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Abstract

We investigate the implications of imposing balanced consistency and bal-
anced cost reduction in the context of sequencing problems. Balanced consis-
tency requires that the effect on the payoff from the departure of one agent to
another agent should be equal between any two agents. On the other hand,
balanced cost reduction requires that if one agent leaves a problem, then the
total payoffs of the remaining agents should be affected by the amount previ-
ously assigned to the leaving agent. We show that the minimal transfer rule
is the only rule satisfying efficiency and Pareto indifference together with
either one of our two main axioms, balanced consistency and balanced cost
reduction.
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1. Introduction

Consider a group of agents who must be served in a facility. The facility can
handle only one agent at a time and agents incur waiting costs. We assume
that an agent’s waiting cost is constant per unit of time, but that agents
differ in the unit waiting cost and the amount of service time. Efficiency
requires to minimize the total costs incurred by the agents. On the other
hand, fairness requires that agents served earlier should give compensations
to agents served later. We are interested in finding the order in which to serve
agents and the (positive or negative) monetary compensations they should
receive. Each agent’s utility is equal to his monetary compensations minus
his total waiting cost. This sequencing problem has been studied extensively
in the recent literature: from the incentive viewpoint (Dolan, 1978; Suijs,
1996; Mitra, 2001, 2002) and from the normative viewpoint (Maniquet, 2003;
Chun, 2004, 2006a, b; Mishra and Rangarajan, 2007; Moulin, 2007). Two
well-known subclasses of sequencing problems are: (i) a queueing problem in
which all agents are assumed to need the same amount of service time but
they differ in their unit waiting cost, and (ii) a scheduling problem in which
all agents are assumed to have the same unit waiting cost but need (possibly)
different amount of service times.

The underlying paper focuses on the normative approach. Two solutions
or rules that have played important roles in the normative approach are the
minimal and the maximal transfer rules. As shown in Maniquet (2003) and
Chun (2006a) for queueing problems, and their generalization to sequencing
problems by Chun (2004), these two rules can be obtained by applying the
Shapley value (Shapley 1953) to corresponding cooperative games in which
the worth of a coalition is appropriately defined from the sequencing prob-
lem. For the minimal transfer rule, the worth of a coalition is defined to be
the minimum waiting cost incurred by its members under the assumption
that they are served before the non-coalitional members. For the maximal
transfer rule, it is defined to be the minimum waiting cost incurred by its
members under the assumption that they are served after the non-coalitional
members.!

IThis is different from the sequencing games with an initial order of Curiel, Pederzoli
and Tijs (1989), where agents (or jobs) are ordered in an initial queue. The question then
is how agents should compensate one another when re-ordering into an efficient queue,
taking account of the initial order. The sequencing games with an initial order are line-



In this paper, we investigate how the minimal and the maximal transfer
rules respond to changes in the set of agents. Our first main axiom is balanced
consistency, which requires that the effect on the payoff from the departure of
one agent to another agent should be equal between any two agents. We show
that the minimal transfer rule is the only rule satisfying efficiency, Pareto
indifference, and balanced consistency. On the other hand, the maximal
transfer rule can be characterized by an alternative formulation of balanced
consistency under constant completion time: upon the departure of an agent,
all of his predecessors are assumed to move back by one position to keep the
completion time constant. Under this alternative formulation, the maximal
transfer rule becomes the only rule satisfying efficiency, Pareto indifference,
and balanced consistency under constant completion time.

Our second main axiom is balanced cost reduction, which requires that if
one agent leaves a problem, then the total payoffs of the remaining agents
should be affected by the amount previously assigned to the leaving agent.
Once again, the minimal transfer rule is the only rule satisfying efficiency,
Pareto indifference, and balanced cost reduction.

The paper is organized as follows. Section 2 contains some preliminaries
and introduces rules. Section 3 explores the implications of balanced con-
sistency and presents our first characterization of the minimal transfer rule.
Section 4 explores the implications of balanced cost reduction and presents
our second characterization of the minimal transfer rule. Concluding remarks
follow in Section 5. In the appendix, we discuss the axiom of participation
consistency which is a game theoretic property related to balanced cost re-
duction.

2. Preliminaries

Let I ={1,2,...} be an (finite or infinite) universe of “potential” agents, and
N the family of non-empty subsets of I. Each agent 7 € I is characterized
by his service time, r; > 0, and his unit waiting cost, 8; > 0. A sequencing
problem is defined as a list (N,r,0) where N € N is the set of agents,

graph games, where only coalitions of consecutive agents (in the initial order) can have
non-zero dividend (see van den Brink, van der Laan and Vasil’ev (2007)), while sequencing
games as referred to in this paper are 2-games (i.e. only coalitions of size 2 can have a
non-zero dividend, see Harsanyi (1959)).



r = (Ti)ien € ]Rf+ is the vector of service times, and 0 = (6;);en € ]Rf
is the vector of unit waiting costs. Let SV be the class of all sequencing
problems for N and S = Unen 8. Two subclasses of sequencing problems
introduced earlier are: a queueing problem, where for each i, j € I, r; = r;,
and a scheduling problem, where for each ¢, j € I, 0; = 0,.

An allocation for (N,r,0) € SV is a pair (0,t) € {1,...,|N|}¥ x R",
where for each 7 € N, o; denotes agent i’s position in the queue and ¢; the
monetary transfer to him. Let P(c) = {j € N | 0; < 0;} be the set of
agents preceding agent i in o, and Fi(c) = {j € N | 0; > 0;} the set of
agents following him. The agent who is served first incurs no waiting cost.
If agents j € N are served in the a§h position, then the waiting cost of
agent 1 € N is 3 cp,(,) rj0i- We assume that each agent ¢ € N has a quasi-
linear utility function, so that his utility from consuming the bundle (o, )
is given by u;(0,t) = t; — X cp, o) 7i0i- An allocation is feasible if no two
agents are assigned the same position and the sum of all the transfers is not
positive. Thus, the set of feasible allocations Z(N,r, ) consists of all pairs
z = (o,t) € {1,...,|N|} x RY such that for all i, j € N, i # j implies
0; # 0j and Y eyt < 0.

Given (N,r,0) € SV, an allocation (0,t) € Z(N,r,0) is queue-efficient
if it minimizes the total waiting cost among the feasible allocations, that is,
for all (o/,1') € Z(N,7,0), Yien Xjeri(o) 10 < Xien 2jep,(or) 750i- As shown
in Smith (1956), total waiting cost is minimized if the agents are served in
nonincreasing order with respect to their urgency index 0;/r;. For i, j € N,
if 6;/r; = 0;/r;, then agents i and j have equivalent urgency indexes. The
efficient queues do not depend on the transfers. Moreover, it is unique except
for agents with equivalent urgency indexes, who will be next to each other in
the queue and can be permuted. The set of efficient queues for (N, r,0) € SV
is denoted by Eff(N,r,0). An allocation (o,t) € Z(N,r,0) is budget balanced
if Yenti = 0. A feasible allocation is efficient if it is queue-efficient and
budget balanced.

A rule is a mapping ¢ : S — Unen Z (N, 1, 6), which associates with each
problem (N,r,0) € S a non-empty subset (N, r,6) C Z(N,r,0) of feasible
allocations. A pair (0;,t;) € ¢;(N,r,0) represents the position o; of i in the
queue and his transfer ¢; in (N, r, ). If the monetary transfer of an agent is
positive, then this agent receives a compensation from other agents. If it is
negative, he has to pay that amount as compensation to other agents.

We mention two standard axioms for rules. First, a rule should choose
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an efficient (i.e. queue-efficient and budget balanced) allocation.

Efficiency: For all N € N, all (N,r,0) € SV, and all (0,t) € (N, r,0), we
have o € Eff(N,r,0) and > ;cnt; = 0.

Second, if an allocation is chosen by a rule, then all other allocations
which assign the same utility to each agent should be chosen by the rule.

Pareto indifference: For all N € N, all (N,r,0) € SV, all (0,t) €
©(N,r,0), and (o',t') € Z(N,r,0): if u;(0’,t') = w;(0o,t) for all i € N, then
(0',1') € p(N,r,0).

Next we recall two rules studied in Maniquet (2003) and Chun (2006a) for
queueing problems, and generalized to sequencing problems by Chun (2004).
The minimal transfer rule selects an efficient queue and transfers from each
agent a half of his waiting cost multiplied by the sum of all his predecessors’
service times minus a half of the sum of the unit waiting cost over all his
followers multiplied by his own service time.

Minimal transfer rule, ¢™: For all N € N, and all (N,r,0) € S,

oM € Eff(N,r,0) and
OoM(N,r,0) = (™, tM) € Z(N,r,0)
' = Siernem 5"~ Sierew) 5
On the other hand, the maximal transfer rule selects an efficient queue
and transfers to each agent a half of the sum of the unit waiting cost over
all his predecessors multiplied by his own service time minus a half of his
waiting cost multiplied by the sum of each of his followers’ service time.

Maximal transfer rule, ¢*: For all N € N, and all (N,r,0) € S,
oX € Eff(N,r,0) and
¢ (N1, 0) = { (0%, t%) € Z(N,7,6)

X . 7‘1'9' o 7"91’
5 = 2jep o) "ot — XjeFi(oX) 3

Note that the minimal and the maximal transfer rules assign a unique
allocation if and only if all agents have different urgency index 6; /r;. However,
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even when some agents have the same urgency index, agents’ utilities do not
depend on the choice of efficient queues if the compensation is determined
according to the minimal or the maximal transfer rule. Thus, both rules are
essentially single-valued, in the sense that for a given problem, each agent’s
utility is the same at all allocations that the rule chooses. As a consequence,
any efficient queue can be chosen to calculate the utilities assigned by the
two rules. To be specific, for all N € N, and all (N,r,0) € SV, for the
minimal transfer rule, the utility of agent i is given by

Uz‘(O'M,tM):_ Z Tj@i—l—tZM:— Z %ei_ Z %‘9]’ (1)

JEP;(oM) JEP; (M) JEF; (M)

and for the maximal transfer rule,

Ui(O'X,tX) = — Z Tj@i—i—t;-x:— Z ri0; + Z Tfj_ Z

JEP;(0X) JEP(aX) JEP;(0X) JEF;(0X)

_ 0 ’I“Z‘Qj rjé’i
= Z ri0; + Z 5 + Z 5

JEN\{i} JEP;(0X) JEF;(cX)

As mentioned in the introduction, the minimal and the maximal transfer
rules can be obtained by applying the Shapley value (1953) to corresponding
TU-games in which the worth of a coalition is appropriately defined. For the
minimal transfer rule, the worth of a coalition is defined to be the minimum
waiting cost incurred by its members under the assumption that they are
served before the non-coalitional members. For the maximal transfer rule,
it is defined to be the minimum waiting cost incurred by its members under
the assumption that they are served after the non-coalitional members.

3. Balanced consistency in sequencing prob-
lems

If an agent leaves a sequencing problem, then it will affect the payoffs of other
remaining agents. Balanced consistency requires that the effect of agent ¢
leaving a sequencing problem on the payoff of another agent j # i should be
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the same as the effect of agent j leaving a sequencing problem on the payoff of
agent ¢. It is similar to ‘preservation of differences’ of solutions for TU-games
as discussed in Hart and Mas-Colell (1989).2 To stress the fact that our axiom
concerns situations in which an agent leaves the sequencing problem similar
as players leave a game in (reduced game) consistency properties, we refer to
this property as balanced consistency?.

For all (N,r,0) € S¥ and all j € N, let 77 € ]Ri\ﬁ{j} and 077 € ]Rf\{j}
be the projections given by 17 = (rg)en ;3 and 077 = (0 )ken (-

Balanced consistency: For all N € N, all (N,r,0) € S, all i, j € N, all
(0,1) € ¢(N,1,0), all (07,t) € (N \ {i},r~,0-), and all (o,9) €
e(N\{j},r™7,07):

Ui<0', t) — ui(afj, tij) = ’LLj(O', t) — ’LLj(O'ii, tiz)

Now we investigate the implications of balanced consistency in the con-
text of sequencing problems. First, we show that the minimal transfer rule
satisfies this property.

Lemma 1. The minimal transfer rule satisfies balanced consistency.

Proof. Without loss of generality, let N = {1,2,...,n} be such that 6,/r; >
Os/r9 > -+ > 6,/r,. To simplify the notation, we do not attach the super-
script M to o and t. From the essential single-valuedness of o™, we may
assume that for all ¢ € N, 0; = i. Let i, j € N be such that j € Pi(o)
(and thus ¢ € Fj(0)). Then, for all (o,t) € M(N,r,0), all (c7",t7") €
OM(N\ {i},r7%,07"), and all (¢77,t77) € ™ (N \ {j},r7,677), we have

Ui(g> t) - ui(gija tij)

2This property states that the effect of player i leaving the game on the payoff of player
j # 1 is equal to the effect of player j leaving the game on the payoff of player :.

3Note that in the balanced contributions property as introduced by Myerson (1980)
for cooperative game solutions where the games have a restricted set of feasible coalitions
(stating that the effect of deleting all coalitions containing player ¢ from the set of feasible
coalitions on the payoff of player j # i is equal to the effect of deleting all coalitions
containing player j from the set of feasible coalitions on the payoff of player ¢), the player
set is fixed.



B T10; 70 T10; 70,
- ke;u 2 ke;u 2 ( keP%\{‘ RPN
i(o0 i(o 5 (0)\ {7} keF;(o)
ribi
2 )

7,0 r;0 70 r:0
SR T I L GV R

WePi(o) 2 keR N}

Altogether, we conclude that the minimal transfer rule satisfies balanced
consistency. |

We ask whether there is any other rule satisfying efficiency and Pareto
indifference together with balanced consistency. As it turns out, the minimal
transfer rule is the only one satisfying the three axioms together. We note
that if o; € {1,...,|N|} is determined and w;(co,t) is known, then also ¢; is
determined.

Theorem 1. The minimal transfer rule is the only rule satisfying efficiency,
Pareto indifference, and balanced consistency.

Proof. 1t is well-known that the minimal transfer rule satisfies efficiency
and Pareto indifference, and by Lemma 1, it satisfies balanced consistency.
Conversely, let ¢ be a rule satisfying the three axioms. Let N € N and
(N,r,0) € SN be given. If |[N| = 1, then efficiency implies that o; = 1 and
ti=0"for 7 e N.

Let N be such that |N| = 2. Without loss of generality, we may assume
that N = {7, j} and that 6;/r; > 0,/r;. Let (0,t) € @(N,r,0), (6c7",t7") €
(N \ {i},77%,07%), and (677,t77) € (N \ {j},77,077). By balanced con-
sistency, u;(o,t) — ui(0™9,t77) = u;(o,t) — uj(o~" t7"). Since u;(c™7,t77) =
u;(c~% t7") = 0, we have u;(0,t) = u;(o,t). By efficiency, u;(o,t)+uj(o,t) =

8



—r;0;. Altogether, we obtain u;(o,t) = uj(o,t) = —%1. By efficiency
and Pareto indifference, we may assume that o; = 1 and o; = 2. Then,
t, = —“20 = —t;, as desired.

We will estabhsh the claim for an arbitrary number of agents by an in-
duction argument. As induction hypothesis, suppose that (N’ 1" 0") =
M (N’ r' 0") whenever |[N'| < |[N| — 1. Let N = {1,2,...,n}, and let
(0,t) € @(N,r,0). By efficiency and Pareto indifference, we may assume
without loss of generality that 0y /r; > 0s/r9 > -+ > 0,,/r,, and that o; =i
for all i € N. For any i € N, let (07", t7%) € (N \ {i}, 7% 07%). By bal-
anced consistency, u;(o,t) —u;(c77,t77) = uj(o,t) — uj(c™", ") for any i,
j € N. Now fix i, change j # i from 1 to n, and add up the (n — 1) equations
obtained in this way. We have:

(n=Vui(o,t) = Y wlo™,t7)= Y (uj(o,t) —u;(0™",t7)).

JEN\{i} JEN\{i}

Adding u;(0,t) + 3 jen gy wi(077,t77) to both sides gives

nui(o,t) = Y (o, t)— > ui(ec )+ D w(o ). (2)

JEN JEN\{i} JEN\{i}

By efficiency,
uj(o,t) == > b,
JEN JEN keP;()
and

Z ’Ug( 7Zt Z 'r’;ﬁj— Z Z Tkej.

JEN\{i} JEP;i(0) kEP;(0) Jj€Fi(o) kePj(o)\{i}

Subtracting these two expressions from each other yields

Zuj(a,t)— Z uj(a’i,t’i):— Z rL0; — Z ;0. (3)

JEN JEN\{:} keP;(o) keF;i(o)



From the induction hypothesis, it follows that

Z ui(o 7, t7) = — Z ( Z Tkei_ Z 7“:29k>

JEN\{i} J€P(0) \keP,(0)\ {5} KEF(0)

4 Z (Z Tkei_ Z ngk)

JEF;(0) \kEP;(0) 2 keF;(o)\{s5}
. 10, . 705
= (-2 ¥ S --1) X 3
kEPi(0) ker;(o)

~(n—i) Y Tkzei—(n—i—l) M ”29’“

= —(n—2) Z Tk;i—(n—Z) Z Tfk.

k‘epi(o') k‘EFi(O')

Substituting (3) and (4) in (2) yields

0; 0
nui(o,t) = =2 > T > Lok
k‘EPZ’(O') k‘EFi(O') 2
ri0; 70k
—(n—2) Z 5 —(n—2) Z 5
kep;(o) keF;(o)
B T10; 70y,
- nkz g " Z 9
€P;(0) kEF;(0)

or equivalently,

By efficiency, o € Eff(N,r,0), and thus (5) fixes the transfers

e ¥ oy T

JEP; (o) JEFi(0)

as desired.
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Remark 1: Although ‘preservation of differences’ is typical for the Shapley
value, it is not obvious for sequencing problems that it characterizes the
minimal transfer rule since the maximal transfer rule is also obtained as the
Shapley value of an associated TU-game.

Remark 2: Upon the departure of an agent, if we assume that all of his
predecessors are moving back by one position to keep the same completion
time, an alternative balanced consistency under constant completion time
property can be formulated. The maximal transfer rule is the only rule satis-
fying efficiency, Pareto indifference, and balanced consistency under constant
completion time.

4. Balanced cost reduction in sequencing prob-
lems

Suppose that an agent leaves a sequencing problem. Since the agent is not
in the queue anymore, the total waiting cost of all the remaining agents will
be decreased. In other words, the presence of an agent generates a negative
externality to any other agent. Balanced cost reduction requires that the
total (over all remaining agents) decrease in this negative externality as a
result of the departure of an agent is equal to the negative of the payoff of
the departing agent when he is still present.

Balanced cost reduction: For all N € NV, all (N,r,0) € S, all j € N, all
(0,t) € o(N,1,0), and all (677, t77) € (N \ {j},r7,077),

> (wilost) —uio ™, 7)) = u;(o,1).

ieN\{j}

We explore the implications of balanced cost reduction in the context of
sequencing problems. First, we show that the minimal transfer rule satisfies
this property.

Lemma 2. The minimal transfer rule satisfies balanced cost reduction.

Proof. Without loss of generality, let N = {1,2,...,n} be such that 6;/r; >
Os/re > -+ > 0,/r,. To simplify the notation, we do not attach the su-
perscript M to o and t. From the essential single-valuedness of ™, we may

11



assume that for alli € N, ; = i. Let j € N. Then, for all (0,t) € o™ (N, r,0),
and all (077, ¢t79) € PM(N\ {j},77,077),if i € Pj(o), then

ui(o,t) —u(o™7,t77)

. Z ri6; Z ;0% Z 710, Z riek)
kePio) 2 keFio) 2 ( ePio) 2 keReNG) 2

rif;

2 b

and if ¢ € Fj(o0), then

ui<07 t) - ui(o-ijv tij)
B 10; 70 T10; Ti0,
__kz_ 2_2 2_<_ 2,2_2 2
EPi(o) keF;i(o) keP;(o)\{5} keF;(o)
_1ibi
5

Therefore, we obtain

o 05 0;
> (o) —wle ) = - ¥ Lo 3L
ieN\{j} i€Pj(0) i€F;(0)
= ’LLj(O',t),

showing that the minimal transfer rule satisfies balanced cost reduction. 1

Now we investigate whether there exists any other efficient and Pareto
indifferent rule satisfying this property. As it turns out, once again, the
minimal transfer rule is the only rule satisfying balanced cost reduction in
addition to efficiency and Pareto indifference.

Theorem 2. The minimal transfer rule is the only rule satisfying efficiency,
Pareto indifference, and balanced cost reduction.

12



Proof. 1t is well-known that the minimal transfer rule satisfies efficiency
and Pareto indifference, and by Lemma 2, it satisfies balanced cost reduction.
Conversely, let ¢ be a rule satisfying the three axioms. If |[N| = 1, then
efficiency implies that for any ¢ € N, 0; =1 and t; = 0.

Let N be such that |N| = 2. Without loss of generality, we may assume
that N = {i, j} and that 6;/r; > 6;/r;. Let (0,t) € o(N,r,0) and (¢77,t77) €
©(N\ {j},r7,079). By balanced cost reduction, u;(c,t) — u;(c™7,t77) =
u;(o,t). Since u;(c™7,t77) = 0, we have u;(0,t) = u;(o,t). By efficiency,
u;(o,t) + uj(o,t) = —r;0;. Altogether, we obtain u;(o,t) = u;(0,t) = —ifi.
By efficiency and Pareto indifference, we may assume that o; = 1 and 0; = 2,

0

and thus the transfer ¢; = —T—21 = —t; is determined.

We will establish the claim for an arbitrary number of agents by an in-
duction argument. As induction hypothesis, suppose that o(N' ' 0") =
M(N' r' ') whenever |[N'| < |N|—1. Let N = {1,2,...,n}, and let (0,t) €
w(N,1,0). By efficiency and Pareto indifference, we may assume without loss
of generality that 01/ry > 05/r9 > -+ >0, /r,, and that o; =i for all i € N.
Let j € N be a leaving agent and (077,t77) € (N \ {j},r7,077). By bal-
anced cost reduction,

> (wiloyt) —uio ™, 7)) = uj(o,1).

ieN\{j}

Adding u;(o,t) to both sides gives

Sulot)— Y w0 ) = 2uy(o, ). (6)

iEN i€N\{5}

By efficiency,

Zulat Z Z 710,

ieN i€N keP;(0)

and

Yoowlo Tty == Y > mbi— > > b

1eN\{j} i€Pj(o) keP;(o) 1€Fj(0) keP;i(o)\{s}
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Therefore, by subtracting these two equations from each other, we obtain

Zui(a,t)— Z ui(o™, t77 Z rif; Z r;0;

iEN 1eN\{j} i€P;j(0) 1€F;(0)
Substituting (7) in (6) yields

2uj(o,t) =— > b — > 1

i€Pj(0) 1€F;(0)

which implies that

uj(o,t) =— > - > Tji:uj(aM,tM).

iEPj(U) 2 ’iEFj(O’)

’I“Z‘Qj

By efficiency, o € Eff(N,r,0), and thus (8) fixes the transfers

TZ‘O‘ T‘(gi
= > 5= 2 5=t

iEPj(O‘) 2 iEFj(G’)

the desired expression.

6. Concluding remarks

(7)

In this paper, we presented two axiomatic characterizations of the minimal
transfer rule in the context of sequencing problems on the basis of balanced
consistency or balanced cost reduction in addition to efficiency and Pareto
indifference. 'We note that all our results carry over to two subclasses of

sequencing problems: queueing problems and scheduling problems.

Another axiom widely discussed in the literature specifying how a rule
should respond to changes in the population is population solidarity (Thom-
son 1983, Chun 1986, and others?): it requires that upon the departure of
an agent, all the remaining agents should be affected in the same direction,

4See Thomson (1995) for a survey.
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all gain or all lose. As discussed in Chun (2006a) for queueing problems, the
minimal transfer rule for sequencing problems also satisfies population soli-
darity, but the maximal transfer rule does not satisfy it. On the other hand,
as in Remark 1, upon the departure of an agent, if we assume that all of his
predecessors are moving back by one position to keep the completion time
constant, then both the minimal and the maximal transfer rules satisfy the
alternative population solidarity under constant completion time property. It
remains an open question whether the minimal or the maximal transfer rules
can be characterized on the basis of population solidarity.

Another question for future research is to investigate axioms concerning
changes in the parameters of the sequencing problem without changing the set
of agents, such as the before mentioned balanced contributions property (My-
erson, 1980), fairness (Myerson, 1977; van den Brink, 2001) or monotonicity
(Young, 1985; van den Brink, 2007).
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Appendix: Participation consistency of the Shap-
ley value for 2-games

In this appendix, we discuss a game theoretic property for a special class
of TU-games that is related to balanced cost reduction. As mentioned in
footnote 1, it is known that the sequencing problems are a special class
of 2-games, being games (N,v) with N C N and v:2Y¥ — R such that
v(S) = 0if |S] < 1, and v(S) = ZE—%N v(T) if |S| > 2. Equivalently, a
=2
game (NN,v) is a 2-game if and only if only coalitions of size two can have
a nonzero dividend, i.e. A,(S) # 0 implies that |S| = 2, where A,(S5) is
the Harsanyi dividend of coalition S in game (N,v), see Harsanyi (1959).
It is known that for 2-games the Shapley value (Shapley, 1953) coincides
with several other TU-game solutions such as the nucleolus, the 7-value and
the CIS (Center of the Imputation Set-value), and for |N| > 2 is given by
Shi(N,v) = $(v(N)—v(N\{i})) foralli € N. ® Note that this gives a simple
game theoretic characterization of the minimal tranfer rule for sequencing

problems as ¢M (N, r,0) = 3(v)'(N) — vy" (N \ {i})) for all i € N, where
v)?(N) is the total waiting cost in the efficient queue, and v)? (N \ {i}) is the
total waiting cost in the efficient queue on agents N \ {i} (i.e. after 7 has
left). Note that these are the only two worths we need to know to determine
PM(N.7.6).

A solution f for TU-games assigns a payoff vector f(N,v) € RV to every
game (N, v). Our purpose now is to see what property for TU-game solutions
is related to balanced cost reduction. We state the following property for 2-
games.

Participation consistency: Let (N,v) be a 2-game with |[N| > 2, and
j € N. Then

> (AN0) = AN\ {j} o)) = (N, 0),

ieN\{j}

where (N \ {j},v™) is the restricted game on N \ {j}, i.e. v77(S) = v(S)
for all S C N\ {j}.

5See A. van den Nouweland, P. Borm, W. van Golstein Brouwers, R. Groot Bruinderink,
and S. Tijs, A game theoretic approach to problems in telecommunication, Management
Science 42 (1996), 294-303.
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Next we define a weak efficiency axiom which requires efficiency only for
games with at most two players.

2-Efficiency: For every game (N,v) with |[N| <2, 3 ,cn fi(N,v) = v(N).

Together with 2-efficiency for 2-games, participation consistency charac-
terizes the Shapley value on the class of 2-games.

Theorem A. The solution f for 2-games satisfies 2-efficiency and partici-
pation consistency if and only if it is the Shapley value.

Proof. Since the Shapley value is efficient, it satisfies 2-efficiency. To show

that the Shapley value satisfies participation consistency, consider 2-game
(N,v), IN| > 2, and j € N. Then

o Ay(S

> (SuV,v) = SN\ o) = > | Y 2()— >

ieN\{j} iEN\{j} \ scn,IsI=2 SCNIS|=2
ZES ZESJ€S

A, (S
-y oy 2

ieN\{j} SCN15]=2

1,] €
Ay(S)
SCN,|S|=2
jes
= Shj (N, 7)),

showing that the Shapley value satisfies participation consistency.®

We show uniqueness by induction on |N| (similar as the uniqueness part
of the proof of Theorem 2, but in terms of TU-games). If |[N| = 1 then
fi(N,v) = v({i}) = 0 = Sh;(N,v) by 2-efficiency. If |[N| = 2 then partici-
pation consistency implies that f;(N,v) — fi({i},v™) = f;(N,v), and thus
fi(N,v) = f;(N,v) if N = {i,j}. With 2-efficiency it then follows that
fi(NvU) = fj(NvU) = ﬂzﬂl

SNote that the third equality follows from only two-player coalitions having a nonzero
dividend, and does not hold for arbitrary games.
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We will establish the claim for an arbitrary number of players by an
induction argument. As induction hypothesis, suppose that uniqueness holds
for all N' € N such that 2 < |[N'| < |N|—1.Let N ={1,2,...,n}. Consider
2-game (N, v). For any j € N, participation consistency yields

' ;{4} <fZ<N,U)—fZ(N\{]},U_])> :fj<N7U)- (9)

By the induction hypothesis the f;(N\{j},v™), 1,7 € N, i # j, are uniquely
determined. Since |N| > 3 this yields a system of n linearly independent
equations in the n unkowns f;(N,v), j € N, which thus are uniquely deter-
mined. |

19



