

others. This permits the value of the response variable to be predicted from

given values of the others. In our example we have a target variable Y that

is the type of tissue and a set of explanatory variable (activations of genes),

X1, ..., Xp.

The record for the i-th past tissue can be conveniently represented as

(X(i),Y(i)). Here y(i) is the outcome (good or bad) of the i-th tissue, and

x(i) is the vector x = (x1(i), ..., xp(i)) of genes. A useful predicitve model

for binary target is logistic regression.

Let Yi, i=1,2,...,n be the observed values of a binary response variable which

can take only the value 1 or 0(tissue diseased or not diseased). A logistic

regression model is defined in terms of fitted values to be interpreted as

probabilities that the event occurs in different subpopulations:
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πi = P (Yi = 1), i = 1, ..., n,

More precisely, a logistic regression model specifies that an appropriate

function of the fitted probability of the event is a linear function of the

observed values of the available explanatory variables. Here is an example:

log
πi

1 − πi

= a + b1xi1 + ... + bkxik,

The left-hand side defines the logit function of the fitted probability as the

logarithm of the odds for the event, namely the natural logarithm of the

ratio between the probability of diseased tissue and the probability of not

diseased tissue. For each patient the logistic regression gives a probability

of diseased tissue as a function of the genes.

A second class of predictive models that can be usefully employed is tree

models. While logistic regression methods produce a score and then possi-

bly a classification according to a discriminant rule, tree models begin by

producing a classification of observations into group. Tree models can be

defined as a recursive procedure, through which a set of n statistical units

is progressively divided in groups, according to a divisive rule which aims

to maximize a homogeneity or purity measure of the response variable in

each of the obtained groups. At each step of the procedure, a divisive rule

is specified by: the choice of an explanatory variable to split; the choice

of a splitting rule for such variable, which establishes how to partition the

observations. The main result of a tree model is a final partition of the

observations: to achieve this it is necessary to specify stopping criteria

for the divisive process. Indeed different criteria give rise to different tree

model algorithms that should be compared in terms of performance (see

e.g. [14]).We first split the space into two region, and model the response

by the mean of Y (type of tissue) in each region. We choose the variable

(gene) and split-point to achieve the best fit. Then one or both of these
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regions are split into two more regions, and this process is continued, until

some stopping rule is applied. In principle this splitting procedure can be

continued until each leaf node contains a single training data point. A com-

mon strategy is to build a large tree and then to prune it back. The score

function used to measure the quality of different tree structures is a general

misclassification loss function (MLF), defined as:

MLF =
n∑

i=1

C(Y (i), Ŷ (i)),

where C(Y (i), Ŷ (i)) is the loss incurred (positive) when the class label for

the i-th data vector, y(i), is predicted by the tree to be Ŷ (i). In general,

C is specified by an m × m matrix, where m is the number of classes. In

our case classification tree use a cross-validation techniques to estimate the

misclassification loss function. Basically, this implies to partition the data

into a training and a validation data set, on which to estimate the misclas-

sification rate.

In our approach different logistic regression and tree models will be com-

pared in terms of performance measures. We shall choose measures par-

ticularly suited for feature selection. More precisely, the total variable im-

portance of an input x (gene) is equal to the square root of the sum over

nodes of a measure of agreement multiplied by the reduction in impurity.

The measure of agreement is equal to 1 if x is used to split the node; or the

agreement measure of a surrogate, if x is a surrogate; or 0 if x is neither

primary or surrogate. For an interval target, the impurity is equal to the

sum of the squared errors. For a categorical target, the impurity is equal to

the Gini Index. In the next sction we show the application of our methods

to the data.
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5 Application to the available data

The goal of the application is to create a valid predictive model to diag-

nose malignant tissues, based on the observation of gene expressions. The

available data is a sub-set taken from a large database (GeneExpress) and

analysed by S. Young et al [13]. The resulting data set is composed by

112.896 gene expressions ordered into 224 columns and 504 rows. Columns

represent a set of 224 genes, rows correspond to 504 samples, covering 8

tissue types - adipose tissue, breast, colon, kidney, liver, lung, ovary and

prostate - both normal (249 samples) and malignant (255 samples). Mea-

sured values of the gene expression data have been put in bins and markers

as being ’1’ (highly expressed) or ’0’ (not-highly expressed). We have also

applied label ’1’ to malignant tissues and ’0’ to normal tissues.

In order to analyse the data we first discover associations between genes

expression. Associations rules can be used to express associations between

cell environmental effects and gene expressions, to diagnose a profiled can-

cer sample, or to analyse drug treatment effects. In Figure 1 we show the

relationships in diseased tissue that we have obtained, in the form of a link

graph.

Fiugre 1 about here

The associations are strong when the line is read (high probability that

in a tissue we find a couple of genes), and fair when the line is green. In

particular in diseased tissue we observe high association between gene 216

and gene 217, gene 89 and gene 138, gene 138 and gene 116. Link analy-

sis for not diseased data turned out to be different in terms of results from

not diseased tissues, as it is possible to see comparing Figure 1 and Figure 2.

Fiugre 2 about here
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We now turn to feature selection. In order to find the best predictive models,

we have reduced the number of inputs by eliminating input variables that

are not related to the target.

Table 1 about here

In Table 1 we have compared chi-square selection and our proposed approach

on variable selection, based on marker selection. In Table 1 it is possible

to see that the two approaches have a good overlap in selected genes:(gene

10, gene15, gene28, gene110, gene113, gene116, gene 121, gene138, gene217)

are in common.

In order to better compare the two selections, we have run two classification

tree models with the same settings and compared the resulting disriminant

variables. Table 2 show the results for marker selection approach and Table

3 show the results for chi-square selection approach. It is possible to see

that marker selection approach is more parsimonious.

Table 2 about here

Table 3 about here

Table 3 show the genes that have more importance to forecast diseased

tissue following chi-square selection approach. After the feature selection

process, our focus is to build a valid model to predict diseased tissues. In

order to reach this objective we compare logistic regression and decision tree

in terms of the confusion matrix, different performance indexes (error rate,

accuracy, sensitivity, specificity) and some evaluation graphs (lift chart and

ROC Curve).

The confusion matrix is used as an indication of the properties of a classi-

fication (discriminator) rule. It contains the number of elements that have

been correctly or incorrectly classified for each class. On its main diagonal

we can see the number of observations that have been correctly classified
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for each class while the off-diagonal elements indicate the number of obser-

vations that have been incorrectly classified. We classify the observations of

a validation dataset in four possible categories: the observations predicted

as events and effectively such (in Table 4 with absolute frequency equal to

151); the observations predicted as events and effectively non events (with

frequency equal to 27); the observations predicted as non events and effec-

tively events (with frequency equal to 28); the observations predicted as non

events and effectively such (with frequency equal to 151). The errors in the

previous confusion matrix (Table 4) are 27 and 28 cases. Table 4 compares

the performance of logistic regression and tree models.

Table 4 about here

The observation predicted as non events and effectively events are 28 and

the observations predicted as events and effectively non events are 22.

The ROC (Receiver Operating Characteristic) curve is a graph that also

measures predictive accuracy of a model, see e.g. [14]. It is based on the

confusion matrix. Given an observed table, and a cut-off point, the ROC

curve is calculated on the basis of the resulting joint frequencies of predicted

and observed events (successes) and non events (failures). More precisely,

it is based on the following conditional probabilities:

• sensitivity: proportion of events, predicted as such;

• specificity: proportion of non events, predicted as such;

The ROC curve is obtained representing, for any fixed cut-off value, a

point in the Cartesian plane having as x-value the false positive value (1-

specificity) and as y-value the sensitivity value. Each point in the curve

corresponds therefore to a particular cut-off . The ROC curve can thus also

be used to select a cut-off point, trading-off sensitivity and specificity. In

terms of model comparison, the best curve is the one that is leftmost, the
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ideal one coinciding with the y-axis.

Figure 3 compares ROC Curve for logistic regression and tree models and

is possible to derive that when we apply chi-square selection, the power in

prediction turns out to be similar between logistic regression and decision

tree.

Figure 3 about here

If we use marker selection approach, the best model is logistic regression,

as can be seen in Figure 4.

Figure 4 about here

We remark also that marker selection approach is more parsimonious in

terms of gene selected.

Finally, we compare the best model with a model derived from boosting

method. Boosting method is based on re-weighted re-sampling developed

from a weak learning algorithm, with the weights in the re-sampling are

increased for those observations most often misclassified in the previous

models. Table 5 shows the comparison of the misclassification errors; we

can see that in our application it is possible to improve the previous results

in term of misclassification rate (logistic regression and tree-based model)

using a boosting method .

Table 5 about here
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Chi-square Marker selection

GENE 10 GENE 8

GENE 15 GENE 10

GENE 28 GENE 15

GENE 39 GENE 28

GENE 92 GENE 64

GENE 97 GENE 72

GENE 98 GENE 75

GENE 110 GENE 76

GENE 113 GENE 80

GENE 116 GENE 102

GENE 119 GENE 110

GENE 121 GENE 113

GENE 138 GENE 116

GENE 164 GENE 121

GENE 173 GENE 126

GENE 175 GENE 134

GENE 195 GENE 138

GENE 217 GENE 217

Table 1: A comparison between feature selection

Genes Marker selection

GENE 15

GENE 28

GENE 217

GENE138

GENE126

Table 2: Feature selection with marker selection tree

19



Genes Chi-square selection

GENE 15

GENE 217

GENE28

GENE138

GENE119

GENE121

GENE110

GENE97

Table 3: Feature selection with chi-square selection tree

Frequency Pred chisq=0 Pred chisq=1 Pred marker=0 Pred marker=1

Obs chisq=0 147 27 - -

Obs chisq=1 28 151 - -

Obs marker=0 - - 148 22

Obs marker=1 - - 28 154

Table 4: Confusion Matrix of marker selection and chi-square selection

Model Training: Misclassification Rate Validation: Misclassification Rate

Boosting 0 0.165562

Logistic Regression 0.172804 0.225165

Table 5: Goodness of fit
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Figure 1: Link analysis for diseased

 

Figure 2: ROC Curve chi-squre selection
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Figure 3: Link analysis for not diseased

 

Figure 4: ROC Curve marker selection
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