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Abstract

This paper considers ML estimation of a diffusion process observed discretely. Since

the exact loglikelihood is generally not available, it must be approximated. We review the

most efficient approaches in the literature, and point to some drawbacks. We propose to

approximate the loglikelihood using the EIS strategy (Richard and Zhang, 1998), and detail

its implementation for univariate homogeneous processes. Some Monte Carlo experiments

evaluate its performance against an alternative IS strategy (Durham and Gallant, 2002),

showing that EIS is at least equivalent, if not superior, while allowing a greater flexibility

needed when examining more complicated models.

JEL codes: C13, C15, C22

Keywords: Diffusion process, Stochastic differential equation, Transition density, Importance

sampling, Simulated maximum likelihood

1 Introduction

In the last thirty years, diffusion processes described by stochastic differential equations have

become an increasingly common tool used to describe the evolution over time of economic and

financial data. Although the process is defined in continuous time, the available data are always

sampled in discrete time. This gives rise to an issue when considering the estimation of the

parameters of the process.
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There exist by now several approaches to the estimation of the parameters of stochastic

differential equations. Some of traditional strategies provide consistent results only under the

assumption that the length of the interval between consecutive observations shrinks to zero. This

assumption is usually deemed unappealing for several reasons. First, high frequency observations

are not well described by diffusion processes, e.g. because the latter have continuous trajectories,

while high frequency financial observations exhibit discontinuous piecewise constant trajectories.

Second, reducing the length of the interval between observations introduces in the problem a

variety of undesirable microstructure effects. Finally, for some variables (e.g. non financial ones)

it may simply be impossible to increase the frequency of observation.

More recently, several alternatives have been developed which provide consistent estimates

of the parameters while keeping constant the time distance between observations. Their de-

gree of complexity varies considerably, but traditional efficiency considerations suggest to focus

on maximum likelihood estimation. The latter, however, is difficult because in general the

transition density function of these processes is not known in closed form, and it has to be ap-

proximated somehow. Even in this case, however, different solutions have been proposed in the

literature, albeit there is a widespread consensus that two of them are clearly superior in terms

of performance: the analytical closed-form expansion put forth by Aı̈t-Sahalia (2002), and the

refined simulated importance sampling strategy developed by Durham and Gallant (2002) (see

e.g. Jensen and Poulsen, 2002, for a numerical comparison).

Importance sampling is simply a tool which provides an estimate of the value of a high

dimensional integral. The main idea is to see the integral as the expected value w.r.t. of a

certain auxiliary density of a function defined by the ratio of the original integrand and of the

auxiliary density itself. This expectation is then approximated by averaging over simulations

drawn from the auxiliary density; hence, it is stochastic in nature. Obviously, the properties of

this approximation (such as its unbiasedness and dispersion) depend on tuning parameters such

as the number of simulations, but the most important ingredient for a successful implementation

of importance sampling is by far the choice of the auxiliary density. Durham and Gallant (2002)

have suggested a very simple, yet quite satisfactory, auxiliary density labelled Modified Brownian

Bridge.

In this paper, we suggest, as an alternative to MBB, to implement the Efficient Importance

Sampling technique developed by Richard and Zhang (1998), which has already been applied

successfully in a variety of discrete time models. We start in the next section by briefly reviewing

Aı̈t-Sahalia (2002) and Durham and Gallant (2002) strategies. This allows us to fix the notation,

and to point to some weak points of these approaches. Although many (but not all) of these

issues become apparent only in multivariate models, in this paper we compare the performance

of EIS with that of MBB in the same simple univariate setups considered in the literature on

the subject. We outline the EIS approach in section 3, and provide in section 4 some details

about its implementation in scalar diffusion processes. Finally, section 5 reports the results of
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a variety of Monte Carlo experiments comparing EIS to MBB, and exploring issues such as the

numerical error in approximating the loglikelihood or in ML estimating the parameters, when

the statistical uncertainty intrinsic in the estimation procedure is or is not taken into account.

The last section concludes.

2 The problem

In what follows, we consider the scalar parametric SDE:

dXt = µ(Xt; θ)dt + σ(Xt; θ)dWt (1)

where Wt is a standard Brownian Motion. Time homogeneity is assumed only for simplicity;

adapting the following discussion to time inhomogeneity requires some straightforward pas-

sages. Extensions to multivariate as well as to jump diffusion processes are currently under

investigation. We assume that that (1) has a nonexploding, unique solution. Explosive solu-

tions are excluded because in their case no transition density exists; notice that stationarity

is not required. Among the various alternative sets of sufficient conditions ensuring that this

assumption actually holds, the simplest one is that µ(·; θ) and σ(·; θ) satisfy global Lipschitz and

linear growth conditions. Karatzas and Shreve (1991) and Aı̈t-Sahalia (2002) discuss alternative

sets of sufficient conditions which can be better suited to deal with SDEs which do not meet the

previous requirements and are frequently encountered in finance

Let ∆ be the length of the interval between two consecutive observations, labelled x0 and

x∆, and let θ ∈ Θ ⊆ R
p denote a vector of unknown parameters. We consider the problem

of approximating the exact transition density, denoted by p(x∆|x0; ∆, θ). In the following, we

adopt a simplified notation in which the dependence of the transition densities (or their logs) on

∆ is dropped; the length of the interval between the observations is unambiguously identified by

the indexes of the latter. This function is unknown, apart from a few, very simple cases, but its

evaluation is essential to compute maximum likelihood estimates of θ given a sample of discrete

observations of the process.

A variety of strategies have been proposed to estimate θ, including simulation-based ap-

proaches such as Indirect Inference (Gouriéroux, Monfort and Renault, 1993) or the Efficient

Method of Moments (Gallant and Tauchen, 1996), Generalized Method of Moments approaches

(Carrasco, Chernov, Florens and Ghysels, 2002; Duffie and Glynn, 2001), nonparametric (Aı̈t-

Sahalia, 1996a,b; Bandi and Phillips, 2003; Stanton, 1997) and Bayesian strategies (Eraker,

2001; Jones, 1999), among many others. A few others have been advanced to approximate

the unknown transition density, and hence to allow efficient (albeit approximate) maximum

likelihood estimation: among these, numerically solving the Fokker-Planck-Kolmogorov partial

differential equation (Lo, 1988), closed-form analytic approximation based on Hermite polyno-

mials expansion (Aı̈t-Sahalia, 1999, 2002), and the simulation-based, Monte Carlo integration
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strategy suggested by Pedersen (1995) and Brandt and Santa-Clara (2002), and further explored

by Durham and Gallant (2002).

The purpose of this paper is to suggest an efficient and very flexible alternative strategy

to approximate the transition density of the process. Although the approach we advocate is

numerical in nature, it is convenient for future reference to start by briefly outlining the closed-

form analytic approximation developed by Aı̈t-Sahalia (2002). A subsequent section will briefly

review the literature on the existing numerical approximation techniques.

2.1 Aı̈t-Sahalia (2002) closed-form analytical approximation

Aı̈t-Sahalia (2002) has derived a closed form analytical approximation of the transition density

of the SDE (1) using its Hermite polynomials expansion. The approximation can be made

arbitrarily good by choosing a sufficiently high order of the expansion, without any need to

assume that ∆ → 0. To guarantee that the expansion actually converges, Aı̈t-Sahalia (2002)

has shown that (1) must be transformed into another SDE, with the density sufficiently close to

Gaussian. This can be achieved by defining the new variable:

Y = γ(X; θ) =

∫ X 1

σ(u; θ)
du

where the constant of integration is irrelevant. An application of the Itô’s Lemma shows that

the SDE governing the dynamics of y is given by:

dYt = µY (Yt; θ)dt + dWt (2)

where:

µY (y; θ) =
µ[γ−1(y; θ); θ]

σ[γ−1(y; θ); θ]
− 1

2
σ′[γ−1(y; θ); θ]

This transformation is known as Lamperti transform, and it plays a crucial role in the effective-

ness of both the analytical approximation approach of this section Aı̈t-Sahalia (2002), and the

numerical IS strategy of Durham and Gallant (2002), to be reviewed in the following one.

Let the Hermite polynomials be defined as

Hj(z) = e
1

2
z2 dj

dzj
e−

1

2
z2

, for j = 0, 1, 2, . . .

The Hermite expansion of pY (y∆|y0; θ) is then given by:

p
(J)
Y (y∆|y0; θ) = ∆−1/2φ[∆−1/2(y∆ − y0)]

J∑

j=0

ηj(∆, y0, θ)Hj [∆
−1/2(y∆ − y0)] (3)

where φ(·) is the density of a N (0, 1) random variable. The coefficients ηj(∆, y0, θ) in (3)

are given by the conditional expectation of the corresponding Hermite polynomial. They are
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usually unknown, but straightforward to approximate using a Taylor expansion based on the

infinitesimal generator of the process:

η(j)
z (∆, y0, θ) =

1

j!
E{Hj [∆

−1/2(y∆ − y0)]|y0; θ} ≈ 1

j!

K∑

k=0

∆k

k!
AkHj [∆

−1/2(y∆ − y0)]
∣∣∣
y∆=y0

where, for any function g(·) (subject to some regularity conditions):

Ag(y) = µY (y; θ)
∂g(y)

∂y
+

1

2

∂2g(y)

∂y2

When this approximation is replaced in (3), the result is a double expansion p
(J,K)
Y (y∆|y0; θ)

of the unknown transition density. By collecting together terms involving the same powers

of ∆, it is possible to let J → ∞, and to obtain an approximation which only depends on K.

Furthermore, the terms of the Taylor expansion in ∆ of the log of this expression can be collected

in much the same way in order to derive a similar expansion for the log of the transition density

given by:

`
(K)
Y (y∆|y0; θ) = −1

2
log(2π∆) +

C
(−1)
Y (y∆|y0; θ)

∆
+

K∑

k=0

C
(k)
Y (y∆|y0; θ)

∆k

k!
(4)

The most convenient way to obtain the expression of the coefficients in (4) is to consider the

Kolmogorov forward and backward equations for `Y , respectively given by:

∂`Y (y∆|y0; θ)

∂∆
= −∂µY (y∆)

∂y∆
− µY (y∆)

∂`Y (y∆|y0; θ)

∂y∆
+

1

2

∂2`Y (y∆|y0; θ)

∂y2
∆

+
1

2

[
∂`Y (y∆|y0; θ)

∂y∆

]2

∂`Y (y∆|y0; θ)

∂∆
= µY (y0)

∂`Y (y∆|y0; θ)

∂y0
+

1

2

∂2`Y (y∆|y0; θ)

∂y2
0

+
1

2

[
∂`Y (y∆|y0; θ)

∂y0

]2

By substituting (4) in these expressions and collecting terms in powers of ∆, we obtain a sequence

of differential equations in the coefficients C
(k)
Y (y∆|y0; θ) which can be solved explicitly. See Aı̈t-

Sahalia (2003) for more details. Finally, given `
(K)
Y (y∆|y0; θ), a sequence of approximations

of the log transition density `(x∆|x0; θ) of the original X process can be constructed with an

application of the Jacobian formula.

The previous Hermite expansion requires to compute the Lamperti transform of the original

diffusion process. This task, however, is not always straightforward. Bakshi and Ju (2003), for

example, point out that for some choices of the diffusion coefficient σ(·; θ) the integral in γ(·; θ) or

its inverse γ−1(·; θ) may not be available analytically. Nevertheless, in the univariate case these

quantities can always be evaluated using numerical quadrature methods at the cost of increasing

the computational burden. It should be noticed, however, that for many interesting multivariate

diffusions the Lamperti transform may not exist at all (see Aı̈t-Sahalia, 2003, Proposition 1).

Processes with this property are said to be irreducible.

An alternative way to overcome the unavailability of a closed-form expression for the Lam-

perti transform of the process is suggested by Aı̈t-Sahalia (2003). Basically, the idea is to
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postulate a functional form for the expansion for `(x∆|x0; θ), and then compute its coefficients

using the Kolmogorov forward and backward equations, as seen above. By analogy with (4), a

convenient assumption is:

`(K)(x∆|x0; θ) = −1

2
log(2π∆)− 1

2
log σ2(x∆; θ)+

C
(−1)
X (x∆|x0; θ)

∆
+

K∑

k=0

C
(k)
X (x∆|x0; θ)

∆k

k!
(5)

where the last term is the log of the Jacobian of the Lamperti transform, which is obviously

missing from (4). Since generally the coefficients in (5) do not have closed-form expressions, it

is convenient to approximate them using a Taylor expansion w.r.t. x∆ in x0. The coefficients of

these expansions can be identified by substituting (5) in the Kolmogorov equations of the process,

and separately considering the coefficients of increasing powers in ∆. From a computational

point of view, this requires to solve a sequence of systems of equations; an explicit solution can

be obtained using symbolic mathematical software.

Formulas (4) and (5) provide two alternative closed-form approximations for the log of the

transition density of the univariate diffusion (1). While it can be shown that the former converges

for fixed ∆ to the true loglikelihood as the order of approximation K increases to infinity, for the

latter to converge it is necessary to assume that ∆ → 0. Another drawback is that frequently

(depending on the SDE under scrutiny) both approaches yield loglikelihood approximations

which are polynomial functions of a subset of parameters. As an example, assume that θ can be

split in two subsets (θ′
µ, θ′

σ)′ whose elements respectively appear in the drift and the diffusion

coefficients, and that the former is a polynomial in θµ. Using the formulae for the reducible case

in Aı̈t-Sahalia (2003), it is then easy to check that µY (·; θ) and CY (k)(y∆|y0; θ), for k = 0, . . . , K,

are also polynomials in θµ. This property may be troublesome when some of the parameters

for which it is valid can increase to infinity, as in this case the loglikelihood approximation may

grow unbounded.

Furthermore, both approximations may not be well suited to estimate models in which the

X process is not observed directly, but rather only through a one-to-one transform which also

depends on θ. This framework characterizes applications which use the price of a derivative

asset to recover an otherwise unobservable state variable, such as stochastic volatility option

pricing models or term structure models driven by unobservable factors, such as the affine class

(see Aı̈t-Sahalia and Kimmel, 2003, for an application of the latter kind). The reason for this is

that the coefficients of the various powers of ∆ in (4) and (5) may become singular for specific

values of x∆ and x0, e.g. when x∆ → 0, x0 → 0 or x∆ → x0, depending on the diffusion process

under scrutiny. If direct observations for both quantities are available, this is not an issue

(apart from the latter case, which may be encountered due to tick pricing procedures commonly

adopted in financial markets), but when they are not, the loglikelihood approximation becomes

infinite for any value of θ which sets the implied values of the latent variables equal to some

singularity point. Finally, no extension of this approach to the case of multivariate SDE with

partial observability of the state vector is available as of this writing. For example, Aı̈t-Sahalia
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and Kimmel (2004) estimate a continuous time stochastic volatility model, but are forced to

approximate the unobservable volatility state using the implied volatility of a short dated at-

the-money option.

2.2 Approximations based on Importance Sampling integration

In this paper, we shall focus on loglikelihood approximations based a numerical approach which

evaluates the unknown transition density of the process using Monte Carlo Importance Sampling

(IS hereafter) techniques. To briefly outline the strategy, start by considering an approximate

discretization scheme of the SDE (1), and denote with pa(x∆|x0; θ) the transition density implied

by this choice. For example, for the Euler scheme we know that:

pa(x∆|x0; θ) = φ[x∆; x0 + µ(x0; θ)∆, σ(x0; θ)2∆] (6)

where φ(·; m, v2) denotes the pdf of a Gaussian r.v. with expected value m and variance v2. It

is well known that pa(x∆|x0; θ) provides an acceptable approximation to p(x∆|x0; θ) only when

∆ is sufficiently small, which is often not the case for most available samples. Let us consider

a partition of the interval [0, ∆] in M subintervals delimited by 0 = τ0 < τ1 < . . . < τM = ∆,

and let for simplicity xm = xτm
. Notice that xM = x∆. Without losing in generality, and

in order to simplify the notation, we assume that τm − τm−1 = ∆/M = δ. Since, by the

Chapman-Kolmogorov property:

p(xM |x0; θ) =

∫

RM−1

M∏

m=1

p(xm|xm−1; θ)dx1 . . . dxM−1

we can approximate p(xM |x0; θ) with:

pM (xM |x0; θ) =

∫

RM−1

M∏

m=1

pa(xm|xm−1; θ)dx1 . . . dxM−1 (7)

where, following Durham and Gallant (2002, Assumption 4), we implicitly assume that this inte-

gral exists. Under this condition, the approximation can be made as precise as desired by simply

increasing the number of subintervals M . Sufficient conditions ensuring that pM (xM |x0; θ) ex-

hibits some desirable theoretical properties (existence and convergence towards p(xM |x0; θ) as

M → ∞) have been advanced by Pedersen (1995). The major difficulty in this approach is

represented by the evaluation of the (M − 1)-dimensional integral in (7). Monte Carlo inte-

gration is in general the only feasible approach. Its most basic implementation, as suggested

by Pedersen (1995) and Brandt and Santa-Clara (2002) is based on the observation that (7)

can be reformulated as the expectation of pa(xM |xM−1; θ) over xM−1 and with respect to the

distribution of the latter induced by
∏M−1

m=1 pa(xm|xm−1; θ), which is a pdf on R
M−1. Let

{(x̃(s)
1 , . . . , x̃

(s)
M−1), s = 1, . . . , S} be S independent trajectories drawn from this density. No-

tice that by construction all these simulated trajectories start at x0. The integral in (7) can now
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be approximated with:

p̃
(S)
M (xM |x0; θ) =

1

S

S∑

s=1

pa(xM |x̃(s)
M−1; θ) (8)

Durham and Gallant (2002) have pointed out that this strategy is in general highly inefficient,

because the probability that a draw x̃
(s)
M−1 from

∏M−1
m=1 pa(xm|xm−1; θ) belongs to the region

effectively contributing to the value of pM (xM |x0; θ) is infinitesimal, so that (8) is almost always

heavily downward biased and affected by a huge variance. Although there are techniques that

can improve the numerical accuracy of natural MC estimates (such as antithetic and control

variates), these are often unable to compensate for the initial selection of an inherently inefficient

sampler.

For these reasons, Durham and Gallant (2002) explored a number of alternatives based on

IS. To illustrate this approach, let r(x1, . . . , xM−1) denote an auxiliary pdf on R
M−1, and rewrite

(7) as:

pM (xM |x0; θ) =

∫

RM−1

∏M
m=1 pa(xm|xm−1; θ)

r(x1, . . . , xM−1)
r(x1, . . . , xM−1)dx1 . . . dxM−1 (9)

If we now let {(x̃(s)
1 , . . . , x̃

(s)
M−1), s = 1, . . . , S} be S independent trajectories drawn from r, an

alternative approximation of pM (xM |x0; θ) can be obtained using:

p̃
(S)
M (xM |x0; θ) =

1

S

S∑

s=1

∏M
m=1 pa(x̃

(s)
m |x̃(s)

m−1; θ)

r(x̃
(s)
1 , . . . , x̃

(s)
M−1)

(10)

Geweke (1996) shows that p̃
(S)
M (xM |x0; θ) converges towards pM (xM |x0; θ) by a Strong Law

of Large Numbers. To assess the accuracy of the IS approximation (10), a
√

S-Central Limit

Theorem can be used if:
∫

RM−1

∏M
m=1 pa(xm|xm−1; θ)2

r(x1, . . . , xM−1)
dx1 . . . dxM−1 < ∞ (11)

which ensures that (10) has a finite variance. It is easy to check that condition (11) holds if
∣∣∣∣∣

∏M
m=1 pa(xm|xm−1; θ)

r(x1, . . . , xM−1)

∣∣∣∣∣ < ∞ (12)

on the domain of integration. Hence, it is essential to choose a sampling density r(x1, . . . , xM−1)

such that its tails do not decline faster than those of
∏M

m=1 pa(xm|xm−1; θ).

Apart from the choice of M and S, the IS strategy requires the specification of the ap-

proximate density pa(xm|xm−1; θ), hereafter labelled “subtransition density”, and the sampling

density r(x1, . . . , xM−1). Durham and Gallant (2002) have shown that the former component

mainly affects the bias of p̃
(S)
M (xM |x0; θ), while the latter is connected to its Monte Carlo vari-

ance. After intensive investigations on a large number of possible choices, and focussing on a

specific benchmark process (a square root process with parameters chosen to fit the time series

behavior of US interest rate data), they come to the following twofold conclusion.
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First, the most efficient bias reduction technique is based on a two step procedure. The

first one is the Lamperti transform discussed in the previous section. The second one provides

the approximation of the transition pdf of y on the subintervals (τm−1, τm), for m = 1, . . . , M .

Durham and Gallant (2002) suggest to apply to the transformed SDE the Shoji and Ozaki

(1998) local linearization method, which approximates (2) with an Ornstein-Uhlenbeck process,

characterized by a readily available Gaussian transition density:

ps&o(ym|ym−1; θ) = φ[ym; ym−1 + µs&o(ym−1; θ), σ2
s&o(ym−1; θ)]

with:

µs&o(ym−1; θ) =
µY (ym−1; θ)κm−1

µ′
Y (ym−1; θ)

+
µ′′

Y (ym−1; θ)

2[µ′
Y (ym−1; θ)]2

[κm−1 − µ′
Y (ym−1; θ)δ]

σ2
s&o(ym−1; θ) =

exp[2µ′
Y (ym−1; θ)δ] − 1

2µ′
Y (ym−1; θ)

κm−1 = exp[µ′
Y (ym−1; θ)δ] − 1

Second, the most efficient variance reduction technique is based on an auxiliary density

labelled Modified Brownian Bridge, in which each point of the simulated trajectories are drawn

from a Gaussian density which approximates the pdf of xm given xm−1 and xM , given by:

pmbb(xm|xM , xm−1; θ) = φ[xm|xm−1 + µmbb(xm−1), σ
2
mbb(xm−1; θ)] (13)

with:

µmbb(xm−1) =
xM − xm−1

∆ − τm−1
δ and σ2

mbb(xm−1; θ) =
M − m

M − m + 1
σ2(xm−1; θ) δ

This strategy is quite efficient for the benchmark process considered by Durham and Gallant

(2002), but its performance in different contexts, such as those characterized by a volatility

higher than that usually observed in interest rate processes, is still unknown. Moreover, in

extending it to multivariate contexts, it should be noted that not all multivariate diffusions can

be transformed in such a way that the transformed process has a constant diffusion process

(Aı̈t-Sahalia, 2003), so that the first point in the Durham and Gallant (2002) strategy looses

its generality. An alternative bias reduction strategy is based on extrapolation, which is a well

known technique to numerically evaluate conditional expectations of diffusion processes with

higher order accuracy (see Kloeden and Platen, 1992, chapter 15). Extrapolation techniques are

usually very effective in removing the bias, but at the cost of a large increase in the variance.

For this reason Durham and Gallant (2002) do not suggest its use for univariate diffusions.

Finally, an extension to multivariate settings with latent variables is even more problematic,

because the unavailability of observations of the latter makes it strictly impossible to apply

the MBB based variance reduction technique. For example, to extend the MBB approach to

the case of latent variables, Durham and Gallant (2002) and Durham (2003) suggest to (i) use

the Pedersen (1995) and Brandt and Santa-Clara (2002) “blind” approach outlined earlier to

9



draw the trajectories of the latent components of the process, and conditionally on these (ii)

use the MBB sampler for the observed components. Although the Monte Carlo experiments

in Durham and Gallant (2002) are encouraging, it is not clear whether such a strategy can

represent a general solution, and in particular whether it effectively overcomes the critiques

originally advanced to the basic Pedersen (1995) and Brandt and Santa-Clara (2002) sampling

strategy. In this paper, though, we are only concerned with the univariate case; extensions to

the multivariate case with partial observability are currently under investigation.

In the following section we shall briefly outline an alternative and very promising variance

reduction technique labelled Efficient IS in the context of the numerical evaluation of the integral

(8). In a later section, we will investigate its properties and compare them to the preferred

Durham and Gallant (2002) strategy.

3 Efficient Importance Sampling

The Efficient Importance Sampling (hereafter EIS) procedure has been proposed by Richard

and Zhang (1998) and applied to maximum likelihood estimation of the parameters of a variety

of settings, including dynamic latent variable models in discrete time (Liesenfeld and Richard,

2003a,b), and dynamic discrete choice panel models (Zhang and Lee, 2004). EIS is essentially

a strategy to build a sampling density r(x1, . . . , rM−1) containing a huge number of parameters

and ideally suited to provide extremely accurate estimates of some high dimensional integrals.

Moreover, under some reasonable approximating hypothesis, the strategy exploits a recursive

decomposition of the original problem, and it can be described as a recursive sequence of auxiliary

low-dimensional least squares problems. For a thorough presentation of the EIS strategy in its

most general form, see Richard and Zhang (1998). In this section, we illustrate the basic idea

underlying the EIS algorithm in the context of continuous time diffusion processes like (1). For

the sake of simplicity, we consider two versions of the algorithm, labelled “one-step EIS” and

“sequential EIS”.

3.1 One-step EIS

To simplify the notation, let λ = (x1, . . . , xM−1)
′ denote the (M − 1) × 1 vector of integration

variables in the target integral (7). λ should be interpreted as “latent” variables, while the

observable variables are x0 and xM . To start with, EIS requires the selection of a parametric

class of sampling densities, among which the optimal one (in a sense to be specified below) will be

chosen. In this respect, it is clearly important that this family exhibits sufficient flexibility, but

also that condition (11) holds. In practice, the family of candidate sampling densities is usually

dictated by the problem under scrutiny; for example, it may consist of straightforward and/or

mathematically convenient parametric extensions of the distribution of the latent variables given

the past observable variables. The latter is labelled “natural sampler” by Richard and Zhang
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(1998), and is usually provided by the model itself; in the framework we are considering, it is

given by pa(λ|x0; θ) =
∏M−1

m=1 pa(xm|xm−1; θ). Let R = {r(λ; a); a ∈ A} denote the class of

auxiliary sampling densities indexed by a parameter vector a ∈ A. Finally, let pa(xM , λ|x0; θ) =
∏M

m=1 pa(xm|xm−1; θ) denote the joint distribution of the latent variables and of the forward

observable variable xM conditional on the backward observable variable x0 and the parameters.

The integral in (9) can then be rewritten as:

pM (xM |x0; θ) =

∫
pa(xM , λ|x0; θ)

r(λ; a)
r(λ; a)dλ (14)

where the integral is taken over the support of λ (omitted for simplicity).

Suppose now for a moment that there exists a value a(xM , x0; θ) of the auxiliary parameters

such that:

∀λ, pa(xM , λ|x0; θ) ∝ r[λ; a(xM , x0; θ)] (15)

If this property holds, then the correct result can be computed with zero variance, because

substitution of (15) into (14) immediately yields that pM (xM |x0; θ) equals the proportionality

factor in (15), since r(λ; a) is a density w.r.t. λ for every a. By consequence, it must necessarily

be that:

r[λ; a(xM , x0; θ)] = pa(λ|xM , x0; θ) =
M−1∏

m=1

pa(xm|xM , xm−1; θ)

This observation intuitively explains why Durham and Gallant (2002) variance reduction strat-

egy works so well. Each conditional distribution pa(xm|xM , xm−1; θ) is generally unknown, but it

can be approximated by pmbb(xm|xM , xm−1; θ) defined in (13). The small but generally nonzero

approximation error introduces some Monte Carlo variance in the IS evaluation of (14), but this

strategy is overall quite efficient in the simple benchmark example considered by Durham and

Gallant (2002).

EIS suggests an alternative strategy to make (15) hold as closely as possible. Let {λ̃(s)
, s =

1, . . . , S} denote S independent trajectories drawn from r(λ; a). The idea is simply to estimate

a(xM , x0; θ) by solving the following least squares problem:

min
c,a

S∑

s=1

[
log pa(xM , λ̃

(s)|x0; θ) − c − log r(λ̃
(s)

; a)
]2

(16)

An alternative, and probably superior strategy would be to consider a weighted least squares

objective function:

min
c,a

S∑

s=1

[
log pa(xM , λ̃

(s)|x0; θ) − c − log r(λ̃
(s)

; a)
]2 pa(xM , λ̃

(s)|x0; θ)

r(λ̃
(s)

; a)
(17)

because the inclusion of weights allows to focus the estimation of c and a on the regions of values

of λ for which the ratio pa(xM , λ|x0; θ)/r(λ; a) is higher, thus contributing more to the target

integral. Problem (17) is precisely the one suggested by Richard and Zhang (1998), although
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their discussion is based on the inspection of an approximation of the Monte Carlo variance of

the IS estimate of (14). In the following, we shall consider the simpler problem (16), but many

of the following observations carry over to (17) without difficulty. It is also important to notice

that, independently from the objective function, the approximation of the integrand provided by

EIS is global in nature, as opposed to methods providing local approximations, such as, among

others, Taylor series expansions and Laplace approximations. This is the main reason why this

technique has proven so successful in empirical applications.

The derivation above suggests that the estimate of the intercept parameter c is also an

estimate of log pM (xM |x0; θ). It should be noted, however, that in (16) the estimates of the

parameters c and a are based on observations which themselves depend on a, being IID draws

from r(λ; a). An additional difficulty is given by the fact that the candidate sampling density

r(λ; a) is generally a (possibly complicated) nonlinear function of a. Both features are annoying,

because they make problem (16) a highly nonlinear one. To circumvent the first issue, it is

possible to consider the following iterative strategy. Given an initial sampling density, draw the

S trajectories {λ̃(s)
, s = 1, . . . , S}, and use them to compute the first step estimates ĉ(1) and â(1).

Now use the fitted sampling density r(λ; â(1)) to redraw the trajectories of the latent variables,

and reestimate the parameters on them. These steps might be iterated until convergence in a is

attained, but in practice very few iterations are sufficient to obtain an extremely low objective

function, independently from the initial sampling density. An important practical point is that

the simulated trajectories must be based on the same set of random numbers. This is necessary

both for the convergence of the iterative procedure illustrated above, and for the maximization

of an objective function (such as a loglikelihood, or a quadratic form built from a set of moments)

computed by simulation, and for the convergence of such estimates for fixed Monte Carlo sizes.

To overcome the issue related to the nonlinearity of problem (16) in a, let:

r(λ; a) =
rK(λ; a)

ρ(a)
, with ρ(a) =

∫
rK(λ; a) dλ

where rK(λ; a) and ρ(a) denote the kernel and the associated constant of integration of r(λ; a),

respectively. Using these definitions, problem (16) can be rewritten as:

min
c,a

S∑

s=1

[
log pa(xM , λ̃

(s)|x0, θ) − c − log rK(λ̃
(s)

; a)
]2

(18)

where the integrating constant log ρ(a) has been absorbed by c. Notice also that any multi-

plicative factor in pa(xM , λ|x0; θ) which does not depend on either λ may be collected in the

intercept coefficient, although we do not pursue this possibility here to keep the notation as sim-

ple as possible. This version of the problem allows to estimate a using only the kernel rK(λ; a)

of the auxiliary sampling density r(λ; a). For most distributions, the former is a much simpler

function of the parameters a than the latter. Moreover, if r(λ; a) belongs to the exponential

family, then log rK(λ; a) can be written as a linear function of a, in which case (18) becomes
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a linear least squares problem. Finally, the efficient IS estimate of pM (xM |x0; θ) can be easily

derived by applying (10), with auxiliary density given by r(λ; â).

3.2 Sequential EIS

The main drawback of the strategy just outlined is that it requires to simultaneously estimate

all the parameters a appearing in the sampling density of a (M −1)-dimensional vector of latent

variables, λ. For r(λ; a) to exhibit the degree of flexibility necessary to closely approximate

the target integrand pa(xM , λ|x0; θ), a large number of parameters in a is generally required.

Simultaneous estimation of all the elements of a is not impossible, but it would likely require

restrictive hypothesis on the class of candidate sampling densities, such as multivariate normality,

which would largely limit the effectiveness of EIS and would probably violate condition (11). In

contrast, a recursive strategy could provide a much more flexible approach.

To illustrate this point, we consider the following factorization of the sampling density:

r(λ; a) =
M−1∏

m=1

r(xm|xm−1; am) (19)

where a = (a′
1, . . . , a

′
M−1)

′. We also assume that, for all m:

r(xm|xm−1; am) =
rK(xm; xm−1, am)

ρ(xm−1, am)
, where ρ(xm−1, am) =

∫
rK(xm; xm−1, am) dxm

We start by illustrating the main points of the discussion in a simple example, corresponding to

M = 3. A subsequent section extends the results to a generic higher value of M , and outlines

the recursive algorithm.

3.2.1 Two-steps sequential EIS

If M = 3, the target integral may be rewritten as:

p3(x3|x0; θ) =

∫ ∏3
m=1 pa(xm|xm−1; θ)

∏2
m=1 r(xm|xm−1; am)

2∏

m=1

r(xm|xm−1; am)dx2 dx1

=

∫
h2(x3, x1; θ, a2)

pa(x1|x0; θ) ρ(x1, a2)

r(x1|x0; a1)
r(x1|x0; a1) dx1 (20)

where:

h2(x3, x1; θ, a2) =

∫
pa(x3, x2|x1; θ)

rK(x2; x1, a2)
r(x2|x1; a2) dx2 = E

[
pa(x3, x2|x1; θ)

rK(x2; x1, a2)

∣∣∣∣x1

]

where the expectation is taken w.r.t. r(x2|x1; a2). As in the previous section, let us suppose

that it is possible to find a value a2(x3, θ) such that:

∀x1, x2, pa(x3, x2|x1; θ) ∝ rK [x2; x1, a2(x3, θ)] (21)
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If (21) is valid, then the inner integral can be computed exactly. As this is not generally

possible, a strategy similar to that outlined in the previous paragraph can be followed. Given

S independent trajectories {λ̃(s)
, s = 1, . . . , S}, a2(x3, θ) can be estimated by minimizing the

following sum of squares:

min
c2,a2

S∑

s=1

[
log pa(x3, x̃

(s)
2 |x̃(s)

1 ; θ) − c2 − log rK(x̃
(s)
2 ; x̃

(s)
1 , a2)

]2
(22)

which, under a suitable choice for R, can be characterized as a linear least squares problem. Let

us denote with â2(x3, θ) the solution of (22) w.r.t. a2. Using this value, we can estimate the

inner integral in (20) using the standard IS formula:

ĥ2[x3, x1; θ, â2(x3, θ)] =
1

S

S∑

s=1

pa(x3, x̃
(s)
2 |x̃(s)

1 ; θ)

rK [x̃
(s)
2 ; x̃

(s)
1 , â2(x3, θ)]

where each x̃
(s)
2 is drawn independently from r[x2|x̃(s)

1 ; â2(x3, θ)]. Let us assume that â2(x3, θ)

makes (21) approximately valid, so that ĥ2[x3, x1; θ, â2(x3, θ)] is extremely precise:

Var
[
ĥ2[x3, x1; θ, â2(x3, θ)]

∣∣∣x1

]
=

1

S
Var

[
pa(x3, x2|x1; θ)

rK [x2; x1, â2(x3, θ)]

∣∣∣∣x1

]
≈ 0 (23)

Let us now examine the evaluation of the outer integral in (20) using these results. An IS

estimate based on S independent trajectories has variance equal to:

Var[p̃
(S)
3 (x3|x0; θ)] =

1

S
Var

[
pa(x3, x2|x1; θ)

rK [x2; x1, â2(x3, θ)]

pa(x1|x0; θ) ρ[x1, â2(x3, θ)]

r(x1|x0; a1)

]

where the variance is taken w.r.t. r(x1|x0; a1) r[x2|x1; â2(x3, θ)]. Using (23), we can rewrite this

as:

Var[p̃
(S)
3 (x3|x0; θ)] ≈ 1

S
Var

[
pa(x1|x0; θ) ρ[x1; â2(x3, θ)] h2[x3, x1; θ, â2(x3, θ)]

r(x1|x0; a1)

]

where the variance is now taken only w.r.t. r(x1|x0; a1). If we were to follow the same steps

above, we should now look for a value a1(x3, x0, θ) such that:

∀x1, pa(x1|x0; θ) ρ[x1, â2(x3, θ)] h2[x3, x1; θ, â2(x3, θ)] ∝ r[x1|x0; a1(x3, x0, θ)] (24)

This strategy would fully extend to a recursive framework the strategy outlined in section 3.1.

It is easy to see, however, that its implementation requires either an analytical expression,

or a Monte Carlo approximation as a functional of x1, for h2[x3, x1; θ, â2(x3, θ)]. The first is

unavailable, and the second is impracticable, because it would need to keep x1 fixed at some

value, while {λ̃(s)
, s = 1, . . . , S} are full trajectory draws. Notice moreover that the number of

such conditional simulation steps would also grow exponentially with M .

For this reason, Richard and Zhang (1998) suggest to consider the alternative, and sub-

optimal, strategy obtained by simply dropping h2[x3, x1; θ, â2(x3, θ)] from the proportionality

condition above:

∀x1, pa(x1|x0; θ) ρ[x1, â2(x3, θ)] ∝ r[x1|x0; a1(x3, x0, θ)]
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To make the problem of estimating a1(x3, x0, θ) a linear least squares one, let us again consider

the decomposition of the auxiliary density in the ratio of its kernel to an integrating constant.

Since the latter may be included in the proportionality coefficient, a1(x3, x0, θ) may be estimated

by solving the following problem:

min
c1,a1

S∑

s=1

[
log
[
pa(x̃

(s)
1 |x0; θ) ρ[x̃

(s)
1 , â2(x3, θ)]

]
− c1 − log rK(x̃

(s)
1 ; x0, a1)

]2
(25)

As before, any multiplicative factor in pa(x̃
(s)
1 |x0; θ) ρ[x̃

(s)
1 , â2(x3, θ)] which does not depend on

x1 may be collected in the intercept coefficient c1.

What makes the strategy composed of (22) and (25) a fully operational one is precisely

dropping h2[x3, x1; θ, â2(x3, θ)] from the proportionality condition (24). An obvious situation

in which this key simplification would be fully valid would be when h2[x3, x1; θ, â2(x3, θ)] did

not depend on x1. Notice however that this is very unlikely, as it is easy to check that:

h2[x3, x1; θ, â2(x3, θ)] =
p2(x3|x1; θ)

ρ[x1, â2(x3, θ)]

Richard and Zhang (1998) justify the deletion of h2[x3, x1; θ, â2(x3, θ)] on the basis of their

Assumption 1, which states that the Monte Carlo sampling variance of the latter term is

negligible w.r.t. that of the product pa(x1|x0; θ) ρ[x1, â2(x3, θ)], to the extent that dropping

h2[x3, x1; θ, â2(x3, θ)] in problem (25) has virtually no effect on the estimate â1(x3, x0, θ). They

also correctly point out that a direct verification of this assumption is impossible, because it

would require a numerical evaluation of the neglected term. However, such a direct verification

is in a certain sense superfluous, because its validity is easily checked ex post: if it did not hold,

sequential EIS in high dimensional integrals would necessarily fail miserably. Moreover, the

R2 coefficients in both (22) and (25) provide a quick measure of how close the proportionality

conditions (21) and (24) are to being valid; if unsatisfactory results emerge, a close inspection of

the residuals estimated in (22) and (25) may help in suggesting fruitful extensions of the class

R of sampling densities.

3.2.2 Generic M-steps sequential EIS

In this section we outline the sequential EIS algorithm for arbitrary M . We assume that a

suitable set of canonical random numbers, to be used throughout the IS evaluation and max-

imization of the loglikelihood, has been drawn, and that an initial sampling density has been

chosen. The latter can be the member of R corresponding to a specified vector of parameters

a, the Durham and Gallant (2002) MBB density, or the natural sampler. We also assume that

R is chosen in such a way that the minimization problems reduce to linear least squares pro-

grams. Under these assumptions the generic M -steps sequential EIS algorithm to evaluate the

transition density of diffusion processes can be outlined as follows.
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• Step 0 [Simulation of trajectories]: Use the initial sampling density to draw a set {λ̃(s)
, s =

1, . . . , S} of independent high-frequency trajectories of the SDE.

• Step 1 [Auxiliary regression at subinterval M −1]: Estimate by OLS aM−1 by solving the

program:

min
cM−1,aM−1

S∑

s=1

[
log pa(xM , x̃

(s)
M−1|x̃

(s)
M−2; θ) − cM−1 − log rK(x̃

(s)
M−1; x̃

(s)
M−2, aM−1)

]2

Let us denote with âM−1 this estimate of aM−1.

• Step n = M − m, m = M − 2, . . . , 1 [Auxiliary regression at step m]: Given the

solution obtained at the previous steps, estimate by OLS am by solving the program:

min
cm,am

S∑

s=1

[
log
[
pa(x̃(s)

m |x̃(s)
m−1; θ) ρ(x̃(s)

m , âm+1)
]
− cm − log rK(x̃(s)

m ; x̃
(s)
m−1, am)

]2

Let us denote with âm this estimate of am.

• Step M [EIS evaluation of the transition density ]: Given the estimate of the full vector

of parameters â = (â′
1, . . . , â

′
M−1)

′ obtained in the previous steps, draw S independent

trajectories {λ̃(s)
, s = 1, . . . , S} from r(λ; â), and approximate the target integral (7) with:

p̃
(S)
M (xM |x0; θ) =

1

S

S∑

s=1

pa(xM , λ̃
(s)|x0; θ)

r(λ̃
(s)

; â)

The algorithm consist in M + 1 steps, indexed from 0 to M . To avoid the risk that a badly

inefficient initial sampler prevent EIS from determining the most efficient sampling density in

R, Richard and Zhang (1998) suggest to iterate steps 0 to M − 1 before evaluating the desired

transition density in step M . Also, as in the one-step version of EIS introduced in section 3.1,

it is possible to consider weighted versions of the least squares minimization programs in steps

1 to M − 1.

4 Implementing EIS for scalar diffusion processes

The implementation of the EIS algorithm to evaluate the transition density of a diffusion process

requires to specify the approximate transition density pa(xm|xm−1; θ) and the class of sampling

densities R. For the latter choice, other applications of the EIS strategy generally consider a

class R of candidate sampling densities which is a parametric extension of the chosen subden-

sity. For the problem we consider, this approach implies that both the approximate subdensity

and the auxiliary sampling density are Gaussians. This approach is discussed in the following

subsection. However, it is by no means the only one available; in particular, bias reduction

16



considerations suggest to use as subdensity the Aı̈t-Sahalia (2002) closed form analytical ap-

proximation described in section 2.1. While this is in general not Gaussian, it is still possible

to evaluate the multidimensional integral using a Gaussian sampling density. We outline this

alternative approach in subsection 4.2. In both cases, the associated kernels and integrating

constants defined in section 3.2 are easily computed.

4.1 EIS implementation with Gaussian subdensities

In their extensive analysis, Durham and Gallant (2002) have shown that the choice of the

subdensity is a crucial ingredient to control the bias of the IS estimate of the transition density.

They discuss a large number of available alternatives, among which the most effective is the

Shoji and Ozaki (1998) local linearization approach applied to the Lamperti transform of the

original diffusion. Anyway, all but one of them are basically Gaussian transition densities. In

this section, we consider the implementation of the EIS strategy when the chosen subdensity

has this property.

Let for simplicity the M subintervals be of equal length δ = ∆/M , and consider the following

Gaussian subdensity:

pa(xm|xm−1; θ) = φ(xm; ηm−1, v
2
m−1)

In this case:

pa(xM , xM−1|xM−2; θ) ∝ 1

vM−1 vM−2
exp

[
−1

2

(
(xM − ηM−1)

2

v2
M−1

+
(xM−1 − ηM−2)

2

v2
M−2

)]

pa(xm|xm−1; θ) ∝ 1

vm−1
exp

[
−1

2

(xm − ηm−1)
2

v2
m−1

]

Let us now turn to the specification of the class R of candidate auxiliary densities. A

convenient one defines the kernels of the conditional densities as the product of the natural

sampler and the kernel of a Gaussian density:

rK(xm; xm−1, am) = pa(xm|xm−1; θ) ζ(xm; am), where ζ(xm; am) = exp(am1xm + am2x
2
m)

Under this assumption, rK(xm; xm−1, am) is itself a Gaussian kernel, and the associated constant

of integration is easily computed:

rK(xm; xm−1, am) ∝ exp

(
−1

2

x2
m − 2νm−1xm

ω2
m−1

)

ρ(xm−1, am) ∝
(

ω2
m−1

v2
m−1

)1/2

exp

(
1

2

ν2
m−1

ω2
m−1

− 1

2

η2
m−1

v2
m−1

)

where:

νm−1 = ω2
m−1

(
ηm−1

v2
m−1

+ am1

)
and ω2

m−1 =

(
1

v2
m−1

− 2am2

)−1
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Notice that this choice implies that r(xm|xm−1; am) = φ(xm; νm−1, ω
2
m−1), which makes it very

simple to draw trajectories from the sampling densities. Moreover, in the minimization programs

of steps 1 to M − 1 the approximate subdensity pa(xm|xm−1; θ) cancels out, leaving us with

a recursive sequence of linear least squares problems. More specifically, the program in step 1

becomes:

min
cM−1,aM−1,1,aM−1,2

S∑

s=1

[
log pa(xM |x̃(s)

M−1; θ) − cM−1 − aM−1,1x̃
(s)
M−1 − aM−1,2

(
x̃

(s)
M−1

)2
]2

while those in steps 2 to M − 1 become:

min
cm,am1,am2

S∑

s=1

[
log ρ(x̃(s)

m , âm+1) − cm − am1x̃
(s)
m − am2

(
x̃(s)

m

)2
]2

Notice that, should this specification of R be unable to provide an adequate fit, additional

flexibility can be introduced at a minor cost by allowing the parameters am1 and am2 to be

themselves linear combinations of “deep” parameters and (functions of) lagged values of xm.

As a simple example, consider am1 = k′
1,m−1β1 and am2 = k′

2,m−1β2, where k1,m−1 and k2,m−1

are two vectors of K1 and K2, respectively, functions of xm−1, and β1 and β2 are conformable

vectors of parameters. Under such an assumption, the problems above remain linear in β1 and

β2, and the sampling density is still N (xm; νm−1, ω
2
m−1), conditionally on xm−1. In the empirical

analysis reported below, we found this extension to be useless for the subdensities considered in

this section. However, it will become more important for those considered in the following one.

4.2 EIS implementation with non Gaussian subdensities

Although most candidate subdensities are Gaussian, alternative approximate transition densities

may be considered. An example is provided by Elerian (1998) suggested a noncentral Chi-

squared transition density based on the Milstein discretization scheme. Durham and Gallant

(2002) investigated its properties, and concluded that the improvement over the simpler Gaussian

subdensity based on the Euler discretization scheme was marginal.

We also extensively experimented with a subdensity derived using one of Aı̈t-Sahalia (2002)

closed form analytical loglikelihood approximations. Although at first this choice might seem

puzzling, it is based on the observation that validity of the most general approximation approach

(i.e. the one not based on the Lamperti transform of the diffusion process) requires that ∆ → 0,

which can not be met in real data, but can be naturally verified in the simulated likelihood

framework by letting M be sufficiently high. EIS may still be useful even when an exact closed

form analytical approximation of the log transition density exists, e.g. in multivariate contexts

when some elements of the state vector are not observable. In such a case, the sample loglike-

lihood may be evaluated by integrating out the latent variables. This requires to compute an

integral whose dimension is proportional to the number of observations, a task similar to that

characterizing stochastic volatility models in discrete time.
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As the focus of this paper is on univariate diffusions, we do not investigate further this

possibility, but defer it instead to future research. Nevertheless, it is interesting to provide

a sketch of the implementation of EIS to non Gaussian densities, because it allows to better

appreciate the flexibility of the approach we advocate. If pa(xm|xm−1; θ) is not Gaussian, the

strategy set out in the previous section is no more convenient, because it is in general impossible

to determine explicitly the auxiliary density r and to simulate from it. However, repeated

experimentation revealed that in most cases to match the approximate subdensity it is sufficient

to choose

rK(xm; xm−1, am) ∝ exp(am1xm + am2x
2
m)

provided that the coefficients am = (am1, am2)
′ are allowed to depend linearly on appropriate

functions of lagged (usually up to the order 1) values of xm. The specific form of these functions

depends on the chosen subdensity, but a quick inspection of the functional form of the latter

usually suggests some low order (rational) polynomial. The choice above for the kernel of the

auxiliary density obviously implies that

ρ(xm−1, am) ∝ (−2am2)
−1/2 exp

(
−1

2

a2
m1

2am2

)

and that

r(xm|xm−1; am) = φ

(
xm;− am1

2am2
,− 1

2am2

)

so that it is again very simple to draw trajectories from the sampling densities. As before, the

(deep) parameters in am may be computed by solving a recursive sequence of linear least squares

problem.

Recall that the existence of a finite variance for the IS estimate of the transition density

requires that the tails of the auxiliary density in the denominator do not decline faster than those

of density in the numerator. In practice, this condition may be difficult to check analytically,

in particular when the transition subdensity is not Gaussian. Some guidance, however, may be

obtained using the test statistics developed by Koopman and Shephard (2003) using extreme

value theory; see section 5.2 for further details.

5 Numerical experiments

5.1 Setup

This section reports the results of several numerical experiments devoted to the comparison of

the performances of EIS and MBB approaches on simulated and real data sets. Although aimed

at investigating different properties of the two approaches, the numerical experiments that follow

share a basic setup whose description is the subject of this section.

Following the literature, we chose to focus on univariate interest rate diffusion processes, and

took as benchmarks the same models (with one irrelevant exception) considered by Aı̈t-Sahalia
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(1999) to explore the quality of its closed form transition density approximation. These are the

following:

1. Ornstein - Uhlenbeck process. Vasicek (1977) assumed that the dynamics of the short term

interest rate could be described by the following SDE:

dxt = θ1(θ2 − xt)dt + θ3dWt

with θ1 > 0 and θ3 > 0. The support of xt is the whole real line. It is well known that

this process can be exactly discretized, leading to a Gaussian transition density with mean

θ2+(x0−θ2) exp(−θ1∆) and variance [1−exp(−2θ1∆)]/(2θ1). This property, which is also

shared by the following two benchmark processes, allows us to compare the results obtained

using the two importance sampling approximations with those based on the true transition

density. Obviously, the Lamperti transform for this process is given by yt = xt/θ3, and

µY (yt; θ) =
θ1(θ2 − θ3yt)

θ3

2. Square root process. Cox, Ingersoll and Ross (1985) modelled the short term interest rate

using the following SDE:

dxt = θ1(θ2 − xt)dt + θ2
√

xtdWt

where the three parameters are positive, and 2θ1θ2/θ
2
3 ≥ 1 in order to make the origin

inaccessible; under these assumptions the domain of xt is (0, +∞). The transition density

for this process is noncentral Chi-squared with a non integer number of degrees of freedom;

see Cox, Ingersoll and Ross (1985) for details. Its Lamperti transform is given by yt =

2
√

xt/θ3, and

µY (yt; θ) = −θ1yt

2
− 1

2yt

(
1 − 4θ1θ2

θ2
3

)

3. Inverse square root process. Ahn and Gao (1998) suggested that the interest rate process

could be defined as the reciprocal of a square root process. An application of the Itô’s

Lemma provides the SDE of the resulting specification:

dxt = xt[θ2 + (θ2
2 − θ2θ1)xt]dt + θ3x

3/2
t dWt

for positive θ1, θ2 and θ3. The domain of the process is (0, +∞). By definition, the

transition density for this process can be computed by applying the Jacobian formula to

that of the Square root process. The Lamperti transform is given by yt = 2/(θ3
√

xt), and

µY (yt; θ) is the same as in the square root process.

4. Linear drift, CEV diffusion. This specification originates from Chan, Karolyi, Longstaff

and Sanders (1992). The dynamics is governed by the following SDE:

dxt = θ2(θ1 − xt)dt + θ3x
θ4

t dWt
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where again all the parameters are positive, and θ4 > 1/2, so that xt is distributed on

(0, +∞). For this process no explicit transition density is known, unless unrealistic con-

straints are placed on the parameters. We assume that θ4 > 1. Under this assumption,

the Lamperti transform is given by yt = x1−θ4

t /[θ3(θ4 − 1)], and

µY (yt; θ) =
θ4

2yt(θ4 − 1)
− θ2(1 − θ4)yt +

θ2θ1

θ3
[θ3(1 − θ4)yt]

θ4/(θ4−1)

5. Nonlinear mean reversion. This model was suggested (among others) by Aı̈t-Sahalia

(1996b) as a way to describe a situation in which the strength of mean reversion was

much higher at the end of the domain than in its central part. The SDE is given by

dxt =

(
θ1

xt
+ θ2 + θ3xt + θ4x

2
t

)
dt + θ5x

1/2
t dWt

where θ5 > 0, and (0, +∞) as domain of xt. Notice that a more flexible specification

could be considered, with one more parameter θ6 instead of 1/2 as the power of xt in the

diffusion coefficient. Although this would be straightforward, we follow Aı̈t-Sahalia (1999)

and choose the constrained specification for simplicity. As the diffusion coefficient is the

same, the Lamperti transform is the same as in the Square root process, and

µY (yt; θ) = −64θ4 + θ2
5(−48 + 16θ3y

2
t + 4θ2θ

2
5y

4
t + θ1θ

4
5y

6
t )

32θ2
5yt

For each of the diffusion processes above, we set the values of the parameters at their esti-

mates reported in Aı̈t-Sahalia (1999). These were obtained on a sample of 432 monthly obser-

vations of the Federal Funds rate between January 1963 and December 1998 using exact ML

(when possible, i.e. for processes 1, 2 and 3), or approximate ML, using a closed form expansion

of the log transition density. Similarly, whenever the numerical experiments required to choose

a value of the process at the beginning (x0) and at the end of the transition (x∆), we adopted

the same values as Aı̈t-Sahalia (1999).

In the results that follow the two IS techniques were applied with the same set of tuning

parameters. In all cases, M = 8 subintervals and S = 32 trajectories were considered. We

experimented somewhat with higher values of both, but ended up confirming Durham and Gal-

lant (2002) results that very little is lost by focussing the attention on the simpler setting. We

enhanced variance reduction by using throughout antithetic variates and standardized innova-

tions, i.e. sets of random numbers normalized in order to set their sample mean and variance

to zero and one, respectively. After using the Shoji and Ozaki (1998) Gaussian subdensity, no

need for extrapolating techniques in order to further reduce the bias emerged.

Additional tuning parameters must be specified in order to implement EIS estimation of the

transition density. Given that the chosen subdensity is Gaussian, we adopted the implementation

outlined in section 4.1. The algorithm outlined in section 3.2.2 was iterated twice, and the

iterations were started at the MBB subdensity. This choice allowed to limit the computational

21



burden of the problem, but it should be noticed that it is not an essential ingredient for the

results that follow. Specifically, we experimented with the alternative strategy of increasing the

number of iterations and start them from the auxiliary density associated to the basic Euler

subdensity of the process, and obtain very similar results. Moreover, notice that if the MBB

auxiliary density could not be used to start the iterations (e.g. because some of the state

variables are not observed), an alternative density could be derived from a second order Taylor

series expansion of log pa(xM , λ|x0; θ) w.r.t. λ, as suggested by Liesenfeld and Richard (2003b).

All the computations in this paper were carried out in Fortran, using several NAG subrou-

tines for specific tasks. For example, we remarked that the performance of EIS is significantly

improved if the solutions of the least squares problems are computed with higher precision,

presumably because this allows a more accurate numerical evaluation of the derivatives. For

this reason we used NAG subroutine F04AMF which uses an iterative refinement to provide

(approximate) full machine precision estimate of the auxiliary density parameters. Since EIS

requires more computations than IS based on the MBB auxiliary density, the evaluation of the

likelihood takes more time (about three to five times more, provided that the EIS algorithm is

coded efficiently). Even with the increase of computational burden, however, ML estimation is

still a matter of a few minutes for the typical sample, as witnessed by the Monte Carlo experi-

ments that follow. In general, the total computational burden of EIS grows linearly with T and

M , but more slowly with S and the dimension of the state variable (which is fixed at one in this

paper). Extending the methods in this paper to multivariate frameworks, hence, should keep

the problem quite tractable.

5.2 Loglikelihood approximation

A first set of experiments studies the quality of the loglikelihood approximation provided by the

two approaches. To this end, for each of the processes above we considered the evaluation of

the log transition density for fixed backward variable x0, and forward variables x∆ (∆ = 1/12)

inside a given range. For each couple (x0, x∆), we repeated EIS and MBB evaluation 1,000 times.

The results are depicted in Figure 1, for the three processes whose exact transition density is

known in closed form, and Figure 2, for the remaining two. In both cases the distribution of

IS loglikelihood estimates is described using box-and-whiskers plots where the boxes give the

centered 50% percentile range, while the vertical segments give the centered 95% percentile

range, with a horizontal segment denoting the median. Notice that in all cases the diagrams

reporting the results of the EIS and the MBB approaches share the same vertical scale. Moreover,

in Figure 1 the vertical axis measures the (scaled) approximation error w.r.t. the true log

transition density, while in Figure 2 it measures the dispersion of the estimates around their

medians. Finally, and again following Aı̈t-Sahalia (1999), in Figure 2 we considered two starting

points x0 for each of the two processes.

The message in these diagrams is clear: while EIS and MBB are essentially equivalent in
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Figure 1: Approximation errors for EIS and MBB estimates of the log transition density for 3 processes
for which the latter is known. The boxes (resp. vertical segments) give the centered 50% (resp. 95%)
percentile range, with a horizontal segment denoting the median, over 1,000 replications. In all cases:
∆ = 1/12; both methods use the same set of normalized random numbers, the Shoji and Ozaki (1998)
subdensity and no extrapolation.

(a) Ornstein - Uhlenbeck (θ1 = 0.261, θ2 = 0.0717, θ3 = 0.02237)

-0.2

-0.1

0

0.1

0.2

0.08 0.1 0.12A
p
p
ro

x
im

a
ti
o
n

er
ro

r
(×

1
0
−

4
)

x∆

EIS (M = 8, S = 32, x0 = 0.1)

-0.2

-0.1

0

0.1

0.2

0.08 0.1 0.12A
p
p
ro

x
im

a
ti
o
n

er
ro

r
(×

1
0
−

4
)

x∆

MBB (M = 8, S = 32, x0 = 0.1)

(b) Square root (θ1 = 0.219, θ2 = 0.0721, θ3 = 0.06665)
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(c) Inverse square root (θ1 = 15.141, θ2 = 0.182, θ3 = 0.8211)
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Figure 2: Dispersion of EIS and MBB estimates of the log transition density for processes for which
the latter is unknown. The boxes (resp. vertical segments) give the 50% (resp. 95%) percentile range
centered on the median, over 1,000 replications. In all cases: ∆ = 1/12; both methods use the same set
of normalized random numbers, the Shoji and Ozaki (1998) subdensity and no extrapolation.

(a) Linear drift, CEV diffusion (θ1 = 0.0844, θ2 = 0.0876, θ3 = 0.7791, θ4 = 1.48)
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(b) Nonlinear drift (θ1 = 0.000693, θ2 = −0.0347, θ3 = 0.676, θ4 = −4.059, θ5 = 0.8214)
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term of bias (at least for the first three processes, for which this conclusion can be drawn), the

former are much less volatile than the latter. The reduction in variance associated to EIS can

be measured by a factor ranging from 10 to 1,000, or more; typically, however, the reduction

in variance increases rapidly with the size of the transition, so a conservative estimate of the

actual reduction of variance should probably be situated somewhere around the lower end of

this range. It is more interesting to observe that EIS estimates have virtually no dispersion,

which suggests that, when necessary, bias reduction could be obtained by extrapolation, instead

of using the Lamperti transform of the process (which is not always possible for multivariate

diffusion processes), or increasing the number of subintervals M (which significantly increases

the computational burden). The results of some numerical experiments in this direction (not

reported for the sake of brevity) confirm this intuition.

Also, notice that for an Ornstein - Uhlenbeck diffusion process the product of subdensities
∏M

m=1 pa(xm|xm−1; θ) is proportional to a Gaussian density kernel for λ = (x1, x2, . . . , xM−1)
′,

as each individual subdensity pa(xm|xm1−; θ) is conditionally normal with mean linear in xm−1

and constant variance. This property allows to attain a perfect fit for the corresponding auxiliary

regressions, and zero MC variance for the EIS likelihood estimate.

As already outlined in section 2.2, the validity of Importance Sampling approximations

rests on the assumption that condition 12 holds. In most cases this is quite difficult to check,

and frequently this condition is simply assumed to hold (see e.g. Durham and Gallant, 2002,

Assumption 4, p. 300). Recently, however, Koopman and Shephard (2003) have suggested to

use extreme value theory to empirically assess the appropriateness of this assumption. Their

idea is the following. Smith (1987) argues that for a I.I.D. population the limit distribution of

the random variables higher than an ever increasing threshold value is generalized Pareto (see

Smith, 1987). This law has two parameters, which can be estimated using standard maximum

likelihood; moreover, an interesting property is that the number of finite moments equals the

reciprocal of one of the parameters, labelled ξ. This allows to check for the existence of the

variance of the IS estimate by restating the null hypothesis as an inequality restriction on ξ,

which can be verified using the standard Wald, Lagrange Multipliers and Likelihood Ratio test

statistics. This approach has been applied by Lee and Koopman (2004) to two alternative IS

estimates of the sample density for some discrete time stochastic variance models.

We implemented the three (Wald, LM and LR) test statistics suggested by Koopman and

Shephard (2003) both for EIS and MBB transition density estimation procedures, along with

some of the graphic diagnostic tools they propose to detect outliers and analyze the stabilization

of the recursive standard error of IS estimates. We do not report the results for the sake of brevity

(they are available upon request), but they were overwhelmingly supporting the null hypothesis

of the existence of the variance in all cases. Clearly, this result could be expected a priori, given

the extremely low variance of both EIS and MBB loglikelihood estimates outlined above.
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5.3 Monte Carlo investigation of the numerical error in SML parameter es-

timates

In this section, we address the issue of simulation error on the ML estimates of the parameters

by repeatedly estimating the models on the same sample, while using different sets of random

numbers in the computation of IS loglikelihood estimates. For each of the diffusion processes

we consider, ML estimation was repeated 1,000 times, using the same Federal Funds rate time

series used in Aı̈t-Sahalia (1999). We summarize the 1,000 parameter estimates using their

average and standard deviation; the latter statistic provides a direct measure of the simulation

error of the EIS and MBB approaches. To put this quantity in perspective, we also report the

average (over the 1,000 replications) asymptotic standard errors of the ML estimates, computed

using the outer product of gradients estimate of the Fisher information matrix. These standard

errors provide information on the statistical uncertainty associated to ML estimation of the

parameters, whereas MC standard errors are informative about their numerical uncertainty. If

the two IS approximation techniques are to work adequately, we expect the latter to be much

smaller than the former.

The results are summarized in Tables 1 and 2, which refer to the first three and last two

processes, respectively. Both Tables consider the numerical uncertainty surrounding the estima-

tion of the individual parameters and of the loglikelihood at the optimum. In the former case,

however, exact ML estimation is possible; hence, Table 1 also reports these results, and, for

both EIS and MBB SML estimates, “Average” refers to the average bias (multiplied by 105).

In Table 2, exact ML estimation is impossible, and consequently “Average” reports the average

SML estimate for each parameter. Notice that in all panels the Monte Carlo standard errors

are multiplied by 105, whereas the asymptotic standard errors are reported in levels.

As expected, there is no Monte Carlo uncertainty in EIS results for the Ornstein - Uhlenbeck

process (apart some tiny numerical roundoff error). In all but one case (parameter θ3 for the

linear drift, CEV diffusion process in Table 2) the MC standard errors of EIS based estimates

are smaller than those corresponding to MBB, and in most cases significantly so. Also, the

asymptotic standard errors are always much higher than the MC standard errors, suggesting

that the numerical uncertainty is virtually irrelevant w.r.t. to the statistical uncertainty intrinsic

in ML estimation. Table 1 shows that the bias of SML w.r.t. exact ML estimates is very low,

and generally smaller for EIS. Notice that both EIS and MBB ML estimates of the parameters

reported in panel (b) of Table 2 are fairly different from those obtained in Aı̈t-Sahalia (1999)

(cfr. panel (b) in Figure 2). This is probably due to the fact that his estimates are based on a

low order (i.e., not sufficiently precise) closed form approximation of the loglikelihood.

Inspection of the two tables shows that, while essentially always supporting the superiority

of EIS w.r.t. MBB, the evidence in favor of the former is much more clear for the processes in

Table 1 than for those in Table 2. We argue that this result is due to the weak identification

of the two relatively more complicated processes in the sample we consider. Specifically, we
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Table 1: Approximation errors for parameter estimates for processes for which the log transition density
is known. The results were obtained by estimating 1,000 times each model on 432 monthly observations
of the Federal Funds rate between January 1963 and December 1998 (the same sample considered in
Aı̈t-Sahalia, 1999) using different sets of pseudo random numbers. EIS denotes SML estimates with EIS
importance sampler. MBB denotes SML estimates with Durham and Gallant (2002) importance sampler.
MLE denotes true ML estimates. EIS and MBB use the same set of normalized random numbers, the
Shoji and Ozaki (1998) subdensity and no extrapolation. “Average” is the average bias, “MC S.E.” is
the Monte Carlo standard error, and “Asy S.E.” is the average asymptotic standard error.

(a) Ornstein - Uhlenbeck

θ1 θ2 θ3 `(θ̂)

MLE 0.26100 0.07171 0.02237 3.63447
Average (×105) 0.00000 0.00017 0.00000 0.00000

EIS - MLE MC S.E. (×105) 0.00000 0.00000 0.00021 0.00000
Asy S.E. 0.10151 0.02642 0.00020 n.a.

Average (×105) 0.56121 -0.78345 -0.03387 1.67724
MBB - MLE MC S.E. (×105) 0.18895 0.64343 0.01980 0.26149

Asy S.E. 0.10150 0.02642 0.00020 n.a.

(b) Square root

θ1 θ2 θ3 `(θ̂)

MLE 0.21895 0.07206 0.06665 3.91820
Average (×105) 4.82821 3.43030 0.44053 0.00811

EIS - MLE MC S.E. (×105) 0.00263 0.00113 0.00080 0.01831
Asy S.E. 0.07937 0.01705 0.00075 n.a.

Average (×105) 5.57039 3.63197 0.40523 1.57009
MBB - MLE MC S.E. (×105) 0.11147 0.03006 0.00883 0.22459

Asy S.E. 0.07945 0.01705 0.00075 n.a.

(c) Inverse square root

θ1 θ2 θ3 `(θ̂)

MLE 15.14005 0.18205 0.82115 4.15813
Average (×105) -33.79762 -0.69390 0.33351 -0.15814

EIS - MLE MC S.E. (×105) 2.05434 0.09596 0.02106 0.02590
Asy S.E. 2.91027 0.07160 0.01796 n.a.

Average (×105) 184.57059 28.46553 1.38271 0.72442
MBB - MLE MC S.E. (×105) 32.56223 4.43794 0.15065 0.13019

Asy S.E. 2.91548 0.07173 0.01799 n.a.

investigated in detail the likelihood surface for the linear drift, CEV diffusion and the nonlinear

drift model, and we remarked that the objective function is essentially flat over a subset of the

parameter space. We suspect that, somewhat paradoxically, the higher precision of the EIS

estimate of the loglikelihood helps the optimization algorithm in detecting several local maxima

inside this region; in turn, this leads to a slight increase in the Monte Carlo dispersion of the

estimates of the parameters and of the loglikelihood optimum.

We conclude this section with a word of caution about the computation of the asymptotic

standard errors of the SML estimates of the parameters. In this paper, we chose to base this

computation on the outer product of the gradients estimate of the Fisher information matrix be-
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Table 2: Approximation errors for parameter estimates for processes for which the log transition density is
unknown. The results were obtained by estimating 1,000 times each model on 432 monthly observations
of the Federal Funds rate between January 1963 and December 1998 (the same sample considered in
Aı̈t-Sahalia, 1999) using different sets of pseudo random numbers. EIS denotes SML estimates with EIS
importance sampler. MBB denotes SML estimates with Durham and Gallant (2002) importance sampler.
EIS and MBB use the same set of normalized random numbers, the Shoji and Ozaki (1998) subdensity
and no extrapolation. “Average” is the average estimate, “MC S.E.” is the Monte Carlo standard error,
and “Asy S.E.” is the average asymptotic standard error.

(a) Linear drift, CEV diffusion

θ1 θ2 θ3 θ4 `(θ̂)

Average 0.08417 0.08862 0.77921 1.48120 4.15818
EIS MC S.E. (×105) 0.07230 0.15914 0.31419 0.14468 0.00302

Asy S.E. 0.05201 0.10493 0.07693 0.03671 n.a.
Average 0.08408 0.08890 0.77920 1.48119 4.15819

MBB MC S.E. (×105) 1.30063 4.33585 0.21425 0.15677 0.13566
Asy S.E. 0.05175 0.10493 0.07693 0.03672 n.a.

(b) Nonlinear drift

θ1 θ2 θ3 θ4 θ5 `(θ̂)

Average 0.00066 -0.03281 0.64546 -3.91304 0.82136 4.15860
EIS MC S.E. (×105) 0.10516 6.15896 107.71796 551.72084 0.15269 0.01930

Asy S.E. 0.00148 0.08030 1.31134 6.22026 0.01831 n.a.
Average 0.00067 -0.03302 0.64825 -3.92416 0.82137 4.15862

MBB MC S.E. (×105) 0.87727 51.30561 896.80166 4593.98309 1.24484 0.27890
Asy S.E. 0.00148 0.08036 1.31238 6.22472 0.01832 n.a.

cause extensive experimentations showed that this strategy provides results which are essentially

identical (replication by replication) between EIS and MBB. On the contrary, we remarked that

the EIS and MBB estimate of the Hessian matrix of the loglikelihood provide results which are

again very similar on average, but much more dispersed in the former case than in the latter. We

argue that the loss in precision of EIS w.r.t. MBB is due to the tiny numerical discontinuities

introduced by the solution of the least squares problems which are an essential ingredient of the

first approach, but which are absent from the second one. In general, the absolute size of the

approximation error for the loglikelihood gradient is essentially independent of the size of the

derivatives, so that its relative importance is higher when the derivatives are small, i.e. in the

proximity of the optimum. The use of a Fortran routine providing high precision solutions of

the least squares problems essentially eliminates this problem in the case of the loglikelihood

gradients, but seems to be inadequate in the case of second order derivatives. Anyway, this issue

is still under investigation.
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5.4 Monte Carlo investigation of the statistical error in SML parameter es-

timates

The numerical experiments in the previous sections showed that there is evidence that EIS

results, both the estimate of the loglikelihood and the SML estimates of the parameters, are

superior (slightly less biased and much less dispersed) than those associated to MBB IS. Nev-

ertheless, it should be noticed that the numerical differences, although fairly apparent, are

relatively small in size, and certainly tiny w.r.t. the statistical uncertainty surrounding the true

values of the parameters in samples of typical size. The set of Monte Carlo experiments we

discuss in this section sheds some light on this point. For each of the five diffusion processes,

we simulated 1,000 samples of 512 monthly observations using the same set of parameter values

used to draw Figures 1 and 2. For each sample, we estimated the parameters and the value of

the loglikelihood at the optimum using both EIS and MBB based SML. For the first three pro-

cesses, moreover, we also computed the exact ML estimates; this allows us to gauge whether the

distance from SML and exact ML estimates is small relative to the distance between exact ML

estimates and true values of the parameters. For the last two processes this analysis can not be

carried out because exact MLE is impossible; hence we simply focus on the descriptive statistics

of the two sets of SML estimates, and compare them with the true values of the parameters.

The results of these experiments are reported in Tables 3 and 4. In the first one, we report the

true values of the parameters (labelled TRUE) together with three descriptive statistics (average,

standard error, and RMSE) for each one of three sets of differences: exact ML estimates minus

true values (MLE - TRUE), EIS SML minus exact ML estimates (EIS - MLE), and MBB SML

minus exact ML estimates (MBB - MLE). In the second one, the first set of differences can not

be computed, and the descriptive statistics are provided directly for the differences EIS - TRUE

and MBB - TRUE.

Inspection of the first Table shows that the distance between SML and exact ML estimates

is a small fraction of that between the latter and the true values. As it had to be expected,

this is especially true for the parameters in the diffusion coefficient, and for those in the drift

not measuring the speed of mean reversion. It should be noted that, to keep the computational

burden of these Monte Carlo experiments reasonable, we fixed relatively low values for the

number of subintervals M and of simulated trajectories S. In real data applications both tuning

parameters could be increased, and this would certainly lead to SML results even closer to exact

ML ones.

Finally, both Tables show that the performances of EIS and MBB based SML are extremely

close. This confirms that, for the simple univariate processes we consider in this paper, the tiny

numerical advantages provided by EIS essentially disappear when the statistical uncertainty

implicit in ML parameter estimation estimation is taken into account. Nevertheless, we believe

that EIS should still be seen as an interesting alternative to MBB importance sampling, for

reasons we already recalled in the previous sections: (i) it does not require the knowledge of
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Table 3: Approximation errors for parameter estimates for processes for which the log transition density
is known. The results were obtained in Monte Carlo experiments with 1,000 simulated samples of 512
monthly observations started at the respective unconditional means for panel (a) and (b), and from 1/θ1

for panel (c). EIS denotes SML estimates with EIS importance sampler. MBB denotes SML estimates
with Durham and Gallant (2002) importance sampler. AS denotes the Aı̈t-Sahalia (2002) closed-form
approximated ML estimates (order 3, reducible case). MLE denotes true ML estimates. TRUE means
true values. EIS and MBB use the same set of normalized random numbers, the Shoji and Ozaki (1998)
subdensity and no extrapolation.

(a) Ornstein - Uhlenbeck

θ1 θ2 θ3

TRUE 0.26100 0.07170 0.02237
Average 0.09153 -0.00042 0.00001

MLE - TRUE S.E. 0.15370 0.01344 0.00072
RMSE 0.17889 0.01344 0.00072

Average 0.00000 0.00000 0.00000
EIS - MLE S.E. 0.00013 0.00000 0.00000

RMSE 0.00013 0.00000 0.00000
Average 0.00211 0.00000 0.00000

MBB - MLE S.E. 0.01012 0.00005 0.00001
RMSE 0.01034 0.00005 0.00001

(b) Square root

θ1 θ2 θ3

TRUE 0.21900 0.07210 0.06665
Average 0.11223 -0.00023 0.00009

MLE - TRUE S.E. 0.14125 0.01264 0.00213
RMSE 0.18041 0.01264 0.00214

Average -0.00574 0.00018 -0.00001
EIS - MLE S.E. 0.02353 0.00100 0.00006

RMSE 0.02422 0.00101 0.00006
Average -0.00421 0.00018 -0.00001

MBB - MLE S.E. 0.02390 0.00100 0.00006
RMSE 0.02427 0.00101 0.00006

(c) Inverse square root

θ1 θ2 θ3

TRUE 15.14100 0.18200 0.82110
Average 0.18270 0.11308 0.00108

MLE - TRUE S.E. 3.71740 0.13847 0.02625
RMSE 3.72188 0.17877 0.02627

Average 0.03205 -0.00517 -0.00013
EIS - MLE S.E. 0.17822 0.02045 0.00057

RMSE 0.18018 0.02110 0.00059
Average 0.03084 -0.00373 -0.00009

MBB - MLE S.E. 0.17815 0.02005 0.00058
RMSE 0.18080 0.02039 0.00058

the value of the entire state variables vector at the beginning and at the end of the transitions,

which makes it clearly superior to MBB in multivariate models with latent variables, and (ii) its
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Table 4: Approximation errors for parameter estimates for processes for which the log transition density
is unknown. The results were obtained in Monte Carlo experiments with 1,000 simulated samples of
512 monthly observations started at the unconditional mean for the process in panel (a), and from 0.06
for the process in panel (b). EIS denotes SML estimates with EIS importance sampler. MBB denotes
SML estimates with Durham and Gallant (2002) importance sampler. AS denotes the Aı̈t-Sahalia (2002)
closed-form approximated ML estimates (order 1, reducible case). TRUE means true values. EIS and
MBB use the same set of normalized random numbers, the Shoji and Ozaki (1998) subdensity and no
extrapolation.

(a) Linear drift, CEV diffusion

θ1 θ2 θ3 θ4

TRUE 0.08440 0.08760 0.77910 1.48000
Average 0.01205 0.09611 0.03946 0.00387

EIS - TRUE S.E. 0.06995 0.13323 0.23576 0.10310
RMSE 0.07098 0.16428 0.23904 0.10317

Average 0.01185 0.09741 0.04028 0.00442
MBB - TRUE S.E. 0.06957 0.13415 0.23435 0.10187

RMSE 0.07057 0.16579 0.23778 0.10196

(b) Nonlinear drift

θ1 θ2 θ3 θ4 θ5

TRUE 0.00069 -0.03470 0.67600 -4.05900 0.82140
Average 0.00181 -0.07226 1.05104 -5.72522 0.00157

EIS - TRUE S.E. 0.00364 0.14978 2.23131 12.03658 0.02641
RMSE 0.00406 0.16630 2.46646 13.32882 0.02646

Average 0.00166 -0.06300 0.87259 -4.65231 0.00157
MBB - TRUE S.E. 0.00372 0.14759 2.10913 10.89357 0.02637

RMSE 0.00407 0.16047 2.28250 11.84542 0.02641

higher numerical precision (lower simulation induced variance) allows to reduce the bias without

increasing M , but by using extrapolation methods. We are already exploiting these edges in

parallel research, focussing on more complicated univariate and multivariate contexts, with very

encouraging results.

6 Conclusions

In this paper we considered the issue of ML estimation of the parameters of a diffusion process

whose dynamics is described by a univariate homogeneous stochastic differential equation. We

reviewed the two most efficient techniques advanced so far in the literature, i.e. those based

on analytic closed-form loglikelihood approximations and simulated importance sampling log-

likelihood estimation. Although their performance is quite satisfactory in simple contexts, their

implementation in more complicated setups, such as those characterized by multivariate pro-

cesses and latent variables, poses several challenging issues. To overcome them, we suggested

to apply an alternative importance sampling strategy put forth by Richard and Zhang (1998),

labelled Efficient Importance Sampling, whose performance is equivalent, if not superior, to that

31



of the importance sampling approaches already appeared in the literature, but whose application

requires to meet less stringent conditions. The price to pay is in the form of a moderately higher

computational burden, which do not preclude however the possibility to set up a Monte Carlo

study to analyze the finite sample performance of the approximation strategy.

As benchmark cases we considered five stochastic processes commonly adopted in the finan-

cial literature to describe the evolution over time of the short term interest rate, and also used

by Aı̈t-Sahalia (1999) to study the performance of his closed-form approximation approach. A

set of Monte Carlo experiments focussed on different aspects of EIS implementation, namely the

properties of loglikelihood approximations, of the numerical error in simulated ML estimates,

and of the interaction of numerical error with the statistical uncertainty intrinsic in ML pa-

rameter estimates. Overall, the comparison with the alternative, state-of-the-art importance

sampling strategy suggested by Durham and Gallant (2002) suggests that EIS seems to provide

superior results in terms of loglikelihood approximation and of numerical error in parameter

estimation. While this edge is lost when the statistical uncertainty is taken into account, these

results foresee promising developments in more complicated settings, as they allow to add to

importance sampling loglikelihood estimation the degree of flexibility needed to overcome the

issues posed by the unavailability of the Lamperti transform of the process, or of the existence

of non observable state variables. We plan to explore these developments in future research.
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