
Maggi, Mario Alessandro

Working Paper

Loss aversion and perceptional risk aversion

Quaderni di Dipartimento - EPMQ, No. 166

Provided in Cooperation with:
University of Pavia, Department of Economics and Quantitative Methods (EPMQ)

Suggested Citation: Maggi, Mario Alessandro (2004) : Loss aversion and perceptional risk aversion,
Quaderni di Dipartimento - EPMQ, No. 166, Università degli Studi di Pavia, Dipartimento di
Economia Politica e Metodi Quantitativi (EPMQ), Pavia

This Version is available at:
https://hdl.handle.net/10419/87107

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/87107
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Loss aversion and perceptional risk aversion

Mario Alessandro Maggi 
(Università del Piemonte Orientale, Alessandria)

# 166 (04-04)

Dipartimento di economia politica
e metodi quantitativi

Università degli studi di Pavia
Via San Felice, 5

I-27100 Pavia

Aprile 2004



Loss aversion and perceptional risk aversion

Mario Alessandro Maggi∗

Abstract

This paper analyzes, for S-shaped value functions, the relations between
loss aversion and perceptional risk aversion (i.e. computed with the perceived
probability weights) in Cumulative Prospect Theory . We show that perceptional
risk aversion for mixed sign lotteries is equivalent to weak loss aversion, so this
is the right assumption to get a sensible behavior towards risk. No assumption
on the probability distortion is needed, beside the basic ones. Next we show
a case (the widely used power S-shaped value function) where the lack of loss
aversion can lead to a puzzling behavior with respect to risk.

Keywords: Cumulative Prospect Theory, power S-shaped value function, refer-
ence dependence utility, loss aversion.
JEL Classification: D81
AMS (2000) Classification: 91B16.

1 Introduction
Cumulative Prospect Theory (CPT) affords a framework where both rational and psy-
chological factors explicitly enter the decision problem. Various works have proved
that decisions are taken by evaluating gains and losses separately, rather than con-
sidering the final wealth as a whole: this happens because people differently perceive
improvements or deterioration of their reference wealth (e.g., see Kahneman and Tver-
sky (1979), Tversky and Kahneman (1992), Kahneman et al. (1991) and Benartzi and
Thaler (1995)). The observation that losses matter more than gains is defined as loss
aversion. Furthermore, the fact that the perception of a change in wealth decreases
with its distance from the reference point is termed diminishing sensitivity and can
be modelled by value (or utility) functions that are concave for gains and convex
for losses: precisely S-shaped value functions. Moreover, the subjective perception
and the evaluation of uncertainty cause a distortion of the real probabilities, a phe-
nomenon to be taken into account when making a decision, by properly weighting the
probabilities.

∗Dipartimento di Scienze e Tecnologie Avanzate, Università degli Studi del Piemonte Orientale
“Amedeo Avogadro”, Spalto Marengo, 33, 15100 Alessandria (Italy), Telephone: +390382506236,
fax: +390382304226, e-mail: maggi@mfn.unipmn.it, web: http://www.mfn.unipmn.it/~maggi/ .
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Consider an individual facing the choice among various lotteries. In CPT (see
Tversky and Kahneman (1992)), a preliminary ordering of a lottery X, whose out-
comes are x1, x2, . . . , xn, with probabilities p1, p2, . . . , pn, is necessary. That is, the
possible outcomes are ranked in order to have

x1 > x2 > · · · > xk ≥ 0 > xk+1 > · · · > xn .

Remark that the strong inequalities mean that events with the same outcome are put
together and their probabilities are summed up (here is the combination operation
described in Kahneman and Tversky (1979, p. 274)). Every lottery is evaluated
through

V (X) =
Pn

i=1 πiv (xi) , (1)

where v : IR → IR is the value function, and πi are the weights assigned to the
probabilities. Given two lotteries X and Y , X is preferred to Y if and only if V (X) >
V (Y ) and X is preferred to the null lottery if and only if V (X) > 0.
The value function v is defined on the difference between the final wealth and a

reference wealth level, say m, rather than on the overall final wealth. For simplicity’s
sake, we assume, as usual, that m = 0 (the status quo or the null lottery) and
v (0) = 0. The value function is continuous, strictly increasing and its first derivative
is piecewise continuous except, at most, at the origin, where it can display an infinite
jump. Moreover, v (x) is convex for x < 0 and concave for x > 0, i.e. it is S-shaped.
The probability weights πi are

πi =

½
w+ (P [X ≥ xi])− w+ (P [X > xi]) , if i ≤ k,
w− (P [X ≤ xi])− w− (P [X < xi]) , if i > k,

(2)

being the weighting functions w+ and w− differentiable, strictly increasing and map-
ping a probability P ∈ [0, 1] into [0, 1], with w+ (0) = w− (0) = 0, w+ (1) = w− (1) = 1,

w+, w− ∈ C1 (0, 1) , dw+ (p)

dp
> 0,

dw− (p)
dp

> 0,∀p ∈ (0, 1) . (3)

They distort the probabilities in order to reflect their subjective perception. In fact, as
Kahneman and Tversky (1979) and Fennema and van Assen (1999) have shown, small
probabilities are overevaluated, whereas large ones are underevaluated. Moreover, the
perception of probabilities can be different for gains and for losses.
In this paper we consider the attitude with respect to risk in perceptional sense,

that is all evaluations are made replacing the probabilities pi with their corresponding
weights πi. In order to emphasize this, we use the prefix “π-”. Therefore, an individual
who prefers the π-expected value Eπ [X] =

Pn
i=1 xiπi of any given risky lottery X for

sure to the lottery X will be said to display a π-risk averse attitude (π-RA). In the
same way, indifference or preference of the lotteries to its π-expected value for sure are
defined as π-risk neutral and π-risk seeking (π-RS) attitude, respectively. A lottery
X is said to be π-unfavorable, π-fair, π-favorable when Eπ [X] S 0, respectively.
Starting from X, we define two lotteries X+ and X−: X+ (X−) contains the

non-negative (non-positive) outcomes of X, whereas all others are replaced by 0 and
their probabilities are summed up. This allows to write (1) as

V (X) = V
¡
X+

¢
+ V

¡
X−

¢
. (4)
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The concept of loss aversion means, loosely speaking, that losses “matter” more
than gains, (e.g., see Kahneman and Tversky (1979), Bowman et al. (1999), Köb-
berling and Wakker (2003) and Neilson (2002)). As pointed out in Köbberling and
Wakker (2003), Maggi (2004) and Neilson (2002), there is not a fixed notion of loss
aversion. Different proposals are presented and discussed in Maggi (2004) and Neil-
son (2002). Among them, we recall the weak and the strong loss aversion (see Neil-
son (2002)), just owing to their relevant role for π-RA with mixed sign lotteries.

Definition 1 An increasing value function v displays weak loss aversion if v (0) = 0
and

v (y)

y
≤ v (z)

z
, ∀y > 0,∀z < 0. (5)

Definition 2 An increasing value function v, differentiable except possibly at 0, dis-
plays strong loss aversion if v (0) = 0 and

v0 (y) ≤ v0 (z) , ∀y > 0,∀z < 0.
Neilson (2002) shows that the two definitions above are equivalent for S-shaped

value functions. Moreover a simple rule to check weak and strong loss aversion for
S-shaped value functions can be found (see Maggi (2004)). In fact, if v is S-shaped
and differentiable except possibly at 0, the two loss aversion definitions are equivalent
to limx→0+ v0 (x) ≤ limx→−∞ v0 (x).
In section 2 the role of a precise definition of loss aversion (i.e. the weak one) in

ensuring a π-RA behavior with respect to mixed sign lotteries is clarified, without
requiring any assumption on the probability distortions, besides the basic ones. In
section 3 we point out that, owing to the lack of loss aversion, the well-known S-shaped
power value function (see (7) below) may lead, even in a simplified framework (with
n = 2), to a puzzling behavior facing to mixed sign lotteries. Namely, if the exponent
α for gains is smaller than β, the one for losses, then a lottery — no matter whether
π-favorable or π-unfavorable — is preferred to the status quo as soon as its magnitude
is sufficiently small. In other words, an individual who is π-RA over the gains can
display π-RS behavior with respect to some (not to all) mixed sign lotteries. These
results arouse some questions on the reliability of the widely used power value function
in CPT. They are briefly discussed in section 4. In general, this paper emphasizes
the need for a deeper analysis of the various value functions used in CPT. This paper
completes the analysis of the properties of the S-shaped power value function already
pointed out in Maggi (2004) in the case of no probability distortions.

2 Loss aversion and π-risk aversion
An S-shaped value function describes an individual who is risk averse over gains
and risk seeking over losses when the computation is made with the probabilities pi.
Moreover, from the perceptional point of view resulting from (2), the S-shapedness
of the value function also ensures that the individual is π-RA with respect to any
lottery X+ without losses, and π-RS with respect to any lottery X− without gains.
Indeed, given X+ (for X− the argument and the conclusion are symmetrical), the
probability distortion defined by (2) yields a new set of weights πi that can be treated
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as probabilities, as they are positive and sum up to unity (as remarked by Tversky
and Kahneman (1992) also). So, in perceptional terms, π-RA for gains and π-RS for
losses correspond, respectively, to the concavity of v for x > 0 and its convexity for
x < 0:

π-RA : V (X+) ≤ V (Eπ [X+]) , i.e.
Pn

i=1 πiv
¡
x+i
¢ ≤ v

¡Pn
i=1 πix

+
i

¢
,

π-RS : V (X−) ≥ V (Eπ [X−]) , i.e.
Pn

i=1 πiv
¡
x−i
¢ ≥ v

¡Pn
i=1 πix

−
i

¢
,

both with πi > 0, ∀i and
Pn

i=1 πi = 1.

However, the S-shapedness by itself does not guarantees a π-RA behavior with respect
to all mixed sign risky lotteries. In fact, without any further assumption, some S-
shaped value functions can lead to a π-RS attitude for mixed sign lotteries.
The following theorem directly links the definition (5) of loss aversion to a consis-

tent behavior with respect to mixed sign lotteries.

Theorem 3 Given a CPT model, with the probability weights fulfilling (2) and (3),
assume π-risk aversion for gains and π-risk seeking for losses. Then weak loss aver-
sion

v (y)

y
≤ v (z)

z
, ∀y > 0,∀z < 0, (6)

is necessary and sufficient to get π-risk aversion for mixed sign lotteries in the sense
that the status quo is preferred to every non null π-fair lottery.

Proof. Thanks to (4), the mixed sign lottery X is refused, if compared to the
status quo, if and only if V (X+) < −V (X−). Being the individual π-risk averse for
gains and π-risk seeking for losses, we get V (X+) ≤ V (Eπ [X+]) = v (Eπ [X+]) and
V (X−) ≥ V (Eπ [X−]) = v (Eπ [X−]). For a non-null π-fair lottery 0 < Eπ [X+] =
−Eπ [X−] by definition. Let Eπ [X+] = c. Let us draw on the non-negative ortant
IR2+ of a Cartesian plane (x,w) the two graphs A =

©
(x,w) ∈ IR2+ : w = v (x)

ª
and

B =
©
(x,w) ∈ IR2+ : w = −v (−x)

ª
. Thanks to the concavity of the functions v (x)

and (−v (−x)), the convex closures of A and B are, respectively, the sets

Ā =

½
(x,w) ∈ IR2+ : x

µ
lim

x→+∞
v (x)

x

¶
≤ w ≤ v (x)

¾
,

B̄ =

½
(x,w) ∈ IR2+ : x

µ
lim

x→−∞
v (x)

x

¶
≤ w ≤ −v (−x)

¾
.

Being V (X+) and (−V (X−)) convex linear combinations of points lying in A and B
respectively, then (c, V (X+)) ∈ Ā and (c,−V (X−)) ∈ B̄. Therefore A ∩ B = (0, 0)
if and only if (6) holds. Moreover, (6) implies that v (x) ≤ −v (−x),∀x > 0, therefore
V (X+) < −V (X−), so every fair lottery is less valuable than the status quo.
Theorem 3 deserves some remarks:

• Theorem 3 exactly defines the role of loss aversion and recognizes which formal
definition of loss aversion, i.e. the weak one (6), leads to a reasonable behavior
facing risk for mixed sign lotteries. In fact, if (6) holds, every mean preserving
spread added to the status quo makes it less valuable. Although in CPT the
individuals are risk seeking over losses, loss aversion (6) ensures that they are
always risk averse over mixed sign π-fair lotteries.
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• Remark that condition (6) restricts the value function, i.e. the function de-
scribing the perception of the value, independently of the subjective perception
of probabilities. This means that, should a condition weaker than (6) be de-
sired, then restricting the probability distortion is useless. Instead, some weaker
conditions can be found by restricting the set of admissible lotteries. For in-
stance, in the set of binary symmetric lotteries (see (8) below) the condition
v (x) < −v (−x) ,∀x > 0, is equivalent to π-RA for mixed sign lotteries.

• Needless to say, theorem 3 works even without probability distortion, i.e. with
πi = pi,∀i. Hence, the result applies, in general, on reference dependent decision
models.

In the next section we discuss some anomalies stemming from the lack of loss
aversion for the well-known power value function.

3 The power S-shaped value function
A widely used S-shaped value function is the power S-shaped one (Benartzi and
Thaler (1995), Thaler et al. (1997), Prelec (1998), Fennema and van Assen (1999),
Tversky and Kahneman (1992) and Wakker and Zank (2002)):

v (x) =

½
xα, x ≥ 0,
−λ (−x)β , x < 0,

with 0 < α ≤ β ≤ 1, λ ≥ 1. (7)

It is defined on all IR, continuous, strictly increasing and S-shaped. We exclude the
case α = β = 1, i.e. a kinked linear value function, to be discussed below. This way
the assumptions β ≥ α and λ ≥ 1 mean that losses matter more than gains. It is easy
to check that the power value function does not display weak loss aversion. Therefore,
given the result of theorem 3, some anomalies can emerge. The assumption α < β
is commonly based on the argument that losses matters more than gains, e.g., see
Wakker and Zank (2002) and Fennema and van Assen (1999). Theorem 3 states that
this argument is not precise. In fact, when loss aversion (6) is not verified, it may
well happen that some losses matter less than some gains.
In order to show this anomaly, proposition 4 below adopts a simplified framework,

namely it deals with binary symmetric lotteries X, i.e. of the kind

X = (x, p;−x, 1− p) , x > 0, (8)

and with their rescalings εX = (εx, p;−εx, 1− p), with ε > 0.

Proposition 4 Assume CPT with a power value function (7) and 0 < α < β ≤ 1.
Let X be any binary symmetric lottery, i.e. of the kind (8), with a given probability
of gain p ∈ (0, 1). Then there exists a critical magnitude ε̄x of the stack for which, no
matter how X is π-unfavorable or π-favorable (i.e. how much π1

π2
is small or large), or

how the risk is perceived (i.e. how the values α, β and λ ≥ 1 are fixed), the lottery ε̄X
is indifferent to the status quo. Moreover, if the rescaling factor ε is smaller (larger)

than ε̄ = 1
x

³
w+(p)

λw−(1−p)
´ 1
β−α

> 0, then the lottery εX is preferred (refused) with respect
to the status quo.
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Proof. For a binary symmetric lottery, according to (2), the weights are π1 =
w+ (p) and π2 = w− (1− p), so V (εX) = (εx)αw+ (p) − λ (εx)β w− (1− p). The
lottery εX is indifferent to the status quo if and only if V (εX) = 0, that is

εβ−α = xα−β
w+ (p)

λw− (1− p)
. (9)

No matter how X, λ ≥ 1 and the weighting functions w+ and w− fulfilling (3) are
chosen, the right hand side of (9) is a positive constant ∀ε > 0. Instead, being α < β,
the left hand side of (9) is a continuous, strictly increasing and unbounded function
on (0,+∞) vanishing for ε → 0+. Hence the unique ε > 0 satisfying (9), say ε = ε̄,

separates (0,+∞) into two subsets (0, ε̄) and (ε̄,+∞) where εβ−α ≷ xα−β w+(p)
λw−(1−p)

respectively hold. That is, given X, we get V (εX) T 0⇔ ε T ε̄ = 1
x

³
w+(p)

λw−(1−p)
´ 1
β−α

.

Obviously, proposition 4 tells that, if Eπ [X] = 0, then π-fair binary symmetric
lotteries are more (less) valuable than the status quo if the stake εx is small (large)
enough. In this case ε̄ = 1

xλ
1

α−β . Here are some remarks on proposition 4. They may
complete what Köbberling and Wakker (2003) have pointed out for small lotteries.

• Proposition 4 confirms in an easy way that CPT with power S-shaped value
function does not respect second order stochastic dominance neither in objective
nor in perceptional terms. In fact, consider the binary π-fair symmetric lottery
Z whose stake is z ∈ (0, ε̄), with ε̄ = λ

1
α−β . Proposition 4 implies that Z is

preferred to the null lottery. Here the surprising anomaly is that a π-RS attitude
can be displayed by an individual who is π-RA over both gains and fairly large
mixed sign lotteries. This confirms that, as Levy and Wiener (1998) remarked,
CPT should be deeply analyzed with mixed signs and complex lotteries.

• Another effect is that the preference order of two lotteries X and Y can differ
from the one of εX and εY , with ε > 0. For example, consider the power value
function (7) with α = 0.7, β = 0.9, λ = 2, and the weighting functions

w+ (p) =
pγ

+³
pγ+ + (1− p)γ

+
´1/γ+ , w− (p) =

pγ
−³

pγ− + (1− p)γ
−´1/γ− ,

with γ+ = 0.6, γ− = 0.7. The lottery X =
¡
0.005, 12 ;−0.005, 12

¢
is preferred to

Y =
¡
0.0025, 12 ;−0.0025, 12

¢
as V (X) > V (Y ), but the lottery 2Y is preferred

to 2X, so the preference order is reversed.

In the case α = β < 1, as in Tversky and Kahneman (1992), loss aversion does not
hold, either. In fact, the lottery X =

¡
3, 23 ; 2,

1
6 ;−14, 16

¢
is fair, but with α = β = 0.5,

λ = 2, and γ+ = γ− = 1 we get V (X) > 0.
Forcing α = β → 1 in the power value function (7), we get the well-known kinked

linear value function

v (x) =

½
x, x ≥ 0,
λx, x < 0,

with λ > 1,

which fulfils weak loss aversion. In this case the individual is π-risk neutral over gains
and over losses separately, but she/he is π-RA over mixed sign lotteries.
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4 Concluding remarks
Theorem 3 shows that, in a CPT model, weak loss aversion is a condition equivalent
to perceptional risk aversion for mixed sign lotteries. This result exactly characterizes
the role of loss aversion from the behavioral point of view. Therefore, a consistent
behavior facing risk is obtained by restricting the function describing the perception
of the value and no further assumption on the probability perception is needed, beside
the basic ones (2). Consequently, when no probability distortion is in place, the result
keeps valid.
It is worth to note that this result gives a final answer to the question of how to

define loss aversion. In fact, weak loss aversion (6) is the right notion of loss aversion
in the sense that it is necessary and sufficient in order to get a sensible behavior with
respect to mixed sign lotteries. In fact, if (6) does not hold, then there exist lotteries
that are perceived as fair, and yet are preferred than the status quo. This means that
the losses of these lotteries matter less than their gains, although the lotteries are
π-fair.
The results contained in proposition 4 may arouse some questions on the reliability

of the power CPT value function. Their relevance comes from the wide use of the
power function for both theoretical and empirical analysis. However, they may lead
to different, or even opposite, interpretations, which even appear in simple symmetric
lotteries.
Beginning from the negative one, the irrational-like behavior emerging when α < β

may lead to the conclusion that the power value function is not a suitable tool to
analyze the choices of an individual facing risk. A serious anomaly is that the same
individual can display different attitudes toward risk, depending on the magnitude
(and not only on the structure) of the lotteries to be evaluated. All this may be
ascribed to the lack of weak loss aversion.
Another interpretation of the consequences of proposition 4 starts from a positive

attitude towards them, even though it may appear more speculative. Considering
that Prospect Theory is grounded on the perception of gains and losses (measured
with respect to a reference point), the power value can be an tool consistent with a
widely observed behavior. Moreover, the psychological perception theory, developed
by Cognitive Psychology and Psychophysics, has shown that power laws generally
describe the sensorial stimuli perception: brightness, loudness, sweetness, duration,
etc., and — why not? — value. Following this approach, the puzzling features pointed
out in section 3 can fit some irrational-like common behavior. In fact, when α < β
the fair or even unfavorable lotteries that are preferred to the status quo have a small
stack. Apart from pathological gamblers with a compulsive behavior, many fairly
rational people accept even manifestly unfair lotteries, provided that the magnitude
of the stack is small enough. This can reflect the difficulty in perception of small
changes in wealth. A point that deserves a deeper analysis is whether the weighting
function exhausts the distortion effect of perception on real uncertainty, or — on the
contrary — some room is still available for other types of misevaluation to be captured
by, say, the power value function.
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